Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 101–111

Existence of weak solutions to the three-dimensional steady compressible Navier–Stokes equations for any specific heat ratio $\gamma > 1$

Song Jiang

Abstract.

In this paper we present the recent existence results from [14], [15] on weak solutions to the the steady Navier–Stokes equations for three-dimensional compressible isentropic flows with large data for any specific heat ratio $\gamma > 1$. The existence is proved in the framework of the weak convergence method due to Lions [16] by establishing a new a priori potential estimate of both pressure and kinetic energy (in a Morrey space) and using a bootstrap argument. The results presented in the current paper extend the existence of weak solutions in [9] from $\gamma > 4/3$ to $\gamma > 1$.

§1. Introduction

The steady isentropic compressible Navier–Stokes equations, which describe conservation of the mass and momentum of an isentropic flow, can be written as follows.

(1) $\operatorname{div}(\rho \mathbf{u}) = 0,$

(2)
$$-\mu \Delta \mathbf{u} - \tilde{\mu} \nabla \operatorname{div} \mathbf{u} + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P = \rho \mathbf{f} + \mathbf{g}.$$

Here $\mathbf{u} = (u_1, u_2, u_3)$ is the velocity and ρ is the density, the viscosity constants μ and $\tilde{\mu}$ satisfy $\mu > 0$, $\tilde{\mu} = \mu + \lambda$ with $\lambda + 2\mu/3 \ge 0$, the pressure P for the isentropic flow is given by

$$P(\rho) = a\rho^{\gamma}$$

with a being a positive constant and $\gamma > 1$ being the specific heat ratio, $\mathbf{f} = (f_1, f_2, f_3)$ and $\mathbf{g} = (g_1, g_2, g_3)$ are the external forces. We shall

2010 Mathematics Subject Classification. 76N10, 35M12, 35M32, 76N15.

Received April 3, 2012.

Key words and phrases. Steady compressible Navier–Stokes equations, existence for $\gamma > 1$, potential estimate, effective viscous flux.

consider the system (1), (2) in a bounded domain $\Omega \subset \mathbb{R}^3$, and for simplicity, we assume that

$$\mathbf{f}, \ \mathbf{g} \in L^{\infty}(\Omega).$$

Moreover, the total mass is prescribed:

(3)
$$\int_{\Omega} \rho dx = M > 0.$$

In the last decades, the well-posedness of the equations (1), (2) for large \mathbf{f} and \mathbf{g} has been investigated by a number of researchers. In 1998, under the assumption that $\gamma > 1$ in \mathbb{R}^2 and $\gamma > 5/3$ in \mathbb{R}^3 , Lions [16] first proved the existence of weak solutions to different boundary problems for (1), (2). Roughly speaking, the condition on γ comes from the integrability of the density ρ in L^p . The higher integrability of ρ has, the smaller γ can be allowed. If **f** is potential and **g** = 0, then weak solutions are shown to exist for any $\gamma > 3/2$, see [19]. Then, Frehse, Goj and Steinhauer, Plotnikov and Sokolowsk obtained an improved integrability bound for the density by deriving a new weighted estimate of the pressure in [6], [20], where the authors assumed a priori the L^1 -boundedness of $\rho \mathbf{u}^2$ which, unfortunately, was not shown to hold. Recently, by combining the L^{∞} -estimate of $\triangle^{-1}P$ with the (usual) energy and density bounds. Březina and Novotný [3] were able to show the existence of weak solutions to the spatially periodic problem for any $\gamma > (3 + \sqrt{41})/8$ when **f** is potential, or for any $\gamma > 1.53$ when $\mathbf{f} \in L^{\infty}$, without assuming the boundedness of $\rho \mathbf{u}^2$ in L^1 . More recently, Frehse, Steinhauer and Weigant [9] established the existence of weak solutions to the Dirichlet problem in three dimensions for any $\gamma > 4/3$ in the framework of [3]. Also, the existence of a weak solution to (1), (2) with different boundary conditions was obtained in the two-dimensional isothermal case $(\gamma = 1)$ [7], [8].

