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Pattern formation from projectively dynamical 
systems and iterations by families of maps 

Tsuyoshi Kato 

Abstract. 

In this paper we describe and forrimlate dynamical pattern for
mation, which is given by hierarchies of dynamical systems by scale 
transform. They arise from random iterations by maps and create 
PDE such as KdV or Lotka Volterra. As an intermediate scale, we use 
tropical geometry. 

§1. Introduction 

Pattern formation in dynamical systems is a phenomena that con
nects several different dynamics passing through some scaling limits. 
In some cases, dynamics which behaves very randomly is transformed 
into another which satisfies some rigid properties. This can be possible 
since procedure of scaling limits wastes detailed information and picks 
up rough movement of dynamics. 

In this paper we introduce a fomulation of dynamical expansion be
tween two dynamics passing through another parametrized ones, and 
have explicit constructions. Iteration dymanics has been studied quite 
deeply and known to show various aspects of dynamical properties. Typ
ically they behave quite chaostic manner, and so in general it would be 
impossible to trace their movements rigorously. On the other hand sev
eral integrable systems show some predictable dynamics and create some 
patterns. Of particular interest are solitons in KdV solutions. We call a 
dynamical expansion between such dynamics as a dynamical pattern for
mation. We construct dynamical pattern formations between iteration 
dynamics by families of maps and some partial differential equations. 
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As an intermediate dynamics, we pass through parametrized complex 
dynamics which arise from tropical geometry. Our main theorem is a 
construction of dynamical pattern formations in our sense, from the iter
ation dynamics by piecewise linear maps to the KdV and Lotka Volterra 
solutions. 

Let (Z, d') be a metric space and consider a family of dynamical 
spaces on it: 

(J't: z-+ z 

where t E [1, oo) and (J't are continuous maps. 
Let us take another metric space (X, d, T) equipped with a continu

ous map T : X -+ X on it. 
A contracting map between these dynamical systems consistes of a 

parametrized maps: 

'Pt : Z -+ X, t E [1, oo) 

so that for any m, (J't(m) E Z: 

d(T('Pt(m)), 'Pt((J't(m)))-+ 0, d('Pt(m), 'Pt(m'))-+ 0 

hold as t-+ oo. Thus as t-+ oo, 'Pt looks as though equivariant, but the 
maps are collapsing neighbourhood of points and approaching constant. 
We denote it as 'Pt: (Z,(J't)-+ (X,T). 

Similarly 'Pt : (Z, (J't)-+ (X, T) is an expanding map, if the following 
two conditions hold: 

d( T( 'Pt ( m) ), 'Pt ( (J't(m))) -+ 0, d( 'Pt ( m ), 'Pt ( m')) -+ oo 

Let (X, d, T) and (Y, d", J-L) be two metric spaces equipped with con
tinuous maps. Here we introduce the following: 

Definition 1.1. A dynamical expansion from (X, d, T) to (Y, d", J-L) 
is the set {(Z,d',(J't),'IJt,<Pt}, where: 

is a contracting map, and: 

is an expanding map. 

In some cases the dynamics (X, d, T) will show chaostic behaviour in 
its nature, on the other hand the dynamics (Y, d", (}') may satisfy some 
rigidity. This will be possible by changing their scalings of dynamics 
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as above. We construct dynamical pattern formations from dynamics 
of families of piecewise linear maps on R to some integrable partial 
differential equations including KdV and Lotka Volterra equations. 

In general these spaces may be of infinite dimension. But in some 
cases these can be reduced to dynamics on finite dimensional spaces. 
These are the cases for us, where X= R= and Z = c=. In some cases 
we have a reduction on X to finite automata, and on Z, we always have 
a reduction to a family of dynamics on a parametrized affine algebraic 
varieties. 

Let us say that a contracting map from (Z, d', at) to (X, d, T) admits 
a finite dimensional reduction, if there are parametrized finite dimen
sional manifolds yt C CN, families of functions: 

Pn : Z -+ C, n = 0, 1, ... , 

Q: c=-+ x 

and a1, a2, b1, b2 2: 0 so that for each n 2: ai, bj and z E Z, the following 
conditions hold: 

(Pn-a 1 (z), ... , Pn+a2 (z), Pn-bJat(z)), ... , Pn+b2 (at(z))) E Vt, 
Q(Po(z), P1(z), ... ) = 'Pt(z). 

We denote such reduction as: 

'Pt : (vt, at) -+ (X, T). 

Later when we construct dynamical expansions, we will choose a1 = 
0, a2 = 1, b1 = 1, b2 = 0, since they are related to cell automata. 
In that case, vt are all hypersurfaces in C 4 . 

