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Some questions about Q-bundles on curves 

Georgios Pappas* and Michael Rapoport 

§1. 

The purpose of this note is to discuss the geometry of moduli stacks 
of various types of bundles over a curve. We suggest that the main 
elements of the theory of moduli of G-bundles for a constant reductive 
algebraic group G as developed by Beauville, Laszlo, Faltings and other 
authors should extend to a theory of moduli of 9-torsors for a large class 
of algebraic group schemes g which are not necessarily constant over the 
curve. The class we consider is that of smooth group schemes over the 
curve with reductive generic fiber which have the property that each 
place of the curve the completion of the group scheme is a "parahoric 
group scheme" of the type constructed by Bruhat-Tits. In addition to 
the classical case above, the corresponding moduli stacks include the 
moduli of parabolic G-bundles but also other interesting examples such 
as the moduli of Prym line bundles (Prym varieties) or moduli of bundles 
together with (not always perfect) symplectic, orthogonal or hermitian 
pairings. Our approach uses the theory of loop groups. 

In (PRJ, we introduced and studied the loop group attached to a lin­
ear algebraic group over a Laurent series field k((t)) where k is an alge­
braically closed field. To a (connected) reductive algebraic group Hover 
k((t)) there is associated the ind-group scheme LH over k, with points 
with values in a k-algebra R equal to H(R((t))). If P is a parahoric 
subgroup of H(k((t))), Bruhat and Tits have associated toP a smooth 
group scheme with connected fibers over Spec (k[[t)]), with generic fiber 
Hand with group of k[[t))-rational points equal toP. Denoting by the 
same symbol P this group scheme, there is associated to it a group 
scheme L + P over k, with points with values in a k-algebra R equal to 
P(R[[t]]). The fpqc-quotient Fp = LHj£+p .is representable by an 

Received March 31, 2009. 
Revised June 3, 2009. 
* Partially supported by NSF grant DMS08-02686. 



160 G. Pappas and M. Rapoport 

ind-scheme, and is called the partial affine flag variety associated to P. 
In [PRJ we studied these affine flag varieties and obtained results about 
some of their basic structural properties. In particular, we showed 

1.) 7ro ( LH) = 7ro ( .r p) = 1r1 ( H)I . Here 1r1 (H) denotes the alge­
braic fundamental group of H in the sense of Borovoi, and 
I= Gal(k((t))/k((t))) the inertia group. 

2.) If H is semi~simple and splits over a tamely ramified extension 
of k((t)), and if (char(k), l1r1 (H)I) = 1, then LH and Fp are 
reduced ind-schemes. 

In the case when H comes by extension of scalars from a constant alge­
braic group H 0 over k, these properties and more have been shown in 
Faltings' paper [Fa2] (and much of it was known before, thanks to the 
work of Beauville, Laszlo, Sorger, Kumar, Littelmann, Mathieu, and 
others, comp. the references in [Fa2] and [PRJ). In [Fa2], Faltings goes 
on to use these local results to prove global results on the moduli space 
of H0-bundles on a smooth projective curve over k, in particular about 
its Picard group. The main tool is the "uniformization theorem" [BL], 
[DS], that expresses the moduli stacks (for semisimple groups) as a cer­
tain quotient of the affine Grassmannian for H. In the present note we 
present some conjectures on how to generalize these results in the frame­
work of [PRJ. As it turns out, the results of Laszlo and Sorger in [LS] 
can be interpreted as a confirmation in special cases of our predictions. 

After an older version of this paper was circulated, Heinloth posted 
the preprint [He] where he proves a good part of these conjectures. We 
hope that there is still some interest in our paper and that progress can 
be made in answering the rest of these questions. We also hope that our 
point of view can be a useful framework in generalizing the enormous 
body of results for split groups to this more general case. 