In this paper, we shall present recent existence results from [14], [15] which are inspired by the works [9], [3] and extend the existence in [9] from $\gamma > 4/3$ to $\gamma > 1$. Roughly speaking, the basic idea in our proof is to employ a careful bootstrap argument to obtain the higher integrability of the density which eventually relaxes the restriction on γ in [9]. We point out that quite recently, using the idea in [14], Jesslé and Novotný [11] showed the existence of weak solutions to (1), (2) with slip (or Navier) boundary conditions for any $\gamma > 1$. As indicated in [11], however, their result does not imply any improvement with respect to [9] in the case of the Dirichlet boundary conditions.

We mention that for a three-dimensional model of steady compressible heat-conducting flows (i.e., the steady compressible Navier–Stokes– Fourier system), Mucha, Novotný, Pokorný [17], [18] recently studied the existence of weak solutions under some assumptions on the pressure and heat-conductivity, which unfortunately exclude the case of polytropic idea gases. For the corresponding non-steady system (to (1), (2)) with large initial data, Lions [16] first proved the global existence of weak solutions in the case of $\gamma \geq 3n/(n+2)$ (n = 2, 3: dimension). His result has been improved and generalized recently in [5], [12], [13] and among others, where the condition $\gamma > 3/2$ is required in three dimensions for general initial data.

This paper is organized as follows. In Section 1 we investigate the case that solutions are spatially periodic, while at the end of the paper, we give a remark on the Dirichlet boundary value problem.

$\S 2.$ Spatially periodic solutions

In this section, we consider the case of spatially periodic solutions to (1), (2), namely, (ρ, \mathbf{u}) is periodic in each x_i with period 2π for all $1 \leq i \leq 3$. For this purpose, we assume that **f** is periodic in each x_i with period 2π for $1 \leq i \leq 3$, and $\mathbf{g} = 0$ without loss of generality. For simplicity, throughout this section, we denote by Ω the periodic cell $(-\pi, \pi)^3$.

In general, there could be no solution for arbitrary \mathbf{f} , since for a (smooth) solution, which is periodic in x with period 2π , \mathbf{f} has to satisfy the necessary condition:

(4)
$$\int_{\Omega} \rho f_i dx = 0 \quad \text{for } 1 \le i \le 3.$$

However, if we consider \mathbf{f} with symmetry

(5)
$$f_i(x) = -f_i(Y_i(x))$$
 and $f_i(x) = f_i(Y_j(x))$, if $i \neq j$, $i, j = 1, 2, 3$,

where

$$Y_i(\cdots, x_i, \cdots) = (\cdots, -x_i, \cdots),$$

then **u** will have the same symmetry and ρ with the symmetry

(6)
$$\rho(x) = \rho(Y_i(x))$$
 for $i = 1, 2, 3,$

and the condition (4) is satisfied automatically. Moreover, **u** satisfies

$$\int_{\Omega} u_i(x) dx = 0 \quad \text{for all } 1 \le i \le 3.$$

S. Jiang

We now introduce some notations (see [1]). Define

$$\mathcal{D}(\mathbb{R}^3) = \{ \phi \in C^{\infty}(\mathbb{R}^3), \ \phi \text{ is periodic in } x_i \text{ of period } 2\pi \\ \text{ for all } 1 \le i \le 3 \}$$

and

$$\mathcal{D}(\Omega) = \{\phi(x) \mid \exists \ \phi(x) \in \mathcal{D}(\mathbb{R}^3), \text{ s.t. } \phi(x) = \phi(x), \text{ for } x \in \Omega\}.$$

By $\mathcal{D}'(\mathbb{R}^3)$ (resp. $\mathcal{D}'(\Omega)$), we denote the dual space of $\mathcal{D}(\mathbb{R}^3)$ (resp. $\mathcal{D}(\Omega)$). For example, $\mathcal{D}'(\mathbb{R}^3)$ is the space of periodic distributions in \mathbb{R}^3 (dual to $\mathcal{D}(\mathbb{R}^3)$). We also introduce the spaces of symmetric functions: $(W^{k,p}_{\text{sym}}(\Omega))^3$ denotes the space of vector functions in $W^{k,p}(\Omega)$ which possess the symmetry (5), while $L^p_{\text{sym}}(\Omega)$ stands for the space of functions in $L^p(\Omega)$ with symmetry (6). $B_R(a) := \{x \in \mathbb{R}^3 : |x-a| < R\}$ denotes the open ball centered at a with radius R.

