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Quadratic nonlinear Klein-Gordon equation in 2d, 
Cauchy problem 

Nakao Hayashi and Pavel I. N aumkin 

Abstract. 

We consider the Cauchy problem for the two dimensional nonlinear 
Klein-Gordon equation with a quadratic nonlinearity. In the present 
paper we find more natural conditions for the initial data than those 
of previous works to ensure the existence of scattering states. 

§1. Introduction 

Consider the Cauchy problem for the two dimensional nonlinear 
Klein-Gordon equation with a quadratic nonlinearity 

(1) 8'fv-~v+v=2>.v2 , (t,x) ERxR2 

with the real-valued data v(O, x) = vo (x), Vt(O, x) = v1 (x), where>. E 

R. By changing the dependent variable u = ( v + i (i\1) - 1 Vt) /2, we find 

that u satisfies the following Cauchy problem 

(2) 

with the initial data u(O, x) = u0 = ( v0 + i (i\1) - 1 v1) /2, where £ = 

8t + i (i\1), (i\1) = Jl - ~. In what follows we study equation (2). 
Our aim is to find more natural requirements on the initial data u0 , 

comparing with the previous papers [7], [10]. 
Our main result is the following. 

Theorem 1. Assume that uo E Ha•1 with lluoiiH'"·l :::; c:, where 
c: > 0 is small, a > 1. Then there exists c: > 0 such that (2) has a 

Received December 1, 2011. 
Revised February 8, 2012. 
2000 Mathematics Subject Classification. 35Q55. 
Key words and phrases. Nonlinear Klein-Gordon, Cauchy problem, scat

tering problem. 



90 N. Hayashi and P. I. Naumkin 

unique global solution u E C (R; H"'•1 ) satisfying the time decay estimate 

llu (t)IIL4 ::::: cri. Furthermore for any Uo E H"'·1 with lluoiiH"·l ::::: c, 
there exists a unique final state u+ E H"'• 0 such that 

where 0 < e < 1. 

Note that equation (2) has some gain of regularity in the nonlin
earity in spite of its critical large time behavior. Using the identity 
1 = 0 'V) - 2 - r 2 ~ (t 'V) - 2 , we split the nonlinearity in equation (2) 

Cu 

(3) 

i>.(~v) - 2 (i'V)-1 (u+u) 2 

-i>.c2 ~(i'V)- 1 (~v) - 2 
(u+u)2 , 

where the first term has more gain of regularity and the second one has 
a better time decay. We apply the method of normal forms by Shatah 
[11] to remove the quadratic nonlinearity i>.(ir1'V)-2 (i\7)-1 (u+u)2 

from the right-hand side of (3). In order to do it, we define the bilinear 
operators for j = 1, 2, 3 

with symbols 81 (~, TJ) = (~ + TJ) + (~) + (TJ)' 82 (~, TJ) = (~ + TJ) - (~) -
(ry), 83 (~, ry) = (~ + TJ) + (~) - (TJ). The bilinear operators Ti, 72, T3 
correspond to the nonlinear terms u2 , u2 , lul 2 , respectively. Then we 
find from ( 2) 

(4) 
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where 

-.X ( ~\7) - 2 
(i\7)- 1 (1i (u, u) + 72 (u, u) + 273 (u,u)), 

-i.XC2 ~(i\7)- 1 (~v) -2 (u+u) 2 , 

2r3~ I ~v)-2 N \ t 1, 

-2.x(~v) -2 
(i\7)- 1 (1i (u,.Cu) 

+72 (u, .Cu) + 73 (u, .Cu) + 73 (.Cu, u)). 

