Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 417–425

Wave front set defined by wave packet transform and its application

Keiichi Kato, Masaharu Kobayashi and Shingo Ito

Abstract.

We introduce the wave front set $WF_s^{p,q}$ by using the wave packet transform. This is another characterization of the Fourier-Lebesgue type wave front set $WF_{\mathcal{F}L_s^q}$. We apply this to the propagation of singularities for the wave equation.

§1. Introduction

In this talk, we introduce the wave front set $WF_s^{p,q}$ (Definition 1.1) by using the wave packet transform.

The wave packet transform has been introduced by Córdoba–Fefferman [1]. For $u \in \mathcal{S}'(\mathbb{R}^n)$ and $\phi \in \mathcal{S}(\mathbb{R}^n)$ with $\phi(0) \neq 0$, the wave packet transform $W_{\phi}u$ is defined by

(1)
$$W_{\phi}u(x,\xi) = \int_{\mathbb{R}^n} \overline{\phi(y-x)}u(y)e^{-iy\cdot\xi}dy,$$

which has the information of frequency of u around x.

Definition 1.1. Let $1 \leq p, q \leq \infty$, $s \in \mathbb{R}$, $(x_0, \xi_0) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ and $u \in S'(\mathbb{R}^n)$. Then $(x_0, \xi_0) \notin WF_s^{p,q}(u)$ means that there exists a neighborhood K of x_0 , a conic neighborhood Γ of ξ_0 and a function $\phi \in C_0^{\infty}(\mathbb{R})$ with $\phi(0) \neq 0$ satisfying that

(2)
$$\| \| \chi_K(x) \chi_\Gamma(\xi) \langle \xi \rangle^s W_\phi u(x,\xi) \|_{L^p_x} \|_{L^q_x} < \infty,$$

where $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$, χ_K and χ_{Γ} are characteristic functions of K and Γ , respectively.

Received December 15, 2011.

Revised February 10, 2012.

²⁰¹⁰ Mathematics Subject Classification. 35A18, 35B65.

Key words and phrases. Wave front set, wave packet transfrom, propagation of singularity.

As an application of $WF_s^{p,q}$, we give the following theorem on propagation of singularities.

Theorem 1. Let $1 \leq p, q \leq \infty$ and $r \in \mathbb{R}$. Suppose that $u \in C(\mathbb{R}; \mathcal{S}'(\mathbb{R}^n))$ satisfies

(3)
$$\begin{cases} (\partial_t \pm i |D|) u(t,x) = 0, & (t,x) \in \mathbb{R}^{n+1}, \\ u(0,x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$

where $i = \sqrt{-1}$ and $|D| = \mathcal{F}^{-1}|\xi|\mathcal{F}$. If $(x_0,\xi_0) \notin WF_r^{p,q}(u_0)$ then $(x_0 \pm \frac{\xi_0}{|\xi_0|}t,\xi_0) \notin WF_r^{p,q}(u(t,\cdot))$ for all $t \in \mathbb{R}$.

We briefly review some background on the wave front sets and propagation of singularities. The notion of wave front set, introduced by Hörmander [3] is a main tool of microlocal analysis. There are many kind of wave front sets. For example, C^{∞} type, analytic type, Sobolev type, Fourier–Lebesgue type and so on (see Hörmander [4], Sato–Kawai– Kashiwara [8], Pilipović–Teofanov–Toft [6]). Here, we focus on the Fourier–Lebesgue type wave front sets. For $1 \leq q \leq \infty$ and $s \in \mathbb{R}$, the Fourier–Lebesgue space $\mathcal{F}L_s^q(\mathbb{R}^n)$ is the set of all distributions $u \in$ $\mathcal{S}'(\mathbb{R}^n)$ such that $\hat{u}(\xi) = \int_{\mathbb{R}^n} u(x)e^{-ix\cdot\xi}$ is a function and $\|\langle \xi \rangle^s \hat{u}(\xi)\|_{L_{\xi}^q}$. We note that $\mathcal{F}L_s^2(\mathbb{R}^n)$ is the sobolev space $H^s(\mathbb{R}^n)$. While, the Fourier– Lebesgue type wave front set $WF_{\mathcal{F}L_s^q}(u)$ defined by [6] is defined as follows. For $(x_0, \xi_0) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}), (x_0, \xi_0) \notin WF_{\mathcal{F}L_s^q}(u)$ means that there exist a conic neighborhood Γ of ξ_0 and a function $a \in C_0^{\infty}(\mathbb{R}^n)$ with $a(x_0) \neq 0$ satisfying that