We are now able to introduce the notation of a renormalized bounded energy weak solution.

Definition 1. (Renormalized bounded energy weak solution) We call (ρ, \mathbf{u}) a renormalized bounded energy weak solution to the spatially periodic problem of the system (1) and (2), if

i) $\rho \geq 0$, $\rho \in L^{\gamma}(\Omega)$, $\mathbf{u} \in H^{1}(\Omega)$, $\int_{\Omega} \rho(x) dx = M > 0$. ii) (ρ, \mathbf{u}) satisfies the energy inequality:

$$\int_{\Omega} \left(\mu |\nabla \mathbf{u}|^2 + \tilde{\mu} |\text{div } \mathbf{u}|^2 \right) dx \le \int_{\Omega} (\rho \mathbf{f} + \mathbf{g}) \cdot \mathbf{u} dx.$$

iii) The system (1), (2) holds in the sense of $\mathcal{D}'(\Omega)$.

iv) The mass equation (1) holds in the sense of renormalized solutions, *i.e.*,

(7)
$$\operatorname{div}[b(\rho)\mathbf{u}] + [b'(\rho)\rho - b(\rho)]\operatorname{div}\mathbf{u} = 0 \quad in \ \mathcal{D}'(\Omega)$$

for any $b \in C^1(\mathbb{R})$, such that b'(z) = 0 when z is big enough.

Remark 1. In the periodic case, the periodic cell Ω in Definition 1 actually can be replaced by any cube in \mathbb{R}^3 with length 2π .

Thus, the existence theorem for (1), (2) in the spatially periodic case reads as follows.

Theorem 1. Let $\gamma > 1$ and $\mathbf{f} \in L^{\infty}(\mathbb{R}^3)$ satisfy (5). Then, there exists a renormalized bounded energy weak solution (ρ, \mathbf{u}) , satisfying (6) and (5), to the spatially periodic problem of the system (1), (2).

Roughly speaking, the proof of Theorem 1 is based on the new a priori estimates for the approximate solutions and the weak convergence method in the framework of Lions [16]. The crucial point, compared with [9], [3], is to establish a new higher than L^{γ} -integrability of the (approximate) density for any $\gamma > 1$ by deriving simultaneous weighted boundedness of both P_{δ} and $\rho_{\delta} |\mathbf{u}_{\delta}|^2$ in a Morrey space. In the following, we give the main steps of the proof.

MAIN STEPS OF THE PROOF:

Step I. Approximate system.

We first work with the standard approximation by introducing an artificial pressure term

$$P_{\delta}(\rho) := a\rho^{\gamma} + \delta\rho^{6},$$

where $0 < \delta \leq 1$. Here we choose ρ^6 just for technical reason, and in fact we can take ρ^{α} for any $\alpha \geq 6$ instead of ρ^6 . We consider the following approximate problem in Ω :

(8)
$$\begin{aligned} & \operatorname{div}(\rho_{\delta}\mathbf{u}_{\delta}) &= 0, \\ (9) & -\mu \triangle \mathbf{u}_{\delta} - \tilde{\mu} \nabla \operatorname{div}\mathbf{u}_{\delta} + \operatorname{div}(\rho_{\delta}\mathbf{u}_{\delta} \otimes \mathbf{u}_{\delta}) + \nabla P_{\delta}(\rho_{\delta}) &= \rho_{\delta}\mathbf{f}. \end{aligned}$$

According to [3], there is at least a weak solution $(\rho_{\delta}, \mathbf{u}_{\delta})$ to the

According to [3], there is at least a weak solution $(\rho_{\delta}, \mathbf{u}_{\delta})$ to the problem (8), (9) with the following properties $(\overline{\gamma} = \max(\gamma, 6))$:

