Advanced Studies in Pure Mathematics 57, 2010 Probabilistic Approach to Geometry pp. 263–272

Fixed-point theorems for random groups

Takefumi Kondo

Abstract.

This article is an exposition of fixed-point theorems for random groups of the triangular model and of the graph model obtained in joint works with Izeki and Nayatani [11, 12].

§1. Introduction

The study of random groups has been a subject in geometric group theory ever since Gromov referred to the "genericity" of hyperbolic groups via a definite statistical meaning in [6]. That paper contains no proof, but later, Olshanskii [16] gave a confirmation of Gromov's claim.

Furthermore, Gromov proved in [7] that in the density model, random groups with density smaller than 1/2 are infinite hyperbolic. Here, the density of a subset A of some finite set X is 0 < d < 1 when the number of elements of A is the number of elements of the whole set X to the power d. We use the expression "random groups with density d have a certain property P" to mean that the probability for a group defined by a randomly chosen (with respect to the uniform measure) density dsubset of the set of words of length l to have property P goes to 1 when l goes to infinity. For the detailed proof of this theorem in [7] and some generalizations, see [14].

In general, random groups are a probability distribution of finitely generated groups as above. The main motivations for the study of random groups are to investigate what a typical property of finitely generated groups is and to construct groups with new properties. For a survey of the study of random groups, see [5, 15].

Received January 29, 2009.

Revised May 22, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 20F67, 20F69, 20P05.

Key words and phrases. Fixed-point property, random groups, CAT(0) space.

Žuk showed in [19] that random groups have Kazhdan's Property (T) in another model of random groups called the triangular model. For finitely generated groups, Property (T) is equivalent to the fixed-point property for Hilbert spaces. Furthermore, Gromov proved in [8] that random groups of the graph model have both Property (T) and the fixed-point property for the class \overline{C}_{reg} which will be defined in Example 3.5 and contains all regular CAT(0) spaces. Silberman [17] gave a detailed proof for Property (T) of random groups of the graph model.

On the other hand, there is a famous open problem about whether random groups are nonlinear. Here, a finitely generated group Γ is called nonlinear if Γ cannot be isomorphic to a subgroup of $GL(n, \mathbf{R})$. It is well-known that if a group Γ has the fixed-point property for the class of Hilbert spaces, symmetric spaces and Euclidean buildings, then Γ is nonlinear. Hence it is natural to ask if random groups of some model have the fixed-point property for some class of CAT(0) spaces containing these spaces.

In this paper, we report on our recent results with Izeki and Nayatani [11, 12] that random groups of the triangular model have the fixed-point property $F\mathcal{Y}_{\leq\delta_0}$ for any $\delta_0 < 1/2$ and random groups of the graph model have the fixed-point property $F\mathcal{Y}$ for any class \mathcal{Y} of CAT(0) spaces with bounded δ . Here $F\mathcal{Y}_{\leq\delta_0}$ denotes the fixed-point property for the class $\mathcal{Y}_{\leq\delta_0}$ of CAT(0) spaces whose δ (defined in §3) is not more than δ_0 , and a class \mathcal{Y} of CAT(0) spaces is said to have bounded δ if there exists $\delta_0 < 1$ such that $\delta(Y) \leq \delta_0$ for any $Y \in \mathcal{Y}$.

Though there were not so many groups known, up to now, with such a strong fixed-point property, the above theorems state that such groups exist in abundance.

$\S 2.$ Basic Definitions

2.1. Fixed-point property

Let Y be a metric space. A finitely generated group Γ is said to have the fixed-point property for Y if any isometric action of Γ on Y admits a global fixed point, and we denote this property by FY. If \mathcal{Y} is a class of metric spaces, then Γ has F \mathcal{Y} if Γ has the fixed-point property for any $Y \in \mathcal{Y}$.

A well-known example of a fixed-point property is Kazhdan's Property (T). Kazhdan's Property (T) was originally defined in a representation theoretic way as follows. A group Γ is said to have Property (T) if the trivial representation is an isolated point in the set of irreducible unitary representations. However, it is well-known that there is a geometric interpretation:

Theorem 2.1 ([3, 9]). A finitely generated group Γ has the fixedpoint property for Hilbert spaces if and only if Γ has Kazhdan's Property (T).

Higher rank lattices such as $SL(n, \mathbb{Z})$ $(n \geq 3)$ are known to be examples of groups with Property (T), but it is not easy to construct an example of a group with Property (T) which is not a lattice. Infinite abelian groups, or more generally, infinite amenable groups do not have Property (T). Furthermore, free groups $F_n(n \geq 2)$ do not have Property (T), since they have infinite abelian groups as their quotients, and any quotient group of a group with Property (T) would also have Property (T).