For example, the correct extension of the Verlinde formula [Sl] in 
this context is still a mystery to us, although the articles [BFS, FS, 
Sz] may contain ideas that could be useful for this question. In any 
case, it would be interesting to understand the relation between the 
spaces of "conformal blocks" in our set-up of Q-bundles and the spaces 
of conformal blocks for orbifold models of conformal field theories that 
appear in these papers. 

We thank G. Faltings and C. Sorger for helpful discussions. We also 
thank J. Heinloth and E. Looijenga for correcting some statements in 
the original version of this paper. 
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§2. 

Let k be an algebraically closed field, and let X be a smooth con­
nected projective curve over k. Let 9 be a smooth affine group scheme 
over X with all fibers connected. In addition, we assume that the generic 
fiber 9'1 is a connected reductive group scheme over K = k(X), and that 
for every x E X(k), denoting by Ox the completion of the local ring of 
X at x and by Kx its fraction field, 9(0x) C 9(Kx) is a parahoric sub­
group of 9'1x (Kx) in the sense of [BTII], see also [T]. We will call such 
a 9 a parahoric group scheme over X. Recall that by [BTII], given a 
parahoric subgroup Px C 9'1JKx) there is a unique affine smooth group 
scheme 9Px over Ox with the following propreties: Its generic fiber is 
9'1x, it has connected special fiber and satisfies 9Px (Ox) = Px. 

Let Mg;x denote the stack of 9-torsors on X. The usual arguments 
show that this is a smooth (Artin) algebraic stack over k. We are going 
to state four conjectures on the geometry of Mg; x but in this section 
we will first discuss several examples. 

2.a. 

Let G be connected reductive group scheme over k. Then G X spec (k) 

X is an example of the kind of group schemes we consider. This is the 
case of a constant group scheme. 

We may generalize this as follows. Let x E X(k). Then the para­
horic subgroups in G(Kx) contained in G(Ox) are in one-to-one corre­
spondence with the parabolic subgroups of G. More precisely, if P C G 
is a parabolic subgroup, then the corresponding parahoric subgroup P 
is equipped with a morphism of group schemes over Spec Ox, 

(2.1) P ~ G Xspec(k) Spec (Ox) 

which in the generic fiber is the identity of 9'1x and which in the special 
fiber has image equal toP. 

Suppose now that 9 is a group scheme equipped with a morphism 
9 ~ G xk X which, when localized at xis of the previous nature for all 
x E X ( k). Hence there is a finite set of points { X1, ... , Xn} such that 
this morphism is an isomorphism outside this finite set, and parabolic 
subgroups P 1 , ... , Pn such that the localization of 9 at Xi corresponds 
to Pi in the sense explained above. Then there is an equivalence of 
categories between the category of 9-torsors on X and the category of 
G-torsors on X with quasi-parabolic structure of type (P1 , ... , Pn) with 
respect to (x1 , ... , xn), in the sense of [LS]. For such group schemes some 
of the questions here have been considered in the literature, although 
not always in our formulation. 
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2.b. 

LetS be a torus over k(X); then the connected Neron model 9 = S0 

of S over X is another example of a parahoric group scheme. This kind 
of 9-bundle occurs in various other contexts that we mention here briefly. 

Suppose that 1r : Y ---+ X is an irreducible finite fiat and generically 
unramified covering. Then k(Y)/k(X) is a finite separable field exten­
sion and we can takeS to be the torus Resk(Y)/k(X) (Gm), with parahoric 
extension 9 over X equal to Resy;x(Gm)· Then a 9-bundle on X is sim­
ply a line bundle£ on Y. By associating to£ its direct imagen*(£), we 
obtain a vector bundle of rank non X, where n = [k(Y) : k(X)]. This 
construction of vector bundles on X is analyzed in [BNR]. If Y is the 
curve associated in the sense of [BNR], §3 to a line bundle M and sec­
tions { Si E r(X, Mi) I i = 1, ... 'n }, then the vector bundles obtained 
by this construction have a canonical Higgs structure (wrt. M), such 
that Y is the associated spectral curve. 