(10)

$$\rho_{\delta} \in L^{2\overline{\gamma}}_{\rm sym}(\Omega), \quad \mathbf{u}_{\delta} \in (W^{1,2}_{\rm sym}(\Omega))^{3}, \quad \int_{\Omega} \rho_{\delta} dx = M;$$

$$\operatorname{div}[b(\rho_{\delta})\mathbf{u}_{\delta}] + \left[b'(\rho_{\delta})\rho_{\delta} - b(\rho_{\delta})\right]\operatorname{div}\mathbf{u}_{\delta} = 0 \quad \text{in } \mathcal{D}'(\Omega);$$

$$\int_{\Omega} \left[\mu|\nabla\mathbf{u}_{\delta}|^{2} + \tilde{\mu}|\operatorname{div}\mathbf{u}_{\delta}|^{2}\right]dx \leq \int_{\Omega} \rho_{\delta}\mathbf{f} \cdot \mathbf{u}_{\delta}dx,$$

where b is the same as in (7).

Denote

(11)
$$A = \|P_{\delta}|\mathbf{u}_{\delta}|^2 + \rho_{\delta}^{\beta}|\mathbf{u}_{\delta}|^{2+2\beta}\|_{L^1}, \qquad 0 < \beta < 1,$$

where and in what follows, $\|\cdot\|_{L^p} := \|\cdot\|_{L^p(\Omega)}$ and $\|\cdot\|_{H^m} := \|\cdot\|_{H^m(\Omega)}$, etc.

Our next goal is to bound A for a suitable β (sufficiently close to 1) by a bootstrap argument, the boundedness of A will lead to the desired uniform-in- δ estimates which will be used in passing to the limit as $\delta \to 0$ to get a weak solution of the system (1), (2). To this end, we start with the following potential estimate which can also be understood as an estimate in a Morrey space.

Step II. A potential estimate

For $x_0 \in \overline{\Omega}$, we define $\phi = (\phi^1, \phi^2, \phi^3)$ with

$$\phi^{i}(x) = rac{(x-x_{0})^{i}}{|x-x_{0}|^{eta}}\eta(|x-x_{0}|) ext{ in } b(x_{0},\pi), \ \ i=1,2,3, \ \ x=(x^{1},x^{2},x^{3}),$$

where $0 < \beta \leq 1$, $b(x_0, \pi) = \{x \in \mathbb{R}^3 : |x^i - x_0^i| < \pi, i = 1, 2, 3\}$ is a periodic cell, and $\eta \in C_0^{\infty}(\mathbb{R})$ is a cut-off function satisfying $0 \leq \eta(t) \leq 1$, $|D\eta| \leq 2, \eta(t) = 1$ if $|t| \leq 1$ and $\eta(t) = 0$ if $|t| \geq 2$.

If we extend ϕ to \mathbb{R}^3 periodically in x_i with period 2π for all $1 \leq i \leq 3$, then $\phi \in H^1_{\text{loc}}(\mathbb{R}^3)$ can be a test function. We thus test (9) with this ϕ to deduce, after a careful but straightforward calculation, that

Lemma 1. Let $(\rho_{\delta}, u_{\delta})$ be the solutions of the approximate problem (8), (9). Then the following estimate holds.

$$\int_{B_1(x_0)} \frac{P_{\delta} + (\rho_{\delta} |\mathbf{u}_{\delta}|^2)^{\beta}}{|x - x_0|} dx \le C \left(1 + \|P_{\delta}\|_{L^1} + \|\rho_{\delta} |\mathbf{u}_{\delta}|^2 \|_{L^1} + \|\mathbf{u}_{\delta}\|_{H^1} \right)$$

for all $\beta \in (0,1)$ and $x_0 \in \overline{\Omega}$, where the constant *C* depends only on $\|\mathbf{f}\|_{L^{\infty}}$, μ , $\tilde{\mu}$, M, γ and β , but not on x_0 and δ .

Step III. Estimate of A.

