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Fixed-point theorems for random groups 

Takefumi Kondo 

Abstract. 

This article is an exposition of fixed-point theorems for random 
groups of the triangular model and of the graph model obtained in 
joint works with Izeki and Nayatani [11, 12]. 

§1. Introduction 

The study of random groups has been a subject in geometric group 
theory ever since Gromov referred to the "genericity" of hyperbolic 
groups via a definite statistical meaning in [6]. That paper contains 
no proof, but later, Olshanskii [16] gave a confirmation of Gromov's 
claim. 

Furthermore, Gromov proved in [7] that in the density model, ran­
dom groups with density smaller than 1/2 are infinite hyperbolic. Here, 
the density of a subset A of some finite set X is 0 < d < 1 when the 
number of elements of A is the number of elements of the whole set X to 
the power d. We use the expression "random groups with density d have 
a certain property P" to mean that the probability for a group defined 
by a randomly chosen (with respect to the uniform measure) density d 
subset of the set of words of length l to have property P goes to 1 when 
l goes to infinity. For the detailed proof of this theorem in [7] and some 
generalizations, see [14]. 

In general, random groups are a probability distribution of finitely 
generated groups as above. The main motivations for the study of ran­
dom groups are to investigate what a typical property of finitely gen­
erated groups is and to construct groups with new properties. For a 
survey of the study of random groups, see [5, 15]. 
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Zuk showed in [19] that random groups have Kazhdan's Property 
(T) in another model of random groups called the triangular model. For 
finitely generated groups, Property (T) is equivalent to the fixed-point 
property for Hilbert spaces. Furthermore, Gromov proved in [8] that 
random groups of the graph model have both Property (T) and the fixed­
point property for the class Creg which will be defined in Example 3.5 
and contains all regular CAT(O) spaces. Silberman [17] gave a detailed 
proof for Property (T) of random groups of the graph model. 

On the other hand, there is a famous open problem about whether 
random groups are nonlinear. Here, a finitely generated group r is called 
nonlinear if r cannot be isomorphic to a subgroup of GL(n, R). It is 
well-known that if a group r has the fixed-point property for the class 
of Hilbert spaces, symmetric spaces and Euclidean buildings, then r is 
nonlinear. Hence it is natural to ask if random groups of some model 
have the fixed-point property for some class of CAT(O) spaces containing 
these spaces. 

In this paper, we report on our recent results with Izeki and Nayatani 
[11, 12] that random groups of the triangular model have the fixed-point 
property FY<oo for any 8o < 1/2 and random groups of the graph model 
have the fixed-point property FY for any classY of CAT(O) spaces with 
bounded 8. Here FY::;o0 denotes the fixed-point property for the class 
Y<oo of CAT(O) spaces whose 8 (defined in §3) is not more than 80 , and 
a class Y of CAT(O) spaces is said to have bounded 8 if there exists 
80 < 1 such that 8(Y) ~ 80 for any Y E Y. 

Though there were not so many groups known, up to now, with such 
a strong fixed-point property, the above theorems state that such groups 
exist in abundance. 

§2. Basic Definitions 

2.1. Fixed-point property 

Let Y be a metric space. A finitely generated group r is said to 
have the fixed-point property for y if any isometric action of r on y 
admits a global fixed point, and we denote this property by FY. If Y is 
a class of metric spaces, then r has FY if r has the fixed-point property 
for any Y E Y. 

A well-known example of a fixed-point property is Kazhdan's Prop­
erty (T). Kazhdan's Property (T) was originally defined in a representa­
tion theoretic way as follows. A group r is said to have Property (T) if 
the trivial representation is an isolated point in the set of irreducible uni­
tary representations. However, it is well-known that there is a geometric 
interpretation: 
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Theorem 2.1 ([3, 9]). A finitely generated group r has the fixed­
point property for Hilbert spaces if and only if r has Kazhdan's 
Property (T). 

Higher rank lattices such as SL(n, Z)(n ?: 3) are known to be ex­
amples of groups with Property (T), but it is not easy to construct 
an example of a group with Property (T) which is not a lattice. Infi­
nite abelian groups, or more generally, infinite amenable groups do not 
have Property (T). Furthermore, free groups Fn(n ?: 2) do not have 
Property (T), since they have infinite abelian groups as their quotients, 
and any quotient group of a group with Property (T) would also have 
Property (T). 