Property (T) induces some other fixed-point properties.

Theorem 2.2 ([18]). If a finitely generated group Γ has Property (T), then Γ has the fixed-point property for trees.

The fixed-point property for trees is called Serre's Property FA and is also important in discrete group theory because an isometric action on a tree is related to a decomposition of a group via Bass–Serre theory. If Γ has Property FA, then Γ does not split as an amalgamated free product nor an HNN extension.

Furthermore, finitely generated groups with Property (T) also have the fixed-point property for real and complex hyperbolic spaces. See [1] for these fact and more details about Kazhdan's Property (T).

2.2. CAT(0) spaces

Since our theorems are concerned with fixed-point properties for some classes of CAT(0) spaces, we recall here the notion of CAT(0) spaces briefly.

Definition 2.3 (CAT(0) space). A complete metric space (Y, d) is called a CAT(0) space if it satisfies the following two conditions:

- (1) Any two points in Y can be joined by a geodesic, that is, an isometric embedding of an interval.
- (2) For any $x, y, z \in Y$ and any geodesic $\gamma : [0, 1] \to Y$ with $\gamma(0) = y, \gamma(1) = z$, we have for $0 \le t \le 1$,

$$d(x,\gamma(t))^{2} \leq (1-t)d(x,y)^{2} + td(x,z)^{2} - t(1-t)d(y,z)^{2}.$$

A complete metric space satisfying the first condition is called a geodesic space. Note that the inequality in the second condition becomes an equality for triangles in the Euclidean plane. So roughly speaking, CAT(0) space is a geodesic space in which any geodesic triangles are

"thinner", or at least "not thicker", than triangles in the Euclidean plane.

Example 2.4. The following are examples of CAT(0) spaces.

- (1) Hilbert spaces,
- (2) trees,
- (3) Hadamard manifolds (i.e. a complete simply connected Riemannian manifold with sectional curvature ≤ 0)
- (4) Euclidean buildings.

For more about CAT(0) spaces, see [2].

§3. Izeki–Nayatani's invariant δ

We recall here the definition of the numerical invariant $\delta(Y)$ of a CAT(0) space Y introduced by Izeki and Nayatani [13], which is in some sense considered to measure the degree of singularity of a CAT(0) space Y.

At first we define the notion of a barycenter. We define a barycenter only for a finitely supported measure, as we do not need the more general case.

Definition 3.1 (barycenter). Let Y be a CAT(0) space and let $\mu = \sum_{i=1}^{m} t_i \operatorname{Dirac}_{y_i}$ be a probability measure with finite support on Y. The barycenter $\overline{\mu} \in Y$ of μ is the unique minimizing point of the function

$$y \mapsto \sum_{i=1}^m t_i d_Y(y, y_i)^2.$$

Definition 3.2 (Izeki–Nayatani's invariant δ). Let Y be a CAT(0) space. Let μ be a finitely supported probability measure on Y, and let $\overline{\mu} \in Y$ be the barycenter of μ . Consider all maps ϕ : supp $\mu \longrightarrow H$ satisfying

$$\|\phi(y_i)\| = d_Y(\overline{\mu}, y_i), \quad \|\phi(y_i) - \phi(y_j)\| \le d_Y(y_i, y_j),$$

and set

$$\delta(Y,\mu) = \inf_{\phi} \left[\left\| \int_{Y} \phi \, d\mu \right\|^{2} / \int_{Y} \|\phi\|^{2} \, d\mu \right].$$

Here H denotes an infinite-dimensional Hilbert space. We then define

$$\delta(Y) = \sup_{\mu} \delta(Y, \mu),$$

where sup is taken over all finitely supported probability measures on Y.

This invariant $\delta(Y)$ takes value in [0, 1] because $\delta(Y, \mu)$ is in [0, 1] by the Cauchy–Schwartz inequality, and equals 0 when Y is a Hilbert space.

Example 3.3 ([13]). The following are some known estimates for δ .