Let /I, ... , fa : [0, 1] -+ [0, 1] be a family of continuous maps. In 
[K3], we have introduced a family of dynamics on the one sided fullshift 
Xa = {(ko,ki, ... ): ki E {1, ... ,a}} induced from the family: 

<I>( {fi}i) : [0, 1) X Xa-+ [0, 1] X Xa 

as <I>(x, (mo, m1, ... )) = (x, <I>(x)(mo, m1, ... )). We call it an interaction 
map (LA). 

These families of maps {fi}f=1 also give another families of dynam
ical systems: 

~: [0, 1) X [0, 1jcxo-+ [0, 1) X [0, 1jcxo 

~(x, (yo, y1, ... )) = (x, ~(x)(yo, Y1, ... )). In a sense the dynamical sys
tems generalize the one dimensional iteration dynamics, and they will 
behave quite complicated manner. 
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On the other hand <P( {fi}i) above are induced from these~( {fi}i). 
Let 'Tra: [0,1] ---t {1, ... ,a} be the projection. It gives a map 'Tra: 
[0,1] 00 ---t Xa by 'Tra(Yo,YI.···) = (7ra(Yo),7ra(Yl), ... ). Then one has 
commutativity: 

'Tra 0 ~ =<Po 'Tra· 

Let us divide the square [0, 1]2 into a2 number of cells of length 
1/a. When the graphs of a family of continuous maps sit into each cell 
in a nice way, which we call the cell type, then the dynamics on Xa is 
reduced to a cell automaton A (l.B). Thus general interaction maps can 
be regarded as perturbations of cell automata. There are cell automata 
which do not come from families of continuous maps, on the other hand 
such class of automata include Lotka Volterra cell automaton, and other 
important integrable automata ([K3,4]). 

On the above construction, the number of the maps must be finite, 
since one has normalized domains and used projection 'Tra : [0, 1] ---t 

{ 1, ... , a}. Thus when one has infinite number of maps, then it will be 
natural to use denormalized projection 1r : R ---t Z. Thus for a family of 
maps fi : R ---t R, i E Z, one obtains another dymanics and the induced 
dymanics as: 

~: R X R 00 ---t R X R 00 , 

<P : R X X 00 ---t R X X 00 • 

In the case of Lotka Volterra cell automaton, it is known that one can 
obtain subdynamics where the number of alphabets are bounded, and 
so it induces <P: R x X ---t R x X, XC Xa for some a. 

When one has a map f : Rn ---t R, then it induces a family of maps: 

Ji1, ... ,in- 1 : R ---t R, /i1, ... ,in-l (x) = /(ii. ... , in-1, x) E R. 

A family of maps {h, ... ,in_J is said to be piecewise linear, if the cor
responding dynamics on Xoo is induced from a piecewise linear map 
f : Rn ---t R. Notice that this is a stronger condition than that each 
map !i1 , ... ,in_ 1 is pl as above. 

When a family of maps is piecewise linear, then we will obtain con
tracting maps, which translate its dynamics into complex dynamical sys
tems, where for the process, we use tropical geometry ([Mi],[V]). Tropical 
geometry associates rational functions to piecewise linear maps (1.0.4). 
Such rational functions have real and positive coefficients. 

Let F : en ---t C be a polynomial and take initial values z E C. 
Then it induces a dynamical systems: 

<l>(F)(z) : coo ---t coo 
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by a similar way as the construction of <i? (l.C.3). This holds two prop
erties: 

(1) The above dynamics admits a finite dimensional reduction over 
affine algebraic varieties v c cn+l. 

(2) When F comes from a piecewise linear map by tropical geometry, 
then one can restrict to (R:t', ~(F)). 

Let us put: 

Our main construction is the following: 

Theorem 1. Let f : R n ---+ R be a picewise linear map. Then there 
is a parametrized polynomials Ft, t E [1, oo) so that there is a contracting 
map: 

which are reduced to parametrized affine algebraic varieties Vi. 

In our notation, it is expressed as: 

When the latter dymanics (R 00 , <i?(f)) is reduced to an automaton A, 
then we will say that Logt gives a contracting map from (Vi,~) to an 
automaton A and denote as: 

Logt : (Vi,~) ---+ A. 

Thus once one finds expanding maps, then they consiste of a dy
namical expansion. 

Proposition 1 (H). There are continuous deformations both from 
discrete KdV to KdV equation, and from discrete LV to LV equation. 