Let $\Omega' \supset \Omega$ be a domain and E be a bounded linear extension operator from $W^{1,p}(\Omega)$ into $W^{1,p}_0(\Omega')$, such that Eu = u in Ω (see, for example, [10, Theorem 7.25])

Since P_{δ} and \mathbf{u}_{δ} are periodic in x_i with period 2π for all $1 \leq i \leq 3$, we can get from Lemma 1 that

(12)
$$\int_{\Omega'} \frac{P_{\delta} + (\rho_{\delta} |\mathbf{u}_{\delta}|^2)^{\beta}}{|x - x_0|} dx \le C(1 + \|P_{\delta}\|_{L^1} + \|\rho_{\delta} |\mathbf{u}_{\delta}|^2\|_{L^1} + \|\mathbf{u}_{\delta}\|_{H^1})$$

for any $0 < \beta < 1$ and $x_0 \in \overline{\Omega'}$, where the constant C is independent of δ and x_0 .

Let h be the unique weak solution of the elliptic problem:

$$\triangle h = P_{\delta} + (\rho_{\delta} |\mathbf{u}_{\delta}|^2)^{\beta} \ge 0 \text{ in } \Omega'; \quad h = 0 \text{ on } \partial \Omega'.$$

Then by the classical theory for elliptic equations and (12), we have

(13)
$$\|h\|_{L^{\infty}(\Omega')} \leq C \sup_{x_{0} \in \overline{\Omega'}} \int_{\Omega'} \frac{P_{\delta} + (\rho_{\delta} |\mathbf{u}_{\delta}|^{2})^{\beta}}{|x - x_{0}|} dx \\ \leq C(1 + \|P_{\delta}\|_{L^{1}} + \|\rho_{\delta} |\mathbf{u}_{\delta}|^{2}\|_{L^{1}} + \|\mathbf{u}_{\delta}\|_{H^{1}}).$$

Since $\mathbf{u}_{\delta} \in H^1(\Omega), E\mathbf{u}_{\delta} \in H^1_0(\Omega')$. Now, we consider

$$(14) \qquad A': = \int_{\Omega'} [P_{\delta} + (\rho_{\delta} |\mathbf{u}_{\delta}|^2)^{\beta}] |E\mathbf{u}_{\delta}|^2 dx = \int_{\Omega'} \Delta h |E\mathbf{u}_{\delta}|^2 dx$$
$$\leq C ||E\mathbf{u}_{\delta}||_{H^1_0(\Omega')} ||E\mathbf{u}_{\delta}||\nabla h|||_{L^2(\Omega')},$$

where, by integrating by parts, one infers that

(15)
$$\begin{aligned} \||E\mathbf{u}_{\delta}||\nabla h|\|_{L^{2}(\Omega')}^{2} \\ &\leq C \int_{\Omega'} (|h||\Delta h||E\mathbf{u}_{\delta}|^{2} + |h||\nabla h||E\mathbf{u}_{\delta}||\nabla \mathbf{u}_{\delta}|)dx \\ &\leq C \|h\|_{L^{\infty}(\Omega')}(A' + \||E\mathbf{u}_{\delta}||\nabla h|\|_{L^{2}(\Omega')}\|E\mathbf{u}_{\delta}\|_{H^{1}_{0}(\Omega')}). \end{aligned}$$

Thus, the inequalities (14) and (15) imply that

$$A' \le C \| E \mathbf{u}_{\delta} \|_{H_0^1(\Omega')}^2 \| h \|_{L^{\infty}(\Omega')} \le C \| \mathbf{u}_{\delta} \|_{H_0^1}^2 \| h \|_{L^{\infty}(\Omega')},$$

which, by combining with (13) and recalling $A \leq A'$, proves that

Lemma 2. Let A be defined by (11), then we have

(16)
$$A \leq C \|\mathbf{u}_{\delta}\|_{H^{1}}^{2} (1 + \|P_{\delta}\|_{L^{1}} + \|\rho_{\delta}|\mathbf{u}_{\delta}|^{2}\|_{L^{1}} + \|\mathbf{u}_{\delta}\|_{H^{1}}),$$

where the constant C depends on $\|\mathbf{f}\|_{L^{\infty}}, \mu, \tilde{\mu}, M, \gamma$ and β , but not on δ .

Remark 2. We point out here that Lemma 2 can be also obtained by using the arguments in [3].

Step IV. Boundedness of \mathbf{u}_{δ} in H^1 and P_{δ} in L^s (for some s > 1).