(4)
$$\|\chi_{\Gamma}(\xi)\langle\xi\rangle^{s}\widehat{au}(\xi)\|_{L^{q}_{\xi}} < \infty.$$

We note that $WF_{\mathcal{F}L_s^2}$ is the Sobolev type wave front set WF_{H^s} . Although a considerable number of studies have been done on the propagation of singularity in the framework of Sobolev type wave front set (see Beals [2]), a few works have been done in the framework of Fourier– Lebesgue type wave front set ([6], [7]).

In Theorem 2, we show $WF_s^{p,q}$ coincides with $WF_{\mathcal{F}L_s^q}$. Thus, using Theorem 1 and Theorem 2, we obtain the result concerning the propagation of singularity in the framework of the Fourier–Lebesgue type wave front set.

Theorem 2. For $1 \leq p, q \leq \infty$, $s \in \mathbb{R}$ and $u \in \mathcal{S}'(\mathbb{R}^n)$, we have

(5)
$$WF_s^{p,q}(u) = WF_{\mathcal{F}L_s^q}(u).$$

Notation. For $x \in \mathbb{R}^n$ and r > 0, $B_r(x)$ stands $\{y \in \mathbb{R}^n; |y-x| \leq r\}$. $\mathcal{F}[f](\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi}dx$ is the Fourier transform of f. For a subset A of \mathbb{R}^n , we denote the complement of A by A^c , the set of all interior points of A by A° and the closure of A by \overline{A} . Throughout this paper, C and C_i (i = 1, 2, 3, ...) serve as positive constants, if the precise value of which is not needed and C_N denote positive constants depending on N.

$\S 2$. Sketch of the proof of Theorem 2

To show Theorem 2 we use the following lemma.

Lemma 1. (Kato-Kobayashi-Ito [5]) Let ζ be a measurable function on \mathbb{R}^n such that $\langle \cdot \rangle^k \zeta \in L^1(\mathbb{R}^n)$ for all $k \in \mathbb{R}$, $F \in \mathcal{S}'(\mathbb{R}^n)$, $1 \leq q \leq \infty$, and Γ, Γ' be open conic sets satisfying $\overline{\Gamma'} \subset \Gamma \subset \mathbb{R}^n$. Assume that $\|\chi_{\Gamma}(\xi)\langle\xi\rangle^s F(\xi)\|_{L^q_{\xi}} < \infty$ and $\|\langle\xi\rangle^{-N}F(\xi)\|_{L^q_{\xi}} < \infty$ for some $s \in \mathbb{R}$ and $N \in \mathbb{N}$. Then we have

$$\|\chi_{\Gamma'}(\xi)\langle\xi\rangle^s(\zeta*F)(\xi)\|_{L^q_{\xi}} \le C_{s,N,\zeta}\left(\|\chi_{\Gamma}(\xi)\langle\xi\rangle^sF(\xi)\|_{L^q_{\xi}} + \left\|\frac{F(\xi)}{\langle\xi\rangle^N}\right\|_{L^q_{\xi}}\right)$$

for some positive constant $C_{s,N,\zeta}$.