The first and second terms in the right-hand side of ( 4) are the qua
dratic nonlinearities with an explicit additional time decay, whereas the 
third term is a cubic nonlocal nonlinearity since in view of equation (2) 

7i (u, .Cu) = -i.X 7i ( u, ( i\7) -I ( u + u)2), and so on. If we could apply 

the Holder inequality to the bilinear operators Tj, we would get the de
sired result easily. Unfortunately it is impossible, so we encounter the 
derivative loss difficulty applying Proposition 2 below. The higher order 
of the derivative loss implies the smoothness of the initial data. This is 
the reason why sufficiently smooth initial data were required in paper 
[10]. The derivation of equation (4) is similar to that of papers [11] and 
[10]. Another nonlinear transformation was proposed by Kosecki [7] for 
a single equation and refined by Sunagawa [12] to a system of nonlinear 
Klein-Gordon equations. Note that the derivative loss does not occur 
in the one dimensional case (see [6]). 

Also an important tool of papers [7], [10], [12] is obtaining the time 
decay estimates through the vector A= (Bt, \7, P, D) with P = t\7 +x8t 
and n = XI Bx2 - X28xl, which was found by [8] and improved by [2]. 
Roughly speaking, the proof of [2] requires the estimates of A 4 , and the 
proof of [8] needs estimates of A 2 with a compact support condition. 
To improve the regularity conditions on the initial data we use the time 
decay estimates from [4] and estimates of the bilinear operators from [5] 
comparing with papers [2] and [10]. So we can reduce to 2 the order 
4 of the vector A used in [2] and the 4-th order of the derivative loss 
in [10] we reduce to a small order 8 > 0. In paper [10], the 37-th order 
of a vector A was used, though their results include the nonlinearities 
containing the derivatives of the unknown functions (see Remark 1). 
Our method with the splitting argument (3) can not be applied to the 
nonlinearities from [10] and systems from [1], [12], directly since that 
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nonlinearities do not have a gain of regularity. In order to treat the 
nonlinearities containing the derivatives of the unknown function such as 
a (\7 u) 2 + b ( Ot u) 2 , we need the L =-time decay estimates for the solutions 
with a requierement u0 E Hr at least, which follows by the estimate 
lle-i(i'V)tuoiiH1 :::; Cr1 lluoiiH3· Note that our method (time decay 

00 1 

and bilinear estimates) without (3) still works for general nonlinearities 
such as a (\7u)2 + b (8tu)2 if we assume that u0 E H 4 •2 . 

Define the operator :J = (i\7) e-i(i'V)txei(i'V)t = (i\7) x + it\7, which 

is analogous to the operator x + it\7 = e-'1-flxe'i-fl in the case of the 
nonlinear Schrodinger equation (see [3]) and commutes with 1:: [£, :.7] = 
£:.1- :.11: = 0. However :.1 is not a purely differential operator, so it is 
apparently difficult to calculate its action on the nonlinearities. We use 
also the first order differential operator P = t\7 + XOt which is closely 
related to :.1 by the identity P = Cx-i:J, acts easily on the nonlinearities 
and it almost commutes with 1: : [£, P] = -i (i\7) -l \7£, where we used 

the commutator [x, (i\7),8] = (3 (i\7),8-2 \7. 
We denote the Lebesgue space by LP with 1 :::; p:::; oo. The weighted 

Sobolev space is H;;'•s = { ¢ E LP; II (x) 8 (i\7) m ¢11LP < oo}, form, s E R, 

1 :::; p :::; oo, where (x) = V 1 + lxl 2 . For simplicity we write Hm,s = 

H~,s and Hm = Hm,O. We denote the Fourier transform of the function 
¢by 

Define the function space Xr = { ¢ E C ([0, T]; L 2 ) ; 11¢11xr < oo}, where 
the norm 

sup (ll¢(t)llw, + ll¢t (t)llwc.-1 
tE[O,T] 

+liP¢ (t) llw,-1 + 11:.7¢ (t) llw,-d, 

with a > 1. The local existence of solutions in Xr can be easily proved. 

Proposition 1. Assume that u0 E H"'• 1 , where s > 0 is small, 

a> 1. Then there exists T = 0 (11uoll~~,1) such that (2) has a unique 

solution u E C ([ -T, T]; H"'• 1) satisfying llullxr :::; C lluollw,,1 . 

