On pluricanonical systems of algebraic varieties of general type

Meng Chen

Abstract

. We extend Kollár's technique to look for an explicit function $h(n)$ with φ_{m} birational onto its image for all integers $m \geq h(n)$ and for all n-dimensional nonsingular projective varieties of general type.

§1. Introduction

One of the fundamental problems in birational geometry is to find a constant $r_{n}>0$ such that the r_{n}-canonical map is an Iitaka fibration for any n-dimensional projective variety with positive Kodaira dimension. It is well-known that one may take $r_{2}=5$ (see Bombieri [2]) for surfaces of general type. The existence of r_{n} for varieties of general type was proved by Hacon $-\mathrm{M}^{\mathrm{c}}$ kernan [10], Takayama [19] and Tsuji [20] and, recently, $r_{3} \leq 73$ was proved by Chen-Chen [6, Theorem 1.1]. Some other relevant results with regard to the existence of r_{n} have been already proved by Chen-Hacon [3], Pacienza [15] and Viehweg-Zhang [23]. The following problem, however, is still open:

Problem 1.1. To find an explicit constant $\mu_{n}(n \geq 4)$ such that the m-canonical map φ_{m} is birational onto its image for all $m \geq \mu_{n}$ and for all n-dimensional projective varieties of general type.

Let V be a n-dimensional nonsingular projective variety of general type. Denote by K_{V} a canonical divisor on V. A reasonable strategy for studying Problem 1.1 is composed of two steps:
[a] To find a positive integer m_{0} such that $h^{0}\left(V, m_{0} K_{V}\right) \geq 2$;

Received April 22, 2009.
Revised September 11, 2009.
2000 Mathematics Subject Classification. 14E05, 14E25, 14E30.
Key words and phrases. Pluricanonical maps, pluricanonical systems, varieties of general type.
[b] To find an explicit function $g\left(m_{0}, n\right)$ such that the m-canonical $\operatorname{map} \varphi_{m}$ is birational for all $m \geq g\left(m_{0}, n\right)$.
This strategy works well in dimension 3 (see, for instance, [5, 6]). In fact, since Reid [17] has found the Riemann-Roch formula for minimal 3 -folds, we [5, Theorem 1.1] managed to prove $h^{0}\left(V, m_{0} K_{V}\right) \geq 2$ by utilizing that formula. On the other hand, Kollár [14] and myself [8] have an effective formula in dimension 3 for Step (b). Generally, for Step [a], since the classification to 4-dimensional terminal singularities is still incomplete, there is no known Riemann-Roch formula for $\chi(m K)$ on minimal varieties. Thus to compute $P_{m}:=h^{0}\left(V, m_{0} K_{V}\right)$ is still expected. Though Kollár [14] has essentially solved Step [b], what we are more concerned here is the stable birationality, to be worked out by an improved and generalized technique, of linear systems $|m K+\lceil Q\rceil|$ where Q is any nef \mathbb{Q}-divisor. Hence this paper can be regarded as a remark or complementary to Kollár's method. We will build up some new results about induced fibrations from pluricanonical systems.

Assume $P_{m_{0}}(V):=h^{0}\left(V, \mathcal{O}_{V}\left(m_{0} K_{V}\right)\right) \geq 2$ for some positive integer m_{0}. Set $\varphi_{m_{0}}:=\Phi_{\left|m_{0} K_{V}\right|}$, the m_{0}-canonical map of V. We define the m_{0}-canonical dimension $\iota:=\operatorname{dim} \overline{\varphi_{m_{0}}(V)}$. Clearly $1 \leq \iota \leq n$. In order to formulate our statements, we introduce the following:

Definition 1.2. Define $\lambda(V)$ to be the smallest positive integer such that $P_{\lambda(V)}(V) \geq 2$ for a given n-dimensional projective variety V of general type. Define $\lambda_{n}:=\sup \{\lambda(V) \mid \operatorname{dim}(V)=n\}$.

Remark 1.3. According to Hacon $-\mathrm{M}^{\mathrm{c}}$ kernan [10], Takayama [19] and Tsuji [20], one knows $\lambda_{n}<+\infty$. Therefore an assumption like $P_{m_{0}} \geq 2$ is reasonable and natural.

The main result of this paper is the following which, at least, induces new results for the case $n=4$:

Theorem 1.4. Let V be a n-dimensional $(n \geq 3)$ nonsingular projective variety of general type. Let Q be a nef \mathbb{Q}-divisor on V. Assume $P_{m_{0}} \geq 2$ for some positive integer m_{0}. Then the linear system $\left|m K_{V}+\lceil Q\rceil\right|$ defines a birational map onto its image for all integers $m \geq \varepsilon(\iota)$ where $\varepsilon(\iota)$ is a function as follows:
(1) when $\iota \geq n-2, \varepsilon(\iota)=\min \left\{4 m_{0}+4,57\right\} \cdot\left(2 m_{0}+1\right)^{n-3}+$ $m_{0}(n-2)+2$;
(2) when $\iota=n-3, \varepsilon(\iota)=75\left(2 m_{0}+1\right)^{n-3}+m_{0}(n-3)+2$;
(3) when $\iota \leq n-4, \varepsilon(\iota)=\left(2 m_{0}+1\right)^{\iota-1} w_{n-\iota+1}+m_{0}(\iota-1)+2$ where $w_{n-\iota+1}$ can be obtained by the number sequence $\left\{w_{t}\right\}_{t=4}^{n-\iota+1}$ with $w_{i}=\widetilde{\lambda}_{i}+w_{i-1}\left(2 \widetilde{\lambda}_{i}+1\right), w_{4}=151 \widetilde{\lambda}_{4}+75, \widetilde{\lambda}_{n-\iota+1}=m_{0}$ and, for all other $i, \widetilde{\lambda}_{i}=\lambda_{i}$.

By taking $Q=0, \varphi_{m}$ is birational for all integers $m \geq \varepsilon(\iota)$.
In particular we have the following:
Corollary 1.5. Let V be a nonsingular projective n-dimensional $(n \geq 4)$ variety of general type. Then φ_{m} is birational for all integers $m \geq w_{n}+2$ where w_{n} is obtained by the number sequence $\left\{w_{t}\right\}_{t=4}^{n}$ with $w_{i}=\lambda_{i}+w_{i-1}\left(2 \lambda_{i}+1\right)$ and $w_{4}=151 \lambda_{4}+75$.

Corollary 1.6. (=Corollary 4.3) Let V be a nonsingular projective 4-fold of general type with $P_{m_{0}} \geq 2$ for some integer $m_{0}>0$. Let Q be any nef \mathbb{Q}-divisor on V. Then $\Phi_{\left|m K_{V}+\lceil Q\rceil\right| \mid}$ (in particular, φ_{m}) is birational for all $m \geq 151 m_{0}+77$.

Theorem 1.4 also implies the following:
Corollary 1.7. An explicit constant μ_{n} mentioned in Problem 1.1 can be found by means of Theorem 1.4 if and only if explicit constants ρ_{k} for all $k \leq n$ can be found such that the pluri-genus $P_{\rho_{k}} \geq 2$ for all k-dimensional projective varieties of general type.

From this point of view, a Riemann-Roch formula for $\chi(\mathcal{O}(m K))$ is of key importance just like what Reid has done in [17, last section] for threefolds.

This paper is organized as follows. First we fix the notation for the map $\varphi_{m_{0}}$. Then we systematically study the property, of the induced fibration $f: X^{\prime} \longrightarrow B$, which generalizes known inequalities in 3-dimensional case. In Section 3, we will improve known results on surfaces and 3 -folds. Theorems in Section 4 are original. We will prove the main theorem by induction in the last section.

We always use the symbol \equiv to denote numerical equivalence while \sim means linear equivalence.

§2. Properties of canonically induced fibrations

In this paper, V is always a n-dimensional nonsingular projective variety of general type. Let m_{0} be a positive integer. Assume that $\Lambda \subset\left|m_{0} K_{V}\right|$ is a sub-linear system such that $\Phi_{\Lambda}(V)=1$ where Φ_{Λ} is the rational map defined by Λ. We call Λ a pencil contained in $\left|m_{0} K_{V}\right|$. Note that such a pencil always exists. For instance, a 2 -dimensional subspace of $H^{0}\left(V, m_{0} K_{V}\right)$ corresponds to a pencil. We will study properties of the rational map Φ_{Λ} in this section.
2.1. Existence of minimal models. By recent works of Birkar-Cascini-Hacon-M ${ }^{\text {c }}$ kernan [1], Hacon- M^{c} kernan[12] and Siu [18], V has a minimal model. Again by [12], any fibration $f: Y \longrightarrow B$, from a
nonsingular variety Y of general type to a smooth curve B, has a relative minimal model. According to the established Minimal Model Program (MMP), one may always assume that a minimal model has at worst \mathbb{Q}-factorial terminal singularities.

