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On the decomposition of motivic multiple zeta values 

Francis C. S. Brown 

Abstract. 

We review motivic aspects of multiple zeta values, and as an appli­
cation, we give an exact-numerical algorithm to decompose any (mo­
tivic) multiple zeta value of given weight into a chosen basis up to that 
weight. 

§1. Introduction 

The aim of these notes is to present motivic aspects of multiple zeta 
values in concrete terms, and give applications which might be of use 
to physicists. Most introductory texts on multiple zeta values focus ex­
clusively on the many relations they are known to satisfy. Here we take 
a very different approach. The general philosophy of motives suggests 
that classical Galois theory should extend to certain families of tran­
scendental numbers (namely periods). Multiple zeta values would be a 
prototypical example in such a Galois theory. But since the transcen­
dence conjectures for multiple zeta values are completely unknown, such 
a theory is at present totally inaccessible. One way to circumvent this 
is to replace multiple zeta values with more abstractly defined objects 
called motivic multiple zeta values, for which such a Galois action makes 
sense. Concretely, this takes the form of a coalgebra structure underly­
ing the motivic multiple zeta values. One of the purposes of this paper 
is to show how one can do effective Galois-theoretic calculations with 
motivic multiple zeta values and use this to deduce new results about 
actual multiple zeta values. There are two applications: 

(1) we show how to use the coalgebra structure to decompose any 
multiple zeta value numerically into a candidate basis. 
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(2) we show how to lift certain identities between multiple zeta 
values, i.e., real numbers, to their motivic versions. 

The first point requires explanation. Since the CQl-vector space of mul­
tiple zeta values is finite-dimensional in each weight, standard lattice 
reduction algorithms give a numerical way to write an arbitrary mul­
tiple zeta value of given weight in terms of some chosen spanning set. 
The point of (1) is that the coalgebra structure enables one to replace 
this single high-dimensional lattice reduction problem with a sequence of 
one-dimensional lattice reductions. This is simply the problem of iden­
tifying a rational number a E CQl which is presented as an element a E lR 
to arbitrarily high accuracy, and can be done using continued fractions. 
In fact, we expect that there exists a relatively small a priori bound on 
the denominators of the rational numbers a which can arise, and so this 
algorithm is efficient in practice. 

An application of (2) might be to prove that certain families of 
relations between multiple zeta values are 'motivic'. The idea behind 
this was used for the main theorem of [1], where one had to lift some 
relations between actual multiple zeta values to their motivic versions. 

The paper is set out as follows. In §2, we review some basic prop­
erties of iterated integrals for motivation. In §3 we briefly review the 
structure of the category of mixed Tate motives over Z and state the 
main properties of motivic multiple zeta values. In §4 we show how to 
define derivation operators atk+l' where k 2': 1, which act on the space of 
motivic multiple zeta values, and encode the action of the motivic Galois 
Lie algebra. In §5 we describe the decomposition algorithm (1) using 
these operators, and in §6 we provide a worked example of this algo­
rithm. The reader who is only interested in implementing the algorithm 
may turn immediately to §§5.1-5.2, which can be read independently 
from the rest of the paper. 

§2. Iterated Integrals 

We begin with some generalities on iterated integrals, before spe­
cializing to the case of iterated integrals on the punctured projective 
line. 

2.1. General iterated integrals 

Let M be a smooth coo manifold over IR, and let k be the real or 
complex numbers. Let 1 : [0, 1] --+ M be a piecewise smooth path on 
M, and let w1, ... ,wn be smooth k-valued 1-forms on M. Let us write 
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for the pull-back of the forms Wi to the interval [0, 1]. 

Definition 2.1. Let the iterated integral of w1 , ... ,wn along ry be 

More generally, an iterated integral is any k-linear combination of such 
integrals. The empty integral (n = 0) is defined to be the constant 1. 

The iterated integrals J1 w1 ... Wn do not depend on the choice of 
parametrization of the path ry, and satisfy the following basic properties: 

Shuffle product formula. Given 1-forms w1, ... , Wr+s one has: 

1 W1 · · · Wr 1 Wr+1 · · · Wr+s = L 1 Wo-(1) ... Wa-(n), 
I I o-EI;(r,s) I 

where n = r + s, and I:(r, s) is the set of (r, s)-shuffies: 

I:(r,s) = {u E I:(n): u-1 (1) < ... < u-1 (r) 

and u-1 (r + 1) < ... < u-1 (r + s)}. 

As a general rule, for any letters a 1 , ... , ar+s, we shall formally write 

(2.2) a1 ... ar III ar+1 ... ar+s = L ao-(1) · · · aa-(r+s), 
o-EI;( r,s) 

viewed in Z(a1 , ... , ar+s), the free Z-module spanned by words in the 
a's. 

Composition of paths. If a, (3 : I -+ M are two piecewise smooth 
paths such that (3(0) = a(1), then let a(3 denote the composed path 
obtained by traversing first a and then (3. Then 

where recall that the empty iterated integral (n = 0) is the constant 1. 

