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An abelian surface with constrained 3-power torsion 

Christopher Rasmussen 

Abstract. 

In my talk at the Galois Theoretic Arithmetic Geometry meeting, 
I described recent joint work with Akio Tamagawa on a finiteness con­
jecture regarding abelian varieties whose t'-power torsion is constrained 
in a particular fashion. In the current article, we introduce the con­
jecture and provide some geometric motivation for the problem. We 
give some examples of the exceptional abelian varieties considered in 
the conjecture. Finally, we prove a new result-that the set d(Q, 2, 3) 
of Q-isomorphism classes of dimension 2 abelian varieties with con­
strained 3-power torsion is non-empty, by demonstrating an explicit 
element of the set. 

§1. Introduction 

Let e be a prime number, and let 

(1) 

be the canonical outer pro-£ Galois representation on the fundamental 
group of JID6100 , the projective line with three points deleted. The kernel 
of pc corresponds to a subfield Ll.J(£) ~ Q, which is known to be a pro-£ 
extension of Ql(f.Lcoo), unramified outside e [AI88]. 

For any number field k, let 3C(k, £) denote the maximal pro-£ ex­
tension of k(f.Lcoo) which is unramified away from e. We write simply L.1J 
for Ll.J(£) and 3C for 3C(k, £) if there is no confusion. 1 If k C Ll.J, then we 
have 3C(k, £) = 3C(Ql, £). Of course, we have the containment L.1J ~ 3C. 

In [Iha86], Ihara asked whether the fields L.1J and 3C coincide; this 
question is still open. The kanji character Ll.J, san, has the meaning 
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'mountain.' The character ~' ten, has the meaning 'heaven.' Ihara's 
question asks whether two large and natural extensions, one known to 
be contained in the other, happen to coincide. The notation used here 
tries to capture the spirit of Ihara's question in the following form: Does 
the mountain reach the heavens? If Ihara's question may be affirmed, 
then any subfield of~ should also appear in Ll.J. Here, we consider one 
natural source of subfields of ~-namely, the fields of £-power torsion 
of cetain Jacobian varieties which we now describe. 

Suppose that k <;;:; Ll.J is a number field and C /k is a complete nonsin­
gular curve. We say that C admits the structure of a geometric £-cover 
of JF6100 if there exists a morphism f: C ---+ lF1, defined over Q, with the 
following property: The Galois closure of f Q9 Q has degree a power of 
£, and branches only over the set {0, 1, oo }. 

Suppose C / k admits the structure of a geometric £-cover of JF61oo. 

Then C must obtain good reduction away from £ over some finite exten­
sion of the field of definition of the covering f: C ---+ JF1 (see, for example, 
[Liu03, Theorem. 2.12] or [Wew05, Theorem. 1.2]). For simplicity, let 
us assume C/k already possesses good reduction away from£. Let J 
denote the Jacobian variety of C. By [Mil86, Corollary 12.3]), J has 
good reduction away from£ also, and so the extension k(J[£00])/k(J[£]) 
is pro-£ and unramified outside£. Hence, if J[£] is rational over~' then 
k(J[£00]) <;;:; ~-

In [AI88], Anderson and Ihara give conditions on C which imply 
the containment k(J[£00]) <;;:; Ll.J. Given a geometric £-cover satisfy­
ing k(J[£]) <;;:; ~' one may then test Ihara's question with these con­
ditions. This has been carried out in several cases; more details are 
given below. However, outside of a few well-known families of geometric 
£-covers, it is not so easy to produce curves with the requisite proper­
ties. Of course, the Jacobian of such a curve is simply an abelian variety 
satisfying a certain arithmetic constraint. It appears this arithmetic 
constraint is rather strong, which motivates the following conjecture. 

If A/k is an abelian variety, let [A] denote its k-isomorphism class. 
We define the following sets: For any prime£, any number field k, and 
any g ~ 0, let 

(2) .szl(k,g,£) :={[A]: A/k has dimension g and k(A[£00]) <;;:; ~}. 

Next, set 

(3) .szl(k,g) :={([A],£): [A] E .szl(k,g,£)}. 

At least in theory, a class [A] might belong to .szl(k, g, £) for more than 
one value of £, if A/ k has everywhere good reduction. The reader is 
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cautioned not to assume the map 

(4) a'(k, g) --+ u a'(k, g, £), ([A],£) H [A] 
£ 

is a bijection! 
For any choice of k, g, and £, the set a'(k, g, £) is finite. If [A] E 

a'(k, g, £), then the dimension and field of definition of A are fixed, and 
the primes of bad reduction are restricted to the finite set of primes [ 
of k over f. Hence, by the Shafarevich Conjecture, only finitely many 
such classes exist. However, one expects more. In [RT08], the following 
conjecture is presented: 

Conjecture 1. For any fixed k and g?: 0, the set a'(k, g) is finite. 