Property (T) induces some other fixed-point properties. 

Theorem 2.2 ([18]). If a finitely generated group r has Property 
(T), then r has the fixed-point property for trees. 

The fixed~point property for trees is called Serre's Property FA and 
is also important in discrete group theory because an isometric action 
on a tree is related to a decomposition of a group via Bass-Serre theory. 
If r has Property FA, then r does not split as an amalgamated free 
product nor an HNN extension. 

Furthermore, finitely generated groups with Property (T) also have 
the fixed-point property for real and complex hyperbolic spaces. See [1] 
for these fact and more details about Kazhdan's Property (T). 

2.2. CAT(O) spaces 

Since our theorems are concerned with fixed-point properties for 
some classes of CAT(O) spaces, we recall here the notion of CAT(O) 
spaces briefly. 

Definition 2.3 (CAT(O) space). A complete metric space (Y, d) is 
called a CAT(O) space if it satisfies the following two conditions: 

(1) 

(2) 

Any two points in Y can be joined by a geodesic, that is, an 
isometric embedding of an interval. 
For any x, y, z E Y and any geodesic 'Y: [0, 1]--+ Y with "f(O) = 
y,"((1) = z, we have for 0:::; t:::; 1, 

d(x, 'Y(t))2 :::; (1- t)d(x, y) 2 + td(x, z) 2 - t(1- t)d(y, z)2 . 

A complete metric space satisfying the first condition is called a 
geodesic space. Note that the inequality in the second condition becomes 
an equality for triangles in the Euclidean plane. So roughly speaking, 
CAT(O) space is a geodesic space in which any geodesic triangles are 
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"thinner", or at least "not thicker", than triangles in the Euclidean 
plane. 

Example 2.4. The following are examples of CAT(O) spaces. 

( 1) Hilbert spaces, 
(2) 
(3) 

trees, 
Hadamard manifolds (i.e. a complete simply connected Rie­
mannian manifold with sectional curvature :::; 0) 

( 4) Euclidean buildings. 

For more about CAT(O) spaces, see [2]. 

§3. Izeki-Nayatani's invariant 6 

We recall here the definition of the numerical invariant 6(Y) of a 
CAT(O) space Y introduced by Izeki and Nayatani [13], which is in 
some sense considered to measure the degree of singularity of a CAT(O) 
spaceY. 

At first we define the notion of a barycenter. We define a barycenter 
only for a finitely supported measure, as we do not need the more general 
case. 

Definition 3.1 (barycenter). Let Y be a CAT(O) space and let fJ = 2:::1 ti Diracyi be a probability measure with finite support on Y. The 
barycenter 'jl E Y of fJ is the unique minimizing point of the function 

m 

y f----4 L tidy(y, Yi? 0 

i=l 

Definition 3.2 (Izeki-Nayatani's invariant 8). Let Y be a CAT(O) 
space. Let fJ be a finitely supported probability measure on Y, and let 
'jl E Y be the barycenter of fl· Consider all maps ¢: supp fJ -----+ H 
satisfying 

and set 

Here H denotes an infinite-dimensional Hilbert space. We then define 

o(Y) =sup 6(Y, tJ), 
1-' 

where sup is taken over all finitely supported probability measures on Y. 
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This invariant 8(Y) takes value in [0, 1] because 8(Y, J.L) is in [0, 1] 
by the Cauchy-Schwartz inequality, and equals 0 when Y is a Hilbert 
space. 

Example 3.3 ([13]). The following are some known estimates for 8. 

(1) 

(2) 

IfY is a Hilbert space or a Hadamard manifold or a tree, then 
8(Y) = 0. 
For an integer n 2 2 and a prime p, let Yn,p be the Euclidean 
building associated to PGL(n, Qp)· Then we have 

8(Y ) > (yip- 1)2 
3'p - 2(p-ylp+1)" 

If p = 2, then 

37 -18¥'2 
8(Y3,2) :::; 28 = 0.4122 .... 

