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Remark on C0-semigroups with scaling invariance 

Yasunori~aekawa 

Abstract. 

We study C0-semigroups acting on a Banach space which possess 
an invariant property with respect to an action of the multiplicative 
group of positive real numbers (scaling). Some properties on the do
mains or the spectrum of the associated generators are presented. 

§1. Introduction 

There are wide classes of evolution equations which possess invariant 
properties with respect to a scaling and translations. In the abstract 
settings a scaling and a translation can be considered as an action of 
the multiplicative group of positive real numbers and of the additive 
group of real numbers, respectively. Using this, [6] discussed large time 
behaviors of solutions to nonlinear evolution equations which possess 
scaling and translation invariance, within the abstract framework based 
on the semigroup theory; see also [5]. In this paper we present a short 
remark on properties of generators for 0 0-semigroups possessing the 
invariance with respect to a scaling acting on a Banach space X. Only 
abstract results will be stated here; for concrete examples, see [5], [6]. 

§2. Preliminaries 

In this section we recall the definition of scaling stated in [6]. Let 
X be a Banach space and let .C(X) be the Banach space of all bounded 
linear operators in X. We assume that (A, Dom(A)) is a closed linear 
operator in X which generates a 0 0-semigroup {etAh>o C C(X). 
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Definition 2.1. We say R = { Rr h>o c .C(X) a scaling acting on 
X ifR is a strongly continuous action of {r E lR I r > 0} on X, i.e., 

(2.1) 
(2.2) 
(2.3) 

Rr1r2 

R1 

lim Rr'U 
r'-tr 

R.-1 Rr2 , r1, r2 > 0 

I, 

Rru in X, for each u E X. 

The generator of R = { Rr }r>O is denoted by B, which is a closed linear 
operator defined by Bf = limh-+0 h-1(Rl+hf- f) for f E Dom(B), 
where Dom(B) = {f EX I limh-+O h-1 (Rl+hf- f) exists }. A scaling 
R = {Rrh>o induces an action on C((O,oo);X), called the scaling 
induced by R, as follows. 

(2.4) Gr(f)(t) = Rr(f(rt)) r>O, fEC((O,oo);X). 

Definition 2.2. LetR = {Rr h>o be a scaling and letT= {ra}aEIR C 
.C(X) be a C0 -group acting on X. (i) We say that {etA}t;:::o is invariant 
with respect to the scaling induced by R if 

(2.5) r > 0, t 2:: 0. 

(ii) We say that {etA h::::o is invariant with respect to 7 if 

(2.6) a E JR, t 2:: 0. 

§3. Domains of generators 

3.1. Invariance of domains 

In this section we investigate invariant properties of the domains of 
generators when {etA h>o is invariant under the scaling induced by R. 

Lemma 3.1. Let (2.5) hold. Then ARrf = rRrAf iff E Dom(A). 

Proof. The assertion easily follows from the equality r 1(etARrf
Rrf) = R.-r1(ertA f- f), which is derived from (2.5). The details are 
left to the reader. Q.E.D. 

Corollary 3.2. Let (2.5) hold. Let WB be the growth bound of the 
strongly continuous group {Re• hEIR· Then for all f E Dom(A) and 
f-L E C such that Re(J.L) > 1 + WB we have 

(3.1) A(J.L- B)-1 f = (J.L- 1- B)-1 Af. 
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Proof The assertion follows from the Laplace formula r 1 (etA

I)(t-L- B)-1 f = 1= e-~-'sr 1 (etA- I)Re•fds. We omitted the details 

here. Q.E.D. 

Lemma 3.3. Assume that (2.5) holds. Then BetA f = -tAetA f + 
etABf iff E Dom(A) n Dom(B). 

Proof From (2.5) we have 

Then J1 -+ -tAetA f and h -+ etA B f in X as r -+ 1, which yileds 
etA f E Dom(B) and BetA f = -tAetA f +etABJ. The proof is complete. 

Q.E.D. 