In our formulation these continuous procedures are interpreted as 
expanding maps. Combining this with the above contracting map, one 
obtains constructions of dynamical pattern formations: 

Theorem 2. {1} Let f : R 3 ---+ R be a partially defined piecewise 
linear map given by: 

Then it gives a dynamical expansion from a cell automaton: 

A : V1 + max(O, V2 + V3) = V2 + max(O, Vi_ + V4) 
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to KdV flows: 

Logt: (V, u) = {(zl, Z2, Z3, Z4): Z2 + Z1Z2Z4 = Zl + ZlZ2Z3} c C4 --+ A, 

1 1 1 
<Pt: (V,u)--+ {u(x.s): Us- 3UUx + 48 2 (1- 4)U3x = 0}. 

p p p 

(2) Let f: R 3 --+ R be a piecewise linear map given by: 

j(x2, x3, x4) = X2 + max(O, x3) - max(O, x4). 

Then it gives a dynamical expansion from a cell automaton: 

B : V1 + max(O, V4 ) = V2 + max(O, %) 

to LV flows: 

Logt: (V, u) = {(zl, Z2, Z3, Z4): Z2 + Z2Z3 = Zl + Z1Z4} c C 4 --+ B, 

<Pt : (V, u) --+ { u(x, s) : u~ = Un( Un+l - Un-d }. 

Algebraic varieties admit various operations on themselves. Passing 
through them, one can induce operations on the dynamics on piecewise 
linear maps or on automata. The projective duality is an involution on 
the set of algebraic varieties, which comes from Legendre transforma
tion ([GKZ]). Passing through our contracting maps, we will introduce 
duality on piecewise linear maps or on automata (l.C.5): 

{!i,j }i,j --+ {fi~j h,j, A --+ A v. 

The projective duality uses global geometry of spaces, and so it seems 
hard to obtain dual cell automata directly. We have an example of such 
duality for the case of some curves. 

The author would like to thank to the Max Planck Institute in Bonn 
for their hospitarity during his stay there. He also would be thankful to 
the organizers for the 1st MSJ-SI, Probabilistic Approach to Geometry. 

§2. Dynamical expansion 

l.A Interacting maps: Let fi : [0, 1] --+ [0, 1], i = 1, ... , a be a 
family of maps and 

Xa = {(ko,kl,···): ki E {l, ... ,a}} 

be the one sided full shift. 
For each element k = (k0 , k1 , ... ) E Xa, we will associate a family 

of maps: 
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by: 
h'm(x) = fkrn 0 fkrn-l 0 • • • 0 fko(x). 

We call the famliy as the interaction maps. 
Let us put a subset S(h, ... , fa; k) = {x E [0, 1] : hm(x) E {~}f,:} 

for some m} in [0, 1]. We call it the singular set. The regular set with 
respect to k is given by R(h, ... , fa; k) = [0, 1]\S(!I, ... , fa; k). 

The regular set of the family of maps {!I, ... , fa} is defined by: 

Let: 
1 2 a -1 

1r : [0, 1] \ {-, -, ... , -} -+ { 0, 1, ... , a} 
a a a 

be a measurable map given by n(e-;/, ~)) = i fori= 1, ... , a. 
Let k E Xa and {hm}m be the corresponding famliy of maps. For 

each x E R(h, ... , fa), one can compose {hm(x)}m with 1r: [0, 1]= -+ 

Xa, n(xo, x1, ... ) = (n(xo), n(x1), ... ), and obtains another element: 

k' = n((h0 (x), h1 (x), ... )) =(no h0 (x), 1r o h1 (x), ... ) E Xa. 

Thus for each element k E Xa, one has assigned k' E Xa. We denote it 
as <I>( {fi}i)(x) : Xa-+ Xa by <I>( {fi}i)(x)(k) = n((h0 (x), h1 (x), ... )). It 
gives a family of symbolic dynamics: 

<I>(fi, ... , fa) : [0, 1] X Xa-+ [0, 1] X Xa, 

<I>( {fi}i)(x, k) = (x, <I>( {fi}i)(x)(k)) 

with domain R(h, ... , fa) x Xa. This is the most basic dynamics in this 
paper. We call it the interaction map. 

<I> above is a reduction of the map <i?(x) : [0, I]= -+ [0, 1]= defined 
below. For (y0 , y 1 , ... ) E [0, 1]=, let us denote: 

k = (n(yo), n(y!), ... ) E Xa 

and let {hm}m be the family of maps on [0, 1] corresponding to ( {fi}i, k). 
Then we put: 

Its reduction by the projection gives a commutative maps: 

noel>= <I> on. 

