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Another canonical compactification
of the moduli space of abelian varieties

Iku Nakamura

Abstract.

We construct a canonical compactification S’Qm“C of the moduli
space Ag,x of abelian varieties over Z[(n,1/N] by adding certain
reduced singular varieties along the boundary of Ay k, where K is a
symplectic finite abelian group, N is the maximal order of elements
of K, and (n is a primitive N-th root of unity. In [18] a canonical
compactification SQg x of Ag,x was constructed by adding possibly
non-reduced GIT-stable (Kempf-stable) degenerate abelian schemes.
‘We prove that there is a canonical bijective finite birational morphism
sq : SQIR° — SQg,k. In particular, the normalizations of SQ{%°
and SQg,kx are isomorphic.
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§1. Introduction

In [18] a canonical compactification SQg x of the moduli space
Ag x of abelian varieties with level structure was constructed by ap-
plying geometric invariant theory [17]. It is a compactification of Ay g
by all Kempf-stable degenerate abelian schemes, that is, those degen-
erate abelian schemes whose Hilbert points have closed SL-orbits in
the semi-stable loci. However some of the Kempf-stable degenerate
abelian schemes are non-reduced in contrast with Deligne-Mumford sta-
ble curves. See [20] for a non-reduced Kempf-stable degenerate abelian
scheme.

The purpose of this article is to construct another canonical com-
pactification S g‘?}}" of Ay x by adding to A, x certain reduced singular
degenerate abelian schemes instead of non-reduced Kempf-stable ones.
The new compactification S Q;‘:}}C is very similar to SQg x. In fact, their
normalizations are canonically isomorphic (see Section 12). The com-
pactifications are, as functors, the same if g < 4, and different if g > 8
(or maybe if g > 5 because it is believed that there are non-reduced
Kempf-stable degenerate abelian schemes of dimension g for any g > 5).
An advantage of S Zf’}}c is that the reduced degenerate abelian schemes
on the boundary SQZ‘?}}C \ Ay k are much simpler than those Kempf-
stable ones lying on the boundary SQq i \ Ag k. See also Alexeev [1]
for related topics.

Let R be a complete discrete valuation ring and k(n) the fraction
field of R. Given an abelian variety (G, L) over k(n) with an ample
line bundle £,,, we have Faltings—Chai degeneration data for it by a finite
base change if necessary. In [18] for the Faltings—Chai degeneration data,
we constructed two natural R-flat projective degenerating families (P, L)
and (@, £) of abelian varieties with generic fiber isomorphic to (G, £,).
The family (@, £) is the most naive choice with £ an ample line bundle,
while the family (P, £) with £ (= Lp) the pull back of L (= Lg) on Q
is the normalization of (Q, £) after a certain finite minimal base change
so that the closed fiber Py of P may be reduced.

We call the closed fiber (Pp, Lo) of (P, L) a torically stable quasi-
abelian scheme (abbr. TSQAS), while we call the closed fiber (Qq, Lo)
of (Q, L) a projectively stable quasi-abelian scheme (abbr. PSQAS) [18].

Let (K,ex) be a finite symplectic abelian group. Since we have
K ~ @7 ((Z/e;Z)® p.,) for some positive integers e; such that e;|e; 1,
we define emin(K) = €1 and emax(K) = €4. Let N = emax(K). The
Heisenberg group G(K) is, by definition, a central -extension of K by
the group pn of all N-th roots of unity. The classical level-K struc-
tures on abelian varieties are generalized as level-G(K) structures on
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TSQASes. The group scheme G(K) has an essentially unique irreducible
representation of weight one over Z[(y,1/N]. In [18] this fact played a
substantial role in constructing a canonical compactification SQq i of
the moduli space Ay x of abelian varieties with (non-classical and non-
commutative) level-K structure. We note that, for any closed field k over
Z[{n,1/N], Ag i (k) is the same as the set of all isomorphism classes of
abelian varieties with level-K structure in the classical sense.

The following is the main theorem of the present article.

Theorem. If emin(K) > 3, the functor of g-dimensional torically
stable quasi-abelian schemes with level-G(K) structure over reduced base
algebraic spaces has a complete separated reduced-coarse (hence reduced)
moduli algebraic space SQZ?}QC over Z[{n,1/N]. Moreover, there is a
canonical bijective finite birational morphism sq : SQ;‘?}}“ — 8Qq.x. In
particular, the normalization of SQ;?}%C is isomorphic to that of SQg k.

Here is an outline of our article. In Section 2, we recall from
[18] a couple of basic facts about degenerating families of abelian va-
rieties. In Section 3, we show how to recover Py from Qp, and @ from
P. In Section 4, first we define Heisenberg group schemes G(K) and
G(K), finite or infinite, then we discuss in detail the relation between
level-G(K) structures and G(K)-linearizations. Moreover we recall irre-
ducible G(K)-modules of weight one, which will play a substantial role
in compactifying the moduli. We notice that the finite Heisenberg group
scheme G(K) acts on I'( Py, L7") with weight one if m =1 mod N.

In Section 5, we define level-G(K) structures on TSQASes (P, Lo)
or their family, and then define the functor S Q;“;’ﬁc of TSQASes. In Sec-
tion 6, we also give a precise definition of the functor SQg4 x of PSQASes,
using [20]. In Section 7, we discuss rigid p-structures for any irreducible
representation p. In Section 8, we recall from [18] the stable reduction
theorem for TSQASes with rigid level-G(K) structure. In Sections 9,
10 and 11, we prove existence of the reduced-coarse moduli SQ;‘?}?. In
the course of the proof, we characterize TSQASes by the conditions (i)-
(x) in Sections 9.3, 9.5 and 9.6. In Section 12, we prove that there is
a canonical bijective finite birational morphism from SQ;‘?}}C to SQg.x
extending the identity of Ay k.

Acknowledgements. The author would like to thank Professor Ken
Sugawara for stimulating discussions and careful reading of the manu-
script during the preparation of the article. The author also would like
to thank Professor Alastair King for critical reading of the draft, nu-
merous advices for improving the texts, and linguistic remarks to some
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of the terminologies. Following his advices we change some of the nota-
tions and the terminologies we used in [18]. The author also would like
to thank Professor Gregory Sankaran for his linguistic comments.

§2. Degenerating families of abelian varieties

The purpose of this section is to recall basic facts about degenerating
families of abelian varieties. To minimize the article we try to keep the
same notation as in [18].

2.1. Grothendieck’s stable reduction

Let R be a complete discrete valuation ring, I the maximal ideal of
R and S = Spec R. Let 1 be the generic point of S, k(n) the fraction
field of R and k(0) = R/I the residue field.

Suppose we are given a polarized abelian variety (G, £,) of dimen-
sion g over k(n) such that £, is symmetric, ample and rigidified (that
is trivial) along the unit section. Then by Grothendieck’s stable reduc-
tion theorem [4], (G, L,) can be extended to a polarized semiabelian
S-scheme (G, £) with £ a rigidified relatively ample invertible sheaf on
G as the connected Néron model of G, by taking a finite extension of
k(n) if necessary. The closed fiber Gy is a semiabelian scheme over k(0},
namely an extension of an abelian variety Ao by a split torus Tp.

From now on, we restrict ourselves to the totally degenerate case,
that is, the case when Ag is trivial, because by [18] there is no essentially
new difficulty when we consider the case when Aq is nontrivial. Hence
we assume that Go is a split k(0)-torus. Let A(L,)) : G, — G7, be the po-
larization (epi)morphism. By the universal property of the (connected)
Néron model G* of Gy, we have an epimorphism X : G — G* extending
A(Ly). Hence the closed fiber of G? is also a split k(0)-torus.

Let S, = Spec R/I"™! and G, = G xg S,. Associated to G
and £ are the formal scheme Gior = IEn G, and an invertible sheaf
Loy = IEn (L ® R/I™"1). By our assumption that Gg is a k(0)-split
torus, G, turns out to be a multiplicative group scheme for every n
by [5, p. 7]. Thus the scheme Gy, is a formal split S-torus. Similarly
G, is a formal split S-torus. Let X := Homgz(Gtor, (Gm 8)tor), ¥ 1=
Homgz (G}, (Gm,s)tor) and G = Homz (X, Gu,.s), Gt = Hom(Y, Gy 5).
Then G (resp. G') algebrizes Gyo (resp. Gf,). The morphism X :
G — G* induces an 1 injective homomorphism ¢ : Y — X and an alge-

braic epimorphism X:G — Gt For simplicity we identify the injection
¢ :Y — X with the inclusion Y C X.
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2.2. Fourier expansions

In the totally degenerate case, Gsor (resp. @) is a formal split S-
torus (resp. a split S-torus). We choose the coordinate w?® of G satisfying
wrw¥ = w*Y (Vz,y € X). Since Lo is trivial on Gyor, we have

F(Gn, ‘CTI) = F(G, L:) ® k(n) — F(Gfon Efor) ® k(ﬂ) — H k("?) cw®.
TeX

Therefore, any element 6 € I'(G,,, L,,) can be written as a formal Fourier
series 6 = 3 02(8)w” with 0,(0) € k(n), which converges I-adically.

Theorem 2.3. [Faltings—-Chai90] Let k(n)* = k(n) \ {0}. There
exists a function a : Y — k(n)* and o bimultiplicative function b :
Y X X — k(n)* with the following properties:

(1) b(y,2) = alz + la(z)aly) ™, a0) =1 (Fa,y € V),

(2) by, z) =b(z,y) =aly + 2)a(y)"ta(z)"t (Vy,z€Y),

(3) bly,y) eI (Yy+#0), and for everyn > 0, a(y) € I"™ for almost

ally ey,

(4) T(Gy,Ly) is identified with the k(n) vector subspace of formal

Fourier series 0 = 3,y 05(0)w” which satisfy the relations
Ozty(0) = a(y)b(y, z)o,(0) and 0-(0) € k(n) (Vz € X,Vy €
Y).

2.4. The bilinear form B{(z,y) on X x X

By taking a finite base change of S if necessary, the functions b and
a can be extended respectively to X x X and X so that the previous
relations between b and a are still true on X x X. Let R* = R\ {0} and
k(0)* = k(0)\ {0}. Then we define integer-valued functions A : X — Z,
B:X x X — Z and b(y,z) € R*, a(y) € R* by

B(y,z) = vals(b(y, x)), dA(a)(z) = Blayz) +7r(z)/2,
A(z) = vals(a(z)) = B(z,z)/2 +1(2)/2,
b(y,z) = by, z)sP@"),  a(z) = a(z)sB@D)tr@)/2

for some r € Homz(X, Z), where B is positive definite by Theorem 2.3.
Let ap =@ mod I and by = b mod I, where ao(x),bo(y, z) € k(0)*.

2.5. Delaunay cells and Delaunay decompositions

Let X be a lattice of rank g, Xp = X®@R,and let B: X x X — Z be
a positive definite symmetric integral bilinear form, which determines a
distance || ||z on Xgr by ||z|lz := v/B(z,z) (z € Xg). For any o € Xg
we say that a € X is a-nearest if ||a — a| g = min{||b — o| 5;b € X}.
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For an o € Xw, we define a Delaunay cell o to be the closed convex
hull of all lattice elements which are a-nearest. Two different o and
o’ could give the same o. If & € o satisfies the condition |la — a||g =
min{||b— a|/p;b € X} for any a € 0 N X, then we call a the center of o,
which we denote by (o). The center of ¢ is uniquely determined by o.

All the Delaunay cells constitute a locally finite decomposition of
Xgr, which we call the Delaunay decomposition Delg. Let Del := Delp,
and Del(c) the set of all the Delaunay cells containing ¢ € X. For
o € Del(c), we define C(c, o) := ¢+C(0, —c+0), and define C(0, —c+0)
to be the cone spanned over Rt by all a—c, (a € N X). See [18, p. 662].

2.6. The semi-universal covering @

Let k(n) be the fraction field of R as before, and k(n)[X] the group
algebra of the additive group X over k(7). Let

k(n)[X][9]

be the graded algebra over k(n)[X] with ¥ indeterminate of degree one,
where by definition deg(z) = 0 for any z € k(n)[X]. We denote by w®
the generator of k(n)[X] corresponding to z € X, where w” - w¥ = w**¥
for z,y € X. Then we define a graded subalgebra R of k(n)[X][9] by

R:= Rla(z)wd;z € X] = R[&,0;z € X],

where &, := §B(®2)/2+r(2}/2y% and a(z) the a-part of the degeneration
data in Theorem 2.3. _ B

Let @ := Proj(R) and P the normalization of Q. For y € Y, we
define an action Sy on C} by

Sx(a(z)w®?) = a(z + y)w* 9,

which induces a natural action on P, denoted by the same Sy. By L we
denote Opyoj(1) on Q as well as its pullback to P.

Theorem 2.7. Let (ﬁfor,zfor) (resp. (@for,ffor) ) be the formal

completion of (P, L) (resp. (Q,L)). Then

(1)  The quotient formal schemes (jsfor, Zfor) /Y and (éfor, Zfor) /Y
are flat projective formal S-schemes.

(2) There exist flat projective S-schemes (P, L) and (Q,L) such
that their formal completions {Pior, Lior) and (Qtor, Lsor) along
the closed fibers are respectively isomorphic to the quotient for-
mal schemes (Pror, Ltor)]Y and (Qtor, Lior)/ Y .

(3) P is the normalization of Q.

Proof. This follows from [3, III, 5.4.5]. See also [2] and [18]. Q.E.D.
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2.8. A torically stable quasi-abelian scheme (Fy, £o)

Let Del(Pp) be the Delaunay decomposition corresponding to Fy.
By taking a finite base change of S if necessary, we may assume that
dA(a(o)) € Hom(X,Z) for any Delaunay cell o € Del(Py). By [2] this
implies that Py is reduced. We call the closed fiber (Py, Lo) of (P, L) a
torically stable quasi-abelian scheme (abbr. a TSQAS) over k£(0) := R/I.

In what follows, we always assume that dA(a(o)) € Hom(X, Z) for
any o € Del(Pp). Hence P, is reduced.

We quote two theorems from [2] and [18].

Theorem 2.9. Let Py (resp. Bp) be the closed fiber of P (resp. P).
Let o and 7 be Delaunay cells in Del(Pp).

(1) For each o € Del(Ry), there ezists a subscheme O(o) of Py,
which is a torus of dimension dimg o over k(0),

(2) 7 Co iff O(7) is contained in O(c), the closure of O(0) in Py,

and O(o) is the union of all O(7) with T C o, T € Del(F),
®B) k= UaeDel(Fo) mod y 0(9).

Theorem 2.10. Let Py be the closed fiber of P, and n > 0. Then
(1) KO(Po,L3)=[X:Y]n9, h'(P, LE) =0 (i > 0), and

i = {3 e D)

(2) TP, Ly)=T(P,L") ®k(0),
(3) Ly is very ample for n > 2g + 1.

2.11. The group schemes G and G*

We review [18, 4.12] to recall the notation. By choosing a suitable
base change of S, we assume dA(a(0)) € Hom(X, Z) for any o € Delp.
Then P, is reduced. Then G is realized as an open subscheme of P.
In fact, for any Delaunay g-cell ¢ € Del(0), there is an open smooth
subscheme G(¢) C P such that

(i) G(o) ~ G, G(o)y = Py, G(0)o = O(0),
(il) G(0o)tor is a formal S-torus of dimension g.

We define G = G¥(0) := Uye(x/v)S«(G(0)) C P. Then G* is
a group scheme over S such that GQ, = P,. It is an S-group scheme
uniquely determined by P, independent of the choice of o, though G(o)
are in general distinct as S-subschemes of P. We note that each stratum
O(1) is Go-invariant for any 7 € Delp. See [18, 4.12] for the detail.
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2.12. The Heisenberg group scheme G(L,) of L,

Let K(L,) be the kernel of M(£,) : G, — Gy. It is the subgroup
scheme of G, representing the functor defined by

Loy @p5(N) = T3 (Lyv) }

U K(L)(U) = {m € Gy(U); for some N € Pic(U)

for a k(n)-scheme U, where L,y is the pullback of £, to G,u :=
(Gn) Xk U. We note that N is given by the restriction of £,u to
the subscheme 2(U) (~ U) of G,,v. In other words,

z e K(Ly)(U) <= Lyv @ p5(Lyuiew)) =Ty (Lyy)

See [15, § 13] for the details.

Let LY := L,\{the zero section} be the G,,-torsor on Gy, associated
with the line bundle £,,. Let G(L,) := (£, )|k(c,) be the restriction of
LY to K(L,). We call G(L,) the Heisenberg group scheme of L. See
[15, § 23, Theorem 1]. Then we define a functor Aut(L,/P,) similar to
Aut(L/X) in [15, § 23, Theorem 1]:

U~ Aut(L,/P,)U)

. {(m é); z € K(L,)(U) and }
’ P b Lyy — Ti(Lyy) U-isom. on Gy u

for any k(n)-scheme U.

An obvious difference from the definition of K(L,) is that the def-
inition of Aut(L,/P,) lacks N € Pic(U). This difference enables us to
define the action of Aut(L,/P,) on I'(Gy, Ly).

In the same manner as in [15, § 23, Theorem 1], we see the func-
tor Aut(L,/P,) is represented by the k(n)-scheme G(L,), which admits
therefore naturally a structure of a group k(n)-scheme over K(L,).

The group scheme structure of G(L£,) is given by [13, p. 289] as
follows. Let (z,¢) and (y,?) be any T-valued points of G(L,), T a
k(n)-scheme. Equivalently, ¢ : £, — T;(L,) and ¢ : L, — T;7(L,) are
T-isomorphisms of line bundles on Gy, r. The group law of G(L,) is

(yad}) ’ (mad)) = (:E +y, T o)
where we note the composition T o ¢ is an isomorphism of £, onto
T;.,(Ly). There is a natural epimorphism of G(L,) onto K (L) with
fiber G, k), Where Gy, k(n) is the center of the group scheme G(L,).
Thus G(L,) is a central extension of K (L£,) by the k(n)-split torus
G k(). We define the commutator form e of G(L,) by

e“n(g,h) = [g,h] := ghg™*h™!, for Vg,h € G(L,)
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where g, h are the images of g and h in K (Ly). It is a nondegenerate
and alternating bimultiplicative form on K(L,).

Applying [18, Lemma 7.4], we see that the isomorphism class of
G(Ly) as a central extension is uniquely determined by the commutator
form e“n by taking a finite extension of k(n) if necessary. In other words,
suppose that we are given two central extensions G and G’ of K(L,) by
G k(n)- If they have the same commutator form, then by taking a finite
extension K’ of k(n) if necessary, the pullbacks of G and G’ to K’ are
isomorphic as central extensions of K(Ly;) X K’ by Gm k.

2.13. The action of G(£,) on I'(G,, L,)

The group scheme G(L,,) acts on I'(G,, L,) as follows: for z = (z, §)
any T-valued point of G(L,), T any k(n)-scheme,

pr,(2)(6) =T, (6(0))

where 0 € T'(Gy,1, Ln,1). For any w = (y,¢) € G(L,)(T), one checks
o2, (W)oc, (2)(0) = pe, (@ + v, T20) - )(60) = pe, (w-2)0).
See [13, p. 295]. Thus I'(G,,, £,) is a G(L£,)-module.

By [12, V, 2.5.5] (See also [15, § 23]), I'(G,, £,) is an irreducible
G(Ly)-module of weight one, unique up to isomorphism by taking a
finite extension of k(n) if necessary.

If the characteristic of k(n) and the order of K'(L,,) are coprime, then
G(Ly) ~ G(K) ® k(n) by taking a finite extension of k() if necessary.
Moreover if On C k(n), then I'(G,,, L)) ~ V(K) ®@ k(n) as G(K) ® k(n)-
modules, which is therefore irreducible. See § 4 for the precise definitions
of G(K), On and V(K).

Lemma 2.14. The flat closure Kg([ﬁ) of K(Ly) in G¥ is finite and
flat over S.

Proof. See [18, Lemma 4.14]. Caution : Kg([l) is the same as
K%(L,) in [18, Lemma 4.14].

