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On the exterior problem for nonlinear wave 
equations with small initial data 

Hideo Kubo 

Abstract. 

The aim of this note is to give an overview concerning the mixed 
problem for a system of nonlinear wave equations with small and smooth 
initial data. In particular, we are interested in the three and two space 
dimensional case. 

§1. Introduction 

The aim of this note is to give an overview concerning the mixed 
problem for nonlinear wave equations with small and smooth initial data. 
Let n be an unbounded domain in Rn (n 2: 2) with compact and smooth 
boundary an. We put 0 := Rn \ n, which is called an obstacle and is 
supposed to be non-empty. We consider the mixed problem for a system 
of nonlinear wave equations : 

(1) 

(2) 

(3) 

(ai- ~)ui = Fi(au, "Vxau), 

u(t, x) = 0, 

u(O, x) = c¢(x), atu(O, x) = elj;(x), 

(t,x) E (O,oo) X n, 
(t,x) E (O,oo) X an, 

xEn 

fori= 1, ... ,N, where~= 'L7=1 aJ, at= ao = ajat, ai = ajaxi 
(j = 1, ... ,n), and c > 0. We assume¢, 't/J E CQ"(O;RN), namely they 
are smooth functions on TI vanishing outside some ball. We assume that 
each Fi is a smooth function in R(Hn)N satisfying 

around (au, '\1 xau) = 0 for some integer q 2: 2, together with the energy 
symmetric condition. In addition, we assume that ( ¢, 't/J, F) satisfies the 
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compatibility condition to infinite order for the mixed problem (1)-(3), 
that is, (ofu)(O,x), formally determined by (1) and (3), vanishes on 
on for any non-negative integer j (notice that the values (olu)(O,x) 
are determined by ( ¢, '1/J, F) successively; for example we have azu(O) = 
~x¢+F('I/J, 'Vx¢), and so on). 

We may assume, without loss of generality, that 0 C B 1 by the 
translation and scaling. Hence we always pose this assumption in the 
following. 

It was shown by Shibata and Tsutsumi [21] that the mixed problem 
for (1 )-(3) admits a unique global solution for sufficiently small initial 
data, when n 2': 6 and 0 is non-trapping. The argument is still effective 
to handle the problem for 3 ~ n ~ 5, if q 2': 3 in (4) (see also [3]). To 
show the result, they deduced LP-Lq estimates for the mixed problem 
from those for the Cauchy problem, based on the cut-off method. In 
this procedure, decay property for the local energy plays a crucial role. 

We remark that if 0 is non-trapping and n 2': 3, then we have 
the following decay estimate of the local energy (for the proof, see for 
instance, [9, Appendix B]): Let a> 1, 1 E (0, 1], mEN, and set 

nb = n n {x ERn; lxl < b} 

forb> 1. Assume that f E 0 00 ([0, T) x 0; R) satisfies 

j(t, x) = 0 for lxl 2': a and t E [0, T). 

Then there is a positive number C = C(r, a, b, m) such that 

(1 + t)'YIIv(t) :Hm(nb)ll ~ C sup (1 + s)'ll8" f(s) :Hm-1 (n)ll 
O:'Os:'Ot 

fortE [0, T), where vis the solution to 

(5) 

(6) 

(7) 

(oi- ~x)v = j, 

v(t, x) = 0, 

v(O, x) = (8tv)(O, x) = 0, 

(t,x) E (O,T) x n, 
(t, x) E (0, T) X on, 

X En. 

In treating the problem (1)-(3) for the case when n = 3 and q = 2, 
we need to exploit more precise information on the behavior of solutions, 
as was done in the study of the corresponding Cauchy problem. For 
instance, the following type of a-priori estimates for solutions would be 
useful: 

( 1 + t + lxl ) 
(8) lu(t,x)I~C(1+t+lxl)- 1 log 2+ 1 +lt-lxll , 

(9) l8t,xu(t,x)l ~ C(1 + lxl)- 1 (1 +It -lxll)-1 
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for ( t, X) E [0, 00) X n. But, due to the blow-up result for the correspond
ing Cauchy problem obtained by John [7], one can construct a blow-up 
solution to the mixed problem when q = 2 in view of the finite speed 
of propagation. This means that it is impossible to show the global 
solvability in time for our mixed problem in general. So, what we can 
expect is to get a lower bound of the lifspan such as 

(10) 

for sufficiently small c:, where Cis a constant and Tc: is the supremum 
of all positive number T such that there is a classical solution for the 
problem (1)-(3). In fact, in Keel, Smith and Sogge [11], [12] the esti
mate (10) was shown, provided either the nonlinearity depends only on 
the first derivatives of unknown, or the obstacle is star-shaped. These 
restrictions are removed in [14], by using a different approach. 