Let 7 = {ra}aElR be a Co-group acting on X. We denote by D 
the generator of 7, and Ta will be often written as eaD 0 Let n be 
a scaling acting on X. Then for each 1-L > 0 a one-parameter family 
R~-' = {R}~-')}r>O C .C(X), R't) = Rr~~-, also defines a scaling acting on 
X whose generator is t-LB. Now we assume that 7 is invariant under the 
scaling induced by R 1IJ.! for some 1-L > 0, i.e., 

Since the generator of R1 1~-' is given by t-L-1B, Lemma 3.3 implies 

Lemma 3.4. Let 7 = {ra}aElR be a Co-group acting on X. Assume 
that (3.2) holds for some 1-L > 0. Then 

(3.3) f E Dom(D) n Dom(B). 

Remark 3.5. For a pair of linear operators £ 1 , £ 2 its commutator 
is defined by [£1 , £ 2] = L 1L2- £ 2£ 1 . Then (3.3) is formally written as 
[B, ra] = -at-LDra, which is a special case of the condition (Tl) given in 
[6, Section 2.2.1]. That is, (Tl) in [6] represents the symmetry between 
the scaling Rand the translation 7 in the sense of (3.2). 

3.2. Similarity transform and the associated generator 

As in [6], we define the similarity transform of {etA }t:;,::o with respect 
to the scaling induced by n by 

(3.4) 
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This one-parameter family {S(t)}t>o c .C(X) is closely related with the 
operator C defined by 

(3.5) C =A+ B, Dom(C) = Dom(A) n Dom(B). 

Lemma 3.6. Let (2.5) hold. Then the one parameter family {S(t)}t~o 
defined by (3.4) is a C0 -semigroup acting on X, and its generator A sat
isfies C C A. Moreover, WA ~ WB holds, where WA and WB are the 
growth bounds of {S(t)}t~o and {Ret hER., respectively. 

Proof. The assertion that {S(t)}t>O defines a Co-semigroup in X 
is stated in [6, Lemma 2.1]. The property WA ~ WB also follows from 
Rete(et-l)A = e(l-e-t)Ret, for we have IIS(t)fllx ~ CIIRetfllx. From 
Lemma 3.1 and Lemma 3.3 we see that Af = Af+Bf for f E Dom(A)n 
Dom(B). This completes the proof. Q.E.D. 

Lemma 3.7. Let (2.5) hold. Then BS(t)f = S(t)Cf- etS(t)Af if 
f E Dom(C). 

Proof. The invariant property S(t)Dom(C) C Dom(C) immediately 
follows from Lemma 3.1 and Lemma 3.3. Furthermore, from Lemma 3.3 
we have BS(t)f =Ret (- (et -1)e(et-l)A Af + e(et-l)ABf) = S(t)Cf
etS(t)Af. This completes the proof. Q.E.D. 

In the following paragraphs we always assume (2.5). Since A is 
closed, C is closable and C c A holds by Lemma 3.6. 

Theorem 3.8. Assume that Dom(C) is dense in X. Then A= C. 

Proof. Since Dom(C) is dense in X and is invariant under the action 
of {S(t)}t~0 by Lemma 3.7, Dom(C) is a core of A; [3, Proposition II-1-
7]. This implies A C C, which completes the proof. Q.E.D. 

Next we give a sufficient condition to lead A = C when X is a Hilbert 
space. For a linear operator L in a Hilbert space X we denote by L * the 
adjoint operator of L in X. 

Theorem 3.9. Let X be a Hilbert space. Let Dom(C) be dense in 
X and Dom(C) C Dom(A*) n Dom(B*). Assume that there are positive 
constants a1, a2, b1, b2, C', such that a1 + b1 < 1, a2 + b2 < 1, and 

(3.6) II(A- A*)fll~ ~ a1IIAfll~ + a2IIBfll~ + C'llfll~, 
(3.7) II(B + B*)fll~ ~ bliiAfll~ + b211Bfll~ + C'llfll~, 
for all f E Dom(C). Then A= C. 
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Proof. By Theorem 3.8 it suffices to show that C is closed. Let 
f E Dom( C). Then 

(3.8) II(A + B)fll~ = IIAfll~ + IIBfll~ + (Bf, A* f)x- (Af, B* f)x 

+ (Af, (B + B*)f)x + (Bf, (A- A*)f)x. 

