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Blow up points and the Morse indices of solutions to 
the Liouville equation: inhomogeneous case 

Futoshi Takahashi 

Abstract. 

Let us consider the Liouville equation 

-t.u = >..V(x)eu in !1, u = 0 on 8!1, 

where !1 is a smooth bounded domain in R2 , V(x) > 0 is a given 
function in C 1 (0), and>..> 0 is a constant. Let {un} be an m-point 
blowing up solution sequence for >.. = An -!- 0, in the sense that 

formE N. We prove that the number of blow up points m is less than 
or equal to the Morse index of un for n sufficiently large. This extends 
the main result of the recent paper [13] to an inhomogeneous (V =/= 1) 
case. 

§1. Introduction 

(1) 

In this paper we study the Liouville equation 

{ -.t.u = A.V(x)eu 

u=O 
inn, 

on on 

where n is a smooth bounded domain in JR2 , V(x) > 0 is a given function 
in C 1 (fi), and A. > 0 is a constant. 

The purpose of this note is to extend the main result of the recent 
paper [13], where only the case of V = 1 was considered, to the present 
case. 
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The Liouville equation appears in several fields of mathematics and 
physics, and the study of it has a rather long history; see for example, 
[3], [4], [12], and the references therein. 

Let {An} be a sequence of positive numbers with An -+ 0 as n -+ oo. 
One of the interesting issues of this problem is the study of asymptotic 
behavior of solutions as n -+ oo. Concerning this, Ma and Wei [10] 
proved the following fact, which extends the former result by Nagasaki 
and Suzuki [11] where the case of V = 1 was considered. 

Theorem 1. (Ma and Wei [10]) For any solution sequence { un} 
of ( 1) for A = An -!- 0, there exists a subsequence (denoted by Un again) 
such that it holds 

An In V(x)eundx-+81fm, forsomemE{O}UNU{+oo}, 

and according to the cases, the solution sequence { un} behaves as 

(i) uniform convergence to 0: lluniiL=(n) -+ 0, when m = 0, 

(2) 

(ii) entire blow-up: Un(x) -+ +oo as n-+ 00 for any X E f! when 
m=+oo, 

(iii) m-points blow-up: there exists an m-points setS= {a~,··· , am}, 
called blow up set, such that each ai is an interior point of n, 
lluniiL=(K) = 0(1) for any compact set K c n \ s, Unls -+ 
+oo, and 

m 

Un -+ 81r L G( ·, ai) 
i=l 

2 -
in Czoc(n \ S) 

as n -+ oo when m E N. Furthermore, any blow up point 
ai E S must satisfy the condition 

1 m 1 
2 'V R(ai) + L 'V xG(ai, aj) + B1r 'V log V(ai) = 0 

j=l,#i 

fori = 1, 2, · · · , m. Here, G = G(x, y) is the Green function 
of -.6. under the Dirichlet boundary condition with a pole y E 

n, and R(x) = [G(x, y) + 2~ log lx- Yl]y=x denotes the Robin 
function. 

Later, the existence of multiple blowing up solutions with a pre­
scribed blow up set is established; see [6], [7]. 

Let iM(u) denote the Morse index of a solution u of (1), that is, the 
number of negative eigenvalues of the linearized operator Lu = -.6. -
AV(x)eu· acting on HJ(r!). In this note, we prove the following, which 
is an extension of the main theorem in [13] to the inhomogeneous case. 
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Theorem 2. Let {un} be a solution sequence of (1) for A = An 
satisfying 

An l V(x)eundx---+ 81rm 

for some mEN. Then m :S iM(un) for n sufficiently large. 

In the homogeneous (V:::: 1) case [13], we used the fact that w(x) = 
(x- a)· Y'un(x) + 2 satisfies the equation -llw = Aneunw (except for 
the boundary condition) for a E JR.2 . This is no longer true when V is 
not a constant, and we need another method. The proof presented here 
works also for the homogeneous case and the main idea originates from 
[1]. 

§2. Proof of Theorem 2 

In this section, we prove Theorem 2 along the line of [13]. 
Let { Un} be a solution sequence to (1) for A= An with An In V(x)eun 

dx---+ 81rm for some m E N. Theorem 1 implies that the existence of the 
blow up setS = {a1 , · · · , am} c D. Also we have a sufficiently small 
p > 0 and m sequences of local maximum points { x~} such that for each 
ai E S, 

un(x~) = max un(x)---+ oo, x~---+ ai (i = 1, · · · ,m), 
Bp(x?;.) 

as n ---+ oo. 
Now we recall the following local pointwise estimate for the blowing­

up solutions to (1) thanks to YanYan Li [8]: For a fixed p E (0, 1), there 
exists a constant C > 0 independent of i = 1, · · · , m and An > 0 such 
that 

holds true. 
Here we show a proof for the reader's convenience. Define vn(x) = 

Un ( x) + log An. Then Vn satisfies 

-llvn = V(x)eVn inn, Vn =log An on an. 

Furthermore, by the assumption An In V(x)eundx---+ 81rm and 0 < ::la :S 
V(x) :S ::lb < +oo, we see that In evndx = 0(1) as n---+ oo. 

Now, we claim that vn(x~) ---+ +oo as n---+ oo for any i E {1, · · · , m }. 
Indeed, assume the contrary that there exists i E { 1, · · · , m} and a 
subsequence (denoted by the same symbol) such that 
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(i) Vn(x~) ---7 -oo, or 
(ii) vn(x~) ---7 C for some C E R. 