Suppose that $(x_0, \xi_0) \notin WF_{\mathcal{F}L_s^q}(u)$. Then there exist a conic neighborhood Γ of ξ_0 and a function $a \in C_0^{\infty}(\mathbb{R}^n)$ with $a(x_0) \neq 0$ satisfying $\|\chi_{\Gamma}(\xi)\langle\xi\rangle^s \widehat{au}(\xi)\|_{L_{\xi}^q} < \infty$. For r > 0 and $b \in C_0^{\infty}(\mathbb{R}^n)$ satisfying supp $b \subset B_{4r}(x_0) \subset$ supp a and $b \equiv 1$ in $B_{2r}(x_0)$, simple calculation yields $\|\chi_{\Gamma}(\xi)\langle\xi\rangle^s \widehat{bu}(\xi)\|_{L_{\xi}^q} < \infty$. Take a neighborhood K of x_0 and a function $\phi \in C_0^{\infty}(\mathbb{R}^n)$ satisfying $K \subset B_r(x_0), \phi(0) \neq 0$ and supp $\phi \subset B_r(0)$. Note that $x \in K$ and $y - x \in B_r(0)$ imply $y \in B_{2r}(x_0)$. So $\chi_K(x)\overline{\phi(y-x)}u(y) = \chi_K(x)\overline{\phi(y-x)}b(y)u(y)$. Let Γ' be a conic neighborhood of ξ_0 such that $\overline{\Gamma'} \subset \Gamma$. Since $W_{\phi}(bu)(x,\xi) = \mathcal{F}[\overline{\phi(\cdot - x)}] * \mathcal{F}[bu](\xi)$ we have by Lemma 1

$$\begin{aligned} \|\|\chi_{K}(x)\chi_{\Gamma'}(\xi)\langle\xi\rangle^{s}W_{\phi}u(x,\xi)\|_{L^{p}_{x}}\|_{L^{q}_{\xi}} \\ &\leq C_{s,N,\phi,K}\bigg(\left\|\chi_{\Gamma}(\xi)\langle\xi\rangle^{s}\widehat{bu}(\xi)\right\|_{L^{q}_{\xi}} + \left\|\frac{\widehat{bu}(\xi)}{\langle\xi\rangle^{N}}\right\|_{L^{q}_{\xi}}\bigg). \end{aligned}$$

Since $|bu(\xi)|$ has at most polynomial growth we obtain $(x_0, \xi_0) \notin WF_s^{p,q}$ if we take an integer N sufficiently large.

Conversely, if $(x_0, \xi_0) \notin WF_s^{p,q}$ then we can choose Γ being a conic neighborhood of $\xi_0, R \in \mathbb{R}$ and $\phi \in C_0^{\infty}(\mathbb{R}^n)$ which satisfy $\phi \equiv 1$ in $B_{2R}(0) \text{ and } \|\|\chi_{B_R(x_0)}(x)\chi_{\Gamma}(\xi)\langle\xi\rangle^s W_{\phi}u(x,\xi)\|_{L^p_x}\|_{L^q_{\xi}} < \infty. \text{ Put } K = B_R(x_0) \text{ and take } a \in C_0^{\infty}(\mathbb{R}^n) \text{ satisfying } a(x_0) \neq 0 \text{ and supp } a \subset B_R(x_0).$ Since $\phi(y-x) \equiv 1$ for $x \in K$ and $y \in \text{supp } a$, we have $\chi_K(x)\widehat{au}(\xi) = \chi_K(x) \int_{\mathbb{R}^n} \widehat{a}(\xi-\eta) W_{\phi}(x,\eta) d\eta$. So we have by Lemma 1

$$\begin{aligned} \|\chi_{K}(x)\|_{L_{x}^{p}} \|\chi_{\Gamma'}(\xi)\langle\xi\rangle^{s}\widehat{au}(\xi)\|_{L_{\xi}^{q}} \\ &\leq C_{s,N,a}\bigg(\|\|\chi_{K}(x)\chi_{\Gamma}(\xi)\langle\xi\rangle^{s}W_{\phi}u(x,\xi)\|_{L_{x}^{p}}\|_{L_{\xi}^{q}} \\ &+ \left\|\frac{1}{\langle\xi\rangle^{N}} \|\chi_{K}(x)W_{\phi}u(x,\xi)\|_{L_{x}^{p}}\right\|_{L_{\xi}^{q}}\bigg) \end{aligned}$$

for a conic neighborhood Γ' of ξ_0 satisfying $\overline{\Gamma'} \subset \Gamma$. Since χ_K has compact support and $|W_{\phi}u(x,\xi)|$ is majored by a constant times $\langle \xi \rangle^{N_0}$ for sufficiently large N_0 , we obtain $(x_0,\xi_0) \notin WF_{\mathcal{F}L^q_s}(u)$ if we take an integer $N > N_0$ sufficiently large.