- (1) If Y is a Hilbert space or a Hadamard manifold or a tree, then $\delta(Y) = 0.$
- (2) For an integer $n \ge 2$ and a prime p, let $Y_{n,p}$ be the Euclidean building associated to $PGL(n, \mathbf{Q}_p)$. Then we have

$$\delta(Y_{3,p}) \ge \frac{(\sqrt{p}-1)^2}{2(p-\sqrt{p}+1)}.$$

If p = 2, then

$$\delta(Y_{3,2}) \le \frac{37 - 18\sqrt{2}}{28} = 0.4122\dots$$

Moreover, we know that for any integer $N \ge 2$, there exists a number $\delta_N < 1$ such that for any integer $2 \le n \le N$ and any prime p we have $\delta(Y_{n,p}) \le \delta_N$. However, we do not know whether there exists a number $\delta_{\infty} < 1$ such that $\delta(Y_{n,p}) \le \delta_{\infty}$ for any integer $n \ge 2$ and any prime p.

We can easily show that the invariant δ satisfies the following proposition.

Proposition 3.4. (1) For any convex closed subspace Y' of a CAT(0) space Y, we have $\delta(Y') \leq \delta(Y)$.

(2) For the product of two CAT(0) spaces Y, Y', we have

$$\delta(Y \times Y') = \max\{\delta(Y), \delta(Y')\}.$$

(3) Let (Y_n, d_n) be a sequence of CAT(0) spaces, ω a non-principal ultrafilter on **N** and (Y_{ω}, d_{ω}) the ultralimit $(Y_{\omega}, d_{\omega}) = \omega$ -lim (Y_n, d_n) . Then,

$$\delta(Y_{\omega}) \le \omega - \lim \delta(Y_n)$$

holds ([11, Proposition 3.2]).

For a fixed $\delta_0 \in [0, 1]$, let $\mathcal{Y}_{\leq \delta_0}$ denote the class of CAT(0) spaces Y satisfying $\delta(Y) \leq \delta_0$. Then, the above proposition shows that the class $\mathcal{Y}_{\leq \delta_0}$ is closed under the operations of taking a direct product, a convex closed subspace and an ultralimit.

Let \mathcal{Y} be a family of CAT(0) spaces. \mathcal{Y} is said to have "bounded δ " if there exists $\delta_0 < 1$ such that $\delta(Y) \leq \delta_0$ for all $Y \in \mathcal{Y}$.

Example 3.5. (1) Let \mathcal{H} be the class of Hilbert spaces, then \mathcal{H} has bounded δ , since we have $\delta(H) = 0$ for any $H \in \mathcal{H}$.

- (2) Let \overline{C}_{reg} be the minimal class of CAT(0) spaces that contains all smooth CAT(0) spaces (i.e. Hadamard manifolds) and that is closed under taking closed convex subspaces and ultralimits. Then, \overline{C}_{reg} has bounded δ , since any $Y \in \overline{C}_{reg}$ has $\delta(Y) = 0$.
- (3) Let $\mathcal{Y}_{\leq \delta_0}$ be the class of CAT(0) spaces Y satisfying $\delta(Y) \leq \delta_0$ as above. If δ_0 is less than 1, then $\mathcal{Y}_{\leq \delta_0}$ has bounded δ by definition. \overline{C}_{reg} is a subclass of $\mathcal{Y}_{<\delta_0}$ for any δ_0 .
- (4) For any N, the class $\mathcal{Y} = \{Y_{n,p} | n \leq N\}$ of Euclidean buildings has bounded δ .

By using the invariant δ , Izeki and Nayatani obtained the following fixed-point theorem in [13].

Theorem 3.6. Let a discrete group Γ act properly discontinuously and cocompactly on a simplicial complex X with an admissible weight, and let Y be a CAT(0) space. If

$$\mu_1(Lk_x)(1-\delta(Y)) > 1/2$$

holds for any $x \in X$, then Γ has FY. Here, $\mu_1(Lk_x)$ is the second eigenvalue of the combinatorial Laplacian of the link of x.

If we take $X = Y = Y_{3,p}$ and let Γ be a cocompact lattice of $PGL(3, \mathbf{Q}_p)$ in the above theorem, then of course Γ does not have FY. Hence we have

$$\mu_1(Lk_x)(1-\delta(Y_{3,p})) \le 1/2.$$

So we get the former estimate of Example 3.3(2)

$$\delta(Y_{3,p}) \ge 1 - \frac{1}{2\mu_1(Lk_x)} \\ = \frac{(\sqrt{p} - 1)^2}{2(p - \sqrt{p} + 1)}$$

by using the computation of the μ_1 of generalized polygons by Feit– Higman [4] since the link of any point $x \in Y_{3,p}$ can be identified with the generalized triangle associated to the finite projective plane $P^2(\mathbf{F}_p)$.