Suppose one has infinite number of family of maps. Then one cannot 
follow the above construction for a = oo. In this case one can use 
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denormalized projections. Let fi : R ---+ R, i E Z be infinite family of 
maps, and put 1r: R---+ Z be a measurable map given by 1r((i-l, i)) = i. 
Then by use of this 1r, a parallel construction gives a family of dynamics: 

which reduces to the family of symbolic dynamics: 

l.B Reduction to cell automata: Let {h, ... , fa} be a family 
of maps. We say that the family is of cell type, if each map satisfies: 

for all i = 0, ... , a- 1, where j = 0, ... , a- 1 depends on l and i. 
Let <P(x) : Xa ---+ Xa be the corresponding interacting map, and 

denote the flows as: 

t = 0, 1, 0 0 0 0 

Let 1r : [0, 1] ---+ {1, ... , a} be the projection. 

Lemma 1. Suppose the family of maps {h, ... , fa} be of cell type. 
Then there is a map: 

rp: {l, ... ,a}2 ---+ {1, ... ,a} 

so that the flows above are determined by the finite automaton: 

A 0 kt+l (kt kt+l) 
0 i+l = <p i+l) i 

for all i, t = 0, 1, 2, .... 

Thus when a family of maps are of cell type, then the reduction to 
symbolic dynamics as in l.A becomes in fact the one to a finite automa-
ton: 

1r: (<J>, [0, 1] x Xa)---+ (A, W) 

where W is the set of strings of infinite length determined by A. 
In order to relate the interaction maps with cell automata, let us 

generalize the composition way as follows. Let {fi,j h:<:;i,j:<:;a be a family 
of continuous maps on [0, 1] and choose k = (k0 , k1 , ... ) E Xa. Then we 
inductively define another family of maps {h 111 : [0, 1]---+ [0, l]}rn>O as: 

h111 (x) = fkm,km+l o h111 - 1 (x), h0 (x) =X. 
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By the same way as above, one defines the interaction map: 

<I>(x) : Xa----> Xa, <I>(x)(k) = ('rr o h0(x), 7r o h\x), ... ). 

Let us denote its iterations <I>(x)t(k) =(kg, ki, ... ) fort= 0, 1, .... 

Definition 2.1. The interaction map <I> given by a family of maps 
{Ai h::;i,j:=;a is called cell automaton type, if for each x E R( {Ai hi), 
there are two maps: 

'{J1,cp2: {1, ... ,a}4 ----> {1, ... ,a} 

so that its reduction to symbolic dynamics is detemined by the equality: 

(kt kt kt-1 kt-1 ) (kt kt kt-1 kt-1 ) 'P1 m• m-1• m ' m+1 = 'P2 m• m-1• m ' m+1 

hold for all m and t, where k6 = n(x). 

<I>( {fi}i) is cell automaton type, when the family of maps {Ai }i,j 
is of cell type defined above. 

Let /i1 , ... ,in-l : R----> R, i1, ... , in-1 E Z be a family of maps, and let 
¢: R x Xoo ----> R x Xoo be the corresponding interaction map. Similarly 
we say that <I> is called automaton type, if there are two maps: 

'P1' 'P2 : zn+2 ___. z 
so that 

(kt kt kt-1 kt-1 ) (kt kt kt-1 kt-1 ) 
'P1 m• m-1• m '· · ·' m+n-1 = 'P2 m• m-1> m '· · ·' m+n-1 

hold for all m and t. 

l.B.2 Lotka Volterra cell automaton: Lotka Volterra equation 
is an ordinary differential equation, known as describing the growth rate 
of competiting lives. The equation is obtained as a continuous limit of 
discrete Lotka Volterra equation. On the other hand by taking another 
way of limit, one obtains a cell automaton called the Latka Volterra 
cellular automaton ([TTMS]): 

CA(LV): v~+1 - V~ = max(Lo, V~+1)- max(Lo, V~~D 

for n, t = 0, 1, ... and La ? 1 is a fixed integer. One of the important be
haviour of the dynamics is existence of soliton. It is known that solitary 
property is preserved under the continuous limits. 

Proposition 2 (K3). There is a family of maps {fi,j hsi,j$a of 
cell type so that the Latka Volterra cell automaton is described as flows 
{ <I>(x)t(k)}t=0,1, ... of the corresponding interaction map. 
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Thus one obtains a reduction to CA(LV) from interacting dynamics 
by a family of maps: 

1r: (~, [0, 1] x [0, 1]00 )----* CA(LV). 

The dynamics of the former will be quite complicated, and passing 
through the projection, one can reduce it to the cell automaton which 
contains solitons. 

l.B.3 Piecewise linear maps: Let F : Rn ----* R be a piecewise 
linear map. 