We also mention the following variant, cf. [D], [DG]. Suppose that 
G is a connected reductive group with maximal torus T, normalizer N of 
T, and Weyl group W. Let 1r: Y---+ X be a unramified Galois covering 
with Galois group W. Assume that the characteristic of k does not 
divide the order of W. We can consider the group scheme 

9 = (Resy;x(T Xk Y))w 

on X, where W acts diagonally on T Xk Y. Then, thanks to our as­
sumption on the characteristic of k, 9 is a parahoric group scheme 
on X, cf. [E], Thm. 4.2. Each 9-torsor over X gives an element in 
H 1 (Y,T)w = Homw(X*(T),Pic(Y)) (here W acts on both source and 
target). In general, if M is a T-torsor over Y whose class belongs to 
H1 (Y, T) w, we can consider the group N M of automorphisms of M 
which commute with the action on Y of some w E W. This affords an 
extension 

1 ---7 T ---7 N M ---7 w ---7 1 . 

Suppose now that there is a T-torsor Mo in (H 1 (Y,T))w such that the 
corresponding extension N Mo is isomorphic to the extension given by 
the normalizer N ofT in G. Then for each 9-torsor on X, corresponding 
to the T-torsor £on Y, n*(£ ®oy Mo) gives an N-torsor over X that 
can be induced to give a G-bundle on X ([D], [DG]). This G-bundle is 
an "abstract" Higgs bundle with unramified cameral cover 1r : Y ---+ X, 
loc. cit. This is a protypical result in the theory of Higgs bundles 
and the Hitchin fibration. Here the (not precise) catch-phrase is that 
the sufficiently generic fibers of the Hitchin map are -non-canonically-
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isomorphic to moduli varieties of Q-torsors for a suitable commutative g 
(a version of the above works even when 1r is ramified, see (D], (DG], (N]). 

As an example consider the case G = SL2. Then W = Z/2Z, 
and T = Gm with W acting by inversion. Suppose that char(k) f:. 2 
and that 1r is an unramified double cover with involution a. The para­
horic group scheme g above is then the kernel of the norm Normy;x : 
Resy;x(Gm) --+ Gm. In this case, the above amounts to a Prym con­
struction which goes as follows (cf. (D] 5.2). We can see that Q-torsors 
over X are given by line bundles C on Y such that Normy;x(£} is 
trivial. We can also see (in accordance with Conjecture 3.1 below) 
that the coarse moduli of Q-bundles has two connected components; 
the neutral connected component is the classical Prym abelian variety 
ker(l + a*)° C Jac(Y); here a* : Jac(Y) --+ Jac(Y) is the induced in­
volution on the Jacobian. Fix a line bundle M on Y which satisfies 
Normy;x(M) ~ det(1r*(Oy))- 1 (then a*M ~ M-1 and such a line 
bundle corresponds to Mo as above). If Cis a line bundle over Y with 
Normy;x(£) ~Ox (so that it corresponds to a Q-torsor), then 

det(1r*(£ ® M)) ~ det(1r*(Oy)) ® Normy;x(£ ® M) 

~ det(1r*(Oy )) ® Normy;x(£) ® Normy;x(M) ~Ox . 

This shows that if C is a 9-torsor, the sheaf 1r*(£ ® M) gives a SL2-
bundle on X. 

2.c. 

Suppose that· char( k) f:. 2 and that 1r : X --+ X is a (possibly 
ramified) double cover with involution a. Consider the moduli stack of 
pairs of ( £, '¢) of a SLn-bundle £ over X x k S together with a perfect 
Oxxks-bilinear pairing 

(2.2) 

which is a-hermitian in the sense that it satisfies '¢(a· v, w) = '¢(v, a( a)· 
w), '¢(w,v) = a('¢(v,w)) for a E 7r*(O.xxks)· Set g := SUn(X/X) = 

(Res.x;xSLn)""; here a acts on g E SLn(O_x) by g ~--t Jn · a(gtr)- 1 . J;; 1 

where Jn is the anti-diagonal unit matrix of size n. Then the special 
unitary group g is a parahoric group scheme over X and we can see that 
Mg;x is the moduli stack of pairs above. This group scheme g is not 
of the "constant type" considered in §2.a. 
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§3. 