In my talk at the conference, I discussed the following results, which 
will appear in a joint paper with Tamagawa: 

Theorem 1 (R.-Tamagawa). Let k be a number field and g ?: 
0. Under assumption of the Generalized Riemann Hypothesis, the set 
a' ( k, g) is finite. 

Theorem 2 (R.-Tamagawa). Without assuming the Generalized 
Riemann Hypothesis, the set a'(k, g) is finite in the following cases: 

• k = Q, g ~ 3; 
• [k : Q] ~ 3, g = 1; 
• k/Q a Galois extension of exponent 3 and g = 1. 

The finiteness of a'(Q, 1) is given in [RT08], along with an explicit 
computation of the set d'(Q, 1). In the spirit of Ihara's question, one 
may also consider whether Q(E[£00]) ~ t.1J for [E] E d'(Q, 1), and with 
at most two exceptions, this is known to be true. In general, proving 
Q(A[£00]) ~ t.1J is quite a delicate question. The case of elliptic curves 
over Q was handled by using the special fact that almost all such curves 
either admit the structure of a geometric £-cover, or possess complex 
multiplication-see [RT08] for details. 

§2. The criterion of Anderson and lhara 

Again, we assume k c t.1J is a number field. Let C / k be a curve 
which admits the structure of a geometric £-cover, and let J denote 
its Jacobian variety. Anderson and Ihara have demonstrated a sufficient 
criterion under which J satisfies the condition k(J[£00 ]) ~ tl.J. (Of course, 
this is only a stronger condition than containment in ~ if the answer to 
Ihara's question is negative.) 



452 C. Rasmussen 

Let ~ denote the field of Puiseux series over Q in the parameter ~: 

(5) 

Here is Anderson and Ihara's result [AI88]: 

Proposition 1. Suppose C jk admits the structure of a geometric£­
cover via the morphism f : C -+ IP'1, which is defined over L1J. Moreover, 
suppose there exists a point y E C ( L1J · ~) such that f (y) = T E IP'1 ( Q · ~). 
Then J[£=] is rational over Ll.J, and so also :;JC. 

Consequently, these Jacobians give explicit elements of szl(k, g, £) 
when the criterion can be verified. We give a few examples. The Jaco­
bian J F of the Fermat curve 

(6) 

necessarily satisfies [h] E szi(Q, ~(en - 1)(£n - 2), £). Of course, the 
decomposition of this Jacobian into simple abelian varieties gives abelian 
varieties of smaller dimensions g' which necessarily fall into classes of 
szi(Q,g',£). Anderson and Ihara give two other families of examples: 
the Heisenberg curves of level gn for any prime £, and the principal 
modular curves of level 2n (for£= 2). 

In [Ras04], it is shown that every elliptic curve E jQ with good 
reduction away from 2 admits the structure of a geometric 2-cover, and 
satisfies Q(E[2=]) C Ll.J. On the other hand, if (n is a primitive 2n-th 
root of unity, then the curve 

(7) En: y 2 = x(x + (n)(x- (1- (n)) 

satisfies [En] E szi(Q((n), 1, 2), but is not defined over Q((n-d [Ras04]. 
Thus, we have an infinite ascending chain of sets, with each containment 
proper: 

(8) szi(Q, 1, 2) c sz/(Q(I-14), 1, 2) c szi(Q(~-t8 ), 1, 2) c · · · . 

Thus, even though the sets szl(k, g, £) are finite, they may be arbitrarily 
large. 

In general, our knowledge of the sets szl(k, g) is decidedly murky be­
yond these finiteness results. In [RT08], it is shown that sz/(Q, 1, £) = 0 
for every £ > 163. This is done by identifying elements of szi(Q, 1, £) 
with noncuspidal points of X 0 (£)(Q), and appealing to Mazur's classi­
fication [Maz78]. Similar bounds for£ such that the sets szl(k, 1, £) are 
empty, where [k: Q] = 2 and k is not an imaginary quadratic extension 
of class number one, are almost available-there are effective estimates, 
with the exception of at most one prime. See [Mom95] for details. 
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§3. A New Example 

Even for a particular choice of k, g, and£, it can be nontrivial to de­
termine whether szl(k, g, f!) is nonempty. There is one trivial construction 
for elements in this set; suppose that szl(k, 1, £) is non-empty. Selecting 
g classes [Ei] E szl(k, 1,£) (possibly with repetition), we certainly find 
[E1 X··· X E9 ] E szf(k,g,f!). 