Lemma 2. A piecewise linear map F above is expressed by a (max,±)
type equation as: 

F(-) ~8 ± ( l + -l- l + -l -) y = x = L.Jl=l max a 1 z1 x, ... , am zmx . 

where x E R n, some families of constants { z1 E R n} ~~'2i~=;_s, z1 x is the 

inner product, and ai E R. 

It can be written as: 

F1(x) = F2(x) 

by two (max,+ )-type functions F1, F2 : Rn+1 ----* R of the form: 

F (-) _ ~;,i ( 1 + -l- 1 + -l -) 1 x - L.Jl=1 max a 1 z1x, ... , am zmx , 

and F2 is sirriilar. 
The presentation of both F1 and F2 are not unique in general. Such 

aspects are studied in [K6]. 

A family of maps {fi,j h$i,j$a is said to be piecewise linear, if there 
is a piecewise linear map F : R 3 ----* R so that the equalities hold: 

rr(F(a- 1i, a- 1 j, z)) = rr(fi,j (z)) E {1, ... , a} 

for all i,j = 1, ... , a and z E [0, 1]. 
Conversely a piecewise linear map F : R 3 ----* R determines a piece

wise linear family {fi,jh$i,j$a by fi,j(z) = F(a- 1i, a-1j, z). 

Example: For the Lotka Volterra cell automaton, one can choose: 

F( . . ) . (Lo .) (Lo ) z,J,Z =z+max -,J -max -,z. 
a a 

l.C Tropical geometry: Let us consider a (max, ±)-function F: 

F(x) = 2:f=1 ± max(ai +mix, ... , at+ m1x) 
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wheremj E zN, aj E Randx = (xl, ... ,xN) ERN. When all 
mj E Z!/. have potive components, then we say that F is a positive · 
(max, ±)-type function. 

Tropical geometry associates with parametrized rational maps ft to 
(max,+ )-type functions fort E [1, oo) ([Mi]). IfF is a positive (max,+)
type function, then ft are parametrized polynomials. 

Let F be a (max,+ )-type functions as above. 

Definition 2.2. The associated family of rational maps is given by: 

ft ( z) = IIf=1 (t<>l zm.i + ... + t"'! zm.l) 

h -m.-rrN mi werez- i=lzi. 

Conversely F can be recovered from the family ft. Thus the corre
spondence F +-+ ft is one to one. 

Let (F1, F2) be a pair of (max,+ )-type functions, and Ul, ff} be 
the corresponding rational families. 

The associated affine algebraic variety is defined by: 

vt(F1, F2) = {z E CN: f{(z) = f~(z)}. 

We denote its Zariski closure Vt(F1 , F2) c CPN. 

l.C.2 From pl maps to polynomials: Let {fi,j }i,j be a piece
wise linear familiy, and denote the corresponding interacting map by 
q>(x) 8 (k) = (k0, kf, ... ), s = o, 1, .... 

Let F : R 3 -+ R be· the piecewise linear map corresponding to the 
family {Ji,jh.j· It is given by apair of (max,+)-type functions (F1,F2) 
by F1 (x) = F2(x) for x = (x1, x2, x3, x4). From dynamical view point, 
we fix the correspondence of the variables as: 

ks+l ks ks ks+l X1 +-+ n ,x2 +-+ n,X3 +-+ n+l,X4 +-+ n-1· 

Now we denote the associated varieties as: 

Example: The Lotka Volterra cell automaton has the associated variety: 

Vf(z1,Z2,Z3,Z4) = {(z1,z2,Z3,Z4): ft(zl,Z4) = ft(Z2,z3)} 

where ft(z, w) = tLo z + zw. 

l.C.3 The associated complex dynamics: Let {fi,j }i,j be a 
piecewise linear familiy. It gives the corresponding pair of (max,+)
type functions (F1, F2), and the pair of the rational families (Jl, if). 
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Let z E C be an initial value. The pair of the rational families gives 
flows: 

<J,(z)t : c= ---+ c=, <J,(z)t(Zo, Z1, ... ) = (z~, Z~,, .. ) 

determined by the equality: 

We say that it is the associated complex dynamics, and denote their 
iterations as <J,(z)f(zo, z1, ... ) = (z0, zf, ... ), s = 0, 1, .... 

Lemma 3. For each n and s, the sets lie on the varieties: 

Pn,s = (z~,z~-l,z~+Lz~-1) E vt({fi,j}i,j) c C 4 

Thus for n ~ 1, the families: 

{Pn,s}~o 

give flows on vt ( {fi,j }i,j). 