2.15. The Heisenberg group scheme gg(z:) of £

Now we shall extend G(L,,) relatively completely over S. Let L* :=
L\ {the zero section} be the G,,-torsor on P associated with the invert-
ible sheaf £, and G&(L) := ['ITKE ) the restriction of L* to Kg([,) We

note that G%(L) is the same as gg(cn) in [18, Definition 4.15].
Let ef, be an extension of £ to K%(L). By [12, IV, 7.1 (ii)] G%(L)
is a group scheme over S extending G(L,), which is a central extension
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of Kg(ﬁ) by Gm,s with e% the commutator form. The bimultiplicative
form eg on Kg(ﬁ) is nondegenerate alternating by [12, IV, 2.4] and by

Lemma 2.14.
We note that in view of [18, Lemma 7.4], the isomorphism class of

gg (L) as a central extension is uniquely determined by the commutator
form e by taking a finite cover of S if necessary.
5

Lemma 2.16. We define a functor Aut(L/P) as follows:
U~ Aut(L/P)(U)
={(w,¢) T€ Ky(L)(U) and
¢:Lp, = T(Lp,) U-isom. on Py
for any S-scheme U. The functor Aut(L/P) is represented by Q’g(ﬁ).
Proof. Similar to that of [15, § 23, Theorem 1]. Q.E.D.
Definition 2.17. We define
K(P,L) :=KE(L), G(P,L):=Gs(0),
G(Gn, Ly) = G(Ly) = G(P, L) ® k(n),
K (P, Lo) == K(P,£) ® k(0), G(Po,Lo) :=G(P, L) ® k(0).

The natural projection from £* to G! makes G (P, L) a central ex-

tension of K (P, L) by G, s with its commutator form eﬁs

1—-Gps—G(PL)— K(P,L)—0.
We call G(P, L) (resp. G(Po, Lo)) the Heisenberg group scheme of (P, L)
(resp. (Py, Lo)). See also Section 4.6.

Lemma 2.18. Let G C P be the group S-scheme in 2.11. Then

(1) T(Q,£)=T(P,L) =T(GL),

(2) T(Py,Lo) =T(P,L)®E(0) and

(3) it is an irreducible G(P, L£)-module of weight one, in other words
(by definition), any G(P, L£)-submodule of T'(P, L) of weight one
is of the form JT(P, L) for some ideal J of R.

Proof. See [12,V, 2.4.2; VI, 1.4.7], [18, Theorem 3.9, Lemma 5.12].

See also Theorem 2.10. Q.E.D.

Lemma 2.19. We define a morphism \(Lop) : Gg — Pic®(PRy) by
MLo)(a) = T (Lo) ® Ly

for any U-valued point a of Gg, and U any k(0)-scheme. Then
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(1) K(Pg,ﬁo) = ker)\(ﬂo),
(2) G(Po,Lo) is determined uniquely by (Po, Lo).

Proof. First we note that G} ~ Go x (X/Y) in general, and that
in the totally degenerate case Gy ~ Homg(X, G,,), while in the general
case Go is a Homz(X, G,,)-torsor over an abelian variety Ao, whose
extension class is determined uniquely by (Pp, £o). The proof of the
first assertion is proved in the same manner as [18, Lemma 5.14].

Next we prove the second assertion. We see as in the case of abelian
varieties that K (Fp, Lg) is the maximal subscheme of Gg such that the
sheaf m* (L) ®@p3(L) ™" is trivial on K (Py, Lo) X Py, where m : G, x Py —
P, is the action of Gg, and ps : Gg x Py — Py is the second projection.
This is proved in the same manner as in [15, § 13].

Now we define a functor Aut(Ly/Fp):

U Aut(Lo/Po)(U)

= (@, 0); z € K(Py, Lo)(U) and
' Y Loy — TH(Loy) U-isom. on Py y

for any k(0)-scheme U. Then in the same manner as in [15, § 23, Theo-
- rem 1], we see the functor Aut(Ly/Py) is represented by G( Py, Lo).

By the first assertion and Section 2.12, K (P, Lg) and G(Py, Lo) are
independent of the choice of a Delaunay g-cell o. Q.E.D.

Definition 2.20. Let &k be an algebraically closed field, and let
(Po, Lo) be a TSQAS over k = k(0). Then we define

emin (K (P, £0)) = max{n > 0;ker(n - ing) C K(Py, Lo)},
emax{K(Py, Lo)) = min{n > 0; ker(n - ing) D K (P, Lo)},

where G1 is the closed fiber of G¥ in 2.11. If the order of K (Py, £o) and
the characteristic of k(0) are coprime, then K (P, Lo) ~ ®7_,(Z/e;Z)®?
for some positive integers e; with e;|e;11. Hence epin(K(Po, Lo)) = €1
and emax(K(Po, ,C())) == eg.
Theorem 2.21. Let (P, Lo) be a (not necessarily totally degener-
ate) torically stable quasi-abelian scheme over k(0). Then
) T(Po,£3) =T(P,£") @ k(0) for anyn > 1,

(1
(2) h‘O(PO"C”(r)L) :ng\/ 1K(P07£0);

(3) HI(Py,L£}) = HI(P, L") = 0 for any gyn > 1,
(4) ifn>29+1, L§ is very ample on Fy.

See [2] and [18].
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Theorem 2.22. Let (Qo, Lo) be a projectively stable quasi-abelian
scheme over k(0), by definition, a closed fiber of (Q, L) in Theorem 2.7.
We define K(Qo, Lo) = K (P, Lo) (see [18, Definition 5.11]). Then

(1) T'(Qo,Ly) =T(Q,L™) @ k(0) for anyn > 1,

(2) h‘O(QOv Eg) =nf Vv IK(Q07 EO)’

(3) HUQo,LE)=HYQ,L") =0 for any q¢,n > 1, and

(4)  if emm(K (Qo. Lo)) > 3, Lo is very ample on Qo.

Proof. The first and the second assertions are corollaries to [20,
Theorem 5.17]. We prove the third assertion. If Qo is an abelian vari-
ety A over k(0) and if n := enin(K(FPo, Lo)), then Py ~ Qo = A and
Aln] = Ker (nid,) is a closed subscheme of K (Py, Ly). This implies that
Lo = M™ for some ample line bundle M on A in view of [15, p. 231,
Theorem 3]. It follows from Lefschetz’s theorem that Lo is very ample.
The general case follows from [18, Theorem 6.3], using (1). Q.E.D.

Theorem 2.23. Suppose epin(K(FPo, Lo)) = 3. Then

(1) T(P,L) is base-point free and defines a finite morphism ¢ of
P into the projective space P(I'(P,L)). The image of P by ¢
with reduced structure is isomorphic to @), and

(2) ¢ coincides with the normalization morphism v: P — Q,

(3) letting Sym(¢) be the graded subalgebra of @S2 I'(P,L™) gen-
erated by I'(P, L) = v*'T(Q, Lg), and Lgym4p) the tautological
line bundle, then (Q, Lg) ~ (Proj(Sym(¢p)), Lsym(¢p))-

Proof. Let v: P — @ be the normalization. We note that both P
and @ are reduced by the construction in Section 2.6.

By definition £ := v*(Lg). By Lemma 2.18 we have I'(P,£) =
v*I'(Q, Lg). Hence I'(P, L) is base-point free by Theorem 2.22 so that
it defines a finite S-morphism ¢ : P — P(I'(P, £)). Since I'(Q, Lg)®k(0)
is very ample on Qo by Theorem 2.22,s0is I'(Q, Lg) on Q. Let g : Q —
P(I'(Q, Lg)) be the natural morphism defined by I'(@, Lg). Then since
I'(P, L) =v'T(Q, Lg), ¢ factors through ¢g(Q) ~ Q C P(T(Q, Lg)) ~
P(I'(P,£)). Thus ¢ : P — ¢¢(Q) ~ Q coincides with v. This proves
(2). Since Q is reduced, we have (¢(P))red = Qrea = @. This proves
(1). In particular, ¢* : T(Q, £3) — ['(P, L") is injective.

Since I'(Q, Lg) is very ample by Theorem 2.22, S"T(Q, Lg) —
I'(Q, L£3) is surjective for any n > 0. It follows from ¢*(I'(Q, Lg)) =
['(P, L) that the degree n part of Sym(@) coincides with ¢*T'(Q, £L3),
hence @ ~ Proj(Sym(¢)). This proves (3). Q.E.D.

Remark 2.24. We note that if (o is non-reduced, then @y =
Proj(Sym(¢)) ® k(0)) can be different from Proj(Sym(¢p,)), where
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Sym(é|p,) is the subalgebra of ®32 (I'(Fy, LF) generated by I'(Fy, Lo).
In fact, if Qo is non-reduced, there is an n such that v} : I'(Qo, L§) —
I'(Po, Lf) has a nontrivial kernel, and Ker (S"I'(Qo, Lo) — TI'(FPo, L%))

can be strictly smaller than Ker (S"T'(Qq, Lo) — T'(Qo, L%)).

§3. The schemes F; and Qg

3.1. An amalgamation of an admissible scheme

Let k be a field, and we consider k-schemes locally of finite type. Let
A be a partially ordered set with < a partial order, where we understand
that A < v if and only if either A = v or A < v (that is, A is strictly
smaller than v).

We assume that A satisfies the following

(a) A has a unique minimal element ¢ with ¢ < X for any A € A,
and if A < v for infinitely many mutually distinct v, then
A=¢,

(b) any totally ordered sequence in A has a maximum,

(¢) for any pair of maximal elements A, v (A # v), there is an
element A Nv, called the intersection of A and v, which is the
maximal element among o € A such that 0 < A, o < v,

(d) for any pair of maximal elements A, v, we have incidence num-
bers [A : ANv] and [v : AN v, both being £1 with distinct
signs.

For the ordered set A, we suppose that we are given a set of irre-
ducible reduced k-schemes Z of finite type (A € A), and that there
exists a closed immersion i, ) : Zy — Z, for any ordered pair A < v.

Let Zx be the disjoint union of all Zy (A € A), and I the set of iy ,,
for all ordered pairs A < p. The pair (Z4,Ia) is called an admissible
system if the conditions (i)—(iv) are satisfied:

(i) Z4 is empty,
(ii) Zxny = Zx N Z, for any pair of maximal element A, v,

(iii) for any ordered pair A < v, the closed immersions, » : Zyx — Z,

is not an isomorphism if A # v, and iy » = idz,,

(iv) 4ux =1y, 06y x for any ordered triple A < v < p.

A reduced scheme Z (locally of finite type) is called an amalgamation
of the admissible system (Za, In) if the following conditions are satisfied:

(v) there is a closed immersion iy : Zy — Z,
(vi} ix =1, 04y, for any ordered pair A < v,
(vii) there is a finite surjective morphism i : Zy, — Z such that
ix = 1|z, , the restriction of i to Zj,
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(viii) if there is a reduced scheme Y (locally of finite type) with closed
immersions jy : Zx — Y, and a finite surjective morphism
J: Zn — Y such that jx = jiz,, jx = Ju 0 @y,x for A < v, then
there is a morphism h : Z — Y such that hoi = j.

3.2. An example of an amalgamation

Let A = {¢,a,b,c} be an ordered set with ¢ < a < b, ¢ <a <c. We
note that b and ¢ are maximal in A. Let Z, = Spec k, Z, = Spec k[z],
Z. = Spec kly, z]. We define

lab @ Zq ~ Spec klz]/(x) C Zs,
ta,c © Za =~ Spec kly, 2]/(y, 2) C Z..

Let Z = Spec k{z,y, z]/(zy,zz). Then Z is an amalgamation of
(Zn,Ip). In fact, there is an exact sequence

0— 0z — 0z ®0z, — Oz,
(f,9) —lb:af+lc:adg.

We infer from this exact sequence that Z is an amalgamation of
(Za,Iy), as we will see soon in the proof of Theorem 3.3.

Theorem 3.3. There exists an amalgamation Z of (Zp,Ip). More-
over if Zx is normal for any A, then Z is seminormal, that is, any finite
bijective morphism f W — Z with W reduced is an isomorphism.

Proof. Let Zyax be the disjoint union of all Z,, for u maximal. Let
Z max2 be the disjoint union of Zyn, for all pairs A # v both maximal.

Now we define an equivalence relation = on Z,.x as follows. For
p E Zy, p € Zy,, we define p = p’ if one of the following equivalent
conditions is satisfied:

(s) there exists ¢ € Zy such that p = i,n,,.(¢) and p' = ium0,.(q),
(t) there exists ¢ € Zy for some A < v N p such that p = iy, (q)
and p’ = ix,,(9q).

Let Z°P be the quotient space of Zyax by the equivalence relation
=. Thus there is a finite-to-one continuous map tmax : Zmax — 2Z°°P.
And there is a finite morphism %,,42 : Zmax? — Zmax such that for any
pair A # v both maximal

(imax2)[Z,\m, : Zxnw (C Zmax2) — ZyUZ, (C Zmax)

is the disjoint union of ix xn, and i, xn,. It is obvious that tmax(p) =
tmax(D') € Z*°P iff either p = p’ € Zpax Or 3 ¢ € Zpaxz such that
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tmax(D) = tmax(D") = tmax(tmax2(q)) € Z°P. Thus Z), is set-theoretically
a subset of Z%P,
It remains to define a scheme structure of Z'°P. For this purpose,

M y %k .
we define a sheaf homomorphism i} ... : Oz, — Oz__, by

@ (ax) — @ (N ANV yapax + [V ANV 5, a0).

Aimax A#Z v
both max
We define Oz to be the kernel of i . : Oz,,. — Oz__,. Then

Oz inherits a natural algebra structure from Og_  , which defines a
scheme Z of locally of finite type by Z = Spec (Oz) with its underlying
topological space Z°P .

Next we show that there is a natural closed immersion iy of 7
into Z such that the underlying continuous map iE\OP of iy coincides
with (tmax)|z, for any maximal X. Let Ay be the subset of A consisting
of all maximal v € A with A < v. There is a natural epimorphism
i5, + Oz, — Og, for any v € Ax. Suppose EER (ay) € Oz. Then

v

A
i}.(av) =13 ,(ay) for any maximal v and p because A < pNv. Hence

we define 1§ : Oz — Ogz, by 3( 6% (a,)) =% ,(av), independent of v.
vEAy ’

Thus 73 is a well-defined epimorphism, which induces a closed immersion
of Zy into Z.

Suppose that there is a reduced scheme Y (locally of finite type)
with closed immersions j) : Zx — Y, and a finite surjective morphism
J : Zn — Y such that such that jx = j,z,, jx = ju 0 dyx for A <wv.

Let Jmax = J|Zu.,- Then we have a sequence of k-modules

. o
Oy =% 0z,.. ™" 07,

max max.

such that 47 .j%.. = 0. Hence j .. induces a homomorphism of Oy
into Oz, which defines a morphism h : Z — Y as desired. We note
that an amalgamation is unique locally, hence local amalgamations are
patched together globally to define a global amalgamation.

Finally we prove that Z is seminormal if Zy is normal for any A € A.
Suppose that there is a finite bijective morphism f : W — Z with W
reduced. Then we define Wy := f~1(ix(Zy)). Since fiw, : Wa —
ix(Z»\) = Zy is finite bijective and Zx is normal, we see that fiw, 1s
an isomorphism, W ~ Z,. It follows that there is a finite morphism
g : Zxn — W such that gz, = (fiw,) ' oir. Then g is surjective
because f is bijective, and g satisfies the condition (viii). Since Z is an
amalgamation of Z,, there is a surjective morphism A : Z — W such
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that hoi = g. It is obvious that foh = idz. Hence W ~ Z. This proves
that Z is seminormal. ; Q.E.D.
3.4. The coordinates of P, and Qg
Let k(n) be the fraction field of R as before, and R the graded

subalgebra of k(n)[X][¥] defined in Section 2.6
R:= Rla(z)u*%z € X] = R[&0;z € X],

where £, 1= sB@2)/2+7(@)/2y Tt Q := Proj(R), P the normalization
of Q and Sy the action of Y on both Q and P defined in Section 2.6.
We always assume that dA(a (o)) € Hom(X, Z) for any o € Del(F),
where dA(a)(z) = B(a, z) + r(z)/2. Hence P is reduced.
We set
fz,c s = éx—}-c/éc — SB(x,z)/2+B(z,c)+r(z)/2wz (V.’II),

(oo = sP@2T@ /2 (1 € C(0, —c + 0)),
where o € Del(c) stands for a Delaunay g-cell with ¢ € o.

_ Lemma 3.5. ([18, Theorem 5.7]) Let (Qo, Lo) be the closed fiber of
(@, L) and Ez,c 1= €g.c @ k(0) the restriction to Qo. Then
(1) Sole) == k(0)[€z.c;z € X] is a k(0)-algebra of finite type,
(2) Qo is covered with affine k(0)-schemes of finite type
Wo(c) := Spec k(0)[&; c;x € X] (c € X).
_ Lemma 3.6. ([18, Theorem 4.9]) Let (Po, Lo) be the closed fiber of
(P, L) and y o := (u,c ® k(0) the restriction to Py. Then

(1) Ro(c) :=k(0)[Cs,c;z € X] is a k(0)-algebra of finite type,
(2) Letx; € X. Ifz; € C(0,—c+0) for one and the same Delaunay
cell o € Del(c) (resp. otherwise), then

Exl,c s Exm,c = EI1+"‘+:Em,C (T63P~ O),
3) P, is covered with affine k(0)-schemes of finite type
Uo(c) == Spec k(0)[Cz.c;z € X] (c € X),

(4) let O(0) be a torus stratum of Py in Theorem 2.9, and O(0)
its closure in Py. If o € Del(c), then

L(0(0) NUo(€), Oy () = F(O)[Geei @ € C(0, —c +0) N X],

which is the semigroup ring of C(0,—c+ o) N X.



Another compactification of the moduli space 85

Lemma 3.7. For ¢ € Del(c), let Semi(—c+ o) be the subsemigroup

of X generated by (—c+ o) N X. Then

(1) defining O(o, (Qo)red) := (Vo)rea(O(0)) for any Delaunay cell
o, I‘(Omn%(c)) is the semigroup ring of Semi(—c+o0),
where Vo(c) = (Wo(¢))rea,

(2) F(Oa—(—;)_ﬂUo(c)) is the semigroup ring of C(0, —c+0)NX, where
the semigroup C(0, —c+0)NX is the saturation of Semi(—c+o)
in X, that is, the subset of X consisting of all a € X such that
na € Semi(—c+ o) for some positive integer n,

(3) - In particular, the subscheme O(o) of Py is uniquely determined
by the subscheme O(0, (Qo)red) Of (Qo)red,

(4) if T C o, 7,0 € Del(c), the natural immersion iy : O(7,Qo) C

O(0,Qo) induces a unique immersion 1,, : O(1) C O(c)
through the saturation of semigroups.

Proof. Tt suffices to prove the assertions for ¢ = 0. Let Ty(c) be the
residue ring of Sp(c) by the nilradical of Sy(c). In view of [18, Lemma 5.5]
T5(0) is generated by &, and

A= F(Oo(a,(Qo),ed)mVU(O)) = k(0)[ée;x € 0],

where o € Del(0). It is not normal in general because the semi-group
C(0,0) N X is not generated by o N X as a semi-group.

We recall that @y determines a unique Delaunay decomposition
Del := Del(Qo), hence the set Del(0) of Delaunay cells containing 0,
though it does not determine the bilinear form B uniquely. Let o €
Del(0), and let Semi(C(0, 0)) be the semigroup of C(0,0) N X, Semi(c)
the subsemigroup of C'(0,0)NX generated by cNX. Let n, = [C(0,0))N

X : Semi(0)]. '
By Lemmas 3.5, A is generated over k(0) by &0, (b € 0 N X), while
B = F(OmmUo(O)) is generated over k(0) by (o, (b € C(0,0) N X).

Since &p,0 = Cp,0 and Cup,0 = (J for b € o N X, A is generated over k(0)
by (b0, (b € Semi(o)). Hence A is the semigroup ring of Semi(o), while
B is the semigroup ring of C(0,0) N X. The intersection C'(0,0) N X
is the subset of X consisting of all @ € X such that n,a € Semi(o).
It follows that T'(O(c) N Up(0)) is isomorphic to the semigroup ring of
C(0,0) N X, where C(0,0) N X is the saturation of Semi(c) in X.

This proves (2). The assertions (3) and (4) are obvious. Q.ED.

Theorem 3.8. Assume emin(K) > 2. Then Py is an amalgamation
of closed orbits O(o) (cmod Y), each O(c) being a torus embedding
associated with the X -saturation of cNX , where the image of O(o) in Qq
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with reduced structure is the toric variety associated with the semigroup
ring of o N X.