$\S3$. Sketch of the proof of Theorem 1

In the sequel, for a function f(t,x) on $\mathbb{R} \times \mathbb{R}^n$, we denote $\widehat{f}(t,\xi) = \int_{\mathbb{R}^n} f(t,x)e^{-ix\cdot\xi}dx$ and $W_{\phi}f(t,x,\xi) = W_{\phi}(f(t,\cdot))(x,\xi)$. Here, we only treat the initial value problem

(6)
$$\begin{cases} (\partial_t - i|D|)u(t,x) = 0, & (t,x) \in \mathbb{R}^{n+1}, \\ u(0,x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$

since we can treat the case $(\partial_t + i|D|)u(t, x) = 0$ in the same way. Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ with $\phi(0) \neq 0$. The initial value problem (6) is transformed by the wave packet transform to

(7)
$$\begin{cases} \left(\partial_t - \frac{\xi}{|\xi|} \cdot \nabla_x - i|\xi|\right) W_{\phi}u(t, x, \xi) = iR_{\phi}(u; t, x, \xi), \\ W_{\phi}u(0, x, \xi) = W_{\phi}u_0(x, \xi), \end{cases}$$

where $d\eta = (2\pi)^{-n} d\eta$ and

$$R_{\phi}(u;t,x,\xi) = \iint_{\mathbb{R}^{2n}} \overline{\phi(y-x)} \left(|\eta| - \frac{\xi \cdot \eta}{|\xi|} \right) \widehat{u}(t,\eta) e^{iy \cdot (\eta-\xi)} d\eta dy.$$

It is easy to see that (7) is equivalent to the integral equation

(8)
$$W_{\phi}u(t,x,\xi) = e^{it|\xi|}W_{\phi}u_0\left(x + \frac{\xi}{|\xi|}t,\xi\right)$$
$$+ i\int_0^t e^{i(t-\theta)|\xi|}R_{\phi}\left(u;\theta,x + \frac{\xi}{|\xi|}(t-\theta),\xi\right)d\theta$$

Let T > 0. For $t \in [-T, T]$, we show $(x_0 - \frac{\xi_0}{|\xi_0|}t, \xi_0) \notin WF_r^{p,q}(u(t, \cdot))$ by induction.

Since $u(t, \cdot) \in \mathcal{S}'(\mathbb{R}^n)$, there exists $s \in \mathbb{R}$ satisfying $\|\langle \cdot \rangle^s \widehat{au}(t, \cdot)\|_{L^q} < \infty$ for all $a \in C_0^{\infty}(\mathbb{R}^n)$ and $t \in [-T, T]$. Thus we have $(x_0 - \frac{\xi_0}{|\xi_0|}t, \xi_0) \notin WF_s^{p,q}(u(t, \cdot))$ for all $t \in [-T, T]$ by Theorem 2.

 $WF_s^{p,q}(u(t,\cdot))$ for all $t \in [-T,T]$ by Theorem 2. Next we show $(x_0 - \frac{\xi_0}{|\xi_0|}t,\xi_0) \notin WF_{\sigma+1}^{p,q}(u(t,\cdot))$ for all $t \in [-T,T]$ and $s \leq \sigma \leq r-1$ under the assumption $(x_0 - \frac{\xi_0}{|\xi_0|}t,\xi_0) \notin WF_{\sigma}^{p,q}(u(t,\cdot))$ for all $t \in [-T,T]$. Let K be a neighborhood of $x_0 - \frac{\xi_0}{|\xi_0|}t$, Γ be a conic neighborhood of ξ_0 and $\widetilde{\Gamma} = \Gamma \cap \{|\xi| \geq 1\}$. From the equation (8), it is enough to show that

(9)
$$I_{K,\widetilde{\Gamma},\phi}^{(1)} \equiv \left\| \left\| \chi_K(x)\chi_{\widetilde{\Gamma}}(\xi)\langle\xi\rangle^{\sigma}|\xi|W_{\phi}u_0\left(x+\frac{\xi}{|\xi|}t,\xi\right)\right\|_{L^p_x} \right\|_{L^q_{\xi}} < \infty,$$