From this point of view, it suffices to study φ_{m} on minimal models.
(\ddagger) Throughout X always denotes a minimal model of V.
Because Φ_{Λ} can be defined on a Zariski open subset of X, we may also regard Λ as a pencil on the minimal model X.
2.2. Set up for Φ_{Λ}. Denote by $\mu: V \rightarrow X$ the birational contraction map. Because $P_{m_{0}}(X)=P_{m_{0}}(V) \geq 2$, we may fix an effective Weil divisor $K_{m_{0}} \sim m_{0} K_{X}$ on X and a divisor $\widetilde{K}_{m_{0}} \sim m_{0} K_{V}$ on V. Take successive blow-ups $\pi: X^{\prime} \rightarrow X$ along nonsingular centers, such that the following conditions are satisfied:
(i) X^{\prime} is smooth;
(ii) there is a birational morphism $\pi_{V}: X^{\prime} \rightarrow V$ such that $\mu \circ \pi_{V}=$ π;
(iii) the movable part M_{0} of $\pi_{V}^{*}(\Lambda)$ is base point free and so that $g:=\Phi_{\Lambda} \circ \pi_{V}$ is a non-constant morphism;
(iv) $\pi^{*}\left(K_{m_{0}}\right) \cup \pi_{V}^{*}\left(\widetilde{K}_{m_{0}}\right)$ has simple normal crossing supports;
(v) for certain purpose π even satisfies a couple of extra conditions by further modifying X^{\prime}. (This condition will be specified in explicit whenever we need it.)

We have a morphism $g: X^{\prime} \longrightarrow W^{\prime} \subseteq \mathbb{P}^{N}$. Let $X^{\prime} \xrightarrow{f} B \xrightarrow{s} W^{\prime}$ be the Stein factorization of g. We have the following commutative diagram:

Denote by $r(X)$ the Cartier index of X. We can write $r(X) K_{X^{\prime}}=$ $\pi^{*}\left(r(X) K_{X}\right)+E_{\pi}$ where E_{π} is a sum of exceptional divisors. Recall that

$$
\pi^{*}\left(K_{X}\right):=K_{X^{\prime}}-\frac{1}{r(X)} E_{\pi}
$$

Clearly, whenever we take the round-up of $m \pi^{*}\left(K_{X}\right)$ for $m>0$, we always have $\left\lceil m \pi^{*}\left(K_{X}\right)\right\rceil \leq m K_{X^{\prime}}$.

Denote by $M_{k, X^{\prime}}$ the movable part of $\left|k K_{X^{\prime}}\right|$ for any positive integer $k>0$. We may write $m_{0} K_{X^{\prime}}=\mathbb{Q} \pi^{*}\left(m_{0} K_{X}\right)+E_{\pi, m_{0}}=M_{m_{0}, X^{\prime}}+Z_{m_{0}}$, where $Z_{m_{0}}$ is the fixed part of $\left|m_{0} K_{X^{\prime}}\right|$ and $E_{\pi, m_{0}}$ an effective \mathbb{Q}-divisor which is a \mathbb{Q}-sum of distinct exceptional divisors with regard to π.

Since $M_{0} \leq M_{m_{0}, X^{\prime}} \leq \pi^{*}\left(m_{0} K_{X}\right)$, we can write $\pi^{*}\left(m_{0} K_{X}\right)=M_{0}+$ E_{Λ}^{\prime} where E_{Λ}^{\prime} is an effective \mathbb{Q}-divisor. By our assumption (Λ is a pencil), B is a nonsingular complete curve. By Bertini's theorem, a general fiber F of the fibration $f: X^{\prime} \longrightarrow B$ is a $(n-1)$-dimensional nonsingular projective variety of general type.

Once a fibration $f: X^{\prime} \longrightarrow B$ is obtained, we may take the relative minimal model $f_{0}: X_{0} \longrightarrow B$ of f. Then we can remodify π and π_{V} again such that a new birational model $X^{\prime \prime}$ dominates X^{\prime} and X_{0}. Namely assume $\pi^{\prime}: X^{\prime \prime} \longrightarrow X^{\prime}$ and $\pi^{\prime \prime}: X^{\prime \prime} \longrightarrow X_{0}$ are the birational morphisms, set $f^{\prime \prime}:=f \circ \pi^{\prime}$, then $f^{\prime \prime}=f_{0} \circ \pi^{\prime \prime}$.

Therefore we can make the following:
2.3. Assumption on X^{\prime}. To avoid too complicated notations, we may assume from the beginning that $X^{\prime}=X^{\prime \prime}$ by further birational modifications, i.e. there is a contraction morphism $\theta: X^{\prime} \longrightarrow X_{0}$ such that $f=f_{0} \circ \theta$ and that f_{0} is a relative minimal model of f.

With this assumption, we pick up a general fiber F_{0} of f_{0} and set $\sigma:=\left.\theta\right|_{F}$, then $\sigma: F \longrightarrow F_{0}$ is a birational morphism onto the minimal model.

Set $b:=g(B)$. We will study the geometry of f according to the value of b. In fact there are two cases:
(i) $b>0, M_{0} \sim \sum_{i=1}^{p} F_{i} \equiv p F$ where the F_{i} 's are different smooth fibers of f for all i and $p \geq 2$;
(ii) $b=0, M_{0} \sim p F \leq m_{0} \pi^{*}\left(K_{X}\right)$ with $p \geq 1$.
2.4. Reduction to problems on X^{\prime}. As we have seen, there is a birational morphism $\pi_{V}: X^{\prime} \longrightarrow V$. Let m be a positive integer and Q a nef \mathbb{Q}-divisor on V. Since

$$
\pi_{V *} \mathcal{O}_{X^{\prime}}\left(m K_{X^{\prime}}+\pi_{V}^{*}(\lceil Q\rceil)\right) \cong \mathcal{O}_{V}\left(m K_{V}+\lceil Q\rceil\right)
$$

and $m K_{X^{\prime}}+\pi_{V}^{*}(\lceil Q\rceil) \geq m K_{X^{\prime}}+\left\lceil Q^{\prime}\right\rceil$ where $Q^{\prime}:=\pi_{V}^{*}(Q)$ is nef on X^{\prime}, the birationality of $\Phi_{\left|m K_{X^{\prime}}+\left\lceil Q^{\prime}\right\rceil\right|}$ implies that of $\Phi_{\left|m K_{V}+\lceil Q\rceil\right|}$. Furthermore the fact $m K_{X^{\prime}} \geq m \pi^{*}\left(K_{X}\right)$ allows us to consider a smaller linear system on X^{\prime} like:

$$
\left|K_{X^{\prime}}+\left\lceil(m-1) \pi^{*}\left(K_{X}\right)+Q^{\prime}\right\rceil\right|
$$

The 3-dimensional version of the next lemma has appeared as $[9$, Lemma 3.4].

Lemma 2.5. Let $f_{Y}: Y \rightarrow B_{0}$ be a rational map onto a smooth curve B_{0} where Y is a normal projective minimal variety (i.e. K_{Y} nef) with at worst terminal singularities. Let $\pi_{Y}: Y^{\prime} \rightarrow Y$ be any birational modification from a nonsingular projective model Y^{\prime} such that $g_{Y}:=$ $f_{Y} \circ \pi_{Y}: Y^{\prime} \longrightarrow B_{0}$ is a proper morphism. Denote by F_{b} any irreducible component in a general fiber of g_{Y}. Assume $g\left(B_{0}\right)>0$. Then

$$
\mathcal{O}_{F_{b}}\left(\left.\pi_{Y}^{*}\left(K_{Y}\right)\right|_{F_{b}}\right) \cong \mathcal{O}_{F_{b}}\left(\sigma^{\prime *}\left(K_{F_{b}, 0}\right)\right)
$$

where $F_{b, 0}$ is a minimal model of F_{b} and there is a contradiction morphism $\sigma^{\prime}: F_{b} \longrightarrow F_{b, 0}$.

Proof. One has a morphism $g_{Y}: Y^{\prime} \longrightarrow B_{0}$. By theorems of Shokurov [16] and Hacon-M ${ }^{\text {c }}$ kernan [11], each fiber of $\pi_{Y}: Y^{\prime} \longrightarrow Y$ is rationally chain connected. Therefore, $g_{Y}\left(\pi_{Y}^{-1}(y)\right)$ is a point for all $y \in Y$. Considering the image $G \subset\left(Y \times B_{0}\right)$ of Y^{\prime} via the morphism $\left(\pi_{Y} \times g_{y}\right) \circ \triangle_{Y^{\prime}}$ where $\triangle_{Y^{\prime}}$ is the diagonal map $Y^{\prime} \longrightarrow Y^{\prime} \times Y^{\prime}$, one knows that G is a projective variety. Let $g_{1}: G \longrightarrow Y$ and $g_{2}: G \longrightarrow B_{0}$ be two projection maps. Since g_{1} is a projective morphism and even a bijective map, g_{1} must be both a finite morphism of degree 1 and a birational morphism. Since Y is normal, g_{1} must be an isomorphism. So g_{Y} factors as $f_{1} \circ \pi_{Y}$ where $f_{1}:=g_{2} \circ g_{1}^{-1}: Y \rightarrow B_{0}$ is a welldefined morphism. Let $Y \xrightarrow{f_{0}} B^{\prime} \xrightarrow{s^{\prime}} B_{0}$ be the Stein factorization of f_{1}. Set $f^{\prime}:=f_{0} \circ \pi_{Y}$. Then F is a general fiber of f^{\prime}. Denote by $F_{b, 0}$ a general fiber of f_{0}. Clearly $\left.K_{F_{b, 0}} \sim K_{Y}\right|_{F_{b, 0}}$ is nef and so $F_{b, 0}$ is minimal. So it is clear that $\left.\pi_{Y}^{*}\left(K_{Y}\right)\right|_{F_{b}} \sim \sigma^{\prime *}\left(K_{F_{b, 0}}\right)$ where we set $\sigma^{\prime}:=\left.\pi_{Y}\right|_{F_{b}}: F_{b} \longrightarrow F_{b, 0}$.
Q.E.D.