Proof. In view of [18, Theorem 3.9] we have an exact sequence
Oy 02 . 01
0— Op, — @Ov(ag) — .. @OV(al) — @OV(U()) —0

where o; € Del®” mod Y. Since emin(K) > 2, 1o is a closed immersion
of 5@ into Py. We note that ¢, is always a closed immersion into 130.
Hence P, is an amalgamation of 5@ for all o € Del(@o) mod Y by the
proof of Theorem 3.3. Q.E.D.

Corollary 3.9. The scheme Py is uniquely determined by the re-
duced scheme (Qo)red-

Proof. The stratification of Py by O(c) for all o € Delmod Y is
uniquely determined by (Qo)rea by Lemma 3.7. Since P is an amalga-
mation of O(0)mod Y (o € Del), it is uniquely determined by (Qo)red-

Q.E.D.

§4. Level-G(K) structures
Let (i be a primitive N-th root of unity and O := Z[(n,1/N].

4.1. The group schemes G(K) and G(K)

Let H be a finite abelian group such that emax(H) = N, the max-
imal order of elements in H, is equal to N. Now we regard H as a
constant finite abelian group O-scheme. Let HY := Homo(H, Gm,0)
be the Cartier dual of H. We set K := K(H) = H & H" and define a
bimultiplicative (or simply a bilinear) form ex : K x K — G0 by

ex(z®a,wd B) = B(z)a(w) ™",

where z,w € H, a,3 € HY. We note that H is a maximally isotropic
subgroup of K, unique up to isomorphism.

Let un := Spec O[z]/(zN — 1) be the group scheme of all N-th roots
of unity. We define group O-schemes G(K) and G(K) by

G(K):={(a,z,@);a € Gp0,2 € Hia € H},
G(K) :={(a,z,0);a € pn,z € Hya € H'}

“endowed with group scheme structure

(a,2,0) - (byw, B) = (abB(z),z + w, o + B).
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We denote the natural projections of G(K) to K, and of G(K) to
K by the same letter px. Let V(K) be the group algebra O[HV] of HY
over O (equivalently, a free O-module generated by HY), and an O-basis
v(x) (x € HY) of V(K). Hence they are subject to the relation

v(x +x) = v(x)v(x")

for any x,x’ € H".
We define an action U(K) of G(K) and G(K) on V(K) by

U(K)(a,z,a)(v(x)) = ax(2)v(x + @)
where a € upyr ora € G0, 2€ H and a € HY.

Lemma 4.2. Let k be an algebraically closed field, let K be a sym-
plectic group with ex symplectic form. Suppose that the characteristic
of k is prime to the order of K. Then there exists a polarized abelian
variety (A, L) over k such that G(A,L) @k ~ G(K) ® k.

Proof. First we take a prinicipally polarized abelian variety (A, L)
over k. Let N = epax(K) as before. Then K (A, LN) ~ (Z/NZ)?9. Let
en be the symplectic form (the Weil pairing) of K(A, LY). Let I be a
maximally isotropic subgroup of K (A, L"), namely, a maximal subgroup
of K (A, LN) which is totally isotropic with respect to ex. We note that
K(A,LN) ~ I'® IV, and that ey is just the alternating bilinear form
ergrv in Section 4.1. We also choose a maximally isotropic subgroup
I(K) of K with respect to ex by the definition in Section 4.1 so that
K ~ I(K)®I(K)V. It follows that there is an epimorphism s : I — I(K)
such that e (s(a),b) = en(a,sY (b)) for Va € I and Vb € I(K)Y, where
sV is the adjoint of s. Let J = Ker(s). Let B=A/J and f: A— B
the natural morphism. Since J is also a totally isotropic subgroup of
K (A, LY), we have a descent M of L to B by [13, p. 291, Proposition 1],
in other words, a line bundle M on B such that LY = f*(M).

Then we shall show that G(B, M) ~ G(K)®k and that K (B, M) ~
K ® k. In fact, we choose a subgroup J of G(A, L) isomorphic to J.
Let G(A, LN)* be the centralizer of J in G(A, LY). Then we see that
there is an exact sequence

1-puy - GA LYY - TeJt -0,

where J* is the maximal subgroup of IV orthogonal to J. Since 0 —
I(K)Y — IV — JY — 0 is exact, we have J* ~ I(K)V. Hence by apply-
ing [13, p. 291, Proposition 2] to our situation, G(B, M) ~ G(A, LN)*/J.
Thus G(B, M) is a unique central extension of (I & I(K)Y)/(J & 0) =~
I(K)®I(K)Y ~ K by un. Hence G(B, M) ~ G(K)®k and K(B, M) ~
K®k. Q.ED.
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4.3. G(K)-modules of weight one

Let R be any commutative O-algebra. Then any G(K) ® R-module
V is called of weight one if every a € uy C G(K) ® R acts on V as
scalar multiplication a -idy . In this case, we also say that the action of
G(K) on V is of weight one.

Lemma 4.4. Let O = Z[(nx,1/N] and R any commutative O-
algebra. Let H be a finite abelian group with emax(H) = N, HY the
(Cartier-)dual of H and K = H® HY. Then V(K)® R is an irreducible
G(K)-module of weight one, unique up to equivalence. If V is an R-free
G(K)-module of weight one of finite rank, then V is G(K)-equivalent to
V()@ V(K)®R where V(0) :={v e V;h-v=0 (Vh € H)} is regarded
as an R-module with trivial G(K)-action.

Proof. We prove the lemma in the standard way. The point is that
we can prove it over R without assuming R is a field. In what follows,
we denote the G(K)-action as follows: G(K) xV 3 (g,v) — g-v € V.

Since epax(H) = N, any character x of H has values in py, the
group of N-th roots of unity, hence in the ring R. Now we recall

(15 th=1
(1) X§VX(h)_{o ifh#1

First we prove

V= Vix

x€EHY

where V(x) := {v € V;h-v = x(h)v (Vh € H)} is the eigenspace of V
with character x. To prove it, for v € V, we define

Ux = Z (h’ ’ U)a
IHl heH
where we note v, € V because 1/|H| € R. We see v, € V(x) because
hevy = H > x(W)THAE - w)
1] lh'eH

(B) > " x(hh) 72 (hh' - w) = x(R)vy.

|H [

Moreover we see by (1)

> vy= 'H| > (ZX ) (h-v) =

x€HY x€HY \hecH
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which shows V. C 3° pv V(X).

It remains to prove V = @Xe v V(x). For this purpose, we suffice
to prove that if }° . pv wy = 0 for wy € V(x), then w, = 0 for any
x € HY. In fact, since h- w, = x(h)wy for any h € H, we have
YemvX(hWwy =h-3° - pvwy = 0. It follows from (1) that

0= x(W™" D phyw,= Y <Z(X p)(h) ) wp = |HJ - wy.
heH pEHY pEHY \h€H

Hence wy =0, whence V =, v V(x)-

Next we prove that if V' # 0, then V(0) # 0. In fact, if V # 0,
then V(x) # 0 for some x € HV. By definition of G(K), if z € H, then
(1,2,0) € G(K). Let w € V(x),w # 0 and set wo = (1, 0, —x)-w. Then
we see 0 # wg € V(0). In fact, we check (1, z,0) - wg = wy as follows:

(1,2,0) - wo = (1,2,0)(1,0,—x) - w
= X(z)—l(LOa ”’X)(l’ 270) Tw
= x(2)7H(1,0, —x) - x(z)w = wo.

Thus we see V(0) # 0. Now we prove V ~ V(0) @ V(K)® R
as G(K) ® R-modules. First we define v(x,w) = (1,0,%) - w for any
w € V(0). Then we see

(1,2,0) - v(x, w) = x(2)v(x, w),
(1,0,0) -v(x,w) = (1,0,x + &) - w = v(x + o, w),
(a,z,0) -v(x,w) = (1,0,a)(1, 2,0)(1,0,x)(a,0,0) - w
=a(1,0,x + a)x(2)(1,2,0) - w
= ax(2)v(x + a,w).

Let F(v(x,w)) = w® v(x) for w € V(0) and x € HY. Then
F is a G(K)-isomorphism of V' onto V(0) @ (V(K) ® R) with V(0)
regarded as an R-module with trivial G(K)-action. This proves V =~
V(0) ®g (V(K)® R) as G(K)-modules. Q.E.D.

Lemma 4.5. (Schur’s lemma) Let R be a commutative O-algebra.

(1) Let Vi and Va be two R-free irreducible G(K)-modules of finite
rank of weight one. Assume f:Vy — V, and g: Vi — V5 to be
G(K)-isomorphisms. Then there exists a constant ¢ such that
f=cg,

(2) LetV be an R-free G(K)-module of finite rank of weight one.
Assume [ : V. — V to be a G(K)-isomorphism. Then there
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ezists & G(K)-trivial module W of finite rank and g € GL(W ®
R) such that V =W @ V(K) ® R and f = g ® idy ().

Proof. We prove (1) in the standard way. The point is that we can
prove it over R without assuming that R is a field.

In view of Lemma 4.4, V] ~ V5 ~ V(K)®R by the assumption of (1).
Thus we choose an O-basis v(x) of V(K). Let F : V(K)®R — V(K)QR
be a G(K)-isomorphism. We show that F is a scalar multiplication. In
fact, since F' is G(K)-equivariant,

(a,2,0) - F(v(x)) = F((a,2,0) - v(x))
= F(ax(2)v(x + a))
= ax(2)F(v(x + a)),

whence, in particular, (1, 2,0} F(v(x)) = x(2)F(v(x)). This shows that
F(v(x)) = cxv(x) for some c,. Since v(x) = (1,0, x) - v(0), we have

F(v(x)) = F((1,0,x) - v(0))
= (1,0,x) - F(v(0))
= (170»X) ’ CUU(O) = Co’U(X),

whence ¢, = ¢g for any x € H". It follows F = ¢g - id. This proves (1).
(2) is an immediate corollary to Lemma 4.4 and Lemma 4.5 (1).
QED.

4.6. The finite Heisenberg group scheme G(P, L)

Let R be a complete discrete valuation ring, k(0) = R/I and S =
Spec R. Let (P,£) a TSQAS over S.

The first assumption. In what follows, we always assume that
the order of K (P, £) and the characteristic of k(0) are coprime.

In other words, we consider only good primes. See Section 5.1 for
the second assumption.

The group scheme K (P, L) is a reduced flat finite group S-scheme,
étale over S. Hence by taking a finite cover of S if necessary, we
may assume by [18, Lemma 7.4] that (K(P,£),ek) ~ (Kg,exs) and
G(P, L) ~ G(K)s for a suitable K, where G(K)g is the unique subgroup
scheme of G(K) mapped onto K such that G(K)s N Gm,s = pun,s.

Thus by taking a finite cover of S if necessary, we may assume
G(P, L) ~ G(K)s. So we suppose G(P, L) ~ G(K)s.

We define the (finite) Heisenberg group scheme G(P, L) of (P, L) to
be the unique subgroup scheme of G(P, £) mapped isomorphically onto
G(K)g. Similarly we define G(Py, Lo) = G(P, L) ® k(0).
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Thus G(P, L) ~ G(K)s and G(P,L£) ~ G(K)s by taking a finite
cover of S, hence by taking a finite extension of k(0).

4.7. Reformulation via the action of G(K)g

We reformulate Section 4.6 via the action of G(K)g. Via the iso-
morphism G(P, L) ~ G(K)g, for any S-scheme T', we have

G(P,L)(T) = {(z(9), ¢9); 9 € G(K)(T)}

satisfying the following conditions:
(i) @(g) € K(P,£)(T), and
(i) ¢g:Lpp — T7 (Lpy) is an isomorphism on Pr,

(ili) ¢gn =T} bq © ¢ for any g, h € G(K)(T).

Since ¢4 is fiberwise a (linear) isomorphism, it is multiplication by
some invertible element ¢4(z), whence we may write ¢q(2,&) = ¢g(2)¢
with fiber coordinate &£ € L, .

In general, we replace T, (4 with a transformation 7, of P labeled
by g, which may not be translation by z(g). And with T, so un-
derstood as Ty, we say in general that (P, L) is G(K)s-linearized if the
conditions (ii) and (iii) are satisfied. See [17, pp. 30-31]. There are
G(K)s-linearized smooth cubic curves such that Ty is not a translation
by any x € K(P, L) when K = (Z/3Z)®2. See [18, pp. 711-712).

Hence G(P, L) ~ G(K)g if and only if (P, L) is G(K)g-linearized
and z(g) € K(P,L£) C G*. It follows that the set {¢(1@na0);h € H}
is a descent data for £, where we note that H is a maximally isotropic
subgroup of K = K(H) in Section 4.1.

We note that z : G(K)(T) — K(P,L)(T) is a homomorphism, so
that z(1) =0 and z(g~!') = —z(g). Since we have isomorphisms

¢ * T3 nybo * * *

we see

(z(gh), ¢gn) = (z(g) + z(h), Ty )Py © &)
= (z(9), ¢q) - (z(h), ¢n)-

Thus we can also reformulate the above as follows. Suppose that
G(K)s ~ G(P,L)s. For any S-scheme T, we have

G(P,LYT) = {(x(9), b9); 9 € G(K)(T)}

satisfying the conditions (i)(ii)(iii) if and only if
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(iv) we are given a commutative diagram of G(K)g-actions:

G(K)s x L —— L

P

id Xp:,J/ lpz:

G(K)sx P —22— P,

where py : £L — P is the natural projection, and the actions
Yp and op of G(K)s in (iv) are explicitly given as follows:

Zp(h, z, f) = (Tx(h)(z)a ¢h(z) . 5)3 UP(ha Z) = Tx(h)(z)7

where h € G(K)(T), z(h) € K(P,L)(T), z € P(T), and the
fiber-coordinate & € £,(T).
The condition (iii) is translated into the composition rule:

g (h-(2,8) =g (Tuopn)(2), ¢n(2) - §)
= (To(q) (Tor) (2)), g (Tw(n)(2))Pn(2) - €)
= (Tu(gn) (2), (Tgnydg - H1)(2) - €)
= (Tu(gn) (%), dgn(z) - §) = (gh) - (2, ).

This shows that the existence of a G(K)-linearization on £ is equiv-
alent to the existence of compatible G(K)-actions on both P and L.
This is true in general, not only for (P, £). We also note that any G(K)-
linearization on L is restated as an isomorphism G(K) x L ~ op*L. See
Section 4.12.

We define the action pg of G(K)Y(T) onT'(Pr, Lp,.) as in Remark 2.13.
For any T-valued point g of G(K)(T), T any k(n)-scheme,

(2) pe(9)(0) =T 4 4)(¢9(0))

where 8 € I'(Pr,Lp,). We easily see pc(gh) = pc(g)pc(h). In what
follows, if there is no fear of confusion, we denote p by p for simplicity.
Consider the case T' = Spec k(0).

Theorem 4.8. Let k = k(0). Suppose (K (FPy, Lo), 6?9,0) ~ (K, ek),
and the order of K (Po, Lo) and the characteristic of k are coprime. Then
p®k: GK)®k — GLI'(Py, Lo)) is an irreducible representation of
G(K)®k of weight one, hence I'(Py, Lo) is equivalent to V(K)®k as a
G(K) @ k-module.

Proof. By [18, Theorem 4.10], dim I'(Po, £o) = dimy V(K)®k. By
Lemma 4.4, I'(Py, £o) ~ V(K)®k. See also [20, Theorem 5.18]. Q.E.D.
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We call p : G(K)s — GL(I'(P, L)) the Schridinger representation
of G(K)s. It is obvious that we have a natural counterpart for G(K)s.

We also call p : G(K) ® k(0) — GL(I'(Py, Lo)) the Schridinger
representation of G(K) ® k(0).

Lemma 4.9. Let O be any commutative algebra, and G a finite
reduced flat group O-scheme. Let Z be a positive-dimensional O-flat
projective scheme. L an ample G-linearized line bundle on Z. Then for
any point z € Z, there exists a G-invariant open affine O-subscheme U
of Z such that z € U and L is trivial on U.

Proof. We may assume that G is a constant group O-scheme by
taking an open affine covering of Spec (O) fine enough if necessary. We
choose a coprime pair of positive integers a and b such that

(i) L® and L® are both very ample,
(ii) h%(Z,L%) > N +1 and h%(Z, L%) > N + 1, where N = |G|.

Then we have projective embeddings ¢y, : Z — P (Vi) where V;, =
HY%(Z,L*) (k = a,b) are both O-finite O-flat modules. We may assume
that Vi, are O-free by shrinking Spec (O) if necessary. Let z € Z and G-z
the G-orbit of z. Since |G-z| < N, we can find a hyperplane H' of P(V,)
defined over O such that H' N (G- z) is empty. Let f' € V, be a defining
equation of the hyperplane section H' N Z, and U’ := {2z € Z; f' # 0}.
Then U’ is the inverse image of the complement of H' in P(V,), whence
L is trivial on U'. Let F' =[] .5 ¢*(f') and V' := {2 € Z; F'(2) # 0}.
Then F’ is G-invariant, and V' C U’. Therefore V' is a G-invariant
affine open O-subscheme of Z on which L® is trivial.

Similarly we choose a hyperplane H" of P(V,) defined over O such
that H” N (G - z) is empty. We let f” € V, be a defining equation of
H'NZ, F"=1l,ec9"(f), U":={2z € Z; f"(2) # 0}, and V" := {2 €
Z; F"(z) # 0}. Then V" is also a G-invariant affine open O-subscheme
of Z on which LY is trivial. Let V := V' N V". It is clear that z € V.
Then V is a G-invariant affine open subset of Z such that both L* and
LY are trivial. Choosing a suitable pair of integers s and t such that
as+ bt = 1, we have L = (L*)*(L%)?, whence L is trivial on V. This
proves the lemma. Q.E.D.

Remark 4.10. We note that if O is a field, then Lemma 4.9 is
true for any finite group scheme G. In fact, for a given point z € Z,
we first apply Lemma 4.9 to Greq, the reduced part of G, to find a
Greq-invariant affine subscheme U of Z containing . Let G° be the
connected component of the identity of G. Since G° acts trivially on
Zred, any Zariski open subset of Z is G°-invariant. Hence U is also
G-invariant.
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4.11. The G-linearization in down-to-earth terms

Let O be any commutative algebra, and G a finite reduced flat group
O-scheme. Let Z be a positive-dimensional O-flat projective scheme.
Let m : G xo G — G be the multiplication of G, and 0 : G xXp Z — Z
an action of G on Z. Let L be an ample G-linearized line bundle on Z.
The action o satisfies the condition:

(3) o(m x idz) = o(idg x0).

Now we shall give an alternative description of the G-linearization
of (Z, L) by using a nice open affine covering of Z. By Lemma, 4.9, we
can choose an affine open covering U; := Spec (R;) (j € J) of Z such
that each Uj is G-invariant and the restriction of L is trivial on each Uj.

The induced bundles ¢* L, (resp. (idg xo)*c*(L), (m xidz)*c*(L))
are all trivial on G xo Uj (resp. G xo G xo U;j or G xp G x U;) with
the same fiber-coordinate as Ly,. Let (; be a fiber-coordinate of Ly;.

Now we assume that G is a constant finite group O-scheme. Since
G is affine, let Ag := T'(G, O¢g) be the Hopf algebra of G. Then the
isomorphism ¥ : p5L — o*(L) over U; is multiplication by a unit
¥i(g,z) € (Ag Qo R;)* at (9,2) € G xp U;. Let Ajx(x) be the one-
cocycle defining L. Then o*(L) is defined by the one-cocycle o* A ().
Hence ¥ : p5L — o*(L) over U; and Uy, are related by

$i(g,2) = %jk%)wk(g,x).