(10)
$$I_{K,\tilde{\Gamma},\phi,\psi}^{(2)} \equiv \left\| \left\| \chi_{K}(x)\chi_{\tilde{\Gamma}}(\xi)\langle\xi\rangle^{\sigma}|\xi| \right. \\ \left. \times \int_{0}^{t} \left| R_{\phi}\left(\psi u;\theta,x+\frac{\xi}{|\xi|}(t-\theta),\xi\right) \left| d\theta \right\|_{L_{x}^{p}} \right\|_{L_{\xi}^{q}} < \infty \right\}$$

and

(11)
$$I_{K,\widetilde{\Gamma},\phi,\psi}^{(3)} \equiv \left\| \left\| \chi_{K}(x)\chi_{\widetilde{\Gamma}}(\xi)\langle\xi\rangle^{\sigma}|\xi| \right. \\ \left. \times \int_{0}^{t} \left| R_{\phi} \left((1-\psi)u;\theta,x + \frac{\xi}{|\xi|}(t-\theta),\xi \right) \right| d\theta \right\|_{L_{\xi}^{p}} \right\|_{L_{\xi}^{q}} < \infty$$

for some $\psi \in C_0^{\infty}(\mathbb{R}^n)$ and all $t \in [-T,T]$. From the assumption $(x_0,\xi_0) \notin WF_s^{p,q}(u_0)$, there exist a constant $\varepsilon > 0$, a function $\phi_1 \in C_0^{\infty}(\mathbb{R}^n)$ with $\phi_1(0) \neq 0$ and a conic neighborhood Γ' of ξ_0 such that $\|\|\chi_{B_{2\varepsilon}(x_0)}(x)\chi_{\Gamma'}(\xi)\langle\xi\rangle^r W_{\phi_1}u_0(x,\xi)\|_{L^p_x}\|_{L^q_\xi} < \infty$. Let $K_1 = B_{\varepsilon}(x_0 - \frac{\xi_0}{|\xi_0|}t)$ and Γ_1 be a conic neighborhood of ξ_0 satisfying $\varepsilon T^{-1} > d_1 =$

 $\sup_{\xi \in \Gamma_1} \operatorname{dist}(\frac{\xi}{|\xi|}, \frac{\xi_0}{|\xi_0|})$ and $\overline{\Gamma}_1 \subset \Gamma'$. If $x \in K_1$ and $\xi \in \Gamma_1$ then $x + \frac{\xi}{|\xi|}t \in B_{2\varepsilon}(x_0)$. Thus we have

$$I_{K_1,\widetilde{\Gamma}_1,\phi_1}^{(1)} \le \left\| \left\| \chi_{B_{2\varepsilon}(x_0)}(x)\chi_{\Gamma'}(\xi)\langle\xi\rangle^r W_{\phi_1}u_0(x,\xi) \right\|_{L^p_{\xi}} \right\|_{L^q_{\xi}} < \infty,$$

where $\widetilde{\Gamma}_1 = \Gamma_1 \cap \{ |\xi| \ge 1 \}$

Next we show (10). By the assumption of induction and Theorem 2 we can take a conic neighborhood Γ'' of ξ_0 and $\psi_t \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi_t \equiv 1$ near $x_0 - \frac{\xi_0}{|\xi_0|}t$ and $||\chi_{\Gamma''}(\xi)\langle\xi\rangle^{\sigma}\widehat{\psi_t u}(t,\xi)||_{L_{\xi}^q} < \infty$ for all $t \in [-T,T]$. Take $\varepsilon' > 0$ satisfying $\psi_t \equiv 1$ on $B_{6\varepsilon'}(x_0 - \frac{\xi_0}{|\xi_0|}t)$. Let $\phi_2 \in C_0^{\infty}(\mathbb{R}^n)$ with $\phi_2(0) \neq 0$ and $\operatorname{supp} \phi_2 \subset B_{2\varepsilon'}(0), K_2 = B_{\varepsilon'}(x_0 - \frac{\xi_0}{|\xi_0|}t)$ and Γ_2 be a conic neighborhood of ξ_0 satisfying $\overline{\Gamma}_2 \subset \Gamma''$ and $\varepsilon' T^{-1} > d_2 = \operatorname{sup}_{\xi \in \Gamma_2} \operatorname{dist}(\frac{\xi}{|\xi|}, \frac{\xi_0}{|\xi_0|})$. Put $\widetilde{\Gamma}_2 = \Gamma_2 \cap \{|\xi| \geq 1\}$. By integration by parts and an inequality