When (i) happens, we see 

as n ---7 oo. However, this contradicts the fact that 

see, for example, Li and Shafrir [9]. 
Also if (ii) happens, a result of Brezis and Merle ([2]: Theorem 3) 

implies that {vn} is bounded in Lt:;'c(O). On the other hand, (2) in 
Theorem 1 implies that Vn = Un + log An ---7 -oo on any compact set 
in 0 \ S. Thus again we have a contradiction and we have proved the 
claim. 

Once we have the claim, we are in the same situation of Theorem 
0.3 in [8] (setting that n = Bp(x~), 0 =X~ there). Note that 

max Vn(x)- min Vn(x) = max un(x)- min un(x) = 0(1) 
8Bp(x:,) 8Bp(x:,) 8Bp(x:,) 8Bp(x:,) 

as n ---7 oo. Thus by Theorem 0.3 in [8], we have 

which is equivalent to (3). 
Now, let us define 

for i E {1, · · · , m }. By the above claim, we easily see that c5~ = o(1) as 
n ---+ oo. The scaled function u~ satisfies 

{ 
A -i V(i:i i ) ;:;,i • B (0) -uun = unY + Xn e n In pfli:. ' 

u~(O) = 0, u~(x) :::; 0, \lx E Bp;li;,_ (0), 

JB . (D) V(c5~y + x~)eii~dy = 0(1), (n ---7 oo). 
p/6-:,_ 
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Moreover, by an argument in [13], we obtain 

(4) u~---+Ui(y)=-2log(1+ V~ai)iyi 2) fori=1,···,m 

in Cloc(JR2 ) as n---+ oo, where Ui is a unique ([5]) solution of 

{ 
-t:.Ui = V(ai)eu' in JR2 , 

Ui(O) = 0, Ui(y):::; 0, 'Vy E JR2 , 

fJF. 2 eu' dy < +oo. 

Now, we define two elliptic operators 

Ln := -b.x- AnV(x)eun(x).: HJ(D.)---+ H-1 (0.), 
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L~ := -b.y- V(J~y + x~)eu~(Y).: HJ(Bp;8~ (0))---+ H-1 (Bp;8~ (0)). 

These two operators are related to each other by the formula 

where x = 8~y+x~ for x E Bp(x~) andy E Bp/!5';. (0). Also for a domain 
DC Bp(x~), we have 

(5) 

where -\1(Ln, D), -\1 (L~, D~) (j EN) denote the j-th eigenvalue of ellip­
tic operators Ln,L~ acting on HJ(D),HJ(D~) respectively. 

We show the following. 

Lemma 2.1. There exists R > 0 such that Al(Ln, B15' R(x~)) < 0 
for n large and for any i E {1, · · · , m }. Furthermore, thes;; m balls are 
disjoint for n large. 

Proof. For R > 0, we define 

8+R2 

WR(Y) = 2log 8 + IYI 2 

Since WR = 0 on oBR(O), we see WR E HJ(BR(O)). 
We will prove that (L~wR, wR)L2(BR) < 0 for R > 0 sufficiently 

large and BR(O) C Bp/8~ (0). Indeed, 

(L~wR, WR)£2(BR) = r iV'wRI 2dy- r V(J~y + x~)eu:,(y)w'h(y)dy 
J BR(O) J BR(O) 

=: h- Iz. 
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We observe that 

{ 16lyl2 {R 16r2 

h = j BR(o) (8 + IYI2)2 dy = 2n Jo (8 + r2)2 rdr ~ 32n log R [1 + oR(1)]' 

where oR(1)-+ 0 as R-+ oo. On the other hand, we have 

12 = r V(8~y + x~)eu~(Y)w1(y)dy 
JBR(O) 

= V(ai) r 1 2 {2log 8 + R: }2 
dy + On(1) 

J BR(O) ( 1 + V~;) IYI2) 8 + IYI 

= 8nV(ai) {R r 2 {log(8 + R2) -log(8 + r2)} 2 dr + on(1) 
lo ( 1 + V(t) r2) 

=8nV(ai)·82{log(8+R2)}2 [l6~(ai) +oR(1)] +on(1) 

= 32nV(ai) {log(8 + R 2)} 2 [1 + 0R(1)] + On(1), 

where we have used ( 4) and 

foR (8+rcr2)2dr= laoo (8+:r2)2dr+oR(1)= 1~c +oR(1) 

for c > 0. Thus we obtain 

(i~wR,WR)L2(BR) = h- 12 

~ -32nV(ai) {log(8 + R 2 )} 2 [1 + oR(1)] + on(1) < 0 

by taking n sufficiently large first, and then R > 0 large such that 
BR(O) C Bp;o~ (0). This implies that the first eigenvalue of the operator 

L~ on BR is negative: )'1 (i~, BR) < 0. By this and the scaling formula 
( 5) proves the first half part of the Lemma. 

The fact that these balls B 0; R(x~) are disjoint for large n follows 
directly from the discreteness of S. Q.E.D. 

By Lemma 2.1, we have m open balls Bl, · · · , Bm, Bi = B8; R(x~), 
which are disjoint, and n 

>...l(Ln,Bi) < 0 fori= 1, · · · ,m. 

On the other hand, it is easy to see that 

m 

Am(Ln,n) ~ L>...l(Ln,Bi) 
i=l 
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holds; see for example, [13]. Combining these inequalities, we have 
Am(Ln, D) < 0. Therefore by the definition of the Morse index of Un, 
we have m::; iM(un)· This proves Theorem 2. Q.E.D. 
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