Example: For the LV case, the complex dynamics is determined succes
sively by the equalities: 

zs+l = (tL + zs+1)-1(tLzs + zs zs ) n n-1 n n n+1 · 

When domains of piecewise linear maps are R n, then by the same 
way one can generalize the associated complex dynamics determined by 
the equalities of the type: 

for some a 1 , a2 and b. 
In 1.0.4, we consider the relationships of dynamics between au

tomata and the corresponding complex dynamics as above. 

l.C.3.2 Periodic complex dynamics The domain of assoiciated 
complex dynamics is c=. When one puts some periodicity conditions, 
then it becomes dynamics on finite dimensional complex planes. It turns 
out that the dynamics is given by a correspondince between varieties in 
the case of cell automata. 

Let f: eN---+ C be a polynomial, and a 1 , a2, b ~ 0 be non negative 
integers with N = a1 + a2 + 1 + b + 1. Suppose <J, : c= ---+ c= is given 
by the equation: 
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where <i>(zo, z1, ... ) = (zJ, zf, ... ). Put c = max{a1 +a2+l, b+l}. Then 
the associated periodic complex dynamics is given by a multi valued map: 

<I>p : coo -t coo 

defined by f(zn-ap· .. , Zn+a2 , z~-b' ... , z~) = 0 for all n mod c + 1. It 
is determined by the first c components, and so can be expressed as 
<i>P : C x Zc -t C x Zc. These are multi-valued, since here we do not 
impose any initial conditions on zo. 

Let us consider the case of cell automata we have considred so far, 
where a1 = O,a2 = l,b = 1. Thus c = 2 and N = 4. Let C4 = 
{( Zt' Z2' Wt' W2)} be a coordinate. Let Mt' M2 c C4 be hypersurfaces, 
and S = M1 n M2 c C4 be the surface of the intersection. 

Let f be a polynomials of 4 variables so that 

M1 = {(z1, z2, W1, w2): f(zt, z2, w1, w2) = 0}, 

M2 = {(z1, z2, w1, w2) : j(z2, Zt, w2, Wt) = 0} 

hold respectively. Thus: 

S = {(zbz2,w1,w2): f(zt,Z2,wl,w2) = O,f(z2,Zt,W2,wl) = 0}. 

So given (z1, z2) E C 2, there are at most finitely many points (w1, w2) so 
that ( z1, z2 , w1, w2 ) are points on S. This determines a correspondence: 

cp: c2 -t c2 

which is a multivalued, and its iteration gives two dimensional interac
tion dynamics determined by f. 

Example: For the LV case, f = hv and hv(zt, z2, w1, w2) = w2(tL + 
w1)- (tLz1 + z1z2). Thus Sis defined by the equations: 

8 = {(z1, Z2, Wt, W2) :w2(tL + Wt) = (tLZt + Z1Z2), 

Wt(tL + W2) = (tLz2 + Z1Z2)}. 

l.C.4 Scaling limit from pl to complex: Maslov introduced 
dequantization of the real line R ([LM], [V]). It is given by a family of 
semirings Rt for t > 1, which are all the real number R as sets. The 
multiplication and the addition are respectively given by: 

The important feature for us is the behaviour as t -t oo, and in fact one 
has the equality: 

x EBoo y = max{x, y}. 
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Corresponding to polynomials in the usual real numbers, one has Rr 
polynomials whose limit t -t oo satisfies a max plus equation: 

'Pt(x) = EElt(O:j + ffijX), X ERn' ffij E zn' 

'P=(x) = max(o:1 + m1x, ... , O:k + mkx). 

Let F be a positive (max,+ )-type function of the form: 

F(-) ~s ( i + - i- i + - i-) x = L.li=l max o:1 m1x, ... , o:1 m 1x 

on R N, and ft be the associated polynomials with respect to F. 
We define the corresponding Rt-polynomials Ft by: 

Ft(x) = ~f=l(o:i +mix) EElt · · · EElt (o:f + zfx). 

Then we have the equality 

lim Ft =F. 
t->CXl 

Let us denote: 
Logt : eN -t R+ 

by Logt(Zt, ... ,zN) = (logt lz1!, ... ,logt izNi). 

Proposition 3 (LM,V). The equality holds: 

logt1 oFt o Logt = ft 

onR~. 

Let F : R n -t R be a positive piecewise lieanr map (positive 
(max; ±)-type function), and {fi1 , ... ,in-J be the corresponding piece
wise linear family. As in l.A, it gives a dynamical systems: 

<l>(F): R X RCXl -t R X R=. 

Let (F1, F2) be the pair of positive (max,+ )-type functions corre
sponding to F, and Ul, f{) be the pairs of the parametrized polynomi
als. It gives a complex dymanics: 

iPUl, ff) : c x c= -t c x c= 

and the associated algebraic varieties: 

Vt(F) = Vt(fl,ff)c cn+l. 