Moreover, if we take $X = Y_{3,p}$ and let Y be any CAT(0) space with

$$\delta(Y) < \frac{(\sqrt{p}-1)^2}{2(p-\sqrt{p}+1)}$$

and let Γ be a cocompact lattice of $PGL(3, \mathbf{Q}_p)$ in the above theorem, then we have

$$\mu_1(Lk_x)(1 - \delta(Y)) > 1/2,$$

thus we get the fixed-point property for Y. This means that Γ has the fixed-point property for any CAT(0) space Y with

$$\delta(Y) < \frac{(\sqrt{p}-1)^2}{2(p-\sqrt{p}+1)}.$$

In particular, the group Γ has the fixed-point property for $\overline{\mathcal{C}}_{reg}$.

§4. Random groups of the triangular model

Zuk considered in [19] a model of random groups which is now called the triangular model as follows: For $0 \leq d \leq 1$ and a fixed constant c > 1, let $P_{\mathcal{M}}(m,d)$ be the set of presentations $P = \langle S|R \rangle$, where $S = \{s_1^{\pm 1}, \ldots, s_m^{\pm 1}\}$ and R is a set of words of length 3 with respect to S satisfying $c^{-1}(2m-1)^{3d} \leq \#R \leq c(2m-1)^{3d}$. Let $\Gamma(P)$ denote the group defined by the presentation P. Then, Zuk showed the following theorem.

Theorem 4.1 ([19]). If
$$d > 1/3$$
,
$$\lim_{m \to \infty} \frac{\#\{P \in P_{\mathcal{M}}(m, d) \mid \Gamma(P) \text{ has Kazhdan's Property } (T) \}}{\#P_{\mathcal{M}}(m, d)} = 1.$$

In order to prove this theorem, Żuk obtained a spectral criterion for a finitely generated group given by a presentation to have Kazhdan's Property (T). The criterion is stated in terms of the second eigenvalue of the discrete Laplacian of a certain finite graph, canonically associated with the presentation of the group and denoted by L'(S) in [19]; if this invariant is greater than 1/2, then the group has Property (T).

Our first theorem states that under the same conditions as Żuk's theorem, random groups have the fixed-point property for the class $\mathcal{Y}_{\leq \delta_0}$ $(\delta_0 < 1/2)$ of metric spaces.

Theorem 4.2 ([11]). For $\delta_0 < 1/2$ and d > 1/3, we have

$$\lim_{m \to \infty} \frac{\#\{P \in P_{\mathcal{M}}(m,d) \mid \Gamma(P) \text{ has } F\mathcal{Y}_{\leq \delta_0}\}}{\#P_{\mathcal{M}}(m,d)} = 1.$$

As we saw in the example 3.5, the class $\mathcal{Y}_{\leq \delta_0}$ contains all Hilbert spaces, Hadamard manifolds, trees and some Euclidean buildings. Since Property (T) is equivalent to the fixed-point property for Hilbert spaces, our theorem is stronger than Żuk's.

$\S 5.$ Random groups of the graph model

In this section, we recall the setting of random groups of the graph model considered in [8] and state our main theorem.

Let $k \geq 2$ be an integer and let Γ be a free group generated by $S = \{s_1^{\pm 1}, \ldots, s_k^{\pm 1}\}$. We fix a finite graph G = (V, E). A map $\alpha : E \to S$ is called an S-labeling if $\alpha((u, v)) = \alpha((v, u))^{-1}$, and let $\mathcal{A} = \{\alpha : E \to S\}$ be the set of S-labelings for G. For a closed path $\vec{c} = (\vec{e_1}, \ldots, \vec{e_r})$, we get a word on S by $\alpha(\vec{c}) = \alpha(\vec{e_1}) \ldots \alpha(\vec{e_r})$. By considering these words as relations, we get a finitely generated group Γ_{α} . Precisely, by setting

$$R_{\alpha} := \{ \alpha(\vec{c}) | \vec{c} \text{ a closed path in } G \},\$$

we define $\Gamma_{\alpha} = \Gamma/\overline{R_{\alpha}} = \langle S|R_{\alpha} \rangle$. Here, $\overline{R_{\alpha}}$ denotes the normal closure of R_{α} . As we defined a group for any S-labeling α , we get a model of random groups by giving a uniform probability measure on \mathcal{A} .

Definition 5.1. For a sequence of finite graphs $\{G_i\}_{i=1}^{\infty}$ we say that random groups of the graph model have property P if

$$\lim_{i \to \infty} \frac{\#\{\alpha \in \mathcal{A}_i | \Gamma_\alpha \text{ has property } P \}}{\#\mathcal{A}_i} = 1.$$

Here, A_i is the set of S-labelings for G_i .