Now we write down the isomorphism over G xpo G xp Uj:
paps L(~ (idg xo)*p5L) ~ (idg x0)*o* L.
This is written on G xo G X Z in two ways via (3):

(g7h1$7<j) = (ga haxafdj](ghax)c‘])ﬁ
(gahamagj) — (gahya“aw](g)hx)wj(h’x)C])a

from which we infer Section 4.7 (iii) (compare also Section 4.12 (5))

’ll)j (gha .'L‘) = wj (ga thW’y (h‘v 37)

4.12. The G(K)-action on P(V(K))

Let P(V (K)) be the projective space parametrizing one dimensional
quotients of V(K), L(V(K)) the hyperplane bundle of it, and GL =
GL(V(K)). For brevity, we denote P(V (X)) and L(V(K)) by P and L
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if no confusion is possible. Let Sym(V (K')) be the symmetric algebra of
V(K) over O. Then as O-schemes,

P = Proj(Sym(V(K))), A"*! = Spec (Sym(V (K)),

where n + 1 = ranke V(K). The dual bundle LY of L is the blowing-up
of A™*! at the origin as an O-scheme. The action of GL on V(K) thus
induces an action on LV, hence actions S and s on L and P. We have
a commutative diagram

id XPLJ/ lpL

GLxP —— P,

such that s*L ~ p;L. = GL xL where p; is the second projection of
GL xP. The isomorphism ¥ : GL xL — s*L can be given by

U*s™(Xi) = ) pilaig) ® p(X;)
i=0

using the standard coordinates a;; of GL and X; of P as in [17, pp. 32—
33]. Thus (P,L) is GL-linearized ({17, p. 30]). The GL-linearization
{(Sg,1¥4)} of L is explicitly given by

S3(X;) = s"(Xj)igxp,  Yg = Yigxis
where j = 1,...,n+ 1. Moreover ¥ and S are related by
S*(X;) =¥*s*(X;) for any .
We also have a commutative diagram

GL x GL xLL —— GL xL

idxS

(4) mxidLl ls
GLxL —2 . 1,

where m is the multiplication of GL, and p, is the second projection.
The commutativity of (4) implies that v, is a GL-linearization on L :

(5) Shipg o Yp = Ygn for any g,h € GL.

Suppose we are given an irreducible representation of weight one
p : G(K) — GL, where we do not assume p = U(K). Then (P,L)
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is G(K)-linearized. In fact, by fiber-product, we infer a commutative
diagram of G(K)-actions:

(6) id Xle lPL
G(K)xP —2— P,
so that o*L ~ G(K) x L.

4.13. A G(K)-linearization induces a G(K)-morphism

We come back to the situation of Section 4.7 and Section 4.12. We
assume we are given a G(K)-linearization on (P, £). To be more precise,
we assume an isomorphism 7 : G(K)g ~ G(P, L) for an affine O-scheme
S, which was functorially given by

7(9) = (2(9), ¢) € G(P, L)(T)

for ¢ € G(K)(T) and any S-scheme T. Hence by Section 4.7 and
Section 4.12, we have an isomorphism T: G(K)s x L — opL where
op : G(K)g x P — P is the action of G(K') on P.

Let ¢ : P — Pg = P(V(K))s be the rational map defined by the
linear system I'(P, £). Suppose ¢ to be an S-morphism. Then we have
a I'(Og)-isomorphism

9" :T(Ps,Lg) = V(K) ®T(Os) — T'(P, £),

which enables us to define, with the help of p., a homomorphism p(¢) :
G(K)S — GL(V(K))S:

(7) P(#)(9)(0) : = ad((¢") ) oc(9)(B) = (6") " 0 pc(g) 0 ¢7(6),

where g € G(K)(S), 6 € V(K)®TI'(Os). Recall that a G(K)g-action pg
on I'(P, £) was given by pr(g)(0) = T~ ,,(¢4(0)) for 6 € I'(P, L).

Then we shall show that ¢ induces a unique pair of compatible G(K)-
morphisms (¢, ®) : (P,L) — (Pg,Lgs) such that p(¢) coincides with
pL : G(K)s — GL(V(K))s. In fact, for a given p = p(¢) : G(K)s —
GL(V(K))s, we have a G(K)-linearization of L, that is, an isomorphism
Viar)xL : G(K) x L — s*L by Section 4.12. In other words, we have
a commutative diagram (6) with

U*s*(X:) = Y pilai;) @ p3(X;).

=0
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This also gives an action of G(K) on P which makes ¢ a G(K)-
morphism, that is, ¢(Ty(y) - 2) = Sy(g) - ¢(2) for any g € G(K)g. Since
L = ¢*L, we have a natural (unique) morphism ® : £ — L which
is compatible with ¢ : P — P. Hence we have a G(K)g-equivariant

Cartesian diagram
L — L

w|  |n

P _*, P.
Therefore we have an isomorphism

(idex) x®)* ¥ iex)xL : GK) x L — T*(L)

by T' = so (idg(x) x¢) on G(K) x P, which coincides with the given T.
Thus we have by Section 4.12 compatible G(K)-linearizations of £
and L. Hence we have a subgroup scheme of Aut(Lg/Pg)

{(Sot9), Yo(a))s Yotg) + L = Sy (L), g € G(K)s}

with Sp(g) = O|{p(g)}xPs € Aut(Ps) and wp(g) = \Ill{p(g)}XPs’ which are
subject to the compatibility condition

(8) bg =" Pp(g) : L= "L = " (Syy L) = Ty L,

because ¢ o T(g) = Sy(q) © ¢ by the G(K) ® k-equivariance of ¢.
Since £ ~ ¢*L, we can define a G(K)g-action on L and a morphism
®: L — L as follows:
G(K)s x L 3 (g,w,£) = (Sp(q) (W), Yp() (w)(§)),
®(2,8) = (#(2),8), (2,6 €L, (w,§) €L

Since the G(K)-linearizations and G(K)-actions of £ and L are
compatible, ¢* : I'(P,L) — I'(P, L) is a G(K)g-homomorphism. In
fact, applying (2) to (P,L), we define

pL(9)(0) = 5751 (Yp() (0)), 0 € I(P,L).

Then we prove p(g) := p{9d)(9) = pr(g) for g € G(K). In fact, as
o* (S;(gﬁl)) =T, ¢ and ¢*P,g) = bg, We see

¢"(pL(9)(0)) = &*(Sp(g-1y(¥p(g) (9)))

= T2 () (8" (¥0(9) (0))) = T4y (6™ (Yp(g) ) (070))
=T, (¢9(97(9))) = p(9) (87 (0)),

which shows p(¢)(g) = pr(g) by (7).
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§5. The functor of TSQASes

Let (K,ex) be a finite symplectic abelian group, N = emax(K),
O = Oy = Z[{n,1/N] and k any field over O. We keep the first
assumption in Section 4.6.

5.1. A TSQAS (P, L) of level K

Let (Z, L) be a pair of a g-dimensional scheme Z over k, and L a
line bundle on Z over k, which we refer to simply as a pair in what
follows. Two pairs (Z, L) and (Z’, L) are defined to be isomorphic over
k, if there is a k-isomorphism ¢ : Z — Z’ such that ¢*(L') ~ L. A
pair (Z, L) is called a torically stable quasi-abelian scheme over k if it
is isomorphic to the closed fiber (P, L) of some (P, L) in Theorem 2.7
with k = k(0).

. A pair (Z,L) is called a g-dimensional torically stable quasi-abelian
scheme of level K over k, or a TSQAS of level K over k if

(i) (Z,L) is a g-dimensional torically stable quasi-abelian scheme
over k = k(0),

(ii) (K(Z,L), e{is,o) ~ (K,ex)®k as finite abelian group k-schemes
with bilinear forms.

See Definition 2.17 for the notation.

We note that (K(Z, L), 6”570) is independent of the choice of (P, L)
with (Po,Lo) ~ (Z,L). In fact, in view of Lemma 2.19, G(Z,L) is
uniquely determined by (Z, L), whose commutator form 6?5',0 is therefore
uniquely determined by (Z, L).

The second assumption. In what follows, assume epin(K) > 3.
Summarizing Section 4.7, Section 4.12 and Section 4.13, we infer

Theorem 5.2. Let (Z,L) be a g-dimensional torically stable quasi-
abelian scheme of level K over k with emin(K) > 3. Suppose that the
order of K and the characteristic of k are coprime. Then

(1) there is (P, L), projective flat over S, such that (Py, Lo) ~
(Z,L), and (P, Ly) is a polarized abelian variety, where S =
Spec R, R is a complete discrete valuation ring with n a generic
point of S, and with residue field k(0) of R k,

(2) G(P,L)~G(K)s, G(Z,L) = G(Py, Ly) ~ G(K) ® k, whence
L (resp. L) is G(K)s-linearized (resp. G(K) ® k-linearized),

(38) Let¢gp: P — P(V(K))s (resp. ¢ : 72 — P(V(K)®k)) be
the morphism associated with the linear system I'(P, L) (resp.
I'(Z,L)). We define p(¢p) := ad((¢p)*)pc and p(¢) = p(¢p)®
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k with the help of Eq.(2). Then ¢p (resp. ¢) is a G(K)gs-
morphism (resp. a G(K) ® k-morphism) with regards to the
G(K)s-action on P(V(K))s (resp. on P(V(K) ® k)) induced

from p(ép),
(4) We have a pair of compatible G(K)g-morphisms and a pair of
compatible G(K) @ k-morphisms

(6p, @) : (P,L) — (P(V(K))s, L(V(K))s),
(¢,®): (Z,L) - (P(V(K)® k), L(V(K) ® k)).

The second assumption implies in view of Theorem 2.22 that Lo is
very ample on Qp, hence Ly is ample on Fy. Note that £y is not very
ample on Fy in general, for instance, when Py is of type Es. See [20].

5.3. Level-G(K) structures over k

Let k be any field over O and (Z,L) a TSQAS of level K over
k. The finite Heisenberg group scheme G(Z, L), a subgroup scheme of
Aut(L/Z), was given by

G(Z,L) = {7(g9) = (z(9),¢y); 9 € G(K) @ k}.

A level-G(K) structure (¢,7) on (Z, L) is defined to be a pair of a
finite k-morphism ¢ : Z - P ® k = P(V(K)) ® k and a group scheme
isomorphism 7 : G(K) ®o k — G(Z, L) such that

(i) ¢is a G(K)®k-morphism with regards to 7, and ¢* : T(P,L)®
k=V(K)®k~T(Z,L) as G(K)-modules.

In this situation, in view of Theorem 5.2, ¢ always becomes a G(K)®
k-morphism, that is, ¢(Ty(g) - 2) = Sy(e)(g) - $(2) for any g € G(K) ® k
and z € Z. See Theorem 5.2 for p(¢). By Theorem 5.2, we always have a
pair of compatible G(K) ® k-morphisms (¢, ®) : (Z,L) — (P,L). Hence
in view of Lemma 5.5, ¢* is always a G(K) ® k-homomorphism, namely,

pL(9)8"(0) = ¢"pL(9)(0) = ¢"p(¢)(9)(0)-
For a given level-G(K) structure (¢, 7) we define
pr(9)(0) : = T7 ;) (84(0)), g€ G(K)F,
p(¢, )+ =ad((¢*)"")pr : G(K) ® k — GL(V(K) ® k).
We note p(@,7) = p(¢) with the notation in Theorem 5.2. Since
pr is injective, p(¢, T) is also an injective homomorphism. This is only

conjugate to U(K) ® k by an element of GL(V(K) ® k) by a lemma of
Schur, because we do not require p(¢, 7) to be the same as U(K) ® k.



100 ' I. Nakamura

Let (¢,7) be a level-G(K) structure. Then (¢,7) is called a rigid

level-G(K) structure if
(ii) p(¢,7) =U(K) @0 k-

We use this linguistically more correct terminology following the
advices of Professors A. King and G. Sankaran, changing our previous
ones in [18]; level G(K)-structure and rigid G(K)-structure.

However, both to simplify the terminology and to compromise with
[18], in what follows, we call a rigid level-G(K) structure a rigid G(K)-
structure. We do so because the level-G(K) structure is a set of certain
structures on a polarized scheme with compatible G(K)-actions. In this
sense, a level-G(K) structure (resp. a PSQAS (P, ¢, 7) with level-G(K)
structure) might be called simply .a G(K)-structure (resp. a G(K)-
triple).

The given TSQAS (Z, L, ¢, 7) with level-G(K) structure is denoted
simply (Z, ¢, T)Lev because L = ¢*(L) by (i). If (i) and (ii) are true, we
denote it by (Z, ¢, T)ric-

5.4. Morphisms of level-G(K) structures over k

Let (Z;, Li, ¢i,7i) be k-TSQASes with level-G(K) structure (i =
1,2). Let m; : Ly — Z; be the natural projection. Suppose that there
is a k-morphism f : Z; — Z3 such that L; ~ f*Ly. Then there is a
k-isomorphism H = H(f) : Ly ~ Z; Xz, Ly = f*Lo as Zj-schemes.
Then we define a k-morphism F = F(f) : Ly — Z1 Xz, Ls — Lo as the
composite F(f) = pao H(f), where ps is the second projection. We note
fom =7z 0 F(f). In fact, with L; as Z; Xz, Lo understood, we have
F(f)(2,€) = (f(2),€) € Lz for (2,£) € L1 so that f(z) = fom(z,§) =
720 F(£)(2,€).

With this preparation, for a pair of k-TSQASes (Z;, L;, ¢;, 7;) with
level-G(K) structure, f : (Z1, L1, ¢1,71) — (Za, La, ¢2,72) is defined to
be a k-morphism of k-TSQASes with level-G(K) structure if the follow-
ing conditions are satisfied:

(i) fis a G(K)® k-morphism over k such that ¢ = ¢2 0 f,
(ii) F(f) is also a G(K) ® k-morphism compatible with f, namely,

F(f)ori(g) = m2(g9) o F(f) for any g € G(K)®k.

Since L; ~ ¢} (L), the condition ¢y = @20 f in (i) implies Ly =~ f*Ls.
In terms of G(K)-linearizations ¢y of L; and ¢ of Ly, the conditions
(i) and (ii) are given explicitly as follows:
(iii) ¢1 =¢20 f,
(iv) F(Tag)(2)) = Ty(g)(f(2)),
(v) ¢4(2) = 85(f(2)), g€ G(K)QE,
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where we understand a G(K)-linearization ¢; (resp. ¢) as multiplica-
tion by an invertible element ¢ (2) (resp. ¢} (2)). See Section 4.7
Let us suppose the cocycle conditions for ¢} and ¢ as follows:

Do = Tamy®g - Phr - Pgn = Tyiny Py - Ph-
By (v) ¢,(2) = ¢;(f(2)), whence ¢ (Ton)2) = ¢4 (f(Ten)2)). By (iv)
T3y 0(2) = &5 (f (Tany2)) = ¢4 (Ty(n) £ (2)) = Ty g (f(2))- Hence

¢;h(z) = T:(h)¢;(z) -9 (2)
= Ty 89 (f(2)) - 9 (f(2)) = ¢gu (£(2)),
which shows the compatibility of (v).
Lemma 5.5. Suppose that f : (Z1, L1, ¢1,71) — (Z2, La, 2, 72) is
a k-morphism of k-TSQASes with level-G(K) structure. ;l’hen we have

pL (9)(f*0) = f*pr,(9)(6)
for any g € G(K) ® k and 0 € I'(Z3, Lo).
Proof. By (iii) and (iv), we see

pr (9)(f70) : = (T2 1)) (fO) 1= T 4y b (2) (T2 () f70)
= ¢g(T-a() (2)(TZ 45 f*0)
= ¢y (F(T_(g)(2) (T2 () £70)  (by (v))
= ¢y (T_y() (F(FTZyy0)  (by (iv))
= f*T2 )P4 (2)(f T2y ()0)
= [T (T2y () 8y () (T2 5)0))
= f*prL,(9)(6).
This completes the proof. Q.E.D.
5.6. Morphisms of level-G(K) structures
Let f : (Z1,L1,¢1,71) — (Z2,L2,¢2,72) be a k-morphism of k-
TSQASes with level-G(K) structure. Those k-TSQASes (Z;, L;, ¢;, T:)

are defined to be isomorphic as k-TSQASes with level-G(K) structure
if f is a k-isomorphism. In this case we write

(Z1, ¢1, 71 )LEV = (Z2, 2, T2)LEV.

A pair of rigid G(K)-structures (Z;, ¢;,7;) is defined to be isomorphic if
(Z;, ¢i, T:)LEV are isomorphic.
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Lemma 5.7. Let (Z,L) be a TSQAS with level-G(K) structure over
k. For any level-G(K) structure (¢,7) on (Z,L), there ewists a unique
rigid G(K)-structure (¢(7),T) such that

(Z7 ¢(T)a T)LEV = (Z7 ¢7 T)LEV‘

Proof. By our assumption we have p(¢, 7) is conjugate to U (K)®k.
Hence there is a S € GL(V (K) x k) such that p(¢,7) = S(U(K)®k)S™*.
Let ¢*.., = ¢*0S. Then we have p(¢new, ) = S~ tp(¢,7)S = U(K) ®k.
We note that ¢, defines a finite G(K) ® k-morphism into P with
regards to the G(K) ® k-action induced from p(@new, 7). Thus (¢new,T)
is a rigid G(K) ® k-structure of (Z, L).

Suppose (1, T) is another rigid G(K)-structure of (Z, L) such that
p(¥,7) = U(K)®k. Then we have ad(¢*)U(K)®@ k = ad(¢*)U(K) ® k,
whence (¢*) " W*U(K) ® k = U(K) ® k(¢*)"4¢*. Then (¢*)"'¢* is a
scalar matrix by Schur’s lemma (see Lemma 4.5) because U(K) ® k is
irreducible. Hence ¢ = %, which define the same morphism of Z into

P®k. Thus ¢(7) is unique, and (Z, ¢(7), 7)ric =~ (Z, ¢, T)ric. Q.E.D.

Lemma 5.8. Let (Z;, ¢, 7)ric be k-TSQASes with rigid G(K)-
structure (i = 1,2). Then the following are equivalent:

(1) (Z1,¢1,1)ric = (22, ¢2, T2)miG,
(2) there is a G(K) ® k-equivariant (in fact, K ® k-equivariant)
isomorphism f : Zy ~ Za with ¢1 = ¢ 0 f.

Proof. 1t is clear that (1) implies (2). Next we prove (2) implies (1).
Since both are rigid G(K)-structures, we have p(¢1,71) = p(P2, 72) =
U(K) ® k, which we denote by p. Hence we have G(K) ® k-morphisms
(¢i, ®;) : (Z;, L;) — (P,L)®k with regards to the same G(K)® k-action
on (P,L) ® k. Let 1,4 be a G(K) ® k-linearization of L. In view of
Theorem 5.2 we can apply Section 5.4 (v) to the cases with the target
pair (P,L) ® k to infer that G(K) ® k-linearizations of L, are given by
By (2) = V() (91(2)) and ¢ (w) = Pp(g) (P2(w)). It follows

$y(2) = Vp(g)(91(2)) = Vpg) (P2 0 f(2)) = by (f(2)),

which proves Section 5.4 (v} for the morphism f. This completes the
proof of (1). Q.E.D.

We note that if L is not very ample, then there might be an au-
tomorphism of (Z, L) which keeps ¢ and 7 invariant. For instance, an
elliptic curve (Z, L) with deg L = 2 is an example of it, in which case
emax(K(Z, L)) = 2.
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5.9. TSQASes over T

The arguments of this section together with those of Section 5.10
apply to T-PSQASes too, which will supplement the argument in [18,
pp. 701-702, Definition 9.16].

Let T be an O-scheme. A quadruplet (P, L, ¢, 7) is called a torically
stable quasi-abelian T-scheme (abbr. ¢ T-TSQAS) of relative dimension
g with level-G(K) structure if the following conditions are satisfied:

(i) P is a proper flat T-scheme with 7 : P — T the projection,

(if) L is a relatively ample line bundle of P,
(iii) ¢: P — P(V(K))r is a finite T-morphism such that

" V(K)®o M ~ . L

for some line bundle M on T with trivial G(K)p-action,
(iv) 7: G(K)r — Autp(L/P) is a closed immersion of a group T-
scheme, which makes ¢ a G(K)r-morphism in the sense that

H(7(g) - 2) = Spie,r)(9)9(2) (2 € P)

and that ¢* : V(K)®oM =~ m.L in (iii) is a G(K )-isomorphism,
(see below for Autr(L/P) and p(¢, 7), and see Section 4.13 for

Sp(é.1)(9))5
(v) for any prime point s of 1", the fiber at s (Ps, L, ¢s,75) is a

TSQAS of dimension g over k(s) with level-G(K) structure.

We denote a T-TSQAS (P, L, ¢,7) with level-G(K) structure by
(P,L,¢,7)LEv or (P,¢,7)Lev for brevity.