By this way, F above produces two dymanics <T>(.F) and iP(fl, J't) 
with a parametrized algebraic varieties Vt(F). 

Let ( iP(fl, jl), R+) be the restriCtion of fP on R +. 



Pattern formation 257 

Theorem 3. There is a contracting map: 

which admits a reduction to parametrized affine algebraic varieties Vt(F). 

Proof. Let us put ~(z)(zo, z1, ... ) = (zb, zi, ... ), and: 

X = (Zn-at' . .. 'Zn+az' Z~_b, . .. 'z~) E R n+l. 

These sets satisfy the equality: 

fl(x) = Jl(x). 

We check that F1(Logt(x))- F2(Logt(x)) approaches to zero as t-+ oo. 
Let (Fl, F?) be the pair of the Rrpolynomials corresponding to F. 

By the proposition 1.2, one has the equality: 

on positive and real points x E R~+1 . Since their limits satisfy the 
equalities: 

lim Fti = Fi, i = 1,2 
t->oo 

Logt gives a contracting map as desired. We put: 

pi : c= -+ c, Pi((zo, Zl, ... )) = Zi, 

Q(zo, z1, ... ) = (Logt(zo), Logt(zl), ... ). 

By Lemma 1.3, this gives a reduction of ~IR+ to a parametrized affine 
algebraic varieties Vt(F). This completes the proof. Q.E.D. 

In particular, if the dymanics <i'> is reduced to a call automaton A, 
then one obtains a contracting map: 

Logt: (vt(F), ~)-+A. 

l.C.5 Duality on cell automata: By invertibility of our contract
ing maps, one can obtain various operations on automata arising from 
geometric operations on varieties. 

[GKZ] introduced the projective duality for projective varieties: 

for a C-vector space V and its projectivization P(V). V* is the dual 
vector space. 
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Suppose both are hypersurfaces. Then they have the defining poly
nomials unique up to constant multiplications. This implies that one 
obtains an assignment from polynomials to themselves by the above du
ality, unique up to constant multiplications. 

Let {fi,j }i,j be a piecewise linear family, (ff, fi) be the associated 
polynomials and vt ( {fi,j }i,j) be the associated hypersurfaces. 

Definition 2.3 (K4). Let {fi,j }i,j be a picewise linear family. An
other picewise linear family {gi,j }i,j is called the dual picewise linear 
family, if the parametrized hypersurfaces vt ( {9i,j }i,j) satisfy the equal
ity: 

for all t E [1, oo). 

Similarly let A be an cell automaton. Another cell automaton AV is 
called the dual cell automaton, if the corresponding hypersurfaces satisfy 
the equality: 

for all t. 
In general it is not so easy to find the defining polynomials of the 

projective dual varieties. We have calculated dual automata in the case 
of some curves: 

Lemma 4 (K4). 

[max{aun, a+ aun+l} = c]v = 
a a a ac a 

max{--(c--) + --Un+l, -- + --un} =c. 
a-1 a a-1 a-1 a-1 

l.D Scaling limits: Let (!1, h) be two polynomials, and corre
spondingly { zfh,t be the iterated complex dynamics. 

A smooth function a : R+ x R+ x (0, 1] ---> R+ is called a scaling 
function. 

Let us take two scaling functions a and /3, and have the change of 
variables as: 

n = a(x, s, E), t = f3(x, s, E). 

Let us fix a constant p and a small E > 0. A scaled function with 
respect to {zf}i,t is given by a function u with variables (x, s) so that it 
satisfies the equation: 

z~ =p+w(x,s). 

As E---> 0, the values of u may go to infinity, and so this is an expanding 
change of dynamics. 
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Suppose there are polynomials F and {fi, 9i}~1 with fi(x, 0) = x, 
gi(s, 0) = s so that the equality: 

F( E,p, u(fi(x, E), 91 (s, c)), ... , u(fm(x, E), 9m(s, c))) = 0 

holds, which is induced from the iterated complex dynamics. 
The formal Taylor expansion of the scaled equation is given by the 

one of the above equation: 

F(c,p,u(fi(x, E),g1(s, c)), ... , u(fm(x, E),gm(s, c))) 

= c1D(u) + El+1 D1(u) + ... 
for some l 2 0, where D is a partial differential operator on u. 

The PDE at infinity induced from the complex dynamics {z;}n,t, is 
given by the above partial differential equation D( u) = 0. As E --+ 0, u 
approaches to solutions of a PDE at infinity. Thus one has: 

Lemma 5. Suppose a complex dymanics arising from (!I, h) ad
mits a scaling change as above so that a formal Taylor expansion c1D(u)+ 
El+l D 1 ( u) + . . . is obtained. 