From (3.6) and (3.7) we have 

(3.9) (Af, (B + B*)f)x + (Bf, (A- A*)f)x 

> - 1 +a~+ b1 IIAfll~- 1 +a~+ b2 IIBfll~- Cllfll~, 

for some C > 0. Next we observe from Lemma 3.3 that (B(et.A f -
f), f)x = -t(Aet.A f, f)x + ((et.A- I)Bf, f)x. Since X is reflexive, 
the adjoint operator of et.A is given by et.A* ([3, Propositions I-5-14, 
II-2-6], and thus we have (r1 (et.A f- f), B* f)x = -(Aet.A f, f)x + 
(Bf, r 1 (et.A* f- f))x. Taking the limit t---+ 0 leads to the equality 

(3.10) (Bf,A*f)x- (Af,B*f)x = (Af,f)x. 

Collecting (3.8)-(3.10), we finally get the inequality 
(3.11) 

II(A + B)fll~ ~ 1 - a~- b1 IIAfll~ + 1 - a~- b2 11Bfll~- Cllfll~, 

for some C > 0 iff E Dom(C). The estimate (3.11) is enough to conclude 
that C is closed. This completes the proof. Q.E.D. 

Next we look for another sufficient condition to ensure A= C, which 
can be applied also for the case when X is not a Hilbert space. For 
this purpose we follow the arguments by Metafune et al [7], where the 
domains of the Ornstein-Uhlenbeck operators are discussed. 

Theorem 3.10. Let X be a Banach space of class 1i'T. Assume 
that >-o- A, !Jo-B E BIP(X) for some Ao > W.A, !Jo > 1 + WB, and 
that the strong parabolicity condition e>-.o-.A + efJ,o-B < 7f holds. Here eL 
is the power angle of L E BIP(X). Then A= C. 

Proof. For the definitions of 1-lT, BIP(X), and the power angle, 
we refer to [4]. As in [7], the proof is based on the closedness result 
for noncommuting operators by Monniaux and Pruss [8], which is a 
significant extension of the classical Dore-Venni theorem [2]. We write 
Ao = A - .\0 and B0 = B - !Jo for simplicity of notations. Then from 
Corollary 3.2 we have A(M- Bo)-1 ( -Ao)- 1 = (M -1- Bo)-1 A( -Ao)-1 

for all iJ E <C with Re(M) ~ 0. Hence from the definition of Ao it is not 
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difficult to derive Ao(Jt- Bo)-1 ( -Ao)- 1 = -(p- 1- Bo)-1 - .>..o{(p
.80)-1 - (p -1- .80 )-1 }( -Ao)-1 , which yield by the resolvent equation, 

(3.12) 
[( -Ao)-1, (p- Bo)-1] 

= ( -Ao)-1{(p- Bo)-1 - (p- 1- Bo)- 1 } 

- .>..o( -Ao)-1{(p- Bo)-1 - (p- 1- Bo)-1 }( -Ao)-1 

= ( -Ao)-1(p- Bo)-1 (p- 1 - Bo)-1{.>..o( -Ao)-1 - 1 }. 

Let ¢>0 , 'lj;0 be positive numbers such that c/>o > B-Ao, 'lf;o > B-Bo, and 
1>o +'lf;o < 1r. Since each of ( -Ao)-1 (p- Bo)-1, (p- Bo)-1 ( -Ao)-1, and 
( -A0 )-1 (p- B0 )-1 (p -1- .80)-1{1- .>..0 ( -Ao)-1 } is holomorphic with 
respect to Jt in the sector l.:n-'fo := {z E rc I z i= 0, I argzl < 7r- 'lf;o}, 
the equality (3.12) holds for all Jt E l.:n-,Po· Then from (3.12) we have 

c 
IIAo(.>..- Ao)- 1 [(-Ao)-1, (p- Bo)-1lllccx):::; (1 + 1.>..1)(1 + l~tl)2 

for all .>.. E l.:n-<Po, Jt E l.:n-'fo. By [8, Corollary 2] the operator Co = 

Ao+Bo with Dom(C0 ) = Dom(C) is closed and v0 -C0 is sectorial for some 
v0 ;::: 0. Since X is of class HT, it is reflexive. Thus Dom(C) = Dom(C0 ) 

is dense in X by [4, Proposition 2.1.1]. Hence from Theorem 3.8 we have 
A = C = C. This completes the proof. 