We remark that p(¢,7) : G(K)r — GL(V(K)® M) in (iv) and (vi)
is defined in the same manner as before by

p(¢,7)(9)(0) : = ad((¢") "' p(9)(6)
= (¢")71(g7) (¢9) (070),

with ¢4 a G(K)r-linearization of £, § € V(K) ® Or, and g € G(K)r.
We call (P, L, ¢, T)Lev a T-TSQAS with rigid G(K)-structure if

(Vl) p(¢a 7—) = U(K)Ta
which we denote by (P, L, ¢, T)rig or (P, ¢, T)ric.

We see as in Theorem 5.2 that there is a pair of compatible G(K)r-
morphisms (¢, ®) : (P, L) — (P,L)r with regards to the G(K)r-action
on (P,L)r induced from p(¢, 7).
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5.10. Auty(L/P)

Here we insert the general facts. The symbol Auty(L/P) stands for
a scheme (locally of finite type) which represents the functor

U Autr(L/P)U)

— {( &); g € Autp(P)(U) and }
1Y ¢: Ly — g*(Ly) U-isom. on Py [’

where U is a T-scheme, and Autr(P) is the relative automorphism group
of P. Since P is projective over T', Autr(P) is a T-scheme locally of finite
type. Suppose (g, ¢) € Aut(L/P)(U). Then ¢ induces a T-isomorphism
® = &(g,¢) of P(Or ® £) mapping the subschemes P((Or @ £)/L)
and P((Or @& £)/Or) onto themselves. Let P := P(Or @ L), Sp :=
P((Or @ £)/Or) and Sy := P((Or & L£)/L) temporarily.

Let g € Aut(P)(U) and ¢ € Aut(L)(U). Then (g, ¢) € Aut(L/P)(U)
if and only if @(g,(ﬁ) (S AutT(PL) XT AutT(So) X7 AutT(Soo)(U) and
pco = g, where pe : £ — P is the natural projection. Thus Aut(L/P)
is (represented by) a closed subscheme of Autz(P.).

Since G(K)r is finite (proper) over T, the image scheme 7(G(K)r)
is a closed subscheme of Autr(L/P), which we denote by G(P, L). Thus
the condition (v) implies that G(Ps,Ls) = G(P,L)s and 75 : G(K) ®
k(s) ~ G(Ps, Ls).

In other words, £ has a G(K)r-linearization ¢4 such that ¢4 ® k(s)
is a G(K) ® k(s)-linearization of £, for any prime point s of 7', where
any fiber (Ps, L;) is a k(s)-TSQAS with level-G{K) ® k(s) structure.

5.11. Morphisms of T-TSQASes

Let (H;¢i7Ti)LEV = (F’i,ﬁi,(ﬁi,ﬂ') (Z = 1,2) be T-TSQASGS with
level-G(K) structure and p; : P; — T the projection (structure mor-
phism). We call f : P, — P, a morphism of T-TSQASes level-G(K)
structure if there exist a pair of compatible morphisms

(fsF(f) : (P, £1) — (P2, La)

and a line bundle M on T with trivial G(K)r-action such that
() L1 = pi(M)® f*(L2),
(ii) f is a G(K)r-morphism with ¢, = ¢ o f,
(iii) F(f)is a G(K)r-morphism, namely,
F(f)om(g) =7(9) o F(f), g€ G(K)r.

Note that p(¢1,71) = p(d2,72) by Lemma 5.5 if (P, ¢1,71)LEV =~
(P2, ¢2, T2)LEV-
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5.12. TSQASes over an algebraic space T

We call that an algebraic space T is by definition the isomorphism
class of an étale representative U — T with étale equivalence relation
R CUxU. See [9]. Let p;, : R — U be the composite of the immersion
R C U x U with i-th projection (i = 1,2).

For T an algebraic space, a T-TSQAS (Z, ¢, 7)Lev with level-G(K)
structure is defined to be a U-TSQAS (Zy, ¥, 7v)Lev whose pullbacks
by p; are isomorphic as R-TSQASes with level G(K)-structure.

To the following two lemmas, we can apply the same proof as in
Lemmas 5.7 and 5.8 by replacing G(K) ® k with G(K)r.

Lemma 5.13. For any T-TSQAS (P, ¢, 1) with level-G(K) struc-
ture, there exists a unique rigid G(K)-structure (¢(r), ) such that

(P, ¢(1), T)LEV =~ (P, ¢, T)LEV-

Lemma 5.14. Let (Z;, ¢;, Ti)ric be T-TSQASes with rigid G(K)-
structure (i = 1,2). Then the following are equivalent:

(1) (Z1,¢1,71)r1G = (Z2, P2, To)RIG,
(2) there is a G(K)r-isomorphism f : Zy ~ Zy with ¢1 = ¢ 0 f.
5.15. The functor of TSQASes

toric

Now we define the contravariant functor SQ k" from the category of
algebraic O-spaces to the category of sets as follows. For any O-scheme
T, we set

S Q;?;}C(T) = the set of torically stable quasi-abelian
T -schemes (P, ¢, 7)Lgv of relative dimension ¢

with level- G(K) structure modulo T -isom.
In view of Lemma 5.13 and Lemma 5.14, we see

S ';?}}C (T") = the set of torically stable quasi-abelian
T -schemes (P, ¢, T)ric of relative dimension g

with rigid G(K) -structure modulo T -isom.

6. PSQASes

In this section we always assume e, (K) > 3.
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6.1. A PSQAS of level K

In what follows, we abbreviate .a projectively stable quasi-abelian
scheme as a PSQAS. Any PSQAS (Qo, Lo) is called a PSQAS of level K
over k(0) if (Qq, Lo) is a k(0)-scheme with (K(Qo, Lo), 6@,0) ~ (K,ex)®
k(0). We have a theorem for (Qg, L£o) similar to Theorem 5.2, where ¢p
in the assertion (3) is replaced with a closed T-immersion ¢g : Q —
P(V(K))s.

6.2. PSQASes over T'

Let T be an O-scheme. A quadruplet (Q,L,#,7) is called a pro-
Jjectively stable quasi-abelian T-scheme (abbr. a T-PSQAS) of relative
dimension g with level-G(K) structure if the conditions (i)—(v) are true:

(i) Q is a projective flat T-scheme with 7 : Q — T the projection,
(ii) £ is a relatively very ample line bundle of @,
(iii) ¢: Q@ — P(V(K))r is‘a closed T-immersion such that

¢ V(K)Qo M ~n,. L

for some line bundle M on T with trivial G(K)r-action,
(iv) 7: G(K)r — Autp(L£/Q) is a closed immersion of a group 7-
scheme, which makes ¢ a G(K)p-morphism in the sense that

A(7(9) - 2) = Sp(e,r)(9)?(2) (2 € Q),

and that ¢* : V(K)®oM =~ m.L in (iii) is a G(K )-isomorphism,
where p(¢,7) and S,(¢,r)(g) are defined similarly to those for
T-TSQASes,
(v) for any prime point s of T, the fiber at s (Qs, Ls, ¢s,7s) IS a
PSQAS of dimension g over k(s) with level-G(K) structure.
We denote a T-PSQAS (Q, £, ¢, 7) by (Q, £, é, 7))LV or (Q, ¢, T)LEV-
We call (Q,L,¢,7)Lev a T-PSQAS with rigid G(K)-structure if
i) p(¢,7) = U(K)r,
which we denote (Q7 ‘Ca ¢7 T)LEV by (Q? £7 d)) T)RIG or (Qa ¢7 T)RIG-
We see that there is a pair of compatible G(K)z-morphisms (¢, ®) :
(P, £) — (P,L)r with regards to the G(K)r-action on (P,L)7 induced
from p(¢, ).

6.3. Morphisms of T-PSQASes

Let (Qi7£i7¢i77i)LEV (Z = 1,2) be T-PSQASGS with level—G(K)
structure and p; : Q; — T the projection (structure morphism). Then f :
Q1 — Q2 is called a morphism of T-PSQASes with level-G(K) structure
if there exist a pair of compatible morphisms (f, F(f)) : (Q1,£1) —
(Q2,L2) and a line bundle M on T with trivial G(K)r-action such that
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(i) L1 =pi(M)® f*(L2),
(ii) f is a G(K)p-morphism with ¢; = ¢ o f,
(iii) F(f) is a G(K)p-morphism, namely,
F(f)on(g) =m(g) o F(f), g€ G(K)r.

We note p(¢1,71) = p(¢2, 72) if (Q1,61,71)LEV = (Q2, d2, T2)LEV.
This is proved similarly to Lemma 5.5.

With these definitions of PSQASes and morphisms between them,
we will have the functor of PSQASes similar to that of TSQASes. We
omit the details. See [18].

We quote from [18] two lemmas similar to Lemmas 5.14 and 5.13.
See [18, Lemma 9.7, Lemma 9.8].

Lemma 6.4. For a T-PSQAS (Z,¢,T) with level-G(K) structure,
there exists a unique rigid G(K)-structure (¢(7), ) such that

(Z7 L7 ¢(T)7 T)LEV jad (Z7 La ¢1 T)LEV-

Proof. The proof is the same as Lemma 5.13. Q.E.D.

Lemma 6.5. Let (Z;,¢;, )ric be T-PSQASes with rigid G(K)-
structure (i = 1,2). Then the following are equivalent:

(1) (Z1,¢1,11)r1G = (Z2, P2, T2)RIG,
(2) there is a T-isomorphism f: Zy ~ Zs with ¢1 = ¢ 0 f.

Proof.  For simplicity we denote any G(K)-action as z — g-z below.
Suppose (2). Then f is a G(K)p-morphism. In fact, since ¢; is a G(K)r-
morphism, we have

¢2(9- F(2)) = g-62(f(2)) = g- 61(2) = ¢u(g - 2) = $2(f (g - 2)),

whence ¢2(g- f(2)) = ¢20 f(g-2). Since ¢s is injective, g- f(2) = f(g-2).
This shows that f is a G(K)r-morphism. The rest of the proof is the
same as Lemma 5.14. Q.E.D.

The following lemma has already been proved essentially in [18,
Theorem 11.4].

Lemma 6.6. (The first valuative lemma for separatedness) We as-
sume enin(K) > 3. Let R be a discrete valuation ring, S := Spec R, n
the generic point of S and k(n) the fraction field of R. Let (Z;, ¢i, Ti) nic
be S-PSQASes with rigid G(K)-structure. If (Z;, ¢, Ti)me G7€ iSOMOT-
phic over k(n), then they are isomorphic over S.

Proof. We first note that ¢; in this lemma, is a closed immersion.

Let H = Hilbggg)( X)) be the Hilbert scheme parametrizing all closed

subschemes of P(V(K)), whose Hilbert polynomial are equal to P(n) =
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n9+/|K|, and Xyniv the universal subscheme of P(V(K)) over H. Then
by the universality of Xuniv, ¢; induces a unique morphism Hilb(¢;) :
S — H such that Z; is the pullback by Hilb(¢;) of Xuniy-

By the assumption and Lemma 6.5, there is a k(n)-isomorphism
(in fact, G(K) ® k(n)-isomorphism) f, : Z1, — Za, such that ¢;, =
¢2,m 0 fn. It follows from the very definition of H = Hilbp(y(k)) that
Hilb(¢1,,) = Hilb(¢,,). Since H is separated, Hilb(¢;) = Hilb(¢z),
hence ¢1(Z1) = ¢2(Z2). This implies that there is an S-isomorphism
f 1 Zy — Zy extending f, such that ¢; = ¢g o f. It is clear that f is
a G(K)g-morphism because f is a G(K) ® k(n)-morphism. This proves
(Z1, 61, ")rie = (Z2, ¢2,72) e by Lemma 6.5. Q.E.D.

Lemma 6.7. (The second valuative lemma for separatedness) We
assume emin(K) > 3. Let R be a discrete valuation ring, S := Spec R,
and k(n) the fraction field of R. Let (Z;, ¢s, T)qe be S-TSQASes with
rigid G(K)-structure whose generic fibers are abelian varieties. Suppose
that (Zi, i, Ti) e are isomorphic over k(n). Then they are isomorphic
over S.

Proof. By Theorem 2.23, we have two S-PSQASes (Qs, 40, 7Q ) ric
such that (Qi,¢q,,7Q;) ® k(n) ~ (Z;,¢:i,7:) ® k(n), where Z; is the
normalization of @;. In view of Lemma 6.6, there is a G(K)-isomorphism
h:(Q1,00,,70,) — (Q2,0q,,7qQ,), which induces an isomorphism of
their normalizations h"°"™ : (Z1,¢z,,72,) — (Z2, 025,72, )- Q.E.D.

6.8. The functor of PSQASes

The functor of PSQASes is defined in a manner similar to that of
TSQASes. We define the contravariant functor SQg x from the category
of O-schemes to the category of sets as below, which is almost the same
as in [18] except the point that we use [20, Theorem 5.17] (see also
Theorem 2.22). In view of Lemma 6.4 and Lemma 6.5, we see for any
O-scheme T,

SQq.k(T) : = the set of projectively stable quasi-abelian
T -schemes (P, ¢, 7)Lgv of relative dimension g
with level- G(K) structure modulo T -isom
= the set of projectively stable quasi-abelian
T -schemes (P, ¢, T)ric of relative dimension g
with rigid G(K) -structure modulo T -isom.
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§7. Rigid p-structures

7.1. Examples

It is worthy of further study in the cases of other irreducible repre-
sentations p : G — GL(V) of G connected or discrete, finite or infinite,
where (Z, L) is no longer a TSQAS nor a PSQAS. The moduli of those
schemes embedded in P(V') with rigid p-structure is just the subset of
the Hilbert scheme Hilb P(V) consisting of all G-invariant closed sub-
schemes of P(V). Any G-invariant closed subscheme of P(V) is known
to have Hilbert points, each of which is Kempf-stable, in other words,
each of which has a closed SL(V)-orbit in the semi-stable locus if p is
an irreducible representation. In this sense, it is worthy of further study
even in some of particular cases. Our moduli SQ, k [18] gives an exam-
ple of it. See also [18, Section 13]. The moduli of (1, 5)-polarized abelian
surfaces embedded in P* gives another example [8].

7.2. Start

Let T be an O-scheme. Let G be a group O-scheme, V a free O-
module of finite rank. Suppose that V ®k is an irreducible G® k-module
for any field k over O. Let p : G — GL(V) be a homomorphism induced
from the G-module structure of V. We fix p for all.

We assume the lemma of Schur for p. In other words, if a € GL(V)
commutes with any p(g) (g € G), then a is a scalar matrix.

7.3. Rigid p-structures
A quadruplet (Z, L, ¢, 7) is called a T-scheme with p-structure if the
“conditions (i)-(v) are true:
(i) Z is a projective flat T-scheme with m : Z — T the projection,
(if) L is a relatively very ample Gr-linearized line bundle of Z,
(iii) ¢ : Z — P(V)r is a closed Gr-immersion such that

" VoM ~mn.L

for some line bundle M on T with trivial Gr-action,
(iv) 7 : Gr — Autr(L/Z) is a closed immersion of a group T-
scheme, which makes ¢ a Gr-morphism in the sense that

¢(T(g) : z) = Sp(¢,r)(g)¢(z) (Z € Z)’

where p(¢, T) is defined similarly to those for T-TSQASes,
(v) p(¢,7) is GL(V @ M)-equivalent to pr.
By (Z,L,¢,7) or (Z,$,7) we denote a T-scheme with p-structure
(Z,L,¢,7). Let (P,L) := (P(V),L(V)). For a given (Z, L, ¢, ), there
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is a pair of compatible Gp-morphisms (¢, ®) : (Z,L) — (P,L)r with
regards to the Gr-action on (P,L)r induced from p(¢, 7).
We call a p-structure (Z, L, ¢, 7) a rigid p-structure if

(Vl) p(¢7 T) = pPT,
which we denote by (Z, L, ¢, T)ric or (Z, ¢, T)ric-

7.4. Morphisms of rigid p-structures
Let (Z;,¢i, 1) (i = 1,2) be T-schemes with p-structures. Then
f 1 Z1 — Zy is called a morphism of T-schemes with p-structure if there
exists a pair of compatible morphisms (f, F'(f)) : (Z1,L1) — (Z2, L)
and a line bundle M on T with trivial G(K)r-action such that
(1) L1 =pi(M)® f*(L2),
(ii) f is a Gp-morphism with ¢; = ¢3 o f,
(iii) F(f) is a Gr-morphism, namely,

F(f)omi(g) =ma(g) o F(f), g€Gr.

We note p(¢1,71) = p(d2,72) if (Z1,¢1,71)r1c ~ (Z2, P2, T2)RIG-
This is proved similarly to Lemma 5.5.

Remark 7.5. Let p : G — GL(V) be the irreducible representation
we start with. Let Z be a G-stable subscheme of P(V) with regards to
the p-action of G on P. Let iz : Z — P be the natural inclusion of Z,
and L = Ly the restriction of L := L(V). Since GL(V) = Aut(L/P),
and Z is G-stable, G acts on the pair (Z, L) in the compatible manner.
In other words, L has a G-linearization via p. This implies that p induces
a closed immersion 7z : G — Aut(L/Z). Then the triple (Z,iz,7z) is a
rigid p-structure.

The following are analogous to Lemmas 5.13 and Lemmas 5.14.

Lemma 7.6. For any T-scheme (Z,$,T) with p-structure, there
erists a unique rigid p-structure (¢(7),7) such that (Z,$(7),7) is iso-
morphic to (Z,¢,7) as T-schemes with p-structure.

Proof. The proof is the same as Lemma, 5.13. Q.E.D.

Lemma 7.7. Let (Z;, i, 7i)ric be T-schemes with rigid p-structure
(i =1,2). Then the following are equivalent:

(1) (Z1,¢1,1)r16 = (Z2, ¢, T2)R1G,

(2) there is a T-isomorphism f : Zy =~ Zy with ¢1 = ¢a 0 f.

Proof. 'The proof is the same as Lemma 6.5. It suffices to replace
G(K) in Lemma 6.5 by G. Q.E.D.
The following lemma is an analogue to Lemma 6.6.



Another compactification of the moduli space 111

Lemma 7.8. (The third valuative lemma for separatedness) Let R
be a complete discrete valuation ring, S := Spec R, and n the generic
point of S. If rigid pg-structures (Z;, ¢i, Ti) e (¢ = 1,2) are isomorphic
over k(n), then they are isomorphic over S.

Proof. The proof is quite analogous to that of Lemma 6.6. Let
k(n) be the fraction field of R. Let H = Hilbp(v(ky) be the Hilbert
scheme parametrizing all closed subschemes of P(V(K)), and X ;v the
universal subscheme of P(V(K)) over H. We note that H is locally of
finite type. By the universality of Xniv, ¢; induces a unique morphism
Hilb(¢;) : S — H such that Z; is the pullback by Hilb(¢;) of Xyniv- By
the assumption and Lemma 7.7, there is a k(n)-isomorphism (in fact,
G ® k(n)-isomorphism) f, : Z1, — Za,, such that ¢1,, = P25 0 fy.

It follows from the definition of H = Hilbp(y(x)) that Hilb(¢1,,) =
Hilb(¢2,,). Since H is separated, Hilb(¢;) = Hilb(¢s), hence ¢1(Z1) =
¢2(Z2). This implies that there is an S-isomorphism f : Z; — 7,
extending f, such that ¢; = ¢ o f. It is clear that f is a Gg-morphism
because f is a G®k(n)-morphism. Hence (Z1, ¢1, 71 ) e = (Z2, 92, 72) ia
by Lemma 7.7. Q.E.D.

§8. The stable reduction theorem
8.1. The rigid G(K)-structure we start from

Let R be a complete discrete valuation ring, k() (resp. k(0)) the
fraction field (resp. the residue field) of R, and S = Spec R.. Let
(Gy, Ly) be a polarized abelian variety over k(n) with £, ample and
K(L,) = ker A\(Ly). Let €7 be the Weil pairing of K(L,). Since e“
is nondegenerate, R contains a primitive N-th root (n of unity.

Suppose that the order of K(L,) and the characteristic of k(0) are
coprime. Then there exists a finite symplectic constant abelian group
Z-scheme (K, ex) such that (K, ex) ®z k(n) ~ (K(L,),e*"). Moreover
by taking a finite extension of k(n), we may assume that the Heisen-
berg group scheme G(L,) is isomorphic to G(K) ® k(n), hence it has a
subgroup scheme G(K) ® k(n).