$$\left(|\eta| - \frac{\xi \cdot \eta}{|\xi|}\right) \langle \eta - \xi \rangle^{-2} \le \frac{|\xi| |\eta| - \xi \cdot \eta}{|\xi| (2|\xi| |\eta| - 2\xi \cdot \eta)} = \frac{1}{2|\xi|},$$

we have

$$\begin{split} I^{(2)}_{K_{2},\widetilde{\Gamma}_{2},\phi_{2},\psi_{\theta}} &\leq C_{K_{2},\phi_{2}} \int_{0}^{T} \left\| \int_{\mathbb{R}^{n}} \frac{\chi_{\widetilde{\Gamma}_{2}}(\xi)\langle\xi\rangle^{\sigma}}{\langle\eta-\xi\rangle^{2N}} |\widehat{\psi_{\theta}u}(\theta,\eta)| d\eta \right\|_{L^{q}_{\xi}} \\ &\leq C_{K_{2},\phi_{2}}(J_{\Gamma^{\prime\prime}}+J_{(\Gamma^{\prime\prime})^{c}}), \end{split}$$

where $J_A = \int_0^T \|\int_A \chi_{\widetilde{\Gamma}_2}(\xi) \langle \xi \rangle^{\sigma} \langle \eta - \xi \rangle^{-2N} |\widehat{\psi_{\theta} u}(\theta, \eta)| d\eta \|_{L^q_{\xi}} d\theta$ and $N \in \mathbb{N}$. Since $\langle \xi \rangle \leq 2 \langle \eta - \xi \rangle$ or $\langle \xi \rangle \leq 2 \langle \eta \rangle$ hold, we have

(12)
$$\frac{\langle \xi \rangle^{\sigma}}{\langle \eta - \xi \rangle^{2N} \langle \eta \rangle^{\sigma}} \le \frac{C}{\langle \eta - \xi \rangle^{2N - |\sigma|}}$$

for $2N > |\sigma|$. Thus if we take an integer N sufficiently large, then Young's inequality, (12) and the assumption of induction yield

$$J_{\Gamma^{\prime\prime}} \leq C \left\| \frac{1}{\langle \cdot \rangle^{2N-|\sigma|}} \right\|_{L^1} \int_0^T \left\| \chi_{\Gamma^{\prime\prime}}(\xi) \langle \xi \rangle^{\sigma} \widehat{\psi_{\theta} u}(\theta,\xi) \right\|_{L^q_{\xi}} d\theta < \infty.$$

On the other hand, if $\eta \notin \Gamma''$, $\xi \in \widetilde{\Gamma}_2$ and $2N > |\sigma|$ then we have

(13)
$$\frac{\langle \xi \rangle^{\sigma}}{\langle \eta - \xi \rangle^{2N}} \le \frac{C}{\langle \eta - \xi \rangle^{2N - |\sigma|}} \le \frac{C}{\langle \eta - \xi \rangle^{N_1} \langle \eta \rangle^{N_2}},$$

where $N_1 + N_2 = 2N - |\sigma|$. Since $|\widehat{\psi_{\theta}u}(\theta,\xi)|$ has at most polynomial growth with respect to ξ , Young's inequality and (13) yield

$$J_{(\Gamma'')^c} \leq C \left\| \frac{1}{\langle \cdot \rangle^{N_1}} \right\|_{L^1} \int_0^T \left\| \frac{\widehat{\psi_{\theta} u}(\theta, \xi)}{\langle \xi \rangle^{N_2}} \right\|_{L^q_{\xi}} d\theta < \infty,$$

if we take N_1 and N_2 sufficiently large. Thus we have $I_{K_2,\tilde{\Gamma}_2,\phi_2,\psi_\theta}^{(2)} < \infty$. Finally we show (11). Let $\zeta_1 \in C^{\infty}(\mathbb{R}^n)$ equal to 0 for $|\eta| \leq 1$ and