Q.E.D. 

§4. Spectral property of A + B 

Let rT P ( L) be the set of point spectrum of a linear operator L in X. 
With the definition of C in (3.5) we show that if C is closed and if A is 
injective in addition, then one eigenvalue of C produces infinitely many 
eigenvalues of C which reflect the symmetry of the scaling invariance. 
The argument used here is almost same as [6, Lemma 6.2]. 

Theorem 4.1. Set N0 = NU{O}. Let C be the linear operator defined 
by (3.5). (i) Let 0 E rTp(C) and let U EX be an associated eigenfunction. 
If either A orB is injective, then -1 is an eigenvalue of C and BU is an 
eigenfunction to the eigenvalue -1 of C. (ii) Assume that C is closed. Let 
p E rTp(C) and let U E X be an associated eigenfunction. If either A is 
injective orrTp(B)n{p-k IkE No}= 0, then {p-k IkE No} c rTp(C). 
Moreover, A k U is an eigenfunction to the eigenvalue Jt - k of C. 

Proof. The assertion (i) is essentially proved in [6, Lemma 6.2] and 
here we show (ii) only. Under the assumptions of (ii) we will prove 
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by the induction of k that f-t - k is an eigenvalue of C and AkU(y!o 
0) is an associated eigenfunction. The case k = 0 follows from the 
assumptions. Suppose that the assertion is true for k. Then we have 
AkU E Dom(C)\{0} and 

( 4.1) 

From Lemma 3.3 and (4.1) we get Cr 1 (etA AkU-AkU) = r 1 {etA Ak+1U 
+BetA AkU -Ak+1U -BAkU}= r 1 {etAAk+ 1U -tetAAk+1U+etABAkU 
+(k- ~-t)AkU} = -etAAk+1U + (f-t- k)r 1 (etAAkU- AkU). Hence 
C(etA AkU -AkU)jt converges to (f-t- k-1)Ak+lu in X as t -t 0, while 
(etA AkU -AkU)jt converges to Ak+1U in X as t -t 0. Since Cis closed, 
this implies that Ak+lU E Dom(C) and CAk+lU = (f-t- k- 1)Ak+1 U. 
Suppose that Ak+lU = 0. Then BAkU= (f-t- k)AkU by (4.1). Thus 
AkU must be 0 since A is injective or O"p(B) n {f-t - k I k E N0 } = 0, 
which is a contradiction. So Ak+lu is an eigenfunction to the eigenvalue 
f-t- k- 1 of C. This completes the proof. Q.E.D. 

Next we consider the case {etA h>o is also invariant with respect to 
some strongly continuous groups. We will assume that: 
(sl) {etAh>o is invariant under the scaling induced by R; see (2.5). 

(s2) There ~re n strongly continuous groups T(j) = {T~j)}aEJR, 1:::; j:::; 

n, acting on X such that they commute with each other, i.e., T~i)T~fl = 

T~fl T~i), a, a' E JR, 1 :::; i, j :::; n, and that {etA }t20 is invariant with 
respect to each T(j); see (2.6). 
(s3) For each j there is /-tj > 0 such that /(j) is invariant with respect 
to R 111-'j; see (3.2). 

These assumptions imply three symmetries; (sl) between semigroup 
and scaling, (s2) between semigroup and translations, (s3) between 
translations and scaling. As in Theorem 4.1, when O"p(C) # 0 there 
are infinitely many eigenvalues of C in X under some conditions on the 
domains of generators. We denote by Dj the generator of T(j) in X. 