§2. Preliminary estimates 

We first state a time decay estimate from paper [4]. 
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Lemma 1. The estimate is valid 

for all t > 0, where 2 < q < oo, provided that the right-hand side is 
finite. 

The following estimates for the bilinear operators Tj were proved in 
paper [5]. 

Proposition 2. The bilinear operators Tj, j = 1, 2, 3, are bounded 
from H~ (R2) x Hl (R2 ) to H;" (R2 ) , i.e. 

where 1 '5:_ p '5:_ r '5:_ oo, ~ + ~ = 1 + ~- f, 1 '5:_ l '5:_ 2, a, (3, 'Y ~ 0 are such 
that a+ f3 > 1, 'Y > 1, or f3 > 1, a+ 'Y > 1. 

From Proposition 2 we obtain 

Lemma 2. Let a + f3 > 1, 'Y > 1, or f3 > 1, a + 'Y > 1, and 
a + (31 > 1 "'1 > 1 or !31 > 1 a + "'1 > 1 and .! + .! = ~ - .! = .! + .! l I l l I l S r 2 ! p q' 

1 '5:_ l '5:_ 2. Then the following estimates are valid 

and 

IIPTi (¢,'1/J)IIH-u '5: C (11P¢11H~ + ll8tcf>IIH~) ll'l/lllm 

+C llc/>IIH~l (IIP'I/IIIH~l + ll8t'I/IIIH~l) , 

for 1 '5:_ j '5:_ 3, provided that the right-hand sides are finite. 

Proof. Integrating by parts we obtain x'Tj (¢,'1/1) = Tj (x¢,'1/1) + 
0<e) (¢,'1/1), where the operator 
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is estimated as in Proposition 2. Also integrating by parts we find 

Therefore the second estimate of the lemma follows from Proposition 
2. Q.E.D. 

§3. Proof of Theorem 1 

We consider the a priori estimate of the solution in the norm 

sup (llu (t)llw, + llut (t)IIHa-1 
tE[O,Tj 

+ IIPu (t)IIHa-1 + II..Ju (t)IIHa-,), 

where a > 1. Also we denote Xr,p = { ¢ E Xr; ll¢11xT :<::; p}, where 

p = d, s > 0. By the Sobolev embedding theorem with ~ = i- ~' 
x ?: 0 and by Lemma 1 we get the estimate 

llullm 

(5) 

< c llullw+"' :<::: ct%-1 (!lull 2-~+x+'Y + II..Jull 1-~+x+'Y) 
q H q H q 

< Ct~+x- 1 (lluiiHa + II..JuiiHa-1) :<::: Cpt~+x- 1 , 

where 2 < r < oo, 0 :<::; '"'( < a and X = max ( 0, 2 + '"'( - ~ - a). 
First we estimate the norm llu (t)IIHa. We choose v = a- 1 > 0 

sufficiently small. Also we denote '"'( = 1 + p,, p, = v 2 . By equation ( 4) 
we get 

llu(t) +N1 (t)IIH" :<::: llu(O) +N1 (O)IIH" 

+C fat IIN2 (T) +N3 (T) +N4 (T)IIHa dT. 
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Applying Proposition 2 with s = 2, r = 2+~-a and estimate (5) we 
obtain 

IlNdH" $ Ctll-117i (u, u) + 72 (u, u) + 73 (u, u)IIH<>--r 
< Ctll-lluiiH" lluiiH;r $ Cp2tll--T $ Cp2Cil-. 

Next applying the Holder inequality, the Sobolev embedding theorem 
and estimate (5) with q = ~ we get 

IIN2IIH" $ cta-2ll(u + u) v (u + u)lb 
$ cta-2llulld lluiiH<> $ Cp2Ca. 

The nonlinear term N3 is estimated similarly to N1 

Finally we estimate N4 by Proposition 2 with s = 2~a , r = 2+~-a and 
estimate (5) 

3 

IIN4IIH<> $ Cta+y-2 L 117j ( u, (iV) - 1 (u + u)2) IIH1--y 
j=1 

< Cta+y-2llullm llull~2• $ Cp3th-%-2 $ Cp3C'"~. 