The above lemma clearly applies to our situation with $b>0$.
Now we begin to study the case $b=0$. According to our definition, $M_{m, F}$ denotes the movable part of $\left|m K_{F}\right|$ for any $m>0$.

Since $B \cong \mathbb{P}^{1}$, one has $\mathcal{O}_{B}(1) \hookrightarrow f_{*} \omega_{X^{\prime}}^{\otimes m_{0}}$. Then there is the inclusion:

$$
f_{*} \omega_{X^{\prime} / B}^{\otimes m} \hookrightarrow f_{*} \omega_{X^{\prime}}^{\otimes m\left(2 m_{0}+1\right)}
$$

for all integers $m>0$. Because $f_{*} \omega_{X^{\prime} / B}^{\otimes m}$ is semi-positive (see Viehweg [22]) and is thus a direct sum of line bundles of non-negative degree, so it is generated by global sections. Therefore any local section of $f_{*} \omega_{X^{\prime} / B}^{\otimes m}$ can be extended to a global one of $f_{*} \omega_{X^{\prime}}^{\otimes m\left(2 m_{0}+1\right)}$. This already means

$$
\left.m\left(2 m_{0}+1\right) \pi^{*}\left(K_{X}\right)\right|_{F} \geq\left. M_{m\left(2 m_{0}+1\right), X^{\prime}}\right|_{F} \geq M_{m, F}
$$

Whenever m is divisible by the Cartier index of F_{0}, the Base Point Free Theorem says that $M_{m, F} \sim m \sigma^{*}\left(K_{F_{0}}\right)$. Thus we get

$$
\begin{equation*}
\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geq\left.\frac{1}{m\left(2 m_{0}+1\right)} M_{m\left(2 m_{0}+1\right), X^{\prime}}\right|_{F} \geq \frac{1}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right) \tag{1}
\end{equation*}
$$

Lemma 2.6. Keep the same notation as in 2.2. Assume $b=0$ and that a general fiber of f has a Gorenstein minimal model. Then there exists a sequence of positive rational numbers $\left\{\beta_{t}\right\}$, with $\beta_{t}<\frac{p}{m_{0}+p}$ and $\beta_{t} \underset{t \mapsto+\infty}{\mapsto} \frac{p}{m_{0}+p}$, such that

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{F}-\beta_{t} \sigma^{*}\left(K_{F_{0}}\right)
$$

is \mathbb{Q}-linearly equivalent to an effective \mathbb{Q}-divisor for all integers $t>0$.
Proof. When $n=\operatorname{dim}(V)=3$, this is nothing but Theorem [9, Lemma 3.3]. Here we generalize it for any n. One has $\mathcal{O}_{B}(p) \hookrightarrow f_{*} \omega_{X^{\prime}}^{m_{0}}$ and therefore $f_{*} \omega_{X^{\prime} / B}^{t_{0} p} \hookrightarrow f_{*} \omega_{X^{\prime}}^{t_{0} p+2 t_{0} m_{0}}$ for any positive integer t_{0}.

Note that $f_{*} \omega_{X^{\prime} / B}^{t_{0} p}$ is generated by global sections since it is semipositive according to Viehweg [22]. So any local section can be extended to a global one. On the other hand, whenever t_{0} is bigger, $\left|t_{0} p \sigma^{*}\left(K_{F_{0}}\right)\right|$ is free by Base Point Free Theorem and is exactly the movable part of $\left|t_{0} p K_{F}\right|$ by the ordinary projection formula. Clearly one has the following relation:

$$
\left.a_{0} \pi^{*}\left(K_{X}\right)\right|_{F} \geq\left. M_{t_{0} p+2 t_{0} m_{0}, X^{\prime}}\right|_{F} \geq b_{0} \sigma^{*}\left(K_{F_{0}}\right)
$$

where $a_{0}:=t_{0} p+2 t_{0} m_{0}$ and $b_{0}:=t_{0} p$. This means that there is an effective \mathbb{Q}-divisor E_{F}^{\prime} on F such that

$$
\left.a_{0} \pi^{*}\left(K_{X}\right)\right|_{F}=\mathbb{Q} b_{0} \sigma^{*}\left(K_{F_{0}}\right)+E_{F}^{\prime} .
$$

Thus $\left.\pi^{*}\left(K_{X}\right)\right|_{F}=\mathbb{Q} \frac{p}{p+2 m_{0}} \sigma^{*}\left(K_{F_{0}}\right)+E_{F}$ with $E_{F}=\frac{1}{a_{0}} E_{F}^{\prime}$.
Let us consider the case $p \geq 2$ first.
Assume we have defined a_{l} and b_{l} such that the following is satisfied with $l=t$:

$$
\left.a_{l} \pi^{*}\left(K_{X}\right)\right|_{F} \geq b_{l} \sigma^{*}\left(K_{F_{0}}\right)
$$

We will define a_{t+1} and b_{t+1} inductively such that the above inequality is satisfied with $l=t+1$. One may assume from the beginning (modulo necessary blow-ups) that the fractional part of the support of $a_{t} \pi^{*}\left(K_{X}\right)$ is of simple normal crossing. Then the Kawamata-Viehweg vanishing theorem gives the surjective map

$$
H^{0}\left(K_{X^{\prime}}+\left\lceil a_{t} \pi^{*}\left(K_{X}\right)\right\rceil+F\right) \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil a_{t} \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}\right)
$$

One has the relation

$$
\begin{aligned}
\mid K_{X^{\prime}}+\left\lceil a_{t} \pi^{*}\left(K_{X}\right)\right\rceil+F \|_{F} & =\left|K_{F}+\left\lceil a_{t} \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F} \mid \\
& \supset\left|K_{F}+b_{t} \sigma^{*}\left(K_{F_{0}}\right)\right| \\
& \supset\left|\left(b_{t}+1\right) \sigma^{*}\left(K_{F_{0}}\right)\right| .
\end{aligned}
$$

Denote by $M_{a_{t}+1, X^{\prime}}^{\prime}$ the movable part of $\left|\left(a_{t}+1\right) K_{X^{\prime}}+F\right|$. Applying [7, Lemma 2.7], one has $\left.M_{a_{t}+1, X^{\prime}}^{\prime}\right|_{F} \geq\left(b_{t}+1\right) \sigma^{*}\left(K_{F_{0}}\right)$. Re-modifying our original π such that $\left|M_{a_{t}+1, X^{\prime}}^{\prime}\right|$ is base point free. In particular, $M_{a_{t}+1, X^{\prime}}^{\prime}$ is nef. Since X is of general type $\left|m K_{X}\right|$ gives a birational map whenever m is big enough. Thus we see that $M_{a_{t}+1, X^{\prime}}^{\prime}$ is big if we fix a very big t_{0} in advance.

Now the Kawamata-Viehweg vanishing theorem again gives

$$
\begin{aligned}
\mid K_{X^{\prime}}+M_{a_{t}+1, X^{\prime}}^{\prime}+F \|_{F} & =\left|K_{F}+M_{a_{t}+1, X^{\prime}}^{\prime}\right|_{F} \mid \\
& \supset\left|K_{F}+\left(b_{t}+1\right) \sigma^{*}\left(K_{F_{0}}\right)\right| \\
& \supset\left|\left(b_{t}+2\right) \sigma^{*}\left(K_{F_{0}}\right)\right| .
\end{aligned}
$$

Repeat the above procedure and denote by $M_{a_{t}+u, X^{\prime}}^{\prime}$ the movable part of $\left|K_{X^{\prime}}+M_{a_{t}+u-1, X^{\prime}}^{\prime}+F\right|$ for integers $u \geq 2$. For the same reason, we may assume $\left|M_{a_{t}+u, X^{\prime}}^{\prime}\right|$ is base point free and is thus nef and big. Inductively, for any $u>0$, one has:

$$
\left.M_{a_{t}+u, X^{\prime}}^{\prime}\right|_{F} \geq\left(b_{t}+u\right) \sigma^{*}\left(K_{F_{0}}\right)
$$

Applying the vanishing theorem once more, one has

$$
\begin{aligned}
\mid K_{X^{\prime}}+M_{a_{t}+u, X^{\prime}}^{\prime}+F \|_{F} & =\left|K_{F}+M_{a_{t}+u, X^{\prime}}^{\prime}\right|_{F} \mid \\
& \supset\left|K_{F}+\left(b_{t}+u\right) \sigma^{*}\left(K_{F_{0}}\right)\right| \\
& \supset\left|\left(b_{t}+u+1\right) \sigma^{*}\left(K_{F_{0}}\right)\right| .
\end{aligned}
$$

Take $u=p-1$. Noting that

$$
\left|K_{X^{\prime}}+M_{a_{t}+p-1, X^{\prime}}^{\prime}+F\right| \subset\left|\left(a_{t}+p+m_{0}\right) K_{X^{\prime}}\right|
$$

and applying [7, Lemma 2.7] again, one has

$$
\left.a_{t+1} \pi^{*}\left(K_{X}\right)\right|_{F} \geq\left. M_{a_{t}+p+m_{0}, X^{\prime}}\right|_{F} \geq\left. M_{a_{t}+p, X^{\prime}}^{\prime}\right|_{F} \geq b_{t+1} \sigma^{*}\left(K_{F_{0}}\right)
$$

where $a_{t+1}:=a_{t}+p+m_{0}$ and $b_{t+1}=b_{t}+p$. Set $\beta_{t}=\frac{b_{t}}{a_{t}}$. Clearly $\lim _{t \mapsto+\infty} \beta_{t}=\frac{p}{m_{0}+p}$.