Then our main theorem is the following.

Theorem 5.2. Let \mathcal{Y} be a family of CAT(0) spaces with bounded δ . Let $\{G_i\}_{i=1}^{\infty}$ be a sequence of finite connected graphs whose number of vertices tends to infinity, and satisfying

$$\begin{split} & 2 \leq \deg(u) \leq d_0 \quad (u \in G_i), \\ & girth(G_i) > i, diam(G_i) < 100i, \\ & \mu_1(G_i) \geq \lambda_0 > 0, \\ & \sharp \{ embeded \ paths \ in \ G_i \ of \ length < l/2 \ \} \leq const \cdot \beta^{l/2}, \end{split}$$

for some $\beta > 1$ sufficiently close to 1. Then we have

$$\lim_{i \to \infty} \frac{\#\{\alpha \in \mathcal{A}_i | \Gamma_\alpha \text{ is non-elementary hyperbolic and has } F\mathcal{Y}\}}{\#\mathcal{A}_i} = 1.$$

That is, random groups of the graph model have FY. Here deg(u) is the degree of a vertex u, diam(G) is the diameter of G, girth(G) is the minimal length of closed paths in the graph G, and $\mu_1(G)$ is the first non-zero eigenvalue of the combinatorial Laplacian of G.

Note that the fixed-point property $F\mathcal{Y}$ we get here is stronger than $F\mathcal{Y}_{<\delta_0}$ ($\delta_0 < 1/2$), which we got in the triangular model.

As we do not know any example of a CAT(0) space Y with $\delta(Y) = 1$, there is the question of whether there really exists a CAT(0) space Y that satisfies $\delta(Y) = 1$. If there is no CAT(0) space with $\delta(Y) = 1$, we can easily show that there exists a constant C < 1 such that $\delta(Y) < C$ for any CAT(0) space Y. Then, by considering the class $\mathcal{Y}_{CAT(0)}$ of all CAT(0) spaces, we would get a hyperbolic group with $F\mathcal{Y}_{CAT(0)}$.

For the proof of Theorem 5.2, we used a fixed-point theorem via n-step energy estimation. For the notion of n-step energy and the fixed-point theorem, see [10] in this volume.

References

- B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Math. Monogr., 11, Cambridge Univ. Press, Cambridge, 2008.
- [2] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, Heidelberg, 1999.
- [3] P. Delorme, 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations, Bull. Soc. Math. France, 105 (1977), 281–336.
- W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Algebra, 1 (1964), 114–131.
- [5] É. Ghys, Groupes aléatoires, d'après Misha Gromov,..., Séminaire Bourbaki, 55, 2002/03, n 916.
- [6] M. Gromov, Hyperbolic groups, In: Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, 1987, pp. 75-263.
- [7] M. Gromov, Asymptotic Invariants of Infinite Groups, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, 1993.
- [8] M. Gromov, Random walk in random groups, Geom. Funct. Anal., 13 (2003), 73–146.
- [9] A. Guichardet, Sur la cohomologie des groupes topologiques. II, Bull. Sci. Math. (2), 96 (1972), 305–332.
- [10] H. Izeki, A fixed-point property of finitely generated groups and an energy of equivariant maps, in this volume.
- [11] H. Izeki, T. Kondo and S. Nayatani, Fixed-point property of random groups, Ann. Global Anal. Geom., 35 (2009), 363–379.
- [12] H. Izeki, T. Kondo and S. Nayatani, N-step energy of maps and fixed-point property of random groups, preprint.
- [13] H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geom. Dedicata, 114 (2005), 147–188.
- [14] Y. Ollivier, Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal., 14 (2004), 595–679.

- [15] Y. Ollivier, A January 2005 invitation to random groups, Ensaios Mat., 10, Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
- [16] A. Yu. Ol'shanskiĭ, Almost every group is hyperbolic, Internat. J. Algebra Comput., 2 (1992), 1–17.
- [17] L. Silberman, Addendum to "random walks in random groups", Geom. Funct. Anal., 13 (2003), 147–177.
- [18] Y. Watatani, Property T of Kazhdan implies property FA of Serre, Math. Japon., 27 (1982), 97–103.
- [19] A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal., 13 (2003), 643–670.

Department of Mathematics Graduate School of Science Kobe University 1-1 Rokkodai, Kobe 657-8501 Japan

E-mail address: takefumi@math.kobe-u.ac.jp