In this fashion, we see immediately that szi(Q, 2, 3) is non-empty, as 
it contains the classes of all products [Ex E'] for [E], [E'] E szi(Q, 1, 3). 
Here we demonstrate a more interesting class in szi(Q, 2, 3), by con­
structing an explicit example of a curve of genus 2 which admits the 
structure of a geometric 3-cover. 

Michael Stoll has computed a list of curves of genus two with odd 
discriminant. 2 We consider the following curve from Stoll's list, which 
has discriminant 6561 = 38 . Let C be the normalization of the projective 
curve given by the equation: 

(9) 

The curve given by this equation is nonsingular everywhere except at 
the point oo* = [0 : 1 : OJ. With respect to the affine coordinates 
x = X I Z, y = Y I Z, the curve has a smooth affine equation given by 

On the other hand, with respect to w = XIY, z = ZIY, the affine 
equation 

contains the singular point oo*, given by (0, 0) on C1 . After blowing up, 
we find an affine chart for the normalization: 

The point oo* of C1 corresponds to the two nonsingular points 001 

(w, 0) and oo2 = (w2 , 0) of C2 , where w is a primitive cube root of unity. 
A birational mapping between C2 and C0 is given by 

1 1 
X= -,y= J2· 

us u 8 

2 At the time of this article, the data was available at Stoll's web site; see 
http://www.faculty.jacobs-university.de/mstoll/data. 
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Proposition 2. Let J denote the Jacobian variety of C. Then 
[J] E d'(Q, 2, 3). In fact, J satisfies the (possibly) stronger condition 

(10) Q( J[300 ]) <;;;: Lll = Lll (3). 

Proof. We must demonstrate a geometric 3-covering f: C -+ lP'1 

which satisfies the criterion of Anderson and Ihara. We let f = g3 , 

where 
y+x3 

g = ---3 - = -(s + 1). 
X 

It is not hard to check that (g) = 3(Pl) - 3(P2 ), where on C0 , these 
points are given by P 1 = (0, 0), P2 = (0, -1). Moreover, the function 
g is totally ramified at the four points P 1 , P 2 , oo1 , 002 and unramified 
elsewhere. Consequently, f is a degree 9 map branched only over the 
three point set {0, 1, oo }. 

We need to be sure that the Galois closure of f Q9 rQJ has 3-power 
degree. Let K = Q( w), and let t be a generator for the function field 
f* K(lP'1 ); that is, t = f(x, y). We have the following field diagram: 

(11) 

Here, £1 = K(C) = K(x, y) = K(x, t). The minimal polynomial for x 
over K(t) is 

(12) 9 3t 3 t 
mx,K(t) (X) = X + ( )2 X - ( ) 2 . t-1 t-1 

Moreover, over the field K(t113 ), mx,K(t)(X) splits into three cubic fac­
tors, as: 

(13) 
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Denote these cubic factors by m 1 , m 2 , and m 3 , labeled so that x is a 
root of m 1 . Each of the mi is an irreducible polynomial in K(t113 )[X], 
and L1 coincides with the splitting field of m 1 over K(tll 3 ). Similarly, 
for i = 2, 3, we let Li denote the splitting field of mi over K(t113 ). 

The Galois closure of LI/ K(t) is the compositum L := L 1L 2L 3 . The 
extension LI/ K(t) is a tower of 3-extensions, and (as w E K), we are 
guaranteed the Galois closure L has 3-power degree over K(t). Hence, 
the covering f is a geometric 3-cover. 

We now must verify the condition on Puiseux series for the covering 
f. That is, we must demonstrate a point (x, y) E C(UJ · ~) which 
satisfies f(x, y) = T E 1P'1 (~). This is an easy calculation. For example, 
the following point satisfies the condition: 

- - 1/9 (1 - r1/3)1/3 

X-T (1-r)l/3 

(14) 
= 7 1/9 . (1 _ ~T1/3 _ ~T2/3 + 22 T + ... ) 

3 9 81 ' 

(1- T2/3) y = _ 7 1/3 -'------'-
1-T 

= 7 1/3 ( -1 + 7 2/3 _ T + 7 5/3 + ... ) . 

Q.E.D. 

Remark. In fact, the geometric automorphism group G of the curve 
C is the dihedral group of 12 elements. The group G possesses several 
elements of order two besides the hyperelliptic involution. However, none 
of these additional order two automorphisms are <Q-rational. Let cp1 , cp2 

be two such automorphisms, which generate a Klein four group inside 
of G. Then the quotients Ei := C j 'Pi are elliptic curves, and necessarily 
J is isogenous to E 1 x E 2 [Igu60, p. 648]. However, these curves are 
not defined over <Q. Hence, the class [J] still provides an "interesting 
example" in the sense described at the start of this section. 
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