We continue with the assumptions and notations of Section 2. The 
first conjecture concerns the set of connected components, and is of 
Kottwitz style. 

Conjecture 3.1. Denote by 7rl(Q'iJ) the algebraic fundamental group 
of g'iJ in the sense of Borovoi. Then 

7ro(Mg;x) = 7rl(Q'iJ)r. 

Here on the right hand side are the co-invariants under r = Gal(ry/ry). 

Remarks 3.2. In particular, if g'iJ is semi-simple and simply con­
nected, then Mg;x should be connected. This would follow from Con­
jecture 3.3 below and the fact that LH is connected for any semi-simple 
simply connected group Hover k((t)), cf. 1.) in the Introduction. If g is 
constant, i.e comes by extension of scalars from a group scheme G over 
k, then the action of r on 7!'1 (Q'iJ) is trivial. Over C the statement then 
follows from the topological uniformization theorem, [S3], Cor. 4.1.2. 

The second conjecture concerns the uniformization of Mg; x. 

Conjecture 3.3. Let x E X(k). Let P be a Q-torsor over X xk S. 
If 971 is semi-simple, then after an fppf base change S' --. S, the re­
striction of P x s S' to (X -...... { x}) x S' is trivial. 

Of course, one can also state a version of this conjecture involving 
a non-constant family of smooth connected projective curves, but this 
version would suffice to obtain a uniformization of Mg;x· Namely, 
assuming 971 semi-simple, and choosing a uniformizer at x, we would 
have an isomorphism 

(3.1) 

Here rx,{x}(Q) denotes the ind-group scheme with k-rational points 
equal to 

rx,{x}(Q)(k) = r(X-...... {x},Q). 

More precisely, the expression (3.1) represents the affine partial flag 
variety Fx = LQ71.,jL+gx as a rx,{x}(Q)-torsor over Mg;x· We will 
denote by Px the uniformization morphism, 

(3.2) Px: Fx __. Mg;x · 

Remarks 3.4. In the constant case g = G Xspeck X, this is the 
theorem of Drinfeld and Simpson [DS]. In the case S = Spec (k), the 
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statement in this special case was proved much earlier by Harder [Ha]. 
Even in the context of the examples in 2.a, derived from constant group 
schemes, the conjecture is not trivial. 

The third conjecture concerns the Picard group of Mg;x· For this 
we assume that g., is semi-simple, simply connected, and absolutely sim­
ple. Let us also assume that g.,., splits over a tamely ramified extension 
of Kx = k((t)). We recall from the theory of twisted loop groups [PRJ 
that there is a natural homomorphism 

(3;3) Cx : Pic(Fx) ----+ Z, 

the central charge (at x). Denoting by X*(Q(x)) the character group of 
the fiber g(x) = g xx Spec (k(x)) of gat x, we have an exact sequence 

(3.4) 0----+ X*(Q(x)) ----+ Pic(Fx) ~ Z----+ 0 , 

which comes about as follows. There is a central extension Lgx of Lgx 
by Gm which acts on all line bundles on Fx· Let L+gx be the restriction 
ofthis central extension to £+gx· This defines a central extension L+gx 
of £+gx by Gm, and an isomorphism 

(3.5) 

On the other hand, the reduction homomorphism £+gx----+ g(x) defines 
the exact sequence 

(3.6) 0----+ X*(g(x)) ----+ X*(L+gx)----+ Z----+ 0 , 

which together with (3.5) yields the exact sequence (3.4). 
Note that if gx is a special maximal parahoric group, then g(x) is an 

extension of a semi-simple group by a unipotent group, and so X*(g(x)) 
is trivial; this applies to all but finitely many points x E X(k). If gx 
is a hyperspecial maximal parahoric group, then g(x) is semi-simple. 
Let us denote by Bad((}) the set of points x E X(k) where gx is not 
hyperspecial. 

