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Numerical solution of nonlinear cross-diffusion 
systems by a linear scheme 

Hideki Murakawa 

Abstract. 

This paper introduces a linear scheme to approximate the solu­
tions of the general nonlinear cross-diffusion system. After discretizing 
the scheme in space, we obtain a versatile, easy to implement and 
stable numerical scheme for the cross-diffusion system. Numerical ex­
periments are carried out to examine rates of convergence with respect 
to the time step and the spatial mesh sizes. 

§1. Introduction 

This paper deals with numerical schemes to approximate the fol­
lowing nonlinear problem: Find z = (zl' ... 'ZM) : n X [0, T) --+ JR.M 
( M E N) such that 

r 
Q := n x (O,T), at = !:::..(3(z) + f(z) in 

(1) a(3(z) = 0 on an x (o, T), 
av 

z(·, 0) = zo in n. 

Here, n c JR.d ( d E N) is a bounded domain with smooth boundary an, T 
is a positive constant, (3 = (f3l,···,f3M), f = (fi, ... ,fM): JR.M--+ JR.M 
and Zo = (z01, ... , ZoM ): n --+ JR.M are given functions, V is the unit 
outward normal vector to the boundary an. We note that the diffusivity 
f3i of the ith component depends not only on the ith variable but also 
on the jth (j -/= i) variables in general. This mixture of diffusion terms 
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is called cross-diffusion. Numerous problems of this type have been 
proposed in the literature, especially in the area of population ecology. 

One of the typical examples of nonlinear cross-diffusion systems is 
the following model which was proposed by Shigesada, Kawasaki and 
Teramoto [14] to understand spatial and temporal behaviours of two 
animal species under the influence of the population pressure due to 
intra- and interspecific interferences: 

(2) 

where aij, Cij (i = 1, 2, j = 0, 1, 2) are non-negative constants. Here, Zi 

represents the population density of ith species. The virtual diffusivity of 
the ith species aiD+ ailz1 + ai2Z2 is dependent on intra- and interspecific 
population pressure. The cross-diffusion terms describe tendencies such 
that the ith species keeps away from high-density areas of the jth species. 
The spatially segregating coexistence of two competing species occurs by 
the cross-diffusion effect. 

There are a number of other exciting cross-diffusion systems. For in­
stance, Kadota and Kuto [9] investigated a prey-predator cross-diffusion 
system. In the system, the diffusivity of the prey is the same type of 
(2), but that of the predator is a fractional type which implies the pop­
ulation pressure of the predator weakens in high-density areas of the 
prey, i.e., the predator migrates towards areas of high concentration of 
the prey. Murakawa and Ninomiya [13] considered a three-component 
reaction-diffusion system with a reaction rate parameter, and investigate 
its singular limit as the reaction rate tends to infinity. The limit prob­
lem is described by a nonlinear cross-diffusion system which possesses 
piecewise linear nonlinear diffusions. Moreover, they proved that the 
cross-diffusion system is a weak form of a free boundary problem with 
triple junctions. 

Thus, there are a lot of interesting and important cross-diffusion 
systems. We would like to carry out numerical experiments for vari­
ous type of nonlinearities. However, there are few results on numerical 
analysis for the cross-diffusion systems. There are theoretical results on 
numerical methods for the Shigesada-Kawasaki-Teramoto model (2). 
Galiano, Garzon and Jiingel [6] considered a fully implicit discrete-time 
scheme. They proved that convergence in one space dimension. Bar­
rett and Blowey [2] considered a fully discrete finite element approx­
imation with a regularization technique. Their method is also fully 
implicit. They showed that convergence in space dimensions d ~ 3, 
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and presented numerical experiments in one space dimension. Chen and 
Jiingel employed a finite difference technique [4] and a Euler-Galerkin 
method [5] to discretize in space. They took advantage of the fully 
discrete schemes to prove the existence of a weak solution of the sys­
tem (2). Andreianov, Bendahmane and Ruiz-Baier [1] proved conver­
gence of a positivity-preserving finite volume scheme. Their scheme is 
applicable to slightly general problem. However, it can not be applied to, 
for example, the linear cross-diffusion system [7] and the cross-diffusion 
system appeared in [13] in which the solutions can be positive or nega­
tive. All of them treated nonlinear implicit schemes to the system (2). 
Implicit schemes show better stability and accuracy properties in gen­
eral. Therefore, their schemes might be efficient. However, for three or 
four or more components systems and for high dimensional simulations, 
the implementation becomes complicated. Moreover, their analysis can 
not apply to other cross-diffusion systems. There may be cases where we 
want to see numerical solutions easily and where many numerical simu­
lations are carried out by changing not only the coefficients but also the 
nonlinearity itself. These schemes are not suitable in such cases. 