Then this gives an expanding map from iP(h, h) to solutions of 
PDE D(u) = 0. 

l.D.2 Dynamical pattern formations: Here we construct two 
dynamical expansions from iteration dynamics by families of piecewise 
linear maps to some PDEs, KdV and LV. They are obtained by com
bination of our construction of contracting maps with expanding maps 
obtained by Hirota. Now we have our main theorem: 

Theorem 4. (1) Let f : R 3 --+ R be a partially defined piecewise 
linear map given by: 

f(x2, X3, X4) = X2- max(O, X2 + X3), X4 :S: max(O, X2 + X3)- X2. 

Then it gives a dynamical expansion from a cell automaton: 

A : V1 + max(O, V2 + V3) = V2 + max(O, V1 + V4) 

to KdV flows: 

Logt: (V, 0") = {(zl, Z2, Z3, z4) : Z2 + ZlZ2Z4 = Zl + Z1Z2Z3} c C 4 --+ A, 

1 1 1 
(Pt: (V,O")--+ {u(x.s): Us- 3UUx + 48 2(1- 4)u3x = 0}. 

p p p 

(2) Let f : R 3 --+ R be a piecewise linear map given by: 

f(x2, x3, x4) = X2 + max(O, x3) - max(O, x4). 
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Then it gives a dynamical expansion from a cell automaton: 

B : Vi + max(O, V4) = V2 + max(O, V3) 

to LV flows: 

Logt : (V, 0") = {(z1, Z2, Z3, Z4) : Z2 + Z2Z3 = Z1 + Z1Z4} c C4 ---+ B, 

c/Jt : (V, 0") ---+ { u(x, s) : U~ = Un( Un+1 - Un-1)}. 

Proof. (1) Let us consider the equation x 1 = f(x 2, x3, X4) = x2 -
max(O, x2 + x4), x3 :::; max(O, x2 + x4) - x2. It is easy to see that it 
induces the automaton x 1 + max(O, x2 + x4) = x2 + max(O, x1 + x3). 
Then the associated polynomials are independent of the time t: 

fi(z1, Z2, Z3, Z4) = Z1 + Z1Z2Z3, 

f2(z1,Z2,Z3,Z4) = Z2 +z1Z2Z4. 

The associated complex dynamics satisfy the equalities: 

zt + zt+1 zt+1 zt = zt+1 + zt zt+1 zt n n n-1 n n n+1 n n' 

which is the same as z;+1 - z~"!=.\ = ,~1 - -i-. 
Zn zn 

Now we rewrite it as: 

t-1. t+l. 1 1 z 2_z 2 _____ _ 

n+1 n-1 - t+l. t-1. 
Zn 2 Zn 2 

and put scaling parameters as: 

S X CS 
n-- t----

- E2 ' - E E3 ' 

z~ = p + E2u(x, s) 

where c and pare constants satisfying 1- 2c = 1jp2 . 

By applying these change of variables into the defining equation 
above, one obtains the equation: 

2 ( E 3) 2 ( E 3) E U X - 2 + CE, S + E - E U X+ 2 - CE, S - E 

1 1 

p+E2u(x+~,s) p+E2u(x- ~,s)" 

Now we have an expanding map to the KdV flows at infinity. The 
Taylor expansion of the above equation at E = 0 gives a formula ([H]): 

5 1 1 1 7 
E (u 8 -3Uux+ 48 2(1-4)u3x)+o(E )=0. 

p p p 
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Combining with our construction of contracting maps, one has obtained 
a dynamical expansion from the above cell automaton to the KdV equa
tion. This completes the proof of (1). 

(2) The piecewise linear map f determines the cell automaton: 

x;+l + max(O, x~~\) = x; + max(O, x;+1). 

The associated polynomials are: 

fi(zl, Z2, Z3, Z4) = Z1 + Z1Z4, 

h(zl, Z2, Z3, Z4) = Z2 + Z2Z3. 

Thus the associated complex dynamics satisfy the equalities: 

Q.E.D. 

Let us put rescaling parameters t = ~' z~ = wn(s). This gives 
from the the equality: 

Thus the formal Taylor expansion of the above equation atE= 0 gives 
a formula ( [H]): 

d 
(ds Un- Un(Un+l- Un-1)) + o(E) = 0. 

By this way we have an expanding map from the above cell automaton 
to the Lotka Volterra equation at infinity. Thus one has obtained a dy
namical expansion from the above cell automaton to the Lotka Volterra 
equation. 
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