To close the estimate for A, we have to bound the terms on the right-hand side of (16). To this end, we use the energy inequality (10) to obtain

(17)
$$\mu \int_{\Omega} |\nabla \mathbf{u}_{\delta}|^2 dx + \tilde{\mu} \int_{\Omega} |\mathrm{div}\mathbf{u}_{\delta}|^2 dx \le \int_{\Omega} \rho_{\delta} f \cdot \mathbf{u}_{\delta} dx \le C \|\rho_{\delta}\mathbf{u}_{\delta}\|_{L^1},$$

where the right-hand side can be bounded as follows, using Hölder's and Sobolev's inequalities, and recalling $\int_{\Omega} \rho_{\delta} = M$.

$$\begin{aligned} \|\rho_{\delta}\mathbf{u}_{\delta}\|_{L^{1}(\Omega)} &= \int_{\Omega} (P_{\delta}\mathbf{u}_{\delta}^{2})^{\frac{1-\beta}{2(\gamma\beta+\gamma-2\beta)}} (\rho_{\delta}^{\beta}\mathbf{u}_{\delta}^{2\beta+2})^{\frac{\gamma-1}{2(\gamma\beta+\gamma-2\beta)}} \rho_{\delta}^{\frac{2\gamma\beta+\gamma-3\beta}{2(\gamma\beta+\gamma-2\beta)}} \\ &\leq CA^{\frac{\gamma-\beta}{2(\gamma\beta+\gamma-2\beta)}}, \end{aligned}$$

which together with (17) and Poincaré's inequality results in

(18)
$$\|\mathbf{u}_{\delta}\|_{H^1} \leq C A^{\frac{\gamma-\beta}{4(\gamma\beta+\gamma-2\beta)}}.$$

S. Jiang

Let ω_{δ} be a solution of the problem

$$\operatorname{div} \omega_{\delta} = \mathbf{f}_{\delta} \text{ in } \Omega, \qquad \omega = 0 \text{ on } \partial\Omega,$$

where

$$\mathbf{f}_{\delta} = P_{\delta}^{s-1} - \frac{1}{|\Omega|} \int_{\Omega} P_{\delta}^{s-1} dx \quad \text{with} \ 1 < s \le \beta + 1 - \beta/\gamma$$

satisfying $\int_{\Omega} \mathbf{f}_{\delta}(x) dx = 0$. Then, from a lemma due to Bogovskij [2] we get

(19)
$$\|\omega_{\delta}\|_{W^{1,\frac{s}{s-1}}} \le C \|\mathbf{f}_{\delta}\|_{L^{\frac{s}{s-1}}} \le C(s,\Omega) \|P_{\delta}\|_{s}^{s-1}.$$

Now, we use the function ω_{δ} to test the momentum equation (9) to obtain by employing (19) and a direct computation similar to Lemma 2.3 in [6] that

(20)
$$\|P_{\delta}\|_{L^{s}}^{s} \leq C(1 + \|\mathbf{u}_{\delta}\|_{W^{1,2}}^{s} + \|\rho_{\delta}|\mathbf{u}_{\delta}|^{2}\|_{L^{s}}^{s}),$$

where the last term can be bounded as follows, using Hölder's and Sobolev's inequalities, and recalling $1 < s \leq \beta + 1 - \beta/\gamma$.

$$\|\rho_{\delta}|\mathbf{u}_{\delta}|^{2}\|_{L^{s}}^{s} \leq C \|P_{\delta}|\mathbf{u}_{\delta}|^{2}\|_{L^{1}}^{\frac{2s-\beta-1}{\gamma\beta+\gamma-2\beta}} \|\rho_{\delta}^{\beta}|\mathbf{u}_{\delta}|^{2\beta+2}\|_{L^{1}}^{\frac{\gamma s+1-2s}{\gamma\beta+\gamma-2\beta}}$$

$$\leq CA^{\frac{\gamma s-\beta}{\gamma\beta+\gamma-2\beta}},$$

which, together (20) and (18), gives

$$\|P_{\delta}\|_{L^{s}(\Omega)}^{s} \leq C(1 + A^{\frac{s(\gamma-\beta)}{4(\gamma\beta+\gamma-2\beta)}} + A^{\frac{\gamma s-\beta}{\gamma\beta+\gamma-2\beta}}) \leq C(1 + A^{\frac{\gamma s-\beta}{\gamma\beta+\gamma-2\beta}}).$$