Let N = emax(K). If emin(K) > 3, then by Theorem 5.2 (G, L,)
admits a level-G(K) structure (¢n, ;) such that 7, : G(K) ® k(n) ~
G(Gy, Ly). Tt follows from Lemma 5.7 that (G, £,) has a unique rigid
G(K)-structure (¢, (1), 7) such that

(G Ly On(Tn), To)LEV = (Gy)s Ly Oy Ty ) LEV -
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In other words, we have a G(K) ® k(n)-linearization of £, and a
pair of compatible G(K) ® k(n)-morphisms

(9) (6n: @) : Gy L£y) = (P(V(K)), L(V(K))) @ k(1)

with G(K) ® k(n)-action on (P(V(K)),L(V(K))) via U(K) ® k(n).
By combining [18, Lemma 7.8], Section 2, Section 4 and Theorem 5.2
all together, we infer

Theorem 8.2. Let R be a complete discrete valuation ring and S =
Spec R. Let (Gy, Ly) be a polarized abelian variety over k(n), K(Ly) =
ker A(Ly), (Gn, Ly, &y, Tp)ric @ rigid G(K)-structure and (¢, ®y) the
pair (9) of compatible G(K)-morphisms. Assume that

(i) the characteristic of k(0) and the order of K(L,) are coprime,

(i)  emin(K(Ly)) > 3.

Then after a suitable finite base change if necessary, there exist flat
projective schemes (P, L) and (Q, L), semiabelian group schemes G and
G!, the flat closure K(P,L) of K(Ly) in GY, a symplectic form €&, on
K(P,L) extending e and the Heisenberg group schemes G(P,L) and
G(P,L) of (P, L), all of these being defined over S, such that

(1) P is projective flat and reduced over S, and normal,

(2) (G,L) and (GY, L) are open subschemes of (P, L),

) G*=K(PL) G,

(4) (Gnaﬁn) = (G%"CU) = (Pﬂ?ﬁﬂ) = (QTI,‘CW);

) there exists a constant finite symplectic abelian group Z-scheme
(K, ex) such that (K(P,L),e%) ~ (K, ex)s, G(P, L) ~ G(K)s,
hence we have an isomorphism 7p : G(K)s — G(P,L). In
particular, £ is G(K)g-linearized,

(6) ¢p: P — P(V(K))s be the morphism associated with the lin-
ear system I'(P, L) such that $pQk(n) = ¢. Then (P, L, ép,Tp)
is a rigid G(K)-structure extending (Gy, Ly, dn, T)rIG,

(7)  We have a pair of compatible G(K)s-morphisms

(¢p, @p) : (P, L) — (P(V(K))s, L(V(K))s),
which extend (¢, @),
(8) I'(GH,L)~T(PL)~T(Q,L) ~V(K)®0, R.

Here we restate the stable reduction theorem for (P, £) and (@, £)
by adjusting [18, Theorem 10.4] to the definitions of PSQASes given in
Section 6.

Theorem 8.3. Let R be a complete discrete valuation ring and
S = Spec R. Let (Gy,Ly) be a polarized abelian variety over k(n), and
(G, Ly, ¢n, T)r1C 0 Tigid G(K)-structure on it. Assume that
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(i) the characteristic of k(0) and the order of K(L,) are coprime,
() emm(K(Ly) > 3.
Then after a suitable finite base change if necessary, there exist an S-
TSQAS (P, L,¢p,7p)r1c with rigid G(K)-structure and an S-PSQAS
(Q, L, 00, T0)ric with rigid G(K)-structure such that

(P, L,¢p,7P)ric ® k(1) ~ (Q, L, ¢p0, 70)r1G ® k(1)
~ (Gy, Ly, ¢y, Ty)RIG-

§9. The scheme parametrizing TSQASes

Let K be a symplectic finite abelian group with symplectic form
ex. We choose and fix a maximally eg-isotropic subgroup I{K) of K
such that K = I(K) ® I(K)V. Let N = epax(K) = emax(I(K)) and
O =0pn = O[¢n,1/N].

Assume emin(K) = emin(I(K)) > 3.

9.1. Hib"(X/T)

Let (X, L) be a polarized O-scheme with L very ample and P(n) an
arbitrary polynomial. Let Hilb? (X) be the Hilbert scheme parametriz-
ing all closed subschemes Z of X with x(Z,nLz) = P(n). As is well
known Hilb¥(X) is a projective O-scheme.

Let T be a projective scheme, (X, L) a flat projective T-scheme
with L an ample line bundle of X, and «# : X — T the projection.
Then for an arbitrary polynomial P(n), let Hilb” (X/T) be the scheme
parametrizing all closed subschemes Z of X with x(Z,nLz) = P(n) such
that Z is contained in fibers of w. Let M be a very ample line bundle
of T. Then Hilb” (X/T) is the O-subscheme of Hilb® (X) parametrizing
all closed subschemes Z with (7* M)z trivial. Hence Hilb” (X/T) is a
closed subscheme of Hilb® (X).

Let Hilb? _(X/T) be the subscheme of Hilb” (X/T) consisting of
connected subschemes Z € Hilb” (X/T) of X. Then Hllbconn(X /T) is
an open and closed O-subscheme of Hilb” (X/T').

9.2. The scheme H; x Ho

Choose and fix a coprime pair of natural integers d; and dy such that
di >ds > 29+ 1and d; =1 mod N. This pair does exist because it is
enough to choose prime numbers d; and ds large enough such that d; = 1
mod N and d; > da. We choose integers g; such that qid; + gods = 1.
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Now consider a G(K)-module W;(K) := W; @ V(K) ~ V(K)®N:
where N; = d/ and W is a free O-module of rank N; with trivial G(K)-
action. Let o; be the natural action of G(K) on W;(K). In what follows
we always consider o;.

Let H; (i = 1,2) be the Hilbert scheme parametrizing all closed
polarized subschemes (Z;, L;) of P(W;(K)) such that

(a) Z; is G(K)-stable,
(b) x(Zi,nL;) = n9d!\/|K]|, where L; = L(W;(K)) ® Og,.

Let X; be the universal subscheme of P(W;(K)) over H;. Let X =
X1 Xxo X and H = Hy Xp Ha. Let p; : X1 X0 Xo — X; be the i-th
projection, m : X — H the natural projection. Hence X is a subscheme
of P(Wl(K)) Xo P(WQ(K)) Xo H,~ flat over H = H1 X0 HQ.

We note that L(W;(K)) has a G(K)-linearization {1!),(;)}, which we
fix for all. Since G(K) transforms any closed G(K)-stable subscheme Z
of P(W;(K)) onto itself, it follows that G(K) acts on H; trivially, while
G(K) acts on X; non-trivially. Hence G(K) acts on H trivially, and on
X non-trivially.

9.3. The scheme U;

The aim of this and the subsequent sections is to construct a new
compactification of the moduli space of abelian varieties as the quotient
of a certain O-subscheme of Hilb’ _(X/H) by GL(W;) x GL(Wx).

Let B be the pullback to X of a very ample line bundle on H. Let
M; = pf(L(VVZ(K))) ® Ox and M = da My + diMs + B. Then M is
a very ample line bundle on X. Since M, is G(K)-linearized and B is
trivially G(K)-linearized, M is G(K)-linearized. Since G(K) acts on H
trivially, G(K) transforms any fiber X, of 7 : X — H into X, itself.

Let P(n) = (2ndids)?/]K]|. Let HilbZ  (X/H) be the Hilbert
scheme parametrizing all connected closed subschemes Z of X contained
in the fibers of 7 : X — H with x(Z,nMz) = P(n), and ZF  be the
universal subscheme of X over it. We denote Hilbl, (X/H) by HE .
for brevity. Now using the double polarization trick of Viehweg, we
define Us to be the subset of HE . consisting of all subschemes Z of X
with the properties

(1) pi)z is an isomorphism (i = 1,2),
(ll) d2L1 = dlLQ, where Lz = Ml ® Oz,

(i) Z is G(K)-stable.

We prove that U; is a nonempty closed O-subscheme of HE, .

The condition (i) that Pi|z is an isomorphism is open and closed,
while the condition (ii) deL; = d1Ls is closed. The condition (iii), the
G(K)-stability of Z, is equivalent to the condition that Z € HE _ is a
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fixed point by the natural G(K)-action induced from those G(K)-actions
on X and H. Hence it is a closed condition. Hence U; is a closed, hence
a projective O-subscheme of HE .

It remains to show U; # @. Let k be an algebraically closed field
over O. By Lemma 4.2, there exists a polarized abelian variety (A4, L)
over k with 74 : G(K) ® k ~ G(A, L) an isomorphism. Hence L has
a G(K) ® k-linearization of weight one. Hence d;L has a G(K) ® k-
linearization of weight d; too. Since d; =1 mod N, and since ¥ =1
for any a € pn, d; L has a G(K) ® k-linearization of weight one. Hence
by Lemma 4.4, I(A,d;L) ~ T'(A,d;L)(0) @ V(K) @ k ~ W; ® V(K) ® k
because dimI'(4,d;L)(0) = d! = N; = dimW;, where I'(4,d;L)(0) =
{v € T(A,d;L);h-v =0 (Vh € I(K))} is regarded as a trivial G(K)-
module. Since I'(4,d;L) is very ample, we can choose a G(K) ® k-
equivariant closed immersion ¢; : A — P(W,(K)), whose image ¢;(A)
is a G(K) ® k-stable subscheme of P(W;(K)), isomorphic to A. Thus
i(A) € Hi(k). Let Z := (¢1 X ¢2)(A) (=~ A) be the image of the
diagonal A (C A x A). Since Z ~ A, we see that

x(Z, n(doL1 + diLs + B)z)
= X(A, 27’Zd1d2L) = (QTldldQ)g\/ IK| = P(TL)

It follows that Z € HilbE __(X/H). Since ¢; is G(K)®k-equivariant,
Z is G(K) ® k-stable. Hence Z € Uq(k). It follows that Uy # 0.

Lemma 9.4. Let k be an algebraically closed field over O. Let
Z € Ul(k) and L =q L1+ q2Ls. Then L; =d;L.

Proof. One sees diL = di(q1 L1 + q2L2) = (diq1 + d2g2)L1 = Lx,
while do L = dg(qlLl + q2L2) = (dlql + dz(]Q)LQ = Lo. Q.E.D.

9.5. The scheme U
Let X = X1 Xo Xo, L = ¢1L1 + q2L2 and ¢; the integers with
digq1 + dagz = 1. Lét Us be the open subscheme of Uj consisting of all
subschemes Z of X such that besides (i)—(iii) the following are satisfied:
(iv) Z is reduced,
(v) Lz is ample,
() X(Z nLz) =n9\/IK],
(vii) H9(Z,nLz)=0for ¢ >0 and n >0,
(viil) T'(Z, Lgz) is base point free,
(ix) HO(p?) : Wi(K) ® k(u) — I'(Z, L; ® Oz) is surjective for i =
L2,
where u € Hilb% . (X/H) is the point defined by (Z,Lz). It is clear
that (iv)—(ix) are open conditions. Note that surjectivity of H%(p}) in
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(ix) implies isomorphism of H°(p}) in view of (vi) and (vii). In fact, by
Lemma 9.4, L; = d;L. Hence HY(Z,L; ® Oz) = HY(Z,d;Lz) = 0 for
q > 0, whence h°(Z, L; ® Oz) = d?+/]K| by (vi). Since rankep W;(K) =
d?+/]K]|, this implies that H(p}) is an isomorphism.

We note Us # (. In fact, letting k¥ be an algebraically closed
field over O, we choose a polarized abelian variety (A, L) over k with
G(A,L) ~ G(K)®k. Since emin(K) > 3, L is very ample and (A,d;L) €
H;(k), A being identified with ¢;(A). The image Z := (¢1 x ¢2)(A) of
the diagonal A (C A x A) belongs to Uy (k) as we saw in Section 9.3.
Since L; = d;L by Lemma 9.4, all the conditions (iv)—(ix) are true for
Z as is well known. Hence Z € Uz (k). Hence Us # 0.

9.6. The schemes U_;',K and Us

First we note that if (Z,L) € U, then we have a G(K )-action
on (Z,L), which is induced from the G(K)-action on ZE . induced
from those G(K)-actions on P(W;(K)). In what follows, we mean the
above G(K)-action on Z or (Z, L) by the G(K)-action on (Z, L) when
(Z,L) € Us.

Next we recall that the locus Uy, i of abelian varieties (with the zero
not necessarily chosen) is an open subscheme of Us. In fact, Uy k is the
largest open O-subscheme among all the open O-subschemes H' of Us
such that

(a) the projection 7g : Z5 ., xyr H' — H' is smooth over H’,
(b) at least one geometric fiber of 7er is an abelian vanety for each
irreducible component of H'.

In general, the subset H” of U, over which the projection mg» :
conn Xzp, H" — H" is smooth is an open O-subscheme of Us. By
[17, Theorem 6.14], any geometric fiber of 7y, , is a polarized abelian
varlety ThlS is proved as follows (see [18, p. 705]) Let U = Uy x and
z' = ZE . xv, Uy k. By the base change U’ — U, we may assume
Z" :=Z' xy U’ has a section e over U’. For instance, choose U’ = Z’
and e the diagonal of Z’' xy Z’. Then by [17, Theorem 6.14] Z" is an
abelian scheme over U’ with e unit section. It follows that any geometric
fiber of Z”, a fortiori, any geometric fiber of Z’ is an abelian variety.

Next we define Ugy x to be a nonempty open reduced O-subscheme of
Uy, k, which will be proved in Lemma 9.7, parametrizing all subschemes
(A,L) € Uy i such that

(x) the K-action on A induced from the G(K)-action on (A, L) is
effective and contained in Aut®(A).

In general, U; k is strictly smaller than Uy k. See [18, pp. 711-712].
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Finally we define Us to be the closure of U; x in Uz, It is the

smallest closed O-subscheme of Us containing U;, k- In other words, it
is the intersection of all closed @-subschemes of Us Whlch contain the
O-subscheme U; k- In particular, Us is reduced because U Kk is proved
to be reduced (see the proof of Theorem 11.6).

It remains to prove:

Lemma 9.7. Let k be a closed field over O. Then

(1) UTK is a nonempty open O-subscheme of Uy i,

(2) UJr K (k) is the set of all abelian varieties (A,L) over k with
G(A L) = G(K) ® k for the G(K)-action on (A, L) € Ua(k)
induced from that on P(W;(K)).

Proof. There exists a polarized abelian variety (A, L) over a closed
field k with G(4, L) ~ G(K)®k by Lemma 4.2. Then (A, L) € U] (k).

Hence Uy f x is nonempty. The condition on (4, L) € Uy i that the K-
action on "A is effective is an open condition. In fact, for any element h
of K, the fixed point set by h is a closed subscheme of Z% _ x e, Ugk,
Wthh is mapped to a closed subscheme Fj, of Uy g by the proper mor-
phism 7y, .. Thus the locus where the K-action on A is effective is
just the complement of the union of all F}, (h # id) in Uy k. More-
over, the condition that the K-action on A is contained in Aut®(A)
is also an open condition, because the (relative) identity component

Aut®(ZE . x HP H"/H") is open in the relative automorphism group

scheme Aut(ZZ . x me, H"/H"). Therefore U;’ x 1s a nonempty open
O-subscheme of Uy x. This proves (1).

Next we prove (2). First we prove that if (4,L) € UT (k) for a
closed field k over O, then K(A,L) = K ® k. In fact, by the condition
(x), the K-action on A, which is induced from the G (K )-action on ZE
reduces to translation by K (A, L). It follows from effectivity of the K-
action that K C K(A,L). By (vi) and (vii) we have dimI'(4,L) =
V/|K|. This shows K (A, L) = K ® k because dimT'(4, L) = \/|K (4, L)]
for L very ample by [15, § 23, p. 234].

Next we show that G(A,L) ~ G(K) ® k for any (A,L) € U;K(k).
In fact, if (A,L) € U;,K(k), then K(A,L) ~ K ® k as we have seen
above, and L has a G(K)-linearization by (iii). In other words, (4, L)
has compatible G(K )-actions, which is effective on the scheme L. Hence
Aut(L/A) D G(K)®k (see Section 4.6 for Aut(L/A)), whence G(A,L) D
G(K)®k. Since |G(A4,L)] = |G(K)®k| =N -|K| by K(A,L) ~ K®k,
we have G(4, L) ~ G(K) ® k. This proves (2). Q.E.D.
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§10. The fibers over U;

10.1. The conditions (S;) and (R;)
Here we recall the conditions (S;) and (R;):

(S:) depth(A4,) > inf(é,ht(p)) for all p € Spec(A),
(Rs) A, is regular for all p € Spec(A) with ht(p) <.

Lemma 10.2. Let A be a noetherian local ring. Then

(1) . A is normal if and only if (R1) and (S2) are true for A,
(2) A is reduced if and only if (Ro) and (S1) are true for A.

See [11, Theorem 39} and [3, IV3, 5.8.5 and 5.8.6].

Lemma 10.3. Let R be a discrete valuation ring, S := Spec R, and
7 the generic point of S. Assume that m:Z — S is flat with Zy reduced
and Z, nonsingular. Then Z is normal.

Proof. By Lemma 10.2, it suffices to check that (R1) and (S2) are
true for any local ring Oz . For simplicity write Oz instead of Oz ..
Since Z; is reduced, it is smooth at a generic point of any irreducible
component of it. Hence Z is smooth at any codimension one point of Z
supported by Zy. Since Z, is smooth, Z is codimension one nonsingular
everywhere. This is (R1).

Next we prove (S2). Since w : Z — S is flat, any generator.t of
the maximal ideal of R is not a zero divisor of Oz. Hence it is not
nilpotent. Let p be a prime ideal of Oz. If pN R # 0, then t € p.
(In fact, p N R = tR.) Moreover p’ := p/tOz is a prime ideal of Og,
with ht(p’) = ht(p) — 1. Otherwise, we would have ht(p’) = ht(p). This
implies that there is a prime ideal q of Oz such that ¢t € ¢ C p and
ht(q) = 0. Hence q(Oz)q is the unique prime ideal of (Oz),, which is
the nilradical of (Oz)q. Since t € q(Oz)q, it follows that ¢ is nilpotent.
This contradicts that ¢ is not nilpotent. This shows ht(p’) = ht(p) — 1.

Since Zy is reduced, hence (S;1) for Z is true by Lemma 10.2. There-
fore depth(Oz), = depth(Oz, )y + 1 > inf(1, ht(p')) + 1 = inf(2, ht(p)).
If pN R = 0, then k(n) C (Oz)p and (Oz)y = (Oz,)po,,- Hence
depth(Oz), = depth(Oz,)p05, = dim(Oz,)y0,, = ht(p) > inf(2, ht(p))
because Z, is nonsingular. This proves (Sz). Q.E.D.

Theorem 10.4. Let R be a discrete valuation ring, S := Spec R,
and n the generic point of S. Let h be a morphism from S into Us. Let
(Z, L) be the pullback by h of the universal subscheme Zyni,, universal
for HilbE | (X/H), such that (Z,,L,) is a polarized abelian variety.
Then (Z, L) is isomorphic to a (modified) Mumford’s family (P, Lp) in
Theorem 2.7 after a finite base change.
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Proof. By the assumption, (Z,, L,) is a polarized abelian variety
over k() such that the K-action on Z, induced from the G(K)-action on
(Zy, Ly) is effective and contained in Aut®(Z,). By (iii) £, is G(K) ®
k(n)-linearized, and by Lemma 9.7, we have an abelian variety with
rigid G(K)-structure (G, Ly, ¢y, 7)r1c by a suitable finite base change
if necessary. Then by Theorem 8.2, after a suitable finite base change if
necessary, there exists an S-TSQAS (P, Lp, ¢p, Tp)ric With rigid G(K)-
structure, extending (Zy, Ly, ¢y, T)rig. The scheme P is normal by
Lemma 10.3, because Fy is reduced and P is S-flat.

We note that there also exists an S-PSQAS (Q, Lg, ¢, 7Q)ric with
rigid G(K)-structure extending (Zy,, Ly, ¢y, T)ric, which is unique up
to S-isomorphism by Lemma 6.6. The scheme Q was defined in Section 2.
It is reduced though it may not be normal in general. Let ¢p : P —
P(V(K))s be the morphism defined by I'(P, Lp). By Theorem 2.23, Q
is the image of P, and ¢p : P — @ is the normalization of Q. Moreover
. Lg is the restriction (the pullback) of L(V(K))s to Q.