Moreover, we know that for any integer N 2 2, there exists a number 
8 N < 1 such that for any integer 2 :::; n :::; N and any prime p we have 
8(Yn,p) :::; 8N. However, we do not know whether there exists a number 
800 < 1 such that 8(Yn,p) :::; 800 for any integer n 2 2 and any prime p. 

We can easily show that the invariant 8 satisfies the following propo­
sition. 

Proposition 3.4. (1) For any convex closed subspace Y' of a 
CAT(O) spaceY, we have 8(Y') :::; 8(Y). 

(2) For the product of two CAT(O) spaces Y, Y', we have 

8(Y x Y') = max{8(Y), 8(Y')}. 

(3) Let (Yn, dn) be a sequence of CAT(O) spaces, w a non-principal 
ultrafilter on N and (Yw, dw) the ultralimit (Yw, dw) 
w-lim (Yn, dn)· Then, 

n 

holds ([11, Proposition 3.2]). 

For a fixed 8o E [0, 1], let Y::;o0 denote the class of CAT(O) spaces Y 
satisfying 8(Y) :::; 80 • Then, the above proposition shows that the class 
Y::;oo is closed under the operations of taking a direct product, a convex 
closed subspace and an ultralimit. 

Let Y be a family of CAT(O) spaces. Y is said to have "bounded 8" 
if there exists 8o < 1 such that 8 (Y) :::; 8o for all Y E Y. 
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Example 3.5. (1) Let 1{ be the class of Hilbert spaces, then 
1{ has bounded o, since we have o(H) = 0 for any HE 'H. 

(2) Let Creg be the minimal class of CAT(D) spaces that contains 
all smooth CAT(O) spaces (i.e. Hadamard manifolds) and that 
is closed under taking closed convex subspaces and ultralimits. 
Then, Creg has bounded o, since any y E Creg has o(Y) = 0. 

(3) Let Y<oo be the class of CAT( D) spaces Y satisfying o(Y) :::; Oo 
as above. If 80 is less than 1, then Y::;o0 has bounded o by 
definition. Creg is a subclass of Y::;o0 for any Oo. 

(4) For any N, the classY= {Yn,pln:::; N} of Euclidean buildings 
has bounded o. 

By using the invariant 8, Izeki and Nayatani obtained the following 
fixed-point theorem in [13]. 

Theorem 3.6. Let a discrete group r act properly discontinuously 
and cocompactly on a simplicial complex X with an admissible weight, 
and let Y be a CAT(O) space. If 

fJI(Lkx)(1- o(Y)) > 1/2 

holds for any X E X, then r has FY. Here, fJl(Lkx) is the second 
eigenvalue of the combinatorial Laplacian of the link of x. 

If we take X = Y = Y3 ,p and let r be a cocompact lattice of 
PGL(3, Qp) in the above theorem, then of courser does not have FY. 
Hence we have 

fJI(Lkx)(1- o(Y3,p)):::; 1/2. 

So we get the former estimate of Example 3.3 (2) 

1 
o(Y3,p) ~ 1 - 2!Jl(Lkx) 

(y/p- 1)2 
2(p- Vf5 + 1) 

by using the computation of the /Jl of generalized polygons by Feit­
Higman [4] since the link of any point x E Y3 ,p can be identified with 
the generalized triangle associated to the finite projective plane P 2 (F p)· 

Moreover, if we take X= Y3,p and let Y be any CAT(O) space with 

o(Y) < (Vf5- 1)2 
2(p-y/p+1) 
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and let r be a cocompact lattice of PGL(3, Qp) in the above theorem, 
then we have 

J-ti(Lkx)(1- 8(Y)) > 1/2, 

thus we get the fixed-point property for Y. This means that r has the 
fixed-point property for any CAT(O) spaceY with 

(v'P- 1)2 
8(Y) < 2(p- y'P + 1)" 

In particular, the group r has the fixed-point property for Creg• 

§4. Random groups of the triangular model 

Zuk considered in [19] a model of random groups which is now called 
the triangular model as follows: For 0 ::; d ::; 1 and a fixed constant 
c > 1, let PM(m, d) be the set of presentations P = (SIR), where 
S = { Sf1 , ... , s;;_1} and R is a set of words of length 3 with respect to 
S satisfying c-1(2m- 1)3d::; #R::; c(2m- 1)3d. Let r(P) denote the 
group defined by the presentation P. Then, Zuk showed the following 
theorem. 