The case $p=1$ can be considered similarly with a simpler induction. We leave it as an exercise.
Q.E.D.

Lemma 2.7. Let $\widetilde{\Lambda} \subset|L|$ be a pencil on V where L is a divisor on V. Let R be a nef and big \mathbb{Q}-divisor on V. Assume there is a birational modification $\pi_{\tilde{\Lambda}}: V^{\prime} \longrightarrow V$ such that:
(1) the fractional part of $\pi_{\tilde{\Lambda}}^{*}(R)$ has simple normal crossing supports and the movable part of $\pi_{\widetilde{\Lambda}}^{*}(\widetilde{\Lambda})$ is base point free;
(2) $\left|K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil\right| \neq \emptyset$.

Then $\left|K_{V}+\lceil R\rceil+L\right|$ distinguishes different irreducible elements in the movable part of $\widetilde{\Lambda}$.

Proof. Noting that

$$
\pi_{\widetilde{\Lambda} *} \mathcal{O}_{V^{\prime}}\left(K_{V^{\prime}}+\pi_{\widetilde{\Lambda}}^{*}(\lceil R\rceil)+\pi_{\widetilde{\Lambda}}^{*}(L) \mid\right) \cong \mathcal{O}_{V}\left(K_{V}+\lceil R\rceil+L\right)
$$

and that $\pi_{\tilde{\Lambda}}^{*}(\lceil R\rceil) \geq\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil$, we only need to study the smaller linear system $\left.\mid K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil\right)+M_{\widetilde{\Lambda}} \mid$ where $\left|M_{\widetilde{\Lambda}}\right|$ is the movable part of $\pi_{\widetilde{\Lambda}}^{*}(\widetilde{\Lambda})$. By our assumption, $\left|M_{\tilde{\Lambda}}\right|$ is composed with a pencil and $f_{\tilde{\Lambda}}: V^{\prime} \longrightarrow B_{\tilde{\Lambda}}$ is an induced fibration of $\Phi_{\left|M_{\tilde{\Lambda}}\right|}$, where $B_{\tilde{\Lambda}}$ is a smooth curve.

If $g\left(B_{\tilde{\Lambda}}\right)=0$, then $\left|K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil+M_{\tilde{\Lambda}}\right|$ distinguishes different general fibers of $f_{\widetilde{\Lambda}}$ because $\left|K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil\right| \neq \emptyset$.

If $g\left(B_{\tilde{\Lambda}}\right)>0$, we pick up two general fibers $F_{\widetilde{\Lambda}}^{\prime}$ and $F_{\tilde{\Lambda}}^{\prime \prime}$. Then $M_{\widetilde{\Lambda}}-F_{\widetilde{\Lambda}}^{\prime}-F_{\widetilde{\Lambda}}^{\prime \prime}$ is nef and the Kawamata-Viehweg vanishing theorem [13, 21] gives

$$
H^{1}\left(V^{\prime}, K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil+M_{\tilde{\Lambda}}-F_{\widetilde{\Lambda}}^{\prime}-F_{\widetilde{\Lambda}}^{\prime \prime}\right)=0
$$

Thus follows the following surjective map:

$$
\begin{aligned}
& H^{0}\left(V^{\prime}, K_{V^{\prime}}+\left\lceil\pi_{\tilde{\Lambda}}^{*}(R)\right\rceil+M_{\tilde{\Lambda}}\right) \\
\longrightarrow & H^{0}\left(F_{\tilde{\Lambda}}^{\prime},\left.\left(K_{V^{\prime}}+\left\lceil\pi_{\tilde{\Lambda}}^{*}(R)\right\rceil\right)\right|_{F_{\tilde{\Lambda}}^{\prime}}\right) \oplus H^{0}\left(F_{\widetilde{\Lambda}^{\prime \prime}},\left.\left(K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil\right)\right|_{F_{\widetilde{\Lambda}}^{\prime \prime}}\right)
\end{aligned}
$$

Again the assumption $\left|K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil\right| \neq \emptyset$ implies that $\mid K_{V^{\prime}}+\left\lceil\pi_{\widetilde{\Lambda}}^{*}(R)\right\rceil+$ $M_{\tilde{\Lambda}} \mid$ (and thus $\left|K_{V}+\lceil R\rceil+\underset{\sim}{L}\right|$) distinguishes different irreducible elements in the movable part of $\widetilde{\Lambda}$. We are done.
Q.E.D.

The following lemma is tacitly used in our context.
Lemma 2.8. Let \bar{Q} be any \mathbb{Q}-divisor on a nonsingular projective variety Z. Let $\widetilde{\pi}: \widetilde{Z} \longrightarrow Z$ be any birational modification. Assume that $\left|K_{\tilde{Z}}+\left\lceil\widetilde{\pi}^{*}(\bar{Q})\right\rceil\right|$ gives a birational map. Then $\left|K_{Z}+\lceil\bar{Q}\rceil\right|$ gives a birational map.

Proof. This is clear due to the fact:

$$
\widetilde{\pi}_{*} \mathcal{O}_{\tilde{Z}}\left(K_{\tilde{Z}}+\widetilde{\pi}^{*}(\lceil\bar{Q}\rceil)\right) \cong \mathcal{O}_{Z}\left(K_{Z}+\lceil\bar{Q}\rceil\right)
$$

and $\widetilde{\pi}^{*}(\lceil\bar{Q}\rceil) \geq\left\lceil\widetilde{\pi}^{*}(\bar{Q})\right\rceil$.
Q.E.D.

§3. \mathbb{Q}-divisors on surfaces and threefolds

We leave the proof for the next two results on surfaces as an exercise which is really a standard \mathbb{Q}-divisor argument.

Lemma 3.1. Let S be a nonsingular projective surface of general type. Denote by $\sigma: S \longrightarrow S_{0}$ the birational contraction onto the minimal model S_{0}. For any nef and big \mathbb{Q}-divisor Q_{2} on S, one has

$$
h^{0}\left(S, K_{S}+m \sigma^{*}\left(K_{S_{0}}\right)+\left\lceil Q_{2}\right\rceil\right)>1
$$

under one of the following situations:
(1) $m \geq 2$;
(2) $m=1$ and $p_{g}(S)>0$.

Theorem 3.2. Keep the same notation as in Lemma 3.1. Then the rational map $\Phi_{\left|K_{S}+m \sigma^{*}\left(K_{S_{0}}\right)+\left\lceil Q_{2}\right\rceil\right|}$ is birational in either of the following cases:
(1) $m \geq 4$;
(2) $m \geq 3$ and $p_{g}(S)>0$.

Proposition 3.3. Assume $\operatorname{dim}(V)=3$ and $P_{m_{0}}(V) \geq 2$ for some positive integer m_{0}. Keep the same notation as in 2.2. Let Q_{3} be a nef \mathbb{Q}-divisor on V and Q_{3}^{\prime} a nef \mathbb{Q}-divisor on X^{\prime}. Then $K_{X^{\prime}}+$ $\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+F$ is effective for all rational numbers $q_{3}>2 m_{0}+2$. Consequently $m K_{V}+\left\lceil Q_{3}\right\rceil$ is effective for all integers $m \geq 3 m_{0}+4$.

Proof. The last statement is a direct application of the first one due to 2.4. We prove the first statement.
(£) Take further necessary modifications to X^{\prime} such that the supports of the fractional parts of Q_{3}^{\prime} and $\pi_{V}^{*}\left(Q_{3}\right)$ are of simple normal crossing. For simplicity we still use X^{\prime} to denote the final birational model dominating V.
We have a fibration $f: X^{\prime} \longrightarrow B$ induced from $\left|m_{0} K\right|$ as in 2.2. We consider the linear system

$$
\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+F\right| \subset\left|\left(\left\lceil q_{3}\right\rceil+m_{0}+1\right) K_{X^{\prime}}+\left\lceil Q_{3}^{\prime}\right\rceil\right| .
$$

Because $q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}$ is nef and big and the fractional part of Q_{3}^{\prime} is of simple normal crossing by our assumption, the vanishing theorem says

$$
H^{1}\left(X, K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil\right)=0 .
$$

Thus one has the surjective map:

$$
\begin{aligned}
& H^{0}\left(X, K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+F\right) \\
& \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil\right|_{F}\right) .
\end{aligned}
$$

Note that in our case a general fiber of f is a surface of general type which has a Gorenstein minimal model. Thus the conditions in both Lemma 2.5 and Lemma 2.6 are satisfied. If $b>0$, Lemma 2.5 says that $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \sim \sigma^{*}\left(K_{F_{0}}\right)$ where $\sigma: F \longrightarrow F_{0}$ is the contraction map. If $g(B)=0$, Lemma 2.6 says that one can find a very big number s such that