The above inequality and (18) implies thus

Lemma 3. We have

$$\|\mathbf{u}_{\delta}\|_{H^{1}} \leq CA^{\frac{\gamma-\beta}{4(\gamma\beta+\gamma-2\beta)}}; \qquad \|P_{\delta}\|_{L^{s}}^{s} \leq C(1+A^{\frac{\gamma s-\beta}{\gamma\beta+\gamma-2\beta}})$$

for $s \in (1, \beta + 1 - \beta/\gamma]$, where the constant C depends only on $\|\mathbf{f}\|_{L^{\infty}}$, μ , λ , M, γ and Ω .

Step V. Uniform-in- δ a priori estimates.

Noting that Lemma 3 holds for any $s \in (1, \beta + 1 - \beta/\gamma]$, we write $s = 1 + \epsilon$, where ϵ will be chosen small enough later on, and use (16), Hölder's inequality, Lemma 3 and (21) to infer that

$$(22) \qquad A \leq CA^{\frac{\gamma-\beta}{2(\gamma\beta+\gamma-2\beta)}} (1+A^{\frac{\gamma-\beta}{4(\gamma\beta+\gamma-2\beta)}}+A^{\frac{\gammas-\beta}{(\gamma\beta+\gamma-2\beta)},\frac{1}{1+\epsilon}}) \\ \leq C(1+A^{\frac{3(\gamma-\beta)}{2(\gamma\beta+\gamma-2\beta)}+O(\epsilon)}).$$

Now, recalling $\gamma > 1$, we choose $\beta \in (0, 1)$ sufficiently close to 1, such that $\gamma/(2\gamma - 1) < \beta$, i.e.,

$$\frac{3(\gamma-\beta)}{2(\gamma\beta+\gamma-2\beta)} < 1 \quad \Rightarrow \quad \frac{3(\gamma-\beta)}{2(\gamma\beta+\gamma-2\beta)} + O(\epsilon) < 1,$$

provided that ϵ is chosen small enough. Therefore, we conclude by (22) that $A \leq C$, which immediately implies the following uniform estimate:

Lemma 4. There is a number $\sigma > 1$, such that

$$A + \|\mathbf{u}_{\delta}\|_{H^1} + \|P_{\delta}\|_{L^{\sigma}} + \|\rho_{\delta}|\mathbf{u}_{\delta}|^2\|_{L^{\sigma}} + \|\rho_{\delta}\mathbf{u}_{\delta}\|_{L^{\sigma}} \le C,$$

where the constant C depends only on $\|\mathbf{f}\|_{L^{\infty}}$, μ , $\tilde{\mu}$, M and γ (but not on δ). Moreover,

$$\begin{split} \delta \int_{\Omega} \rho_{\delta}^{6} dx &\leq C \delta^{\frac{\gamma(\sigma-1)}{6+\gamma(\sigma-1)}} \Big(\int_{\Omega} \delta \rho_{\delta}^{6+\gamma(\sigma-1)} dx \Big)^{\frac{6}{6+\gamma(\sigma-1)}} \\ &\leq C \delta^{\frac{\gamma(\sigma-1)}{6+\gamma(\sigma-1)}} \Big(\int_{\Omega} P_{\delta}^{\sigma} dx \Big)^{\frac{6}{6+\gamma(\sigma-1)}} \to 0 \ \text{as} \ \sigma \to 0. \end{split}$$

Step VI. Limit as $\delta \to 0$.