By assuming in addition that the quadratic part of the nonlinear
ity has nice algebraic structure, called null condition, it was shown by 
Metcalfe, Nakamura, and Sogge [19] that Tc: = +oo for sufficiently small 
c:. An alternative proof for the result can be found in in Katayama and 
Kubo [9] (see also [2], [10], [17], [20], [18]). We remark that under the 
null condition, the quadratic part of the nonlinearity can be written as 
a linear combination of Qo(uj, uk) or Qab(uj, uk), where Qo and Qab are 
the null forms defined by 

(11) Qo(~, 17) =(8t~)(8tTJ)- (\7x ~) · (\7x TJ), 

(12) Qab(~, 17) =(8a~)(8bTJ)- (8b~)(8aTJ) (0::; a< b::; 3) 

for real valued-functions~= ~(t,x) and 17 = ry(t,x). 
Now, a natural question is if it is possible to obtain an analogous 

result in the case n = 2. Because decay property of solutions in two 
dimensional case is rather weak, compared with the case n = 3, we need 
more delicate treatment for establishing a-priori estimates. 

Observe that one can construct a blow-up solution to the mixed 
problem also when q = 3 in (4), based on the blow-up result for the 
Cauchy problem given by Agemi [1]. For this, we assume that the non
linearity F = (F1 , F2 , ... , FN) takes the following form 

2 N 

(13) Fi(8u, \7x8u) = L L gf'b,c(8auj)(8buk)(8cuz), 1::; i::; N, 
a=Oj,k,l=l 

where gf'b,c (a, b, c = 0, 1, 2) are real constants. When we consider the 
global solvability, we assume in addition that the nonlinearity satisfies 
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the second null condition, that is, 

2 N 

(14) L L gf'b,c Aj AkAl Wa Wb We = 0 
a=Oj,k,l=l 

for any i = 1, ... ,N, (>.1, ... ,>-.N) ERN, (w1,w2) E 8 1 and wo = -1. 
This is a sufficient condition to assure the global existence result for the 
corresponding Cauchy problem. Under the condition, each term in the 
nonlinearity contains one of the null forms Q0 ( u1, Uk) and Q12 ( u1, Uk). 

This note is organized as follows. In the next section precise state
ment of the global existence and almost global existence results for small 
initial data will be presented. In the section 3 we give an outline of the 
proof of these results. 

§2. Statement of results 

In order to state the results concerning the problem for (1)-(3), we 
introduce a couple of notations and a condition on the obstacle. 

We denote by X(T) the set of all 

3 = (vo,vl,f) = (ilo,f) E C0 (D;R2 ) x Cj)"([O,T) x O;R) 

satisfying the compatibility condition to infinite order for the mixed 
problem for (5), (6), and 

(15) v(O,x)=vo(x), (8tv)(O,x)=v1(x), xESl, 

i.e., (fJlv)(O,x), determined formally from (5) and (15), vanishes on 8S1 
for any non-negative integer j. Here f E Cj)"([O, T) x 0; R) means that 
f E c=([o, T) x 0; R) and f(t, ·) E C0 (0) for any fixed t E [0, T). 

For 3 E X(T) we denote by 8[3] the solution to (5), (6), and (15). 
For a> 1, Xa(T) denotes the set of all 3 = (v0 ,v1 ,f) E X(T) 

satisfying 

vo(x) = v1(x) = f(t, x) = 0 for lxl ::::0: a and t E [0, T). 

We put 1-lm(n) = Hm+l(Sl) x Hm(Sl) for every integer m. 
We are ready to state the condition on the obstacle 0. 

Definition 1. Let a > 1, C E N, and -r E (0, 1]. We say that the 
obstacle 0 is admissible, if for any 3 = ( v0 , v1 , f) E X a (T), b > 1, and 
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mEN, there exists a positive constant C = C('y, a, b, m) such that 

(16) (1 + t)'YIIB[B](t) :Hm(ob)ll 

::;c(ll(vo, v1) :1-lmH-1(0)11 + sup (1 + s)'YII8"' f(s) :Hm+£-1(0)11) 
o::;s::;t 

holds for t E [0, T). 

We remark that if the obstacle is non-trapping, then it is admissible 
with £ = 0 in the above sense. On the other hand, when the obstacle is 
trapping, we would need some loss of derivatives, i.e.,£ 2: 1. Such a kind 
of estimates of the local energy was actually derived by Ikawa [5], [6]. 

Now we are in a position to state the results. The first one is a gen
eralization of the almost global existence result by [14] for the admissible 
obstacle. Its proof can be done in the same line as in [9]. 

Theorem 1. Let n = 3 and </J, 'ljJ E Clf(O; RN). Assume that 
( </J, 'lj;, F) satisfies the compatibility condition to infinite order for the 
problem (1)-(3) and that 0 is admissible. Then there exist positive con
stants co and C such that for all c E (0, co), the mixed problem (1)-(3) 
admits a unique solution u E 0 00 ([0, Tc-) x 0; RN) and Tc- 2: exp(Cc1 ) 

holds. 