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geq \beta_{s} \sigma^{*}\left(K_{F_{0}}\right)
$$

and β_{s} is sufficiently near $\frac{p}{m_{0}+p} \geq \frac{1}{m_{0}+1}$ and $\beta_{s}<\frac{p}{m_{0}+p}$.
Let us put $\alpha_{s}:=\frac{p}{m_{0}+p}-\beta_{s}$. Then $\alpha_{s} \mapsto 0$ whenever $s \mapsto+\infty$.
Whenever $q_{3}>2 m_{0}+2$, one has

$$
\begin{aligned}
\left.q_{3} \pi^{*}\left(K_{X}\right)\right|_{F} & \geq q_{3} \beta_{s} \sigma^{*}\left(K_{F_{0}}\right)=q_{3}\left(\frac{p}{m_{0}+p}-\alpha_{s}\right) \sigma^{*}\left(K_{F_{0}}\right) \\
& =\left(2+\left(\frac{q_{3} p-2 m_{0}-2 p}{m_{0}+p}-q_{3} \alpha_{s}\right)\right) \sigma^{*}\left(K_{F_{0}}\right) .
\end{aligned}
$$

When s is big enough, one sees $\frac{q_{3} p-2 m_{0}-2 p}{m_{0}+p}-q_{3} \alpha_{s}>0$. We may assume that $\left.q_{3} \pi^{*}\left(K_{X}\right)\right|_{F}-q_{3} \beta_{s} \sigma^{*}\left(K_{F_{0}}\right)$ is \mathbb{Q}-linearly equivalent to an effective divisor $R_{q_{3}, s}$ on F. Then

$$
\begin{aligned}
\widetilde{R_{q_{3}, s}} & :=\left.q_{3} \pi^{*}\left(K_{X}\right)\right|_{F}-R_{q_{3}, s}-2 \sigma^{*}\left(K_{F, 0}\right) \\
& \equiv\left(\frac{q_{3} p-2 m_{0}-2 p}{m_{0}+p}-q_{3} \alpha_{s}\right) \sigma^{*}\left(K_{F_{0}}\right)
\end{aligned}
$$

is nef and big since $\frac{q_{3} p-2 m_{0}-2 p}{m_{0}+p}>0$. Therefore
$H^{0}\left(K_{F}+\left.\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil\right|_{F}\right) \supset H^{0}\left(K_{F}+2 \sigma^{*}\left(K_{F_{0}}\right)+\left\lceil\widetilde{R}_{q_{3}, n}+Q_{3}^{\prime}\right\rceil\right) \neq 0$
by Lemma 3.1. And in fact $h^{0}\left(K_{F}+2 \sigma^{*}\left(K_{F_{0}}\right)+\left\lceil\widetilde{R}_{q_{3}, n}+Q_{3}^{\prime}\right\rceil\right)>1$.
Q.E.D.

Remark 3.4. In the proof of Proposition 3.3, if the general fiber of f is a surface with $p_{g}>0$, then, according to Lemma 3.1, $K_{X^{\prime}}+$ $\left.\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right)\right\rceil+F$ is effective for all rational numbers $q_{3}>m_{0}+1$. And accordingly $m K_{V}+\left\lceil Q_{3}\right\rceil$ is effective for all integers $m \geq 2 m_{0}+3$.

Theorem 3.5. Assume $\operatorname{dim}(V)=3$ and $P_{m_{0}}(V) \geq 2$ for some positive integer m_{0}. Keep the same notation as in 2.2. Let Q_{3} be a nef \mathbb{Q}-divisor on V and Q_{3}^{\prime} a nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\Phi_{\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+M_{0}\right|}$ is birational for all rational numbers $q_{3}>4 m_{0}+4$. In particular $\Phi_{\left|m K_{V}+\left\lceil Q_{3}\right\rceil\right|}$ is birational for all integers $m \geq 5 m_{0}+6$;
(2) if the general fiber F of $f: X^{\prime} \longrightarrow B$ has positive geometric genus, $\Phi_{\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+M_{0}\right|}$ is birational for all rational numbers $q_{3}>3 m_{0}+3$. In particular $\Phi_{\left|m K_{V}+\left\lceil Q_{3}\right\rceil\right|}$ is birational for all integers $m \geq 4 m_{0}+5$.

Proof. According to Proposition 3.3 and Remark 3.4,

$$
K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil
$$

is always effective under each situation since $m_{0} \pi^{*}\left(K_{X}\right) \geq M_{0}$. Therefore Lemma 2.7 says that $\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+M_{0}\right|$ can distinguish different generic irreducible elements of $\left|M_{0}\right|$. Thus it suffices to prove the birationality of $\left.\Phi_{\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+M_{0}\right|}\right|_{F}$ for a general fiber F of f. The proofs for statements (1) and (2) are similar. We only consider (1) while omitting the proof for (2).

Of course, the first step in utilizing the vanishing theorem is to make the support of the fractional part of $\left\{Q_{3}^{\prime}\right\}$ to be simple normal crossing. This can be done by re-modifying X^{\prime}. For simplicity we may assume, from now on, that our X^{\prime} has the property stated in $(£)$ (see the proof of Proposition 3.3).

The Kawatama-Viehweg vanishing theorem implies, noticing $\left.F\right|_{F} \sim$ 0 , that

$$
\left|K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+M_{0} \|_{F}=\left|K_{F}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil\right|_{F}\right|
$$

We study a smaller system $\mid K_{F}+\left\lceil\left. q_{3} \pi^{*}\left(K_{X}\right)\right|_{F}+\left.Q_{3}^{\prime}\right|_{F}\right\rceil$. We have already $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geq \beta_{s} \sigma^{*}\left(K_{F_{0}}\right)$ and $0<\alpha_{s}:=\frac{p}{m_{0}+p}-\beta_{s}, \alpha_{s} \mapsto 0$ whenever $s \mapsto+\infty$. When $q_{3}>4 m_{0}+4$,

$$
\begin{aligned}
\left.q_{3} \pi^{*}\left(K_{X}\right)\right|_{F} & \geq q_{3} \beta_{s} \sigma^{*}\left(K_{F}\right) \\
& =4 \sigma^{*}\left(K_{F_{0}}\right)+t_{s} \sigma^{*}\left(K_{F_{0}}\right)
\end{aligned}
$$

where $t_{s}:=\frac{q_{3} p-4 m_{0}-4 p}{m_{0}+p}-q_{3} \alpha_{s}>0$ whenever s is big enough. Therefore, by Theorem 3.2 and Lemma 2.8, $\left|K_{S}+\left\lceil 4 \sigma^{*}\left(K_{F_{0}}\right)+t_{s} \sigma^{*}\left(K_{F_{0}}\right)+Q_{3}^{\prime}\right\rceil\right|_{F} \mid$ gives a birational map. Being a bigger linear system,

$$
\left|K_{F}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil\right|_{F} \mid
$$

also gives a birational map. We are done.
Q.E.D.
3.6. Threefolds V with $\chi\left(\mathcal{O}_{V}\right)>1$. Keep the same notation as in 2.2. As seen in [6, Lemma 2.32], if $\chi\left(\mathcal{O}_{V}\right)>1$ and $q(V)=0$, then a general fiber F of $f: X^{\prime} \longrightarrow B$ has the geometric genus $p_{g}(F)>0$.

Lemma 3.7. Assume $\operatorname{dim}(V)=3$. Then

$$
\lambda(V) \leq \begin{cases}18 & \text { if } \chi\left(\mathcal{O}_{V}\right)>1 \text { and } q(V)=0 \\ 10 & \text { otherwise }\end{cases}
$$

Proof. The first statement $\lambda(V) \leq 18$ is due to [6, Theorem 4.8].
When $q(V)>0, \lambda(V) \leq 3$ by Chen-Hacon [4].
When $\chi\left(\mathcal{O}_{V}\right)=1, \lambda(V) \leq 10$ by [6, Corollary 3.13].
Finally when $\chi\left(\mathcal{O}_{V}\right)<0, \lambda(V) \leq 3$ is a direct consequence of Reid's plurigenus formula by Reid [17] and by Chen-Zuo [9, Lemma 4.1].
Q.E.D.

From now on, we classify a 3 -fold V into two types:
(I) $\chi\left(\mathcal{O}_{V}\right)>1$ and $q(V)=0$;
(II) either $\chi\left(\mathcal{O}_{V}\right) \leq 1$ or $q(V)>0$.

§4. Point separation on 4 -folds

Proposition 4.1. Assume $n=\operatorname{dim}(V)=4$ and $P_{m_{0}}(V) \geq 2$ for some positive integer m_{0}. Keep the same notation as in 2.2. Let Q_{4} be a nef \mathbb{Q}-divisor on V and Q_{4}^{\prime} a nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+F$ is an effective divisor for all rational numbers $q_{4}>74 m_{0}+37$;
(2) $m K_{V}+\lceil Q\rceil$ is effective for all integers $m \geq 75 m_{0}+39$.

Proof. (2) is a direct result from (1) according to 2.4 . We only prove (1). Similar to assumption ($£$) in the proof of Proposition 3.3, we may assume that X^{\prime} is good enough.