Finally we show (11). Let $\zeta_1 \in C^{\infty}(\mathbb{R}^n)$ equal to 0 for $|\eta| \leq 1$ and equal to 1 for $|\eta| \geq 2$ and put $\zeta_2(\eta) = 1 - \zeta_1(\eta)$. It suffices to show that

$$I_{K_2,\widetilde{\Gamma}_2,\phi_2,\psi_\theta}^{(3)} \leq \sum_{j=1,2} \left\| \left\| \chi_{K_2}(x)\chi_{\widetilde{\Gamma}_2}(\xi)\langle\xi\rangle^{\sigma}|\xi| \int_0^t |R_j|d\theta \right\|_{L^p_{\xi}} \right\|_{L^q_{\xi}} < \infty,$$

where

$$R_{j} = \lim_{h_{1},h_{2}\to 0} \iiint_{\mathbb{R}^{3n}} \overline{\phi_{2}\left(y - x - \frac{\xi}{|\xi|}(t-\theta)\right)} \left(|\eta| - \frac{\xi \cdot \eta}{|\xi|}\right) b(h_{1}\eta)\zeta_{j}(\eta) \\ \times (1 - \psi_{\theta}(\tilde{x}))u(\theta,\tilde{x})b(h_{2}\tilde{x})e^{-i(\tilde{x}\cdot\eta - y\cdot\eta + y\cdot\xi)}d\tilde{x}d\eta dy$$

for $b \in \mathcal{S}(\mathbb{R}^n)$ with b(0) = 1. From the structure theorem of $\mathcal{S}'(\mathbb{R}^n)$, there exist $l, m \geq 0$ and $f_{\alpha}(\theta, \cdot) \in L^2(\mathbb{R}^n)$ for multi-indices α such that

(14)
$$u(\theta, \tilde{x}) = \langle \tilde{x} \rangle^l \sum_{|\alpha| \le m} D^{\alpha} f_{\alpha}(\theta, \tilde{x}).$$

We note that $x \in K_2$, $\xi \in \widetilde{\Gamma}_2$, $y - x - (t - \theta)\xi/|\xi| \in \operatorname{supp} \phi_2$ and $\widetilde{x} \in \operatorname{supp} (1 - \psi_{\theta}(\widetilde{x}))$ imply $|\widetilde{x} - y| \ge \varepsilon' > 0$ and, hence, $|\widetilde{x} - y| \ge C\langle \widetilde{x} \rangle$. Since

$$e^{-i(\tilde{x}-y)\cdot\eta} = \frac{(-\Delta_{\eta})^{N_3}e^{-i(\tilde{x}-y)\cdot\eta}}{|\tilde{x}-y|^{2N_3}} \text{ and } e^{iy\cdot(\eta-\xi)} = \frac{(1-\Delta_y)^{N_4}e^{iy\cdot(\eta-\xi)}}{\langle \eta-\xi\rangle^{2N_4}}$$

for positive integers N_3 and N_4 , (14) and integration by parts imply

$$|R_1| \le C \int_{\mathbb{R}^n} \frac{\|\widehat{f}_{\alpha}(\theta, \cdot)\|_{L^2}}{\langle \eta \rangle^{2N_3 - 1 - |\alpha|} \langle \xi - \eta \rangle^{2N_4}} d\eta.$$

On the other hand, since $\zeta_2 \in C_0^{\infty}(\mathbb{R}^n)$ we have

(15)
$$(1 - \Delta_{\eta})^{N} \left\{ \left(\eta - \frac{\eta \cdot \xi}{|\xi|} \right) \zeta_{2}(\eta) \right\} \leq \frac{C}{\langle \eta \rangle^{2N-1}}.$$