By equation (2) we find 

Next by the identity .:1 = iP- iCx we get 

(6) 

Multiplying both sides of equation (2) by x, we obtain 

IICxuiiH<>-1 < ll[x, (iV)] uiiH<>-1 + c II [x, (iV) - 1] (u + u)211H<>-1 

(7) +CIIx(u+u)211H"-2. 

Since x = (iV) - 1 .:1- itV (iV) - 1 , by estimate (5) we have 

llx (u + u)211H<>-2 < C llu (iV)-1 .:JuiiL2 + Ct llu-vr (iV)-1 uiiL2 
< C lluiiL411.:Julb + Ct llull~4 $ Cp2 . 
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Therefore by (6) and (7) we obtain II.Jullw·-1 ~ Cp + Cp2 . Thus we 
need to estimate the norm IIPullw"-1 . Since [£, P] = -i (i'\1) -l '\/£, the 
application of the operator P to equation (4) yields 

(8) .C (P (u + N1)) = (P-i (i'\1) -l v) (N2 +N3 + N4). 

Hence integrating with respect to time and taking Hn-1-norm we get 

liP (u +N1) (t)llw"-1 ~liP (u +N1) (O)IIH"'-1 

(9) +C 1t II (P - i (i'\1) -l '\1) (N2 + N3 + N4) IIH<><- 1 dT. 

By the above estimates we have 

ll(i'\1)-1 '\1 (N2 +N3 +N4)11H"'_1 ~ Cp2r 7 + Cp3r 7 . 

We use the commutators 

[ x, (i'\1) 13] (3 (i'\/)/3-2 '\/, [x, \ ~'\! ) 13
] = (3r 2 \ ~'\! ) 13

-
2 

'\/, 

[ 8t, \ ~ '\1) -/3] -(3r3~ (~v) -/3-
2

, [P, (i'\/) 13] = f3 (i'\/) 13- 2 vat, 

[ /" )-/3] I. )-/3-2 I. )-/3-2 
P, \ ~'\! = (3r 2 \ ~'\! '\1- (3r3x~ \ ~'\! 

Therefore 

Hlvr' (iv)-'{._, <; cjj(ivr' P{._, 
(10) +C ll8t<t>IIH"'-3 + C ll<t>IIH"'-3 + Cr1 llx<t>IIH"'-2 . 
Taking¢= Ti (u, u) + 12 (u, u) + 273 (u, u) we get 

IIPNdHa-1 ~ CtJJ-IIP</>IIHa-1--y + C ll8t</>IIHa-3 
+C ll<t>IIH"'-3 + CC1 llx<t>IIH"'-2 . 

Applying Lemma 2 with s = 2, r = 2+~-n and estimate (5) we find 

IIP<PIIH"'-1--r < C (IIPuiiHa-1 + ll8tuiiHa-1) llullm 
~ Cp2tY ~ Cp2Cil-. 
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Since x = (i\7) -l .J -it\7 (i\7) -l we have t-1 llullw,,1 :S C 1 II.J uiiH"-1 + 
lluiiH". Therefore by Lemma 2 we find 

C 1 llx¢11H"-2 :S ee1 lluiiH"·1 llullm :S elcJ.L. 
Hence we get 

IIPN1IIH"-1 :S ep2CI-L. 

Next we estimate PN2 . By (10), the Sobolev embedding theorem and 
estimate (5) with q = ~ we get 

IIPN2IIH"-1 

< etoe-2 (lluPulb + llu8tulb + llull~4 + C 1 llxu2IIL2) 

< etoe-2 llui1Le (IIPuiiH"-1 + llatuiiH"-1 

+ lluiiHa-1 + C 1 llxuiiHa-1) ::; ep2Coe. 

The term P N 3 is estimated in the same manner as P N 1 

IIPN311Ha-1 ::; etJ.L-l IIP<PIIHa-1--y + erl ll8t<PIIHa-3 

+eel II<PIIHa-3 + er2 llx¢11H"-2 ::; ep2e"~. 