Because $q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}$ is nef and big, and its fractional part has normal crossing supports by assumption, the Kawamata-Viehweg vanishing theorem gives the surjective map:

$$
\begin{aligned}
& H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+F\right) \\
& \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil\right|_{F}\right) .
\end{aligned}
$$

By Lemma 2.5 and inequality (1), one has

$$
\begin{aligned}
\left.\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil\right|_{F} & \geq\left\lceil\left.\left(q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right)\right|_{F}\right\rceil \\
& \geq\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil
\end{aligned}
$$

If F is of type (I), then, by Remark 3.4, 3.6 and Lemma 3.7, we need to set $\frac{q_{4}}{2 m_{0}+1}>37 \geq(\lambda(F)+1)+\lambda(F)$, i.e. $q_{4}>74 m_{0}+37$, so that $K_{F}+\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil$ is an effective divisor on F.

If F is of type (II), then by Proposition 3.3 and Lemma 3.7 we need $\frac{q_{4}}{2 m_{0}+1}>32 \geq(2 \lambda(F)+2)+\lambda(F)$ so that $K_{F}+\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil$ is effective.

In a word, when $q_{4}>74 m_{0}+37, K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+F$ is effective.
Q.E.D.

Theorem 4.2. Assume $n=\operatorname{dim}(V)=4$ and $P_{m_{0}} \geq 2$ for some positive integer m_{0}. Keep the same notation as in 2.2. Let Q_{4} be a nef \mathbb{Q}-divisor on V and Q_{4}^{\prime} a nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\left|K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+M_{0}\right|$ gives a birational map for all rational numbers $q_{4}>150 m_{0}+75$;
(2) $\Phi_{\left|m K_{V}+\lceil Q\rceil\right|}$ is birational for all integers $m \geq 151 m_{0}+77$.

Proof. Similar to assumption $(£)$, we may assume that X^{\prime} is good enough (after a necessary modification). Also (2) is a direct result of (1). We only prove (1).

By Proposition 4.1, we see that $K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil \geq 0$. Lemma 2.7 tells us that we only need to verify the birationality of

$$
\left.\Phi_{\left|K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+M_{0}\right|}\right|_{F}
$$

for a general fiber F of f. The vanishing theorem gives

$$
\left|K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+M_{0} \|_{F}=\left|K_{F}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil\right|_{F}\right|
$$

noticing $\left.M_{0}\right|_{F} \sim 0$. Lemma 2.5 and inequality (1) imply

$$
\left.\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil\right|_{F} \geq\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil .
$$

Noting that F is a threefold of general type, we still use a similar argument to that in the proof of Proposition 4.1.

If F is of type (I), then, by Theorem 3.5(2), 3.6, Lemma 3.7 and Lemma 2.8, $\left|K_{F}+\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil\right|$ gives a birational map when

$$
\frac{q_{4}}{2 m_{0}+1}>75 \geq(3 \lambda(F)+3)+\lambda(F)
$$

i.e. $q_{4}>150 m_{0}+75$.

If F is of type (II), by Theorem 3.5(1) and Lemma 3.7,

$$
\Phi_{\left|K_{F}+\left\lceil\frac{q_{4}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{4}^{\prime}\right|_{F}\right\rceil\right|}
$$

is birational when $\frac{q_{4}}{2 m_{0}+1}>54 \geq(4 \lambda(F)+4)+\lambda(F)$, i.e. $q_{4}>108 m_{0}+54$.
To make a conclusion, $\left|K_{X^{\prime}}+\left\lceil q_{4} \pi^{*}\left(K_{X}\right)+Q_{4}^{\prime}\right\rceil+M_{0}\right|$ gives a birational map for all rational numbers $q_{4}>150 m_{0}+75$. Q.E.D.

A direct result of Theorem 4.2 is the following:
Corollary 4.3. Assume $\operatorname{dim}(V)=4$ and $P_{m_{0}} \geq 2$ for some positive integer m_{0}. Then φ_{m} is birational onto its image for all integers $m \geq$ $151 m_{0}+77$.

§5. Proof of the main theorem

We organize the proof according to the value of ι.

First we consider the case $\iota \geq n-2$.
Proposition 5.1. Assume $n=\operatorname{dim}(V) \geq 3, P_{m_{0}}(V) \geq 2$ for some positive integer m_{0} and $\iota \geq n-2$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\quad K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-3) M_{0}+F$ is effective for all rational numbers $q_{n}>\min \left\{2 m_{0}+2,22\right\} \cdot\left(2 m_{0}+1\right)^{n-3}$;
(2) $m K_{V}+\left\lceil Q_{n}\right\rceil$ is effective for all integers $m \geq \min \left\{2 m_{0}+2,22\right\}$. $\left(2 m_{0}+1\right)^{n-3}+m_{0}(n-2)+2$.

Proof. Noting that (2) is a direct application of (1), we only prove (1). We are going to do an induction on n.

When $n=3$, Proposition 3.3 says that the statement is true when $q_{3}>2 m_{0}+2=\left(2 m_{0}+2\right) \cdot\left(2 m_{0}+1\right)^{n-3}+m_{0}(n-3)$. On the other hand, we may replace m_{0} with $\lambda(V)$. In fact, Lemma 3.7 gives $\lambda(V) \leq 18$ for type (I) and $\lambda(V) \leq 10$ for type (II). Thus, by Proposition 3.3 and Remark 3.4, $K_{X^{\prime}}+\left\lceil q_{3} \pi^{*}\left(K_{X}\right)+Q_{3}^{\prime}\right\rceil+F$ is effective whenever $q_{3}>22$. Therefore statement (1) is true for $q_{3}>\min \left\{2 m_{0}+2,22\right\} \cdot\left(2 m_{0}+1\right)^{n-3}+$ $m_{0}(n-3)$.

Assume that statement (1) is correct for varieties of dimension \leq $n-1$. Starting with a good model X^{\prime} satisfying 2.3 , we can do the induction. Noticing that F is of dimension $n-1$, we hope to reduce the problem onto F. Since $\iota \geq n-2$, we have $\operatorname{dim} \varphi_{m_{0}}(F) \geq \operatorname{dim} \Phi_{\left|M_{0}\right|}(F) \geq$ $n-3=\operatorname{dim}(F)-2$ by the simple additivity property. Because $\left.M_{0}\right|_{F} \leq$ $\left.m_{0} K_{X^{\prime}}\right|_{F} \sim m_{0} K_{F}$, we know $\Phi_{\left|m_{0} K_{F}\right|}(F) \geq \Phi_{\left|M_{0}\right| F \mid}(F) \geq \operatorname{dim}(F)-2$. Because $q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}$ is nef and big and has simple normal crossing
fractional parts, the vanishing theorem gives the surjective map:

$$
\begin{array}{ll}
& H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-3) M_{0}+F\right) \\
\rightarrow & H^{0}\left(F, K_{F}+\left.\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil\right|_{F}+\left.(n-3) M_{0}\right|_{F}\right) \\
\supset & H^{0}\left(F, K_{F}+\left\lceil\left. q_{n} \pi^{*}\left(K_{X}\right)\right|_{F}+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+\left.(n-3) M_{0}\right|_{F}\right) \\
\supset & H^{0}\left(F, K_{F}+\left\lceil q_{n}^{\prime} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+\left.(n-4) M_{0}\right|_{F}+\left.M_{0}\right|_{F}\right) \tag{4}
\end{array}
$$

where $q_{n}^{\prime} \geq \frac{q_{n}}{2 m_{0}+1}>\min \left\{2 m_{0}+2,22\right\} \cdot\left(2 m_{0}+1\right)^{(n-1)-3}$ by Lemma 2.5 and inequality (1). Because $\left.M_{0}\right|_{F} \leq m_{0} K_{F}$ and by taking those pencil $\Lambda_{F} \subset \mid M_{0} \|_{F}$, the induction and Lemma 2.8 tell us that $K_{F}+$ $\left\lceil q_{n}^{\prime} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+\left.((n-1)-3) M_{0}\right|_{F}+\left.M_{0}\right|_{F}$ is effective whenever $q_{n}^{\prime}>\min \left\{2 m_{0}+2,22\right\} \cdot\left(2 m_{0}+1\right)^{(n-1)-3}$. We are done.
Q.E.D.

Theorem 5.2. Assume $n=\operatorname{dim}(V) \geq 3, P_{m_{0}}(V) \geq 2$ for some positive integer m_{0} and $\iota \geq n-2$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\left|K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-2) M_{0}\right|$ gives a birational map for all rational numbers

$$
q_{n}>\min \left\{4 m_{0}+4,57\right\} \cdot\left(2 m_{0}+1\right)^{n-3}
$$

(2) $\left|m K_{V}+\left\lceil Q_{n}\right\rceil\right|$ gives a birational map for all integers

$$
m \geq \min \left\{4 m_{0}+4,57\right\} \cdot\left(2 m_{0}+1\right)^{n-3}+m_{0}(n-2)+2
$$

Proof. Again since (2) is a direct application of (1), we only prove (1). We are going to do an induction on n.

Under the assumption $q_{n}>\min \left\{4 m_{0}+4,57\right\} \cdot\left(2 m_{0}+1\right)^{n-3}$, since $m_{0} \pi^{*}\left(K_{X}\right) \geq M_{0}$, we see

$$
\begin{array}{ll}
& K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-3) M_{0} \\
\geq & K_{X^{\prime}}+\left\lceil\widetilde{q}_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-3) M_{0}+F \geq 0
\end{array}
$$

by Proposition 5.1 since $\widetilde{q}_{n}:=q_{n}-m_{0}>\min \left\{2 m_{0}+2,22\right\} \cdot\left(2 m_{0}+1\right)^{n-3}$. According to Lemma 2.7, $\left|K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-2) M_{0}\right|$ can distinguish different fibers of f. We are left to show the birationality of the rational map given by $\mid K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-2) M_{0} \|_{F}$ for a general fiber F of f.