In response to this, the author proposed a linear discrete-time scheme 
to approximate general nonlinear cross-diffusion system [12]. After dis­
cretizing the scheme in space, versatile, easy to implement and stable 
numerical schemes are obtained. In this paper, we introduce the linear 
scheme and carry out numerical simulations in order to investigate the 
efficiency of the scheme. 

§2. A linear scheme and results 

In this section we present a linear scheme to approximate the solu­
tions of the general cross-diffusion system (1) and state our theoretical 
results. 

2 .1. A linear scheme 

We denote by T = T/NT (NT EN) the time step size. The following 
linear scheme was proposed by the author [12]: Put 

Z o _ zr - o· 

Here, z(j E H 1 (0)M is an approximation to z 0 E L2 (0)M. For n 
1, 2, ... , Ny, find zn and un such that 
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~ U" - !:au" ~ !l(Z"-') + :': f(Z"-') in n, 
f..t f..t 

(3) aun 
an, --=0 on 

OV 
zn = zn-1 + t-t(Un _ j3(zn-1)) in n, 

where t-t is a fixed positive constant. We assert that zn approximates 
z(·, rn). This scheme is quite simple. The scheme amounts to solving M 
linear elliptic equations, followed by explicit algebraic corrections at each 
time step. After discretizing the scheme in space, we obtain a versatile, 
easy to implement and efficient numerical scheme for the cross-diffusion 
system. 

The scheme (3) can be regarded as an extension of a linear scheme 
based on the nonlinear Chernoff formula for the degenerate parabolic 
equations, i.e. M = 1, which was proposed by Berger, Brezis and 
Rogers [3]. The extension of the scheme to the system is very easy 
and natural. However, the theory can not be applied to the system. We 
proved the stability and the convergence of the linear scheme by means 
of the theory of reaction-diffusion system approximation [11, 12]. 

2.2. Assumptions 
The general cross-diffusion system is quite difficult to deal with. 

Even for the problem (2), only partial results are available on the ex­
istence of solutions (see [4], [5] and references therein). We impose the 
following assumptions: 

(H1) f3 is a Lipschitz continuous function satisfying /3(0) = 0. More­
over, there exists a positive constant a such that 

M M 

L :LCBi)j("1)eiej ~ alel2 

i=l j=l 

for almost all 71, e E JRM. 

Here, (f3i)j denotes the derivative of the ith component of f3 with respect 
to the jth variable. 

(H2) f is a Lipschitz continuous function. 

Let L be a positive constant satisfying 

for almost all 11 E JRM and all i, j E {1, 2, ... , M}, where 8ij is the 
Kronecker delta. 
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(H3) J-L satisfies 
a 

0 < J-L < a2 + M2 £2 . 

(H4) z 0 E L2(f!)M. z'FJ E H 1(f!)M satisfy 

llz611P(n)M + v'T llz(iiiHl(n)M :::; c 
for some positive constant C independent ofT. Moreover, 

z0----' z0 weakly in L2 (0)M as r--+ 0. 

The assumption (H1) implies the system is uniformly parabolic. We 
also proved convergence for non-uniformly parabolic cross-diffusion sys­
tems. But they are weakly coupled. They have triangular diffusion 
matrices. See [12] for the details. 

2.3. Weak formulation 

The problem (1) will be understood in the sense of the following 
weak form: 

Definition 2.1. A function z is said to be a weak solution of (1) 
if it fulfils z E (£2 (0, T; H 1 (0)) n H 1 (0, T; H 1 (0)*))M, z(·, 0) = zo a. e. 
inn and 

for all functions 'Pi E £ 2 (0, T; H 1(0)), i = 1, 2, ... , M. Here, (-, ·) 
denotes both the inner product in £ 2 (0) and the duality pairing between 
H 1 (0)* and H 1 (0). 

2.4. Main results 

We now state our main results. 

Theorem 1. Assume that (H1) -(H 4) are satisfied. Let { zn, un} ::;;0 
be the solution of (3). We denote by z(r) and u(r) the functions ob­
tained by piecewise constant interpolation in time of {zn} and {Un}, 
respectively. Then, there exist subsequences {z(rk)}, {U(rk)} of {z(r)}, 
{U(r)} and a weak solution z of (1) such that 

z(rk)--+ z, u(rk)--+ {3(z) 

strongly in L2(Q)M, a. e. in Q and weakly in £ 2 (0, T; H 1 (0))M as Tk 
tends to zero. 
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Remark. The strong convergence of u(rk) was not obtained in [12] 
because slightly general scheme has been treated in [12]. However, the 
following estimate holds for the scheme (3): 

NT 

T L IIUn- ,8(Zn)lli2(!1)M :=:;CT. 
n=l 

Here, C is a positive constant independent of T. This estimate and the 
strong convergence property of z(rk) lead the assertion. 