Theorem 4.2. Assume that (sl), (s2), (s3) hold and that C is 
closed. Assume that each Dj is injective and Dom(C) C n.J=1Dom(Dj)
Let f-t E O"p(C) and let U EX be an associated eigenfunction. Then {f-t

'£j=1 kj/-tj I kj E No, j = 1,··· ,n} C O"p(C). Moreover, D~1 ···D~nU 
is an eigenfunction to the eigenvalue f-t- '£j=1 kj /-tj of C in X. 

Proof. We follows the arguments in [6, Lemma 6.2]. From (s2) 
it is easy to see that DiDjf = DjDd iff E Dom(Dj) n Dom(DjDi), 
where Dom(DjDi) = {f E Dom(Di) I Dd E Dom(Dj)}. Hence by 



344 Y. Maekawa 

taking the assumption Dom(C) C nj=1Dom(Dj) into account, it suffices 
to show that DjU is an eigenfunction to the eigenvalue f.L- P,j of C 
in X, for the general cases then follow by the induction on ki. Since 
U E Dom(C) satisfies AU+ BU = p,U, we have Ar~j)U + T~j)BU = 
f.LT~j)U. Here we used the property T~j) AU= Ar~j)U which follows from 
(2.6). By (3.2) and Dom(C) c nj=1Dom(Dj) we have from Lemma 3.4 

that T~j) BU = Br~j) U- [B, T~j)]U = Br~j) U + ap,jT~i) DjU. This yields 

Cr~j)u = f.LT~j)u -aP,jT~j) DjU, that is, ca- 1 (r~j)u -U) = p,a- 1 (r~j)u
U)-P,jT~j) DjU· Since (r~j)U -U)/a converges to DjU in X as a-+ 0, by 
the closedness of C we have DjU E Dom(C) and CDjU = (p,- f.Lj)DjU. 
Since D j is injective and U is not trivial, p,- P,j is an eigenvalue of C and 
DjU is an associated eigenfunction. This completes the proof. Q.E.D. 

Combining Theorem 4.1 and Theorem 4.2, we have 

Corollary 4.3. Assume that the assumptions in Theorem 4.2 hold. 
Let A be injective. Then {p,-Lj=l kjP,j-ko I kj E No, j = 0, 1, · · · , n} C 

(J P (C). Moreover, A ko D~1 • • • D~n U is an eigenfunction to the eigenvalue 
f.L- Lj=l kjP,j- ko ofC in X. 

Acknowledgments. The author is grateful to Professor Yoshiyuki 
Kagei for useful discussions with him. The author is supported by Grant
in-Aid for Young Scientists (B) 22740090. 

References 

[ 1] P. Clement and J. Priiss, Completely positive measures and Feller semi
groups, Math. Ann., 287 (1990), 73-105. 

[ 2] G. Dore and A. Venni, On the closedness of the sum of two closed operators, 
Math. Z., 196 (1987), 189-201. 

[ 3] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution 
Equations, Grad. Texts in Math., 194, Springer-Verlag, 2000. 

[ 4] M. Haase, The Functional Calculus for Sectorial Operators, Oper. Theory 
Adv. Appl., 169, Birkhauser Verlag, 2006. 

[ 5] Y. Kagei andY. Maekawa, On asymptotic behaviors of solutions to para
bolic systems modelling chemotaxis, MI Preprint Series, 2009-30, Kyushu 
Univ., 2009. 

[ 6] Y. Kagei and Y. Maekawa, Asymptotic behaviors of solutions to evolution 
equations in the presence of translation and scaling invariance, J. Funct. 
Anal., 260 (2011), 3036-3096. 



Semigroups with scaling invariance 345 

[ 7] G. Metafune, J. Pri.iss, A. Rhandi and R. Schnaubelt, The domain of the 
Ornstein-Uhlenbeck operators on an LP -space with invariant measure, 
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 471-485. 

[ 8] S. Monniaux and J. Pri.iss, A theorem of the Dore-Venni type for noncom
muting operators, Trans. Amer. Math. Soc., 349 (1997), 4787-4814. 

Department of Mathematics 
Graduate School of Science 
Kobe University 
1-1 Rokkodai, Nada-ku 
Kobe 657-8501 
Japan 
E-mail address: yasunori@math. kobe-u. ac. j p 