Let m: Z — S be the flat family given at the start. Hence any fiber
of Z satisfies the conditions (i)—(iii) in Section 9.3 and the conditions
(iv)—(ix) in Section 9.5. In Section 9.3 we fix G(K)-actions on W;(K)
once and for all. Thus we have induced G(K)-linearizations of L(W;(K))
on P(W;(K)) (i = 1,2), and hence those of p;L(W;(K)) on P(W1(K)) x
P(W5(K)) where p; is the i-th projection. Hence we have induced G(K)-
linearizations on (Z, L;) because Z is G(K)-stable by (iii), namely the
closed immersions of Z into P(W;(K)) are G(K)-morphisms.

The R-module I'(Z, £) is free of rank /|K]| by (vi) and (vii). It is a
G(K) ® R-module of weight one, hence G(K')s-isomorphic to V(K)® R
in view of Lemma 4.4. By (viii) I'(Z, £) is base point free, which defines
a finite G(K)s-morphism ¢z : Z — P(V(K))s. Since epmin(K) > 3,
(¢z)n is a closed immersion of Z,,.

Let W be the flat closure of (¢z)(Z,) in P(V(K))s, and Ly the
restriction to W of L(V(K))s. Since (¢z)(Z,) is reduced, so is the flat
closure of (¢z)(Z,). Hence W is reduced. Since Zp is reduced, so is Z,
hence ¢z factors through W with (¢z), an isomorphism. Since Z, is
irreducible, so is W. Hence ¢z : Z — W is a finite surjective birational
morphism.

Let P = P(V(K)) and L = L(V(K)). Since both W and Q are
G(K)-stable, both Lw and Lo = Lg have G(K)-linearizations in-
duced from that of (P,L). Hence G(K)s is a subgroup scheme of both
Aut(Lyw /W) and Aut(Lg/Q). Let iw : W — P and ig : Q@ — P be
natural inclusions (closed immersions) of W and @ into P, 7w and ¢
are closed immersions of the subgroup scheme G(K)g into Aut(Ly /W)
and Aut(Lg/Q). Then it follows from Lemma 7.6 and Lemma 7.7
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that (W, Ly ) has a unique rigid U(K)g-structure (W, iw, 7w )ric (see
Remark 7.5). Meanwhile (@, Lg) has a unique rigid G(K)g-structure
(Q,ig, 7¢)ric by Theorem 8.2. We note that (Q,i¢Q,7¢)ric is also a
unique rigid U (K)-structure by Lemma 7.7.

Since we have

(W, iw,, w, )ric = (@n,iq,,TQ, )RiG = (Zn,iz,, T2, )RIG,

the rigid U (K )-structures (W, iw, 7w )ric and (Q,%g, 7Q)ric are S-iso-
morphic by Lemma 7.8. In particular, this shows that W ~ @}, and
that the G(K)g-action on (W,Ly ) is the same as that of the finite
Heisenberg group G(W, Ly ) (see Section 4.6). In view of Lemma 10.3, Z
is normal. We have a finite morphism ¢z : Z — W ~ Q, with (¢z), an
isomorphism. Hence Z is the normalization of (), whence Z ~ P. Since
Lp = ¢5H(L) and £ = ¢%(Lw), we have (Z, L) ~ (P, Lp). Q.E.D.

Corollary 10.5. Let (Zo, Lo) be the closed fiber of (Z,L) in The-
orem 10.4. Then (Zy, Lo) is a TSQAS with level-G(K) structure such
that the action of G(K) on (Zo, Lo) is that of G(Zo, Lo).

Proof. By the proof of Theorem 10.4, we see that Z is the normal-
ization of W and (W, iw, 7w )ric ~ (Q,iQ,7¢)rie. The normalization
morphism ¢z : Z — W is G(K)-equivariant, and the action of G(K) on
(W, Lw) is G(W, Lw) by the proof of Theorem 10.4. Hence the action
of G(K) on (Z, L) is G(Z, L). This proves the corollary. Q.ED.

Corollary 10.6. Let k be a closed field over O and Z € Us(k). Let
L = M®Ogz under the notation of Section 9.3. Then (Z,L) is a TSQAS
with level-G(K) structure such that the G(K)-action on (Z, L) induced
from that on Wi(K) is that of G(Z,L).

Proof. By Theorem 10.4, (Z,L) ~ (P, Lo) ® k, where (Fy, Lo) is
a TSQAS, a closed fiber of an S-TSQAS (P, L) of level K. By Corol-
lary 10.5, the action of G(K) on (P, Lg) is that of G(Py, Ly). Q.E.D.

§11. The reduced-coarse moduli space SQ°%°

Let N = emax(K) and O = On = Z[{n,1/N]. In this section, we
use the same notation as in Section 9.

Lemma 11.1. Let k be an algebraically closed field over O.

(1) Us is GL(W1) x GL(W))-invariant,

(2) Let (Z,L) € Us(k) and (Z',L") € Us(k) where L = M ® Oy
and L' = M @ Og:. If (Z,L) ~ (Z’, L) as polarized schemes
with G(K)-linearization, then (Z', L") belongs to the GL(W7) x
GL(Wa2)-orbit of (Z,L). ‘
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Proof. First we prove (2). Let f : (Z,L) — (Z',L') be an iso-
morphism with G(K)-linearization. Hence we have an isomorphism
fi:(Z,d;L) — (Z',d; L") as polarized schemes with G(K)-linearization.
By the assumptions on (Z, L) and (Z’, L'), we see first that d;L and d; L’
are very ample. Hence (Z,d;L) and (Z',d;L") € H;(k) (i = 1,2). We
note that d; =1 mod N. Hence as G(K)-modules

H°(Z,d;L) ~ H(Z',d;L') ~ W; @ V(K) ® k =: W;(K)

for some trivial G(K)-module W;, which is the same as W; in the state-
ment (2) of Lemma 11.1.
By Section 4.13, we have closed G(K)-immersions

v i (Z,d; L) — (P(Wi(K)), L(Wi(K)),
v (2, diL') — (P(Wi(K)), L(Wi(K)).

We can define pq, 1, and pg, 1/, and p(¢;) and p(i}) in the same man-
ner as in Section 4.7 (2) and Section 4.12 (4). Then we may assume
that p(:)(9) = p(e})(g) = (idw, QU(K))(g) for any g € G(K). Since
HO(fr) : HY(Z',d;L") — H°(Z,d;L) is a G(K)-isomorphism of vector
k-spaces, we see that there are

(i) commutative diagrams of G(K)-isomorphisms

(Z,d;L) SN (Z',d;L")

] ¢

(P(Wi(K)), L(Wi(K)) —— (P(Wi(K)), L(Wi(K))),

(ii) commutative diagrams of G(K)-isomorphisms of vector k-spaces

B (Z,d;1)  EYD gozar)
£ TH%@bﬂ
0 HD(Fi*) 0
H(L(Wi(K))) @k «—— H(L(Wi(K)))®k

where HO(L(W;(K))) = W;(K) := W,V (K)®k, and H°(F}),
hence F; is defined uniquely by the condition H(¢:})HO(F}) =
HO(f)HO((5)")-

By G(K)-equivariance of (f;, F;), we have

p(ui)(g) o HO(F)) = HO(F}) © p(5;)(9),
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whence
(idw, ®U(K)(9)) o H*(F;) = HO(F}) o (idw; ®U(K)(9))-

From Lemma 4.5 (2) it follows that H°(F}') = h} ® idy (k) for some
hi € GL(W;). Let Si, be the transformation of P(W;(K)) induced
from h} ® idy (k). It follows from HO(J)HO(F}) = HO(f7)H((4)*)
that o o f; = Sp, o1;. Thus (2) is proved because

(Z',dy L)) x (Z',dyL') = (Shy, X Sny) - {(Z,d1L) x (Z,dyL)}

as polarized closed subschemes of P(W1(K)) x P(Wy(K)).

Next we prove (1) using the same notation as above, though (1) is
almost clear. Let k be an algebraically closed field. Let Sy, x Sp, €
(GL(W1) x GL(W2))(k), (Z,L) := (Z,d1L) x (Z,d2L) € Us(k) and
(Z', L") = (Sh, xSh,)-(Z, L). Since f; is a G(K)-isomorphism, if (Z, L) €
Ui(k), then (Z', L'} € Ui(k). The conditions (iv)—(ix) are kept under
G(K)-isomorphism, hence if (Z, L) € Uy(k), then (Z’, L") € Ua(k).

If (Z,L) € Us(k), then by Theorem 10.4, (Z, L) is a closed fiber
(20, Lo) of a modified Mumford family (£, £) of TSQASes of level K
with generic fiber a polarized abelian variety. Then GL(W7) x GL(Wa)-
action gives a new one-parameter family (2’,L’) := (Sp, X Sp,) - (£, L)
of TSQASes of level K with generic fiber a polarized abelian variety
such that (2§, £) ~ (Z’,L"). Bence (Z’, L) € Us(k) by the definition
of Us in Section 9.6. Q.E.D.

11.2. The uniform geometric and categorical quotient

Let G be a flat group scheme, X a scheme and 0 : G x X — X
the action. We say that the action ¢ on X is proper if the morphism
U= (g,p2) : G x X — X x X is proper. Let Y be an algebraic space,
¢ : X — Y amorphism and ¢’ := ¢ Xy Y’ for any Y’ over Y. For the
pair (Y, ¢) with ¢ o ¢ = ¢ o pe, we consider the following conditions:

(i) X(k)/G(k) — Y (k) is bijective for any geometric point Spec k,
(ii) for a morphism ¥ : X — Z to an algebraic space Z with
1 0 0 = 1) o pa, there is a unique morphism y : ¥ — Z such
that ¥ = y o ¢,
(ii-u) (Y, ¢') satisfies (ii) for any Y-flat Y’,
(ili) ¢ is submersive, that is, U is open in Y if and only if ¢~ 1(U)
is open in X,
(ili-u) ¢ is universally submersive, that is, (Y’,¢’) satisfies (iii) for
any Y’/ over Y,
(iv) Oy =~ (¢4(0x))F .



Another compactification of the moduli space 123

The pair (Y, ¢) is called a categorical quotient (resp. a geometric
quotient) of X if it satisfies (ii) (resp. (i), (ili-u) and (iv)). As was
remarked in [10, p. 195], (ii-u) implies (iv).

The pair (Y, ¢) is called a uniform geometric quotient (resp. a uni-
form categorical quotient) if (Y’ ¢’} is a geometric quotient (resp. a
categorical quotient) of X xg Y’ by G for any Y-flat Y'.

Theorem 11.3. Let G = PGL(W;) x PGL{W>). Then

(1) The action of G on U;L’K is proper and free.

(2)  The action of G on Us is proper with finite stabilizer.

(3) The uniform geometric and uniform categorical quotient of Us
resp. UT K by G exists as a separated algebraic space, which we
denote by SQUR resp. AVRE.

Proof. Note that (3) of the theorem follows from [10] once we prove
(1) and (2). So we shall prove (1) and (2) of the theorem.

Let k be a closed field, and G := GL(W;) x GL(Wa).

Let (Z,L) € Us(k) and h € G. Suppose h - (Z,L) = (Z,L). Then
there exist h; € GL(W;) (i = 1,2) keeping L; := d;L invariant such that

= (h1,h2). Hence h keeps L = ¢1(d1L) + g2(d2L) invariant. This
implies that A is an automorphism of (Z, L) with G(K)-linearization. In
particular, h induces a linear transformation H°(h*) of I'(Z, L), which
commutes with U(K)(g) for any g € G(K). Thus H°(h*) on T'(Z, L) is
a scalar matrix by Lemma 4.5.

If (Z,L) is a polarized abelian variety, L is very ample by the as-
sumption emin(K) > 3, so that h is the identity of Z = Py = Q. This
implies that h; is the identity of Z, hence the identity of PGL(W;). It
follows that the stabilizer of a polarized abelian variety (Z, L) is trivial.
Hence the G-action on U x 1s free, which proves (1).

Next we consider the totally degenerate case, that is, (Z,L) is a
union of normal torus embeddings.

In view of Theorem 10.4, by taking a suitable finite base change if
necessary, we may assume that there exists a modified Mumford family
(P, L) over S := Spec R, R a complete discrete valuation ring, such that
(Z,L) = (Po,Lo). By Theorem 2.23, we have an S-PSQAS (@, Lg)
and a finite birational morphism ¢ : (P, £) — (Q, Lg) associated with
(P, L). Since H°(h*) is a scalar matrix on I'(Z,L), h induces the
identity of {Qo)rea- With the notation in Section 2, (Qo)rea is covered
with open affines

Vo(c) = Spec k(0)[&q,c,a € Del(0)] (c € X),
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where &, ¢ = Eqqc/&. Hence HO(h*) keeps &, := &0 invariant. The 0-
dimensional stratum O(c) of Py is also fixed by h because of the bijective
correspondence of strata of Py and Qg. Now we look at the algebra Ro(c)
of Py at O(c). The algebra Ry(c) is given by

Ro(c) = k(0)[¢p,e, b € C(0,0) N X,0 € Del?(0)] (c € X),

where some power of (, . is a product of &, ¢ (= (a,c) for some a € Del(0).
Hence H°(h*)((p.c) = a(b)(p, for some a(b), a root of unity. Since Ro(c)
is finitely generated over k(0), this implies that h is of finite order as an
automorphism of Z = F.

- When both the torus part and the abelian part of (Z, L) are nontriv-
ial, then the stabilizer group of (Z, L) is finite with possibly nontrivial
automorphism on the torus part, and trivial on the abelian part. Hence
the G-action on Us has finite stabilizer.

It remains to prove that the action of G is proper. This is reduced
to proving Claim 1:

Claim 1. Let R be a discrete valuation ring R with fraction field
k(n), S = Spec R. Let o : G x Uz — Us be the action and ¥ = (a,p2) :
G x Us — Uz x Usz. Then for any pair (¢, ,) consisting of a morphism
¢ : S — Us x Us and a morphism 1, : Spec k(1) — G x Us such that
¥y 0¥ = ¢ ®g k(n), there is a morphism ¢ : § — G x Us such that
YoV =¢and Y Qrk(n) =y

Since Us is the closure of UJ’ k in Usa, Claim 1 follows from Claim 2:

Claim 2. Let (Z;,¢z,,7z,)ric (¢ = 1,2) be an S-TSQAS with
rigid G(K)-structure, whose generic fiber is an abelian variety. If they
are isomorphic over k(n), then they are isomorphic over S.

Claim 2 follows from Lemma 6.7. This completes the proof of
properness of the action ¥, which completes the proof of (2). Q.E.D.

Definition 11.4. Let W be an algebraic O-space, and hyw the func-
tor defined by hw (T') = Hom(T, W).
Let F' be a contravariant functor from the category of algebraic
spaces over O to the category of sets.
A reduced algebraic O-space W with a morphism of functors f :
F — hw is called a reduced-coarse moduli (algebraic O-)space of F if
the following conditions are satisfied:
(a) f(Spec k) : F(Spec k) — hw{Spec k) is bijective for any alge-
braically closed field k& over O,
(b) For any reduced algebraic O-space V, and any morphism g :
F — hy, there is a unique morphism y : Ayy — hy such that

g=xof.
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Lemma 11.5. Assume emin(K) > 3. Let Atoric be the uniform

geometric quotient of U ; by G := PGL(W7) x PGL(WQ) Then Atomc
1s 1somorphic to the fine moduli O-scheme Ag i of abelian varieties wzth
level-G(K) structure in [18].

Proof. We choose and fix an pair d; of coprime positive integers
such that d; = 1 mod N and d; > 2g + 1. We do so because dL is
very ample for d > 2g + 1 by Theorem 2.21. Let Y = ZE _ xy, U;r K

under the notation of Section 9.6. Then Y is U, t x-flat with any fiber
(Z,L) an abelian variety with level-G(K) structure, hence L is very
ample by the assumption emin(K) > 3. Since any fiber of Y in the same
G-orbit determines a unique abelian variety with rigid G(K)-structure
by Lemma 5.7, we have a G-invariant morphism 7 : Ug’ x — Ag K, which
induces a morphism 77 : AR — Ag g

Since A4  is the fine moduh there is a universal family (Z4,L4) of
abelian varieties with rigid G(K)-structure over Ay k. Let m4 : Z4 —
Ag k be the projection. Then (ma).«(d;L4) is a locally free Oy, -
module. It is a G(K)-module of weight one because d; = 1 mod N.
By Lemma 4.4 there is a finite locally free O 4, ,-module W; such that
(ra)«(diLa) = W, @0 V(K) as G(K )—modules We choose a suitable
covering of Ay x by affine open sets fine enough so that we have lo-
cal trivializations of W;. Then we have a collection of local morphisms
ni: Agx — U, T . Let a“om Uk ) Atorlc be the natural projection
defined by the quotlent by PGL(Wl) X PGL(WQ) Then the composite
atojéc on; defines a morphism from Ay i to Ato‘“c which is evidently the
inverse of 7. This proves that 7 is an 1somorphlsm. Q.E.D.

Theorem 11.6. Let K be a finite symplectic abelian group with
emin(K) > 3 and N = epax(K). The functor SQ“’”C has a reduced-
coarse moduli (algebraic On-)space, which we denote by SQ‘;‘?}@C. Itisa
complete reduced separated algebraic space.

Proof. Let G = PGL(W;) x PGL(W,). We choose and fix any
pair of primes dy and de with d; > 29+ 1 and d; =1 mod N. Let
SQ;‘?}Q‘: be the uniform geometric and uniform categorical quotient of
Us by G. Since local moduli of polarized deformations of any polarized
abelian variety is nonsingular of dimension g(g + 1)/2 by Grothendieck
and Mumford [22, p. 244, Theorem 2.4.1] (see also [ibid., p. 242, Theo-
rem 2.3.3]), and G is smooth and acts freely on U; x by Theorem 11.3,
Ul x is a smooth O-scheme. In particular, Ug’ x is reduced. Hence its

cldsure Us in U, is also a reduced O-subscheme of Us. Since the action
of G has finite stabilizer on Us, the quotient SQ;?}%C is reduced. Since
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U ;’ i is G-invariant open, the uniform geometrig quotient A$RS of U ;’ K
by G is an open algebraic O-subspace of SQ;‘?};‘T. '

Let W = SQ;‘?}}C. It remains to prove that W = SQZ?}%C is a reduced-
coarse moduli for the functor & Q;f’}i{c. To prove it, we define a morphism

of functors
[ 1 SQIRE — hay

as follows. Now we use the notation of Section 9. As in Section 9.2 let
H; (i = 1,2) be the Hilbert scheme parametrizing all closed polarized
subschemes (Z;, L;) of P(W;(K)) such that

(a) Z; is G(K)-stable,

(b) x(Zi,nL;) = n9d!\/|K]|, where L; = L(W;(K)) ® Og,.

Let X; be the universal subscheme of P(W;(K)) over H;. Let X =
X1 Xo XQ and H = H1 Xo Hg.

Let T be a reduced scheme and let o := (P, L,$,7)rig be a T-
TSQAS with rigid G(K)-structure. Then d;L has a G(K)-linearization,
hence . (d; L) is a locally Op-free G(K)-module of rank d?/|K]|. Since
d; =1 mod N, it is locally isomorphic to W; @ V(K) @ Or as a G(K)-
module. Since d; > 2¢g+1, d; L is very ample by Theorem 2.21 so that we
have a closed G(K)-immersion ¢; : (P, d;L) — (P(W;(K))7, L(W;(K))r
over T'. Thus the image ¢;(P) ~ P is a T-flat G(K)-stable subscheme
of P(W;(K))r. Hence (¢1 X ¢2)(P) is a T-flat subscheme of the relative
scheme (X/H)r, any of whose fibers satisfies (a) and (b). Hence we
have a morphism

FT)(0) : T — HilbE,, (X/H) = HE,

First we prove that f(T)(c) factors through U,. Any of the fibers of
(¢1 X @) (P) satisfies (i)—(ix) in Section 9. In fact, (i)—(iii) is clear from
our construction, while (iv)—(ix) follow from Theorem 2.10, Lemma 2.18
and Theorem 2.23. The condition (ix) is a consequence of very-ampleness
and G(K)-linearization of d;L. Hence f(T)(a) factors through Us,.