Theorem 4.1 ([19]). If d > 1/3, 

l. #{P E PM(m, d) I r(P) has Kazhdan's Property (T)} 1 
lm -

m->oo #PM(m,d) - · 

In order to prove this theorem, Zuk obtained a spectral criterion for 
a finitely generated group given by a presentation to have Kazhdan's 
Property (T). The criterion is stated in terms of the second eigenvalue 
of the discrete Laplacian of a certain finite graph, canonically associated 
with the presentation of the group and denoted by L'(S) in [19]; if this 
invariant is greater than 1/2, then the group has Property (T). 

Our first theorem states that under the same conditions as Zuk's 
theorem, random groups have the fixed-point property for the class Y<8o 
(<5o< 1/2) of metric spaces. -

Theorem 4.2 ([11]). For 8o < 1/2 and d > 1/3, we have 

lim #{P E PM(m, d) I r(P) has FY<8o} = 1. 
m->oo #PM(m,d) 

As we saw in the example 3.5, the class Y::;8o contains all Hilbert 
spaces, Hadamard manifolds, trees and some Euclidean buildings. Since 
Property (T) is equivalent to the fixed-point property for Hilbert spaces, 
our theorem is stronger than Zuk's. 
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§5. Random groups of the graph model 

In this section, we recall the setting of random groups of the graph 
model considered in [8] and state our main theorem. 

Let k 2: 2 be an integer and let r be a free group generated by S = 

{ st1 , ... , s~ 1 }. We fix a finite graph G = (V, E). A map et : E ---+ S is 
called an S-labeling if et((u,v)) = a((v,u))-1, and let .A= {a: E---+ S} 
be the set of S-labelings for G. For a closed path c = (e1, ... , e-;.), we 
get a word on S by a( C) = et(e1) ... a(e-;.). By considering these words 
as relations, we get a finitely generated group r a· Precisely, by setting 

Ra := {a(C)Ica closed path in G}, 

we define r a = r IRa = (SIRa)· Here, Ra denotes the normal closure 
of Ra. As we defined a group for any S-labeling et, we get a model of 
random groups by giving a uniform probability measure on .A. 

Definition 5.1. For a sequence of finite graphs { Gi}~1 we say that 
random groups of the graph model have property P if 

lim #{ Ct E .Ai If a has property p } = 1. 
i->oo #A 

Here, .Ai is the set of S -labelings for Gi. 

Then our main theorem is the following. 

Theorem 5.2. Let Y be a family of CAT(O) spaces with bounded 
6. Let { Gi} ~1 be a sequence of finite connected graphs whose number 
of vertices tends to infinity, and satisfying 

{ 
2::; deg(u)::; do (u E Gi), 
girth(Gi) > i, diam(Gi) < lOOi, 

/-ll(Gi) 2: Ao > 0, 
Hembeded paths in Gi of length< l/2}::; canst· (3112 , 

for some f3 > 1 sufficiently close to 1. Then we have 

1. #{ et E .Ai If a is non-elementary hyperbolic and has FY} 
lm = 1. 

i->oo #.Ai 

That is, random groups of the graph model have FY. Here deg(u) is 
the degree of a vertex u, diam( G) is the diameter of G, girth( G) is the 
minimal length of closed paths in the graph G, and /-ll (G) is the first 
non-zero eigenvalue of the combinatorial Laplacian of G. 
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Note that the fixed-point property FY we get here is stronger than 
FY::;o0 (8o < 1/2), which we got in the triangular model. 

As we do not know any example of a CAT(O) spaceY with 8(Y) = 1, 
there is the question of whether there really exists a CAT(O) space Y 
that satisfies 8(Y) = 1. If there is no CAT(O) space with 8(Y) = 1, we 
can easily show that there exists a constant C < 1 such that 8(Y) < C 
for any CAT(O) spaceY. Then, by considering the class YcAT(o) of all 
CAT(O) spaces, we would get a hyperbolic group with FYcAr(o)· 

For the proof of Theorem 5.2, we used a fixed-point theorem via 
n-step energy estimation. For the notion of n-step energy and the fixed­
point theorem, see [10] in this volume. 
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