The second one is the global existence result due to [9]. 

Theorem 2. Let all the assumptions in Theorem 1 be fulfilled. If 
F satisfies the null condition, then there exists a positive constant co 
such that for all c E (O,c0 ), we have Tc- = +oo, and the weighted L00 -

estimates (8) and (9) holds. 

The third one is a counter part of Theorem 1 in the case n = 2 
obtained by [15]. 

Theorem 3. Let n = 2 and </J, 'ljJ E Clf(D; RN). Assume that 
(</J, 'lj;, F) satisfies the compatibility condition to infinite order for the 
problem (1)-(3) and that 0 is star-shaped. IfF takes the form of (13), 
then there exist positive constants co and C such that for all c E ( 0, co), 
the mixed problem (1)-(3) admits a unique solution u E 0 00 ([0, Tc-) x 
n; RN) and T€ 2: exp(Cc2) holds. 

The last one is a counter part of Theorem 2 in the case n = 2 (the 
detail will be given by [16]). 

Theorem 4. Let all the assumptions in Theorem 3 be fulfilled. IfF 
satisfies the second null condition, then there exists a positive constant 
co such that for all c E (0, co), we have Tc- = +oo, and 

(17) 
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holds for (t,x) E [O,oo) x D and 1/2 < v < 1. Here we put 

(18) Wv(t,x) = ((1 + lxl)-112(1 +It -lxll)-v 

+(1 + t + lxl)-1/2(1 +It -lxll)-1/2). 

We remark that these results can be extended to the case where the 
system of nonlinear wave equations has multiple speeds of propagation, 
because our proof does not require to use the boost t81+xJf'Jt (1 :::; j :::; n) 
that commutes the d' Alembertian only if the propagation speed is 1. 
But, for simplicity of exposition, we restrict our attention to the case 
where the system has a common propagation speed. 

§3. Outline of the proof 

Main step of the proof is to derive weighted Vl0-estimates from the 
corresponding estimates for the Cauchy problem due to Yokoyama [22] 
and Hoshiga and Kubo [4], based on the cut-off argument developed in 
[21]. In this procedure, the decay property of the local energy given by 
( 16) is crucial. 

First of all, we introduce notations. We use 

and denote 8 = (8o, 81, ... , On), 0 = (Oijh<:;j<k<:;n· For a smooth 
function cp(t, x), we set lcp(t, x)lk = Elal+l/3l<:;k l8aOf3cp(t, x)l. 

For v,'"' 2 0, c 2 0, and a non-negative integer k, we put 

(20) llf(t):Nk(W)II = sup lxl(n-1)/2W(.A,s) lf(s,x)lk, 
(s,x)E[O,t] xn 

(21) Av,k[vo] = sup(1 + lxlt(lvo(x)lk + IY'xva(x)lk + lv1(x)lk), 
xE!l 

where 3 = (v0 ,f) E X(T) and W(.A,s) is a weight function. Typical 
choices of W(.A, s) are as follows: 

Zv,x;;c(A, s) = (1 + s + .At(1 + I.A- csl)"'; 

Wv,x;(.A, s) = (1 + s + >-t( min{(1 +.A), (1 + I.A- csl)}) "'. 

For '"' 2 0, we define 

if '"'= 1, 
if li-/=1, 

Then we have the following basic estimates. 
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Propsoition 1. Let n = 3 and let 0 be admisssible. Assume that 
3 = (v0 , f) E X(T). If 1::::; v::::; 2 and K :::0: 1, then we have 

(22) (1 + lxl)(1 +It -lxii)PI8S[B](t,x)lk 

:S C (Av+2,kH+4[vo] +Ill p(t) llf(t): Nk+R+4(Wv,~<)ll) 

for (t, x) E [0, T) X fi. Here we put p = min(v, K). 

Propsoition 2. Let n = 2 and let 0 be star-shaped. Assume that 
3 = (v0 ,f) E X(T). Jf1/2::::; v < 1, K :::0:1, and t-t > 0, then we have 

(23) (wp(t,x))- 1 18S[B](t,x)lk 

:S C (Az+v+p,k+4[vo] + Wp(t) W~<(t)llf(t) :NkH(Wv+(l/2),~<)11) 

for (t, x) E [0, T) X fi. Here we put p = min(v + (1/2), K). 

When one deal with the null form, it is convenient to use the vector 
fields tOj + XjOt (j = 1, ... , n) and tot + x · \7 x (see [13]). But, the 
boundary condition (2) makes difficult to use them. In order to handle 
the null form by using the restricted vector fields (19), we make use 
of stronger decay property of a tangential derivative to the light cone 
(8t + Or)u. This idea was introduced by Katayama and Kubo [8]. 

Then one can establish needed estimates for solutions to prove the 
theorems. 
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