Next we prove that f(7T)) (o)(t) € Us(k) for any geometric point
t € T'(k), k any algebraically closed field over O. In fact, by Theorem 5.2,
there exists a complete discrete valuation ring R with residue field &, and
an R-TSQAS p := (P', L', ¢p/, Tps) such that its generic fiber (P, L]) is
an abelian variety, and its closed fiber pg is isomorphic to the geometric
fiber oy of 0. Let S = Spec R. Then we have a morphism f(S)(p) 18—
Us; in the same manner as above. By Theorem 5.2, G(P', L) ~ G(K)s,
whence G(Py, £;) ~ G(K) ® k(n). Tt follows that the K-action on the

generic fiber P induced from the G(K) ® k(n)-action is effective and
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contained in Aut® (F;). Hence 7(8)(p) ® k() factors through Us. Since
Us is a closed reduced subscheme of Us, f(S)(p) factors through Us,
hence F(T)(0)(t) € Us(k).

Since T is reduced, this implies that f(T)(c) factors through Us.
Namely, f ~(T)( ) is a morphism from 7" into Us such that (P,L) =
f(T)(a) (ZE .\, DiMx) with the notation of Section 9.3, where p; :
zE . (C X x HE ) — X is the first projection. Hence we have a

morphism
f(T)(0): T — SQEE (= W).

Next we prove that f is a morphism of functors. For any morphism
of reduced schemes ¢ : U — T', and a T-TSQAS ¢ := (P, L, ¢, T)rig, we
have a U-TSQAS ¢*(0) := ¢*(P, L, ¢, T)ric- The above construction of

F(T)(0) and f(U)(g*(0)) in parallel leads to f(T)(c)oq = f(U)(q*()),

whence
f(T)(o)oq= f(U)(g"(0)).

This proves that f is a morphism of functors.
It remains to prove that the following is bijective :

f(Spec k) : S torlc(Spec k) — hw(Spec k) = W(k)

for any algebraically closed field k over O. In fact, any k-TSQAS
with rigid G(K)-structure o := (Z;L,¢,7) € S torm(Spec k) belongs
to Us(k), to be more precise, o determines non- canomcally a k-rational
point f(Spec k)(o) of Us(k), and vice versa. In other words, S Qtor‘c(Spec k)
is the quotient of Us(k) by the equivalence relation of k-isomorphism of
level-G(K) structures. Since o determines a k-rational point f(Spec k)(o)
of Us, so does it a k-rational point f(Spec k)(c) of W. For any ¢ =
(Z,L,¢,7)and o’ := (2", L', ¢',7") € Us(k), (Z,L) ~ (Z', L") if and only
if o and ¢’ belong the same G-orbit by Lemma 11.1. Hence f(Spec k)
is injective. The surjectivity of f(Spec k) is clear. This proves that
W = S’Qtor‘c is a reduced-coarse moduli of the functor S thc

By Theorem 8.3, S “’“c is complete. By Lemma 6. 7 SQ;’}? is
separated. This completes the proof. Q.E.D.

Corollary 11.7. The uniform geometric and uniform categorical
quotient of Us by PGL(W1) x PGL(W>) is uniquely determined by the
pair (g, K), which is independent of the choice of the coprime pair (dy, d2)
and a very ample line bundle B on X.

Proof. By Theorem 11.6, the uniform geometric and uniform cat-
egorical quotient of Us by PGL(W7) x PGL(W?) is the reduced-coarse
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moduli for the functor SQ, k, which is uniquely determined by (g, K).
Hence it is independent of the choice of (dq,dy), and a very ample line
bundle B on X. Q.E.D.

12. The canonical morphism from SQttc onto SQ, x
9, K g,

The purpose of this section is to prove that there is a canonical
finite birational morphism between the moduli spaces SQ;°%° and SQq,x
(Corollary 12.4). The following is a key to the proof of it.

Theorem 12.1. Assume enin(K) > 3. Let 0 := (P,L,¢,T)rig be
a T-TSQAS with rigid G(K)-structure, and m : P — T the projection,
T a reduced scheme. Suppose that any generic fiber (P, L) of 7 is an
abelian variety. Let
(a) Sym(¢) be the graded subalgebra of m.Sym(L) generated by
(L), @ = Proj(Sym(¢)), Lo = the tautological line bundle
of Q,
(b) ¢ a closed immersion of Q into P(V(K))r ~ P(m.(L)) in-
duced from the surjection Sym(w.(L)) — Sym(¢), and
(c) 7o a closed immersion of G(K)r into Aut(Lg/Q) which is
naturally induced from 7.
Then ¢(o) := (Q, Lo, g, Q) is a T-PSQAS with rigid G(K)-structure.
Moreover, if any fiber n=1(s) (s € T)) is an abelian variety, then

(Pa 'Ca (;b’ T) = (QaLQ)(bQJTQ)-

Proof. Let s be any prime point of T and A the local ring of T at s.
Everything in the theorem is defined globally, hence it suffices to prove
that ¢(o) is a T-PSQAS with rigid G(K)-structure when T = Spec A.

Let N, :=T'(P, L™) and M, the natural image of S"T'(P, L) in N,
Let N := @22 ¢N, and M := &L, M,, = Sym(¢). Since P is reduced,
the algebra N has no nilpotent elements. Since M is an R-subalgebra
of N, M has no nilpotent elements, whence @ is reduced. Since I'(P, £)
is base point free, @ is just the image ¢(P) with reduced structure.

Let C be an irreducible curve of T' passing through s such that the
pull back of P to C is a TSQAS with generic fiber an abelian variety.
Let R be the completion of the local ring at s of a nonsingular model
of C, and S = Spec R. Then we have a morphism X : S — T such that
the unique closed point 0 of S is mapped to s. The pullback Pg := A\*P
is an S-TSQAS with its generic fiber P,, an abelian variety. Since the
closed fiber (A*P)p ~ Ps is reduced, Ps is reduced, proper and flat over
S. Hence Ps is the flat closure in P(I'(Ps, Lp,)) of the open subscheme
P,s. Hence Pg is irreducible because P, is irreducible.
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Let Qs be the pullback of ¢ to S by A. Then there is a surjective
morphism A*¢ : Ps — Qg, whence Qg is irreducible. Now we apply [7,
ITI, Proposition 9.7], which says that Qg is S-flat if and only if every
associated point (= every associated prime of the zero ideal of any local
ring) of Qg maps to the generic point of S. In our case, since Qg is
irreducible, it is clear that the unique associated point of Qg is just the
generic point of @5, which is mapped to the generic point of S. Thus Qg
is S-flat. Let Loy := A* (L), gy := A*(¢q) and g4 = X*(7g). Since
M is generated by M, Lg is a line bundle, whence L is a line bundle.
Then it is clear that ¢(0)s := (Qs, Lgs, PQs, Qs ) is an S-scheme with
rigid U(K)-structure (see Section 7.3), where U(K) is the Schrédinger
representation of G(K) in Section 4.1.

Let Ps (resp. o) be the pullback of P (resp. o) to Sbhy A: S —T.
By the choice of A, the generic fiber of Pg is an abelian variety, and
os = XN(P,L,¢,7) is an S-TSQAS with rigid G(K)-structure, which
we denote by (Ps, Ls, ¢s,Ts) for brevity. By Theorem 2.23, ¢s(0s) is
an S-PSQAS with rigid G(K)-structure, hence an S-scheme with rigid
U(K)-structure. Then all the generic fibers of og, ¢(o)s and ¢s(os)
are isomorphic, whence ¢(c)s ~ ¢s(os) by Lemma 7.8.

Thus (QS7 £Q57¢Qs ) TQs) = ¢(U) ® k(s) = ¢(U)S’ ® k(O) & ¢S(US) &
k(D) is a k(s)-PSQAS with rigid G(K)-structure. Hence X(Qs,[,gs) =
nd m is independent of s. By [7, III, Theorem 9.9], Q is T-flat.

To prove that ¢(c) is a T-PSQAS with rigid G(K)-structure, it
remains to check Section 6.2 (iv). By Section 5.9 (iv) G(K)r acts on
both £ and P in a compatible manner over T, which acts therefore on
Sym(¢), hence on @ = Proj(Sym{¢)) and Lg. Hence we have a closed
immersion 7¢ of G(K)r into Aut(Lgy/Q). Hence ¢(o) is a T-PSQAS
with rigid G(K)-structure. If any fiber of 7 is a polarized abelian variety,
it is clear that ¢(o) = o. This completes the proof. Q.E.D.

Theorem 12.2. Assume emin(K) > 3. Then there is a canonical
bijective finite birational O-morphism sq : SQIRS — SQg x extending
the identity of Ag k. '

Proof.  Since SQIR° is a categorical quotient of Us by PGL(W1) x
PGL(W?2), in order to define a morphism from SQ;‘E@C to SQg.x, it
suffices to find a GL(W;) x GL(W)-invariant morphism A : Us — SQg k.

Recall that we have a universal subscheme Z of X = X1 X X3 over
Us in Section 9.5 with line bundles L, L; and L, over Us such that

(a) L; is relatively very ample, L; = d;L, L = g1 Ly + g2L>,
(b) L and L; are G(K)-linearized with weight one,
(c) me(L) ~ V(K)® My for some line bundle My on T,
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(d) (L) is base point free.

Let T be any subscheme of Us whose generic point is in U 91" ¥ and
(P, L) :=(Z,L)xy, T. By (b) we have a closed immersion 7 : G(K)r —
Aut(L/P). By (b)—(d) we have a G(K)-morphism ¢ : P — P(V(K))r
with regards to 7. Let o = (P, L, ¢, 7). We may assume that o is a
T-TSQAS with rigid G(K)-structure by rechoosing ¢ if necessary. In
view of Theorem 12.1, ¢(c) = (Q, Lo, dq, 7q) is a T-PSQAS with rigid
G(K)-structure. So we define k(o) := ¢(c) € SQg,x(T).

This gives a morphism from Us to SQg,x. If two T-TSQASes
o= (P,L,¢,7) and ¢’ = (P, L, ¢',7") with rigid G(K)-structure are
T-isomorphic, then ¢(o) and (¢’)(¢’) are T-isomorphic by their. con-
struction. This shows that h is GL(W;) x GL(W)-invariant. Hence h
defines a morphism from SQ';?}}C to SQg, K, which we denote by h. In
view of Theorem 12.1, ¢(0) ~ o if any fiber of o is a polarized abelian
variety. This shows that h is the identity on A'R° = A, k.

We shall prove that h is bijective. For this, we prove that any
geometric fiber of h is a single point.

Let po = (Qo,LQo: P00, TQo )rIG be a k-PSQAS with rigid G(K)-
structure, k£ a closed field. Let R be a complete discrete valuation ring
with its residue field k£(0) = &, and S = Spec R. Let p := (Q, Lo, $a,T0)
be an S-PSQAS with rigid G(K)-structure such that

e po = p® k(0), and its generic fiber is an abelian variety,
e its normalization o := (P,Lp,¢p,7p) is an S-TSQAS with
rigid G(K)-structure. ,
Let p' := (QT, Lot, dot, ot ) be another S-PSQAS with rigid G(K)-
structure such that
. pg := p' ®k(0) ~ po, and its generic fiber is an abelian variety,
e its normalization o := (PY,Lpt,dpt,Tpt) is an S-TSQAS
with rigid G(K)-structure.

First we consider the totally degenerate case. By the assump-
tion pg =~ p:g, we have the same lattice X and the same sublattice Y
of X wit K ~ X/Y, hence the same formal split torus G’y ®z X
acting on @ (resp. Q). Hence we have the degeneration data for
p = (Q,Lq,¢q,7q) (resp. p' := (Q,Lgr,dgor,Tgt)) which are la-
belled by X and X x X. Let a(x) and b(x,y) (resp. af(z) and bf(z,y))
be the degeneration data for Q (resp. Q). Let

B(z,y) =vals(b(z,y)), Bl(z,y)=vals(d'(z,y)),
b(z,y) = s BEV(z,y), bl(z,y) = s~ 2 @Vl (z,y).
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By Section 2.6, we have a semi-universal covering @0 of Qo (resp. @8
of Q}) with covering transformations S, (resp. SI) (z € X). Similarly
we have a semi-universal covering Py of Py (resp. PT of PT) with covering
transformations S, (resp. SI) (z € X).

Let f: po — pa be an isomorphism of k-PSQASes with rigid G(K)-
structure. We may assume Del(Qo) = Del(Q}), which we write Del
for brevity. Since f induces a G(K)-isomorphism f* : F(QI,,KQIJ ) —
I'(Qo, Lq, ), the isomorphism (¢, )" RN VIK)k S V(K)®k
is multiplication by a nonzero constant A. Assoc1ated to QT, we have
a formal torus Hom(X,Gg) acting on Q™, hence its closed fiber
Hom (X, G, (k)) ~ Hom(X, Gfor ) ® k(0) on Qo. Therefore there is
at most a unique monomial term & of weight z (that is, &, for Pg in
Section 3.4) in the Fourier expansions of elements of I'(Q], EQE ). Hence
we have an equality f*(£]) = Ag, for each weight z. Hence we may
assume that f induces the isomorphism f(c) : WO( ) — W{(c) between
Jocal charts Wo(c) (in Lemma 3.5) of Qo and W{ (c) of Q) (that is, Wy(c)
for QO in Lemma 3.5). We recall that

1j(OWo(c)) = F(WO(C),OWO(C)) = k[ﬁm X € X],
F(OWJ(C)) = F(WJ(C)7OWg(C)) = k{ m T € X]

Then we have f* (c)(’gl, ) f* (C)(§m+c/£i) =&otc/bc = &x,c for any
x € Semi(0, —c + o), the semigroup generated by all a — ¢ (@ € o N X)).

Hence we have f*(c)(éf o) = f*(¢)(€l1e/€]) = Eove/be = Eu (V2 € X)
because o moves freely in Del(c).

By Theorem 3.8, P, (and Pg ) is an amalgamation of those strata
O(c) which are in bijective correspondence with the strata of (Qo)red-
Let Uy(e) (resp. Ug(c)) be a local chart of Py (resp. PJ ). By Lemma 3.6

T(Ov(e)) = T'(Uo(c), Ovg(e)) = kla,crm € X,
IOyt = INQAS (@, Ops(e) = E[¢] .,z € X].

Now we define f*(c)(( ¢) = (ac. Since the relations of (; ¢ or ¢ .
are given in terms of the Delaunay decomposition Del as in Lemma 3. 6

F*(¢) is an algebra isomorphism. Since formally Si(6s) = b(z,y)é,; and
(S;) (gl) = bT(IL‘ y)§x7 we have in F(OWO(C))

S;(&HC) = bg([ﬂ, y)gx,c+yv (S;)*(gl,c) = bg(l‘, y)il,c—i—y'
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Since po =~ pl), we have Spfle)* = fle+y)*(S§)*, whence bo(z,y) =
b;’,(x, y) for any z,y € X. Since

82 (Cae) = bo(2, W) Corctys  (SH*(E ) = (@, 1) ety

we have S;f(c)* = fle+ ¥)*(8})* on T(Oyy(e)) for any ¢,y € X.
For any Delaunay cell 7 € Del, let

Uo(7) = NaernxUo(c), UF(T) = NaernxUg(c).

Then the algebras F(OUJ () and ['(Oy,(r)) are isomorphic because the
relations between the generators are described in terms of Delaunay de-
composition Del. This implies that f(c) induces a natural isomorphism
F() : Uo(r) — U§(r) such that S} f(7)* = fly +7)*(S})" (Vy € X).
Therefore, (c) (c e X) glue together to give rise to an isomor-
phism f : Py — PO, hence a well-defined global G(K)-isomorphism
fp: Py — PT. The triple of the remaining data (Lp,, ¢p,,7p,) (resp.
(‘CPJ , q{)Pg ' TR} )) are induced from (Lg,, g, 7Q, ) (resp. (EQg, ¢Q$’ TQ();))
by the universal property of amalgamation. This proves that oy ~ a(‘;.
Hence h~!(po) is a single point.
Similarly when pg is partially degenerate, the abelian parts and the
extension classes of oy and pg are the same. Hence the geometric fiber
h~Y(po) is a single point by the bijectivity in the totally degenerate case.
Hence h™1(pg) is a single point for any po. Since SQ“’”C is proper over
O, h is finite. Since AZO“C ~ A, i and they are Zariski open, this proves
that h is a bijective finite birational morphism. Q.E.D.

Corollary 12.3. If epin(K) > 3, SQ“’“C is projective.

Proof. Since S tor‘c is finite over SQg x and SQg, K is projective
by [18, Definition 11.2, Theorem 11.4], SQ;‘?}%C is projective. Q.E.D.

Corollary 12.4. If emin(K) > 3, the normalizations of SQ°% and
SQg,k are isomorphic.

Proof. The morphism h is an isomorphism on Atgorlc hence it is
birational. Hence h induces a finite birational morphism h%°*™ between
the normalizations of SQZ?%C and SQg k. Since any finite birational
morphism between two normal schemes is an isomorphism by [16, p. 201,
Theorem 3], h"°™ is an isomorphism. Q.E.D.
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Notation and Terminology

Ag,K’ A;?%C
Aut(L/P), Autr(L/P)
a(z),b(z,y)
a(a), b(e, y)
ao(x), b()(x, y)
afo)
O
C(c,0),C(0,—c+0)
Del, Del(c)
Del(Py), Del(Qo)
¢ga ¢h
€K
el el
S
(¢, @)
¢(o)
(¢, 7)
G, Gt
G(P, L)
g(p, L)
G(K),G(K)
G5(L)
H, K, K(H)
H, Hy, H,
Hcinn? H(f)nn
(K7 eK)
K(Ly), KE(L)
K(P, L), K(Po, Lo)
K(Qo, Lo)
glE? gﬁC,C
L, L(K),L(V(K))
L£* = L\ {0}
)‘7 )‘(‘c"))
level-G(K) structure
UN
0,0y
O(U), O(Ga (QO)red)
P,P(K) :=P(V(K))

(X/H)

fine moduli of abelian varieties, Lemma 11.5
Sections 2.12, 2.16, 5.9, 5.10
degeneration data, Theorem 2.3
Section 2.4

Section 2.4, Proof of Theorem 12.2
center of g, Section 2.5

Proof of Theorem 12.2

Section 2.5

Section 2.5

Section 2.8, Del(Q) := Del = Delp
Section 4.7

Section 4.1

WEeil pairing, Section 2.15

Sections 4.13, 5.9

Theorem 12.1

Section 5.3

semi-abelian schemes, Sections 2.15,2.11
Section 4.6

Definition 2.17

Heisenberg group, Section 4.1
Section 2.15

Section 4.1

Hilbert schemes, Section 9.2
Sections 9.1, 9.3

Section 4.1

Section 2.12, Lemma 2.14
Definition 2.17

:= K (Py, Lo), Theorem 2.22, Lemma 2.19
Section 3.4

Section 4.12

Section 2.15

Section 2.1

Sections 5.3,6.2,5.4

Section 4.1

Section 4.1

Lemmas 3.6, 3.7

Section 4.12
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(P, ¢, p)LEV, (Z, ¢, p)LEV

(P7 ‘C)’ (P07'C0)

(P, ¢, p)ric, (Z, ¢, p)r1G
d)g) whv wj(g7 .’L‘)

(Qa ﬁ)? (QO, CO)

rigid G(K)-structure
rigid p-structure

pclg), pr(g)

p(¢, )

Schur’s lemma,
Semi(0, —c + o)
SQqy.x

sQ

Sg, Sh

Sy, SZ

To(g), Ta(n
Uo(c)
U1,Us,U3
UgvK’ UJ,K
U(K),V(K)

v(x), v(x, w)

Wo(c)

ZP

conn

Cz,c

I. Nakamura

level-G(K) structure,

Sections 4, 5.4, 5.9, 5.11

TSQAS, Theorem 2.7

rigid G{K)-structure, Sections 4, 5.9
Sections 4.7,4.11

PSQAS, Theorems 2.7, 2.22, Section 6
Sections 4, 5.4, 5.9

Section 7

Sections 4.7 (2), 4.13

Sections 5.3, 5.9

Lemma 4.5

Proof of Theorem 12.2

fine moduli of PSQASes, Introduction
coarse moduli of TSQASes, Theorem 11.6
Section 4.12

Section 2.6

Section 4.7

Lemma 3.6

Sections 9.3, 9.5, 9.6

Section 9.6

Section 4.1

Section 4.1, Lemma 4.4

Lemma 3.5

Section 9.2, Lemma 11.1, Theorem 11.3
Section 9.3

Section 3.4
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