Having had the a priori estimates Lemma 4, we can in general follow the framework of the weak convergence method due to Lions [16] (also see [5]) to take to the limit as $\delta \to 0$ for the approximate problem (8) and (9) to obtain a weak solution of (1), (2) for any $\gamma > 1$. However, we could not directly use the arguments in [16], since we just have $\rho_{\delta} \in L^{\gamma\sigma}(\Omega)$ with $\sigma > 1$ being very close to 1 when γ is close to 1, while in [16] $\rho_{\delta} \in L^{p}(\Omega)$ (p > 5/3) is required. Fortunately, this difficulty can be circumvented by exploiting the estimates established in Lemma 4 and a simple lemma on the weak convergence of product of two functional sequences [14, Lemma 3.1], and consequently getting the weak compactness of the effective viscous flux. Then, by the standard procedure of the weak convergence method (see [16, 4, 5]) we obtain a spatially periodic weak solution to (1), (2). This completes the proof of Theorem 1.

Remark 3. Very recently, Plotnikov and Weigant [21] established the existence for the Dirichlet boundary value problem for any $\gamma > 1$ by using elaborate weighted estimates up to boundary. Now, the existence in the isothermal case $\gamma = 1$ is left open only.

S. Jiang

References

- R. A. Adams and J. F. Fournier, Soblev Spaces, Second ed., Academic Press, 2003.
- [2] M. E. Bogovskii, Solution of the first boudary value problem for an equation of continuity of an incompressible medium, Soviet Math. Dokl., 20 (1979), 1094–1098.
- [3] J. Březina and A.Novotný, On weak solutions of steady Navier–Stokes equations for monoatomic gas, Comment. Math. Univ. Carolin., 49 (2008), 611–632.
- [4] E. Feireisl, On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not integrable, Comment. Math. Univ. Carolin., 42 (2001), 83–98.
- [5] E. Feireisl and A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392.
- [6] J. Frehse, S. Goj and M. Steinhauer, L^p-estimates for the Navier–Stokes equations for steady compressible flow, Manuscripta Math., **116** (2005), 265–275.
- [7] J. Frehse, M. Steinhauer and W. Weigant, On stationary solutions for 2-D viscous compressible isothermal Navier–Stokes equations, J. Math. Fluid Mech., 13 (2010), 55–63.
- [8] J. Frehse, M. Steinhauer and W. Weigant, The Dirichlet problem for viscous compressible isothermal Navier–Stokes equations in two dimensions, Arch. Ration. Mech. Anal., 198 (2010), 1–12.
- [9] J. Frehse, M. Steinhauer, and W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions, J. Math. Pures Appl. (9), 97 (2012), 85–97.
- [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second ed., Springer-Verlag, 1983.
- [11] D. Jesslé and A. Novotný, Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime, preprint, 2011.
- [12] S. Jiang and P. Zhang, Global spherically symmetry solutions of the compressible isentropic Navier–Stokes equations, Comm. Math. Phys., 215 (2001), 559–581.
- [13] S. Jiang and P. Zhang, Axisymmetric solutions of the 3-D Navier–Stokes equations for compressible isentropic fluids, J. Math. Pure Appl., 82 (2003), 949–973.
- [14] S. Jiang and C. Zhou, Existence of weak solutions to the three-dimensional steady compressible Navier–Stokes equations, Ann. Inst. H. Poincaré Non. Linéaire, 28 (2011), 485–498.
- [15] S. Jiang and C. Zhou, On the existence of weak solutions to the threedimensional steady compressible Navier–Stokes equations in bounded domains, arXiv:1107.5701v1[math.AP].

- [16] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Clarendon Press, Oxford, 1998.
- [17] P. B. Mucha and M. Pokorný, Weak solutions to equations of steady compressible heat conducting fluids, Math. Models Meth. Appl. Sci., 20 (2010), 785–813.
- [18] A. Novotný and M. Pokorný, Weak and variational solutions to steady equations for compressible heat conducting fluids, SIAM J. Math. Anal., 43 (2011), 1158–1188.
- [19] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Univ. Press, Oxford, 2004.
- [20] P. I. Plotnikov and J. Sokolowski, Concentrations of solutions to timediscretizied compressible Navier–Stokes equations, Comm. Math. Phys., 258 (2005), 567–608.
- [21] P. I. Plotnikov and W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent $\gamma \in (1, \infty)$, preprint, arXiv:1312.5829v1[math.AP].

Institute of Applied Physics and Computational Mathematics P.O. Box 8009 Beijing 100088 China E-mail address: jiang@iapcm.ac.cn