§3. Numerical experiments 

In this section, one-dimensional numerical experiments are carried 
out to examine rates of convergence. We deal with the system (2) in a 
finite domain n = (0, L) = (0, 2). The following coefficients and initial 
functions are adopted: aw = 0.01, au = 0, a12 = 0.1, a2o = 0.01, a21 = 
2, a22 = 0, ClQ = 2.8, Cu = 1.1, C12 = 1, C20 = 3, C21 = 1, C22 = 1.1, 

z01 (x) = 8/21 x (1 + 0.01 cos(7rx)), z02 (x) = 50/21 x (1- 0.01 sin(7rx)). 

We employ the finite-difference method to discretize (3) in space. 
The spatial mesh size is denoted by h = L / N x, where N x + 1 is the 
number of mesh points. Let Zf'n be the numerical approximation of 
Zi (j h, nT). The fully discrete numerical scheme is as follows. For given 
{Zf'n-lh=l, ... ,M, j=O, ... ,Nx (n = 1, ... , Nr ), solve the following linear 

system to find {Uf'nh=l, ... ,M, j=O, ... ,Nx: 

Thereafter, compute {Zf'nh=l, ... ,M, j=O, ... ,Nx by 

Because of the lack of exact solution, we regard a fine grid numerical 
solution with Nx = 211 , T = 2-20 and J.L = 0.25 as a 'solution'. The 
'solution' is shown in Fig. 1. 
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Fig. 1. The 'solution' until t = 50 
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Fig. 2. Numerical results at t = 10 

We denote bye; (p = 1,2,oo) the discrete relative V'(O)-norm of 
errors at time t = nT, namely, 

( 
i~2 lzt·n- zi(jh, nT)IP I i~2 izi(jh, nTW) 'I: p ~I, 2, 

09S~ D9S~ 

max lzt·n- zi(jh,nT)I I max izi(jh,nT)j. 
•=1,2 •=1,2 

OSjSNx OSjSNx 

We inquire into rates of convergence with respect to the time step 
size T. To this end, numerical simulations are done with 1-L = 0.25 and 
N x = 210 fixed. The left figure of Fig. 2 shows the numerical results at 
timet= 10 with T = 2-8 ,2-10 , 2-12,2-14,2-16 . The errors are along a 
straight line having slope 1, which implies numerical rates of convergence 
with respect toT are of order T for different norms. Numerical rates of 
convergence with respect to the spatial mesh size h at t = 10 are observed 



250 H. Murakawa 

0.1 

~ 0.01 
e 
LiJ0.001 

0.0001 e= --+-­
e, ---x---

1e-005 e2 -;<--

Slope 4 

0.1 

0.01 
<J) 

eo.oo1 
w 
0.0001 

1e-005 

e=--+-­
e, ---x--­
e2 -.-;!( ... 

Slope 2 · 
1e-006 u....-L---'-'-~~~~~'-'--'--~'------' 1e-006 '---'~~-'-'---~~~~~'-'-------' 

0.01 

~ e 

0.1 0.01 

Fig. 3. Numerical results at t = 100 
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Fig. 4. Results for various choices of the parameter JJ 

0.1 

in the right figure. In this simulation, we used f.1. = 0.25, T = 2-18 and 
N x = 23 , 24 , ... , 28 . The numerical results represent that the rates 
are almost of order h2 . This order is similar to that of the fully implicit 
scheme examined by Andreianov et al. [1]. Fig. 3 shows numerical results 
at t = 100. At this time, the 'solution' is almost close to a steady state. 
We used f.1. = 0.25 and Nx = 210 fixed in the left figure and T = 2-10 

fixed in the right. Numerical convergence rates with respect to h are 
observed to be of order h2 and numerical solutions seem to converge 
very rapidly with respect to T. 

We investigate a relationship between the parameter f.1. and errors. 
Fig. 4 sums up the numerical errors e00 for N x = 210 fixed and various 
choices of T and f.i.· The convergence rate is of order T for every choice 
of f.J.. However, the errors are dependent on f.i.. We can observe that the 
larger f.J., the smaller the errors become. On the other hand, the numer­
ical solutions are unstable when we take f.1. 2: 0.48. Therefore, we would 
like to estimate the optimal upper bound of the parameter f.J.. Jager and 
Kacur [8] have studied the linear scheme (3) for the nonlinear diffusion 
equation (1), i.e., M = 1. They improved the scheme by replacing the 
constant parameter f.1. with a function. Thereby, we expect that we can 
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construct a highly accurate numerical method by changing the constant 
f.-l into a suitable function. This will be a subject of a forthcoming paper. 
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