When $n=3$ and $q_{3}>4 m_{0}+4=\left(4 m_{0}+4\right) \cdot\left(2 m_{0}+1\right)^{n-3}$, the statement is nothing but Theorem 3.5(1). On the other hand, we may replace m_{0} with $\lambda(V)$. In fact, Lemma 3.7 gives $\lambda(V) \leq 18$ for type (I) and $\lambda(V) \leq 10$ for type (II). Then, by Theorem 3.5(1) and (2),
$\left|K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-2) M_{0}\right|$ gives a birational map for all rational numbers $q_{3}>\max \{57,44\}=57$. Therefore statement (1) is true whenever $q_{3}>\min \left\{4 m_{0}+4,57\right\}$.

Assume that statement (1) is correct for varieties of dimension \leq $n-1$. Starting with a good model X^{\prime} satisfying 2.3 , we can do the induction again. Still, we see $\Phi_{\left|m_{0} K_{F}\right|}(F) \geq \Phi_{\left|M_{0}\right| F \mid}(F) \geq \operatorname{dim}(F)-2$. We hope to reduce to the problem on F. According to the relation (4), we only need to study

$$
\left|J_{n-1}\right|:=\left|K_{F}+\left\lceil q_{n}^{\prime} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+(n-4) M_{0}\right|_{F}+\left.M_{0}\right|_{F} \mid
$$

where $q_{n}^{\prime} \geq \frac{q_{n}}{2 m_{0}+1}>\min \left\{4 m_{0}+4,57\right\} \cdot\left(2 m_{0}+1\right)^{(n-1)-3}$ by Lemma 2.5 and inequality (1). Because $\left.M_{0}\right|_{F} \leq m_{0} K_{F}$ and by taking those pencil $\Lambda_{F} \subset \mid M_{0} \|_{F}$, the induction and Lemma 2.8 tell us that $\mid K_{F}+$ $\left\lceil q_{n}^{\prime} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+\left.((n-1)-2) M_{0}\right|_{F} \mid$ gives a birational map. Thus $\mid K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-2) M_{0} \|_{F}$ gives a birational map. We are done.
Q.E.D.

Next we discuss the case $\iota=n-3$.
Proposition 5.3. Assume $n=\operatorname{dim}(V) \geq 4, P_{m_{0}}(V) \geq 2$ for some positive integer m_{0} and $\iota \geq n-3$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\quad K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-4) M_{0}+F$ is effective for all rational numbers $q_{n}>37\left(2 m_{0}+1\right)^{n-3}$;
(2) $m K_{V}+\left\lceil Q_{n}\right\rceil$ is effective for all integers $m \geq 37\left(2 m_{0}+1\right)^{n-3}+$ $m_{0}(n-3)+2$.

Proof. Statement (1) implies (2). So we only prove (1). Similar to the assumption $(£)$, we may assume that X^{\prime} is good enough (modulo blow-ups) for our purpose. We prove by an induction on n.

When $n=4$, (1) is exactly Proposition 4.1(1).
Assume that (1) is correct for all varieties of dimension $n-1$. Pick a general fiber F of f. Because $\left.M_{0}\right|_{F} \leq\left. m_{0} K_{X^{\prime}}\right|_{F} \sim m_{0} K_{F}$, we know $\Phi_{\left|m_{0} K_{F}\right|}(F) \geq \Phi_{\left|M_{0}\right|_{F} \mid}(F) \geq n-4=\operatorname{dim}(F)-3$. As long as we take those pencils $\Lambda_{F} \subset \mid M_{0} \|_{F}$ on F, the induction works on F. Thus we restrict everything onto F. By the vanishing theorem, we may get the similar relation to (4):

$$
\begin{array}{ll}
& \mid K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-4) M_{0}+F \|_{F} \\
\supset & \left.\left|K_{F}+\left\lceil q_{n}^{\prime} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+((n-1)-4) M_{0}\right|_{F}+\left.M_{0}\right|_{F}\right) \mid
\end{array}
$$

where $q_{n}^{\prime} \geq \frac{q_{n}}{2 m_{0}+1}>37\left(2 m_{0}+1\right)^{(n-1)-3}$ by Lemma 2.5 and inequality (1). The later linear system is non-empty by induction. Therefore $K_{X^{\prime}}+$
$\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-4) M_{0}+F$ is effective for all rational numbers $q_{n}>37\left(2 m_{0}+1\right)^{n-3}$.
Q.E.D.

Theorem 5.4. Assume $n=\operatorname{dim}(V) \geq 4, P_{m_{0}}(V) \geq 2$ for some positive integer m_{0} and $\iota \geq n-3$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(n-4) M_{0}+F$ is effective for all rational numbers $q_{n}>75\left(2 m_{0}+1\right)^{n-3}$;
(2) $m K_{V}+\left\lceil Q_{n}\right\rceil$ is effective for all integers $m \geq 75\left(2 m_{0}+1\right)^{n-3}+$ $m_{0}(n-3)+2$.

Proof. The proof is parallel to that of Proposition 5.3. To avoid unnecessary redundancy, we omit the details.
Q.E.D.

Definition 5.5. The sequences $\left\{u_{t}\right\}_{t=4}^{n}$ and $\left\{w_{t}\right\}_{t=4}^{n}$ are defined by the following rules:

- $\quad \widetilde{\lambda}_{n}=m_{0}$ and, for all $i<n, \widetilde{\lambda}_{i}=\lambda_{i}$;
- $u_{4}=75 \widetilde{\lambda}_{4}+37$ and $w_{4}=151 \widetilde{\lambda}_{4}+75$;
- for all $i, u_{i}=\widetilde{\lambda}_{i}+u_{i-1}\left(2 \widetilde{\lambda}_{i}+1\right)$ and $w_{i}=\widetilde{\lambda}_{i}+w_{i-1}\left(2 \widetilde{\lambda}_{i}+1\right)$.

Finally we study the case $\iota \leq n-4$. We begin with the case $\iota=1$.
Theorem 5.6. Assume $n=\operatorname{dim}(V) \geq 4$ and $P_{m_{0}} \geq 2$ for some positive integer m_{0} and $\iota \geq 1$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $\quad K_{X^{\prime}}+\left\lceil\widetilde{q}_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil$ is effective for all rational numbers $\widetilde{q}_{n}>u_{n}$.
(2) $\left|K_{X^{\prime}}+\left\lceil\widetilde{q}_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil\right|$ gives a birational map for all rational numbers $\widetilde{q}_{n}>w_{n}$.
(3) $\left|m K_{V}+\left\lceil Q_{n}\right\rceil\right|$ gives a birational map for all integers $m \geq$ $w_{n}+2$.

Proof. Statement (3) is a direct result of (2). So we have to prove (1) and (2).

When $n=4$, the conditions in (1) and (2) read $\widetilde{q}_{4}>u_{4}:=75 m_{0}+37$ and $\widetilde{q}_{4}>w_{4}:=151 m_{0}+75$. Both the statements are nothing but Proposition 4.1(1) and Theorem 4.2(1), noting that $m_{0} \pi^{*}\left(K_{X}\right) \geq M_{0} \geq$ F. Besides if we take $m_{0}=\lambda(V)$, the statements are true for $\widetilde{q}_{4}>u_{4}:=$ $75 \lambda(V)+37$ and $\widetilde{q}_{4}>w_{4}:=151 \lambda(V)+75$.

Assume that the statements are correct for $n-1$ dimensional varieties. By definition, $m_{0} \geq \lambda(V)$ and $\lambda_{n} \geq \lambda(V)$. Because $\widetilde{q}_{n} \pi^{*}\left(K_{X}\right) \geq$ $\left(\widetilde{q}_{n}-m_{0}\right) \pi^{*}\left(K_{X}\right)+M_{0}$, we will study $\mid K_{X^{\prime}}+\left\lceil\left(\widetilde{q}_{n}-m_{0}\right) \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+$
$M_{0} \mid$. Now the vanishing theorem gives:

$$
\begin{aligned}
& \mid K_{X^{\prime}}+\left\lceil\left(\widetilde{q}_{n}-m_{0}\right) \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+M_{0} \|_{F} \\
= & \left|K_{F}+\left\lceil\left(\widetilde{q}_{n}-m_{0}\right) \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil\right|_{F} \mid \\
\supset & \mid K_{F}+\left\lceil\left.\left(\widetilde{q}_{n}-m_{0}\right) \pi^{*}\left(K_{X}\right)\right|_{F}+\left.Q_{n}^{\prime}\right|_{F}\right\rceil \\
\supset & \left|K_{F}+\left\lceil\frac{\widetilde{q}_{n}-m_{0}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil\right| .
\end{aligned}
$$

Clearly $\operatorname{dim}(F)=n-1$, the induction hypothesis says

$$
K_{F}+\left\lceil\frac{\widetilde{q}_{n}-m_{0}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil
$$

is effective when $\frac{\widetilde{q}_{n}-m_{0}}{2 m_{0}+1}>u_{n-1}$ and $\left|K_{F}+\left\lceil\frac{\widetilde{q}_{n}-m_{0}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil\right|$ gives a birational map when $\frac{\widetilde{q}_{n}-m_{0}}{2 m_{0}+1}>w_{n-1}$. Both conditions can be replaced by $\widetilde{q}_{n}>u_{n}=\widetilde{\lambda}_{n}+u_{n-1}\left(2 \widetilde{\lambda}_{n}+1\right)$ and $\widetilde{q}_{n}>w_{n}=\widetilde{\lambda}_{n}+$ $w_{n-1}\left(2 \widetilde{\lambda}_{n}+1\right)$, where $\tilde{\lambda}_{n}=m_{0}$. Note however it is enough to take $\widetilde{\lambda}_{i}=\lambda_{i}$ for all $i<n$. We are done.
Q.E.D.