Conjecture 3.5. Let g., be semi-simple, simply connected and ab­
solutely simple. We also assume that g.,., splits over a tamely ramified 
extension of Kx, for all x E X(k). 

{i) For any x E X(k), consider the homomorphism 

p;: Pic(Mc;;;x)----+ Pic(Fx) 

induced by the uniformization morphism. Composing with Cx, we obtain 
a homomorphism Pic(Mg;x)----+ Z. If x is not in Bad((}) then this 
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homomorphism is non-zero and independent of x. Let us denote this 
homomorphism by c or cg; x. 

(ii) Denote the kernel of cg;x by Pic(Mg;x) 0 . There is a natural 
isomorphism 

Pic(Mg;x)0 ~ E9 X*(g(x)). 
xEX(k) 

Remark 3.6. In the case that g = G Xspeck X, the point (i) was 
proved by Borger [B1] for k = C and by Faltings [Fa1] for arbitrary k. 
In this case, (ii) states that the homomorphism Pic(Mg;x)-+ Pic(Fx) 
is injective, which is also proved in these papers. In the case that g is 
derived from a constant group scheme, as described at the end of section 
2.a, the point (ii) is proved by Laszlo and Borger in [LB]. 

We now come to the conformal blocks. Before this, we recall some 
facts from [PR] §10 about the Picard group of a partial affine flag variety 
F = LHjL+P. Here we are assuming that the group Hover k((t)) is 
semi-simple, simply connected and absolutely simple, and that H splits 
over a tamely ramified extension of k((t)). Let {ai I i = 1, ... ,r} be 
the set of affine roots corresponding to the walls bounding the facet in 
the Bruhat-Tits building fixed by the parahoric P. For each i there is 
a closed embedding of a projective line into F, 

By associating to each line bundle on F the degree of its restriction to 
P~, fori= 1, ... , r, we obtain an isomorphism (cf. [PRJ Prop. 10.1), 

(3.7) deg : Pic(F) ~ E9~=1 Z · Ei . 

A line bundle £ on F is called dominant if its image under (3. 7) has 
all coefficients 2::: 0. 

Assume now that char(k) = 0. Then the Lie algebra of the universal 
extension LH acts on the space of global sections H0 (F, £), and if£ is 
dominant, this representation is the dual of the integrable highest weight 
representation corresponding to the element deg(£). More precisely, we 
choose a minimal parahoric subgroup contained in P (corresponding to 
an alcove in the Bruhat-Tits building containing the facet fixed by P) 
and set the coefficients of all simple affine root ai not occurring in (3.7) 
equal to zero. Then deg(£) is a dominant integral weight ),. in the sense 
of Kac-Moody theory, and by Kumar and Mathieu [Ku1], [Ku2], [Ma], 

(3.8) 



Q-bundles 167 

where on the RHS appears the dual of the integrable highest weight 
representation attached to A. 

Let us spell out the above remarks in the standard case: assume 
that His constant, i.e., H = G =Go xk k((t)). To simplify notations, 
let us assume also that the parahoric P is an Iwahori subgroup which is 
contained in the maximal parahoric subgroup Po= Go xk k[[t]]. Hence 
:F is the full affine flag variety. The target of the degree homomorphism 
can then be written in terms of the fundamental weights, 

(3.9) ~ EBz deg: Pic(:F) ~ . Z · Ei . 
t=O 

Let us fix a maximal torus T in the Borel subgroup of G0 corresponding 
toP in the sense of section 2.a. We consider T as a subgroup of L+ P0 , 

and let T be the inverse image ofT in LG. Then the definition of LG 
is such that each character of T defines a line bundle on :F and that in 
this way we obtain an isomorphism 

(3.10) X*(T) ~ Pic(:F) . 