Finally we estimate PN4 . By (10) with¢= Ti (u, .Cu) + T2 (u, .Cu) + 
73 ( u, .Cu) + 73 (.Cu, u) we find 

IIPN4IIHa-1 :S etJ.L IIP<fJIIHa-1--y + e IICJt<fJIIHa-3 

+e II<PIIHa-3 +eel llx<PIIHa-2 . 

We use the equation (3) and Proposition 2 to get 

ti-L IIP<fJIIHa-1--y 

< Ct"tiiPT; (u,(ivf (iV)_, (u+U)')L_," 
+Ct" 't IIPT; ( u,,; (iV)-' (i") ' ( u + u)') L_,_, 

< etJ.L+"f-l (IIPuiiH"-1 + llutiiH"-1) (iiu2 iiL 2 ~" + e 1 llu\lulb) 

+etJ.L lluiiH~-1 lip\ ~\7) - 2 
(i\7) -l (u + 'IT) 211H" 

_4_ 
4-a 
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Then as above in view of estimate (5) we obtain 

and 

< Ct2J.L-~ (11uPuiiL6 + lluutiiL6 + cl llxu211L4~a) 
< Cp3CI 

tJ.L-2IIuiiH-r liP~ (iV') -l \ ~V') - 2 
(u + vliiH"'-1 

< CptJ.L+a-2 (iluPulb + iiuutlb + C 1 llxu2IIL2) 
< Cp3CI. 

Hence we find tJ.L IIP</>IIH"'-1--r ~ Cp3C 1 . In the same manner we esti
mate ll8t<PIIH"'-3 , II<PIIH"'-3 and C 1 llx<PIIH"'-2 . Thus 

IIPN411H"'-1 ~ Cp3C 1 . 

Collecting the above estimates we get 

(11) 

The time decay estimate of Theorem 1 follows from ( 11). By the integral 
equation associated with ( 4) 

w (t) = e-i(i"il)tuo +fat e-i(i"il)(t-T) F (u) dT, 

where w = u +N1, F (u) = N2 +N3 +N4, we obtain 

ei(i"il)tw (t)- ei(i"il)sw (s) = 1t e-i(i"il)(t-T) F (u) dT. 

Therefore as above we get the estimate 
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for all t > s > 0. Since w = u + N1 and IIN1 ( t) llwx :::; C (t) -J-t we find 

llei(i\7)tu(t) -ei(i\7)su(s)IIH'":::; C(s)-1-'. 

By the Cauchy-Schwarz inequality we find 

llei(i\7)tu (t)- ei(i'V)su (s)IIH" e 

< C llei(i\7)tu (t)- ei(i'V)su (s)lt:",l 

X llei(iV)tu (t)- ei(i'V)su (s)~~~~li:::; C (s)-(1-li) 

with 0 < () < 1. This completes the proof of the theorem. 

Remark 1. We briefly explain the reason why the proof given in 
[10] requires smooth data. By the energy estimate we get from (2) 

L IIAaulb:::; Cc + C 1t L IIAaullvoo L IIAaulb dt 
lal::=;2rn lal::=;rn lal::=;2rn 

where A = (8t, 'V, P, 0). Then applying the time decay estimate of 
Georgiev to ( 4) we obtain a rough estimate 

(t) L IIAa (u-Ti (u,u) -72 (u,u)- T3 (u,u))llv"' 
lal::=;rn 

< Cc +Cit (t)l-ro L IIAaull~= L IIA""uiiL2 dt 
0 lai::=;["',;H]+k lal::=;rn+l+k 

< Cc +Cit ((t) L IIA au IlL=) 
2 L IIA ""uliv (t~t+ro, 

0 lal::=;rn lal::=;rn+l+k I 

if [mil J + k :::; m (the correct estimate can be written by the Paley
Littlewood partition of unity). From which the desired estimate follows 
if we take k = 4 due to the derivative loss in the estimates for the bilinear 
operators and l = 4 due to the derivative loss in the time decay estimates 
by Georgiev. Hence we need 2m;:::: 24. 
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