Since

$$e^{-i(\tilde{x}-y)\cdot\eta} = \frac{(1-\Delta_{\eta})^{N_3}e^{-i(\tilde{x}-y)\cdot\eta}}{\langle \tilde{x}-y\rangle^{2N_3}} \quad \text{and} \quad e^{iy\cdot(\eta-\xi)} = \frac{(1-\Delta_y)^{N_4}e^{iy\cdot(\eta-\xi)}}{\langle \eta-\xi\rangle^{2N_4}}$$

for positive integers N_3 and N_4 , (14), (15) and integration by parts imply

$$|R_2| \le C \int_{\mathbb{R}^n} \frac{\|\widehat{f}_{\alpha}(\theta, \cdot)\|_{L^2}}{\langle \eta \rangle^{2N_3 - 1 - |\alpha|} \langle \xi - \eta \rangle^{2N_4}} d\eta.$$

Since

$$\frac{\langle \xi \rangle^{\sigma} |\xi|}{\langle \eta \rangle^{2N_3 - 1 - |\alpha|} \langle \xi - \eta \rangle^{2N_4}} \le \frac{C}{\langle \eta \rangle^{2N_3 - 2 - |\alpha| - \sigma} \langle \xi - \eta \rangle^{2N_4 - \sigma - 1}}$$

for $N_3 \ge (2 + |\alpha| + \sigma)/2$ and $N_4 \ge (\sigma + 1)/2$, we have by Young's inequality

$$\left\|\int_{\mathbb{R}^n} \frac{\langle\xi\rangle^{\sigma} |\xi|}{\langle\eta\rangle^{2N_3 - 1 - |\alpha|} \langle\xi - \eta\rangle^{2N_4}} d\eta\right\|_{L^q_{\xi}} \le \left\|\frac{1}{\langle\cdot\rangle^{2N_3 - 2 - |\alpha| - \sigma}}\right\|_{L^1} \left\|\frac{1}{\langle\cdot\rangle^{2N_4 - \sigma - 1}}\right\|_{L^q}$$

Thus if we take N_3 and N_4 sufficiently large, we obtain

$$I_{K_2,\widetilde{\Gamma}_2,\phi_2,\psi_{\theta}}^{(3)} \leq C_{K_2,N_3,N_4} \int_0^T \left\| \widehat{f}_{\alpha}(\theta,\cdot) \right\|_{L^2} d\theta < \infty.$$

Hence we get the inequality (11). Taking $K \subset K_1 \cap K_2$, $\Gamma \subset \Gamma_1 \cap \Gamma_2$ and $\phi \in C_0^{\infty}(\mathbb{R}^n)$ with $\phi(0) \neq 0$ and $\operatorname{supp} \phi \subset \operatorname{supp} \phi_1 \cap \operatorname{supp} \phi_2$, we obtain $(x_0 - \xi_0 t/|\xi_0|, \xi_0) \notin WF_{\sigma+1}^q(u)$ for $t \in [-T, T]$. Since T is an arbitrary positive number, we obtain the desired result. Q.E.D.

References

- [1] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations, **3** (1978), 979–1005.
- [2] M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Prog. Nonlinear Differential Equations Appl., 3, Birkhäuser Boston, Boston, MA, 1989.
- [3] L. Hörmander, Fourier integral operators. I, Acta Math., 127 (1971), 79– 183.
- [4] L. Hörmander, The Analysis of Linear Partial Differential Operators. I, II, III, IV, Springer-Verlag, 1983, 1985.
- [5] K. Kato, M. Kobayashi and S. Ito, Characterization of wave front sets in Fourier–Lebesgue spaces and its application, preprint.

424

Wave front set defined by wave packet transform and its application 425

- [6] S. Pilipović, N. Teofanov and J. Toft, Wave-front sets in Fourier-Lebesgue spaces, Rend. Semin. Mat. Univ. Politec. Torino, 66 (2008), 299–319.
- [7] S. Pilipović, N. Teofanov and J. Toft, Micro-Local Analysis with Fourier Lebesgue Spaces. Part I, J. Fourier Anal. Appl., 17 (2011), 374–407.
- [8] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudodifferential equations, In: Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math., 287, Springer-Verlag, 1973, pp. 265–529.

College of Liberal Arts and Sciences Kitasato University Kitasato 1-15-1 Minami-ku Sagamihara Kanagawa 252-0373 Japan E-mail address: singoito@kitasato-u.ac.jp