Theorem 5.7. Assume $n=\operatorname{dim}(V) \geq 5$ and $P_{m_{0}} \geq 2$ for some positive integer m_{0} and $\iota \leq n-4$. Keep the same notation as in 2.2. Let Q_{n} be any nef \mathbb{Q}-divisor on V and Q_{n}^{\prime} any nef \mathbb{Q}-divisor on X^{\prime}. Then
(1) $K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(\iota-1) M_{0}$ is effective for all rational numbers $q_{n}>\left(2 m_{0}+1\right)^{\iota-1} u_{n-\iota+1}$.
(2) $\left|K_{X^{\prime}}+\left\lceil q_{n} \pi^{*}\left(K_{X}\right)+Q_{n}^{\prime}\right\rceil+(\iota-1) M_{0}\right|$ gives a birational map for all rational numbers $q_{n}>\left(2 m_{0}+1\right)^{\iota-1} w_{n-\iota+1}$.
(3) $\left|m K_{V}+\left\lceil Q_{n}\right\rceil\right|$ gives a birational map for all integers $m \geq$ $\left(2 m_{0}+1\right)^{\iota-1} w_{n-\iota+1}+m_{0}(\iota-1)+2$.

Proof. Statement (3) is direct from (2). So we only need to prove (1) and (2).

When $n=5$, one necessarily has $\iota=1$ and the statements are nothing but those in Theorem 5.6.

First We consider statement (1). We may restrict the problem to F by the vanishing theorem. Then, since $\left.M_{0}\right|_{F} \leq m_{0} \sigma^{*}\left(K_{F_{0}}\right) \leq m_{0} K_{F}$, we may study the linear system

$$
\begin{equation*}
\left.\left|K_{F}+\left\lceil\frac{q_{n}}{2 m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+\left.Q_{n}^{\prime}\right|_{F}\right\rceil+(\iota-2) M_{0}\right|_{F} \right\rvert\, . \tag{5}
\end{equation*}
$$

Note that $\operatorname{dim} \Phi_{\left|m_{0} K_{F}\right|}(F) \geq \Phi_{\left|M_{0}\right|}(F) \geq \iota-1$. Then we can do an induction and repeat this program for finite times. Finally we are reduced
to study the non-emptyness of the linear system on W of dimension $n-\iota+1$:

$$
\begin{equation*}
\left|K_{W}+\left\lceil\left.\frac{q_{n}}{\left(2 m_{0}+1\right)^{\iota-1}} \tau^{*}\left(K_{W_{0}}\right)+Q_{n}^{\prime} \right\rvert\, W\right\rceil\right| \tag{6}
\end{equation*}
$$

where $\tau: W \rightarrow W_{0}$ is a contraction morphism to the minimal model. Furthermore $\operatorname{dim} \Phi_{\left|m_{0} K_{W}\right|}(W) \geq \operatorname{dim} \Phi_{\left|M_{0}\right|}(W) \geq 1$. Now Theorem 5.6(1) says that $\frac{q_{n}}{\left(2 m_{0}+1\right)^{\iota-1}}>u_{n-\iota+1}$ is enough to secure the nonemptyness of the linear system (6), where $u_{n-\iota+1}$ is obtained by the sequence $\left\{u_{t}\right\}_{t=4}^{n-\iota+1}$ with $u_{i}=\widetilde{\lambda}_{i}+u_{i-1}\left(2 \widetilde{\lambda}_{i}+1\right), u_{4}=75 \widetilde{\lambda}_{4}+37$, $\widetilde{\lambda}_{n-\iota+1}=m_{0}$ and, for all other $i, \widetilde{\lambda}_{i}=\lambda_{i}$. Therefore statement (1) is correct.

Statement (1) and Lemma 2.7 allow us to reduce the problem onto lower dimensional varieties. Thus what we are left to do is similar to that for statement (1). So after one step restriction, we get the linear system (5) on F. After successive restrictions and inductions, we may obtain the linear system (6) on W of dimension $n-\iota+1$. Now we may apply Theorem 5.6(2) to get the condition $\frac{q_{n}}{\left(2 m_{0}+1\right)^{\iota-1}}>w_{n-\iota+1}$ where $w_{n-\iota+1}$ is obtained by the sequence $\left\{w_{t}\right\}_{t=4}^{n-\iota+1}$ with $w_{i}=\widetilde{\lambda}_{i}+w_{i-1}\left(2 \widetilde{\lambda}_{i}+1\right)$, $w_{4}=151 \widetilde{\lambda}_{4}+75, \widetilde{\lambda}_{n-\iota+1}=m_{0}$ and, for all other $i, \widetilde{\lambda}_{i}=\lambda_{i}$. We are done.
Q.E.D.

Finally we propose the following:
Problem 5.8. As we have seen, inequality (1) in Section 2 is the key step to get optimal birationality. Can one find a better constant $\gamma>\frac{1}{2 m_{0}+1}$ such that $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geq \gamma \sigma^{*}\left(K_{F_{0}}\right)$? When $\operatorname{dim}(V)=3$, $\gamma=\frac{p}{m_{0}+p}$ is nearly optimal by virtue of our previous work.
5.9. Acknowledgment. This paper was supported by National Outstanding Young Scientist Foundation \#10625103 and NSFC Key project \#10731030. This note grew out of discussions with Jun Li to whom I feel considerably indebted. I would like to thank both Jun Li and the Mathematics Research Center of Stanford University for the support of my visit in the Spring of 2007. Thanks are also due to Jungkai A. Chen, Christopher D. Hacon, Yujiro Kawamata, Eckart Viehweg, De-Qi Zhang and Kang Zuo for their generous helps and stimulating discussions. Finally I am grateful to the referee for several technical suggestions.

References

[1] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, arXiv:math/0610203.
[2] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math., 42 (1973), 171-219.
[3] J. A. Chen and C. D. Hacon, Pluricanonical maps of varieties of maximal Albanese dimension, Math. Ann., 320 (2001), 367-380.
[4] J. A. Chen and C. D. Hacon, Pluricanonical systems on irregular 3-folds of general type, Math. Z., 255 (2007), 343-355.
[5] J. A. Chen and M. Chen, Explicit birational geometry of 3 -folds of general type. I, Ann. Sci. École Norm. Sup., to appear; arXiv:0810.5041.
[6] J. A. Chen and M. Chen, Explicit birational geometry of 3 -folds of general type. II, arXiv:0810.5044.
[7] M. Chen, Canonical stability in terms of singularity index for algebraic threefolds, Math. Proc. Camb. Phil. Soc., 131 (2001), 241-264.
[8] M. Chen, On the Q-divisor method and its application, J. Pure Appl. Algebra, 191 (2004), 143-156.
[9] M. Chen and K. Zuo, Complex projective 3-folds with non-negative canonical Euler-Poincaré characteristic, Comm. Anal. Geom., 16 (2008), 159182.
[10] C. D. Hacon and J. M ${ }^{\mathrm{c}}$ Kernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math., 166 (2006), 1-25.
[11] C. D. Hacon and J. M ${ }^{\text {c Kernan, Shokurov's rational connectedness conjec- }}$ ture, Duke Math. J., 138 (2007), 119-136.
[12] C. D. Hacon and J. M ${ }^{\text {c }}$ kernan, Existence of minimal models for varieties of log general type. II, preprint.
[13] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46.
[14] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2), 123 (1986), 11-42.
[15] G. Pacienza, On the uniformity of the Iitaka fibration, preprint, arXiv:0709.0310.
[16] V. V. Shokurov, On rational connectedness, Math. Notes, 68 (2000), 652660.
[17] M. Reid, Young person's guide to canonical singularities, Proc. Sympos. Pure Math., 46 (1987), 345-414.
[18] Y. T. Siu, A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring, arXiv:math/0610740.
[19] S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math., 165 (2006), 551-587.
[20] H. Tsuji, Pluricanonical systems of projective varieties of general type. I, Osaka J. Math., 43 (2006), 967-995.
[21] E. Viehweg, Vanishing theorems, J. Reine Angew. Math., 335 (1982), 1-8.
[22] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, In: Proc. Algebraic Varieties and Analytic Varieties,

Tokyo, 1981, Adv. Stud. Pure Math., 1, Kinokunya-North-Holland Publ., 1983, pp. 329-353.
[23] E. Viehweg and D.-Q. Zhang, Effective Iitaka fibrations, J. Algebraic Geom., 18 (2009), 711-730.

Institute of Mathematics
School of Mathematical Sciences
Fudan University
Shanghai, 200433
China
E-mail address: mchen@fudan.edu.cn