There is a unique splitting of the central extension LG over L +Po. Hence 
we can write canonically T = T x Gm, and 

(3.11) X*(T) = X*(T) E9 Z. 

In terms of this decomposition the composed map X*(T) ~ Pic(:F) ~ 
EB Z · Ei, is given as follows, 

(3.12) 

Here _A(O) = 2::~= 1 niEi and the positive integers r 1 , ... , rz are the labels of 
the vertices of the dual Dynkin diagram (denoted a'/ in Kac's book [Kac], 
p. 79). Note that (_A(O), .e) is dominant if and only if _A(O) is dominant and 

.e- 2::~= 1 niri ::=: 0. The last inequality can also be written in terms of 

the coroot ev for the highest root in X*(T)R· Indeed, ev = 2::~= 1 ria.'/, 
in terms of the simple coroots a.{', ... , a.'(. Hence the second condition 
for being dominant can be written in the familiar form, 

We now return to the global situation and a general parahoric group 
scheme 9 over X. A line bundle£ on Mg;x is called dominant if p~(£) 
is a dominant line bundle on :Fx for every x. 
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Conjecture 3.7. Let char(k) = 0, and assume as before that g"' is 
semi-simple, simply connected and absolutely simple, and that 9ry., splits 
over a tamely ramified extension of Kx for all x E X(k). LetS be a non­
empty finite subset of X(k) containing Bad(Q). Let .C be a dominant line 
bundle on Mg;x such that the central charge cg;x,x(.C) is constant for 
x in X. There is a canonical isomorphism of finite-dimensional vector 
spaces 

Here the action of H0 (X \ S,Lie(Q)) comes from the fact that the 
homomorphism 

lifts uniquely to the factor space of ffixES Lie(LQ"',) where the central 
elements in the central extensions for all x E S are identified (here the 
assumption that S :J Bad(Q) enters). It is known [B], cor. 2.4, cf. also 
[Sl], Prop. 2.3.2, that if S is enlarged to S' :J S, the RHS does not 
change. 

Remarks 3.8. In the "classical" theory, when g is constant, i.e., 
where g = G x Speck X, one considers data which formally look very 
similar to the data above. Indeed, in the classical theory, just as here, 
one also fixes a finite set S of points, and dominant integral weights, one 
for each point Xi E S. These are written traditionally as in (3.12) above 
in the form Ai = (A~o) ,£), where A~o) is a dominant weight for G and 

£ E Z is the central charge with (Ov, A~0)) :::; £. These additional points 
and dominant integral weights are introduced to formulate and prove 
the fusion rules, which ultimately lead to an explicit determination of 
the dimension of the vector spaces in Conjecture 3.7. 

On the other hand, in [LS] the set S and the dominant integral 
weights Ai appear for essentially the same reason as here (namely, to 
describe H0 (Fx; ,p;; (.C)) for Xi E Bad(Q)), except that here the situation 
is more general. In particular, in [LS), Thm. 1.2., the set S consists of 
Bad(Q) and one additional point. In (BL], the parahoric group scheme 
g is the constant group scheme SLn and the set Bad(Q) is empty, and 
S consists of an arbitrary point of X, comp. also [B], Remarks in (2.6). 

Beauville in [B], Part I, treats formal properties of the spaces of 
conformal blocks which appear in [LS] and only mentions in passing the 
geometric interpretation by the LHS in Conjecture 3.7. 
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In the classical case, when 9 = G x Speck X, the dimension of the 
RHS in Conjecture 3.7 has been calculated by Faltings [Fal], [Fa3] by 
using the factorization rules and the fusion algebra, at least when G is 
a classical group or of type G2 , comp. also [B], Part III. It would be 
interesting to have a Verlinde type dimension formula in the case of a 
general parahoric group scheme. Also, in the light of [Te], it should be 
possible to go beyond the case of dominant line bundles on Mg;x and 
also consider higher cohomology groups. 
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