Reversal of paths. If ry- 1 (t) = ry(1- t) denotes the reversal of the 
path ry, then we have the following reflection formula: 
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Functoriality. Iff : M'--+ M is a smooth map, and 1: [0, 1] --+ M' 
a piecewise smooth path, then we have: 

1 j*wl ... j*wn = r W1 · .. Wn· 
I Jf(!) 

2.2. The punctured projective line 

Now let us consider the case where k = C, S is a finite set of points 
inC, and M = C\S. Consider the set of closed one forms 

(2.3) 
dz 
-- E r21 (M) where ai E S. 
z- ai 

Let a0, an+l EM and let 1 be a path with endpoints 1(0) = ao, 1(1) = 
an+l· Using the notation from [5], set: 

(2.4) 

Since the exterior product of any two forms (2.3) is zero and each one 
is closed, one can show that the iterated integrals (2.4) only depend on 
the homotopy class of 1 relative to its endpoints. When the path 1 is 
clear from the context, it can be dropped from the notation. 

A variant is to take the limit points a0, an+l in the set S, in which 
case only the interior of 1([0, 1]) lies in M. When the integral (2.4) 
converges, we can extend the definition to this case and show that the 
basic properties of §2.1 still hold. Even when it does not converge, 
(2.4) can be defined by a suitable logarithmic regularization procedure 
(tangential basepoint). 

2.3. Multiple zeta values 

From now on, we shall only consider the case where M = C\{0, 1}, 
and thus all ai E {0, 1}. There is a canonical path 1: (0, 1)--+ M where 
1(t) = t, but note that the endpoints of 1 no longer lie in M. Write 

(2.5) p:N+ ---+ {0,1Y 

where Ok denotes a sequence of k zeros, and N+ = N\ {0}. When nr ~ 2, 
the following iterated integral and sum converge absolutely, and we have 

(2.6) I1 (0;p(nl, ... ,nr);1) 
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This is easily verified from a geometric expansion of t'!:}:1 . In this case, 
the word p( n 1 , ... , nr) E { 0, 1 Y begins in 1 and ends in 0, and is called a 
convergent word in 0, 1 for obvious reasons. In general, for any sequence 
( n1, ... , nr) E N+, the quantity Li ni is called the weight, and r the 
depth. 

Note that the sign conventions in this paper are the usual ones, and 
differ from those in [1]. 

2.4. Regularization of MZV's 

One can extend the definition of I1 (0; a 1 , ... , an; 1) with ai E {0, 1} 
from the set of convergent words to the general case by using the shuffle 
product formula. We henceforth drop the "( from the subscript. 

Lemma 2.2. There is a unique way to define a set of real numbers 
I(ao; a1, ... , an; an+d for any ai E {0, 1}, such that 

• I(O; a1, ... , an; 1) is given by (2.6) if a1 = 1 and an = 0. 
• I(ao; a1; a2) = 0 and I(ao; a!)= 1 for all ao, a1, a2 E {0, 1}. 
• (Shuffie product). For all n = r + s and ao, ... , an+l E {0, 1} 

L I(ao;aa-(l), ... ,aa-(r+s)ian+d. 
a-E1C(r,s) 

• I(ao; a1, ... , an; an+d = 0 if ao = an+l and n.?: 1. 
• I(ao;al, ... ,an;an+l) = (-1)ni(an+lian, ... ,al;ao). 
• I(ao; a1, ... , an; an+l) = ( -1)ni(1- an+li 1- an, ... ; 1- ao). 

In particular, every iterated integral I( ao; a1, ... , an; an+l) is a linear 
combination of multiple zeta values (( n1, ... , nr) with ni .?: 1 and nr .?: 2. 

The second last equation is simply the reversal of paths formula, the 
last equation is functoriality with respect to the map t r-+ 1-t. The num­
bers ((n1, ... , nr) defined for any ni EN+ by ( -1t I(O; p(n1, ... , nr ); 1) 
are sometimes called shuffle-regularized multiple zeta values. 

2.5. Structure of MZV's in low weights 

Let ZN denote the Q-vector space spanned by the set of multiple 
zeta values ( ( n 1, ... , nr) with nr .?: 2 of total weight N = n1 + ... + nr, 
and let Z denote the ([Jl-algebra spanned by all multiple zeta values over 
([Jl. It is the sum of the vector spaces ZN c JR, and conjecturally a 
direct sum. By standard lattice reduction methods, one can try to write 
down a conjectural basis for Z for weight ::::; N. Up to weight 10, one 
experimentally obtains: 
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Weight N 1 2 3 4 5 6 7 8 

ZN 0 ((2) ((3) ((2)2 ((5) ((3)2 ((7) ((3, 5) 
((3)((2) ((2)3 ((5)((2) ((3)((5) 

((3)((2)2 ((3) 2 ((2) 
((2)4 

dimrQlZN 0 1 1 1 2 2 3 4 

Weight N 9 10 
ZN ((9) ((3, 7) 

((3)3 ((3)((7) 
((7)((2) ((5)2 
((5)((2)2 ((3,5)((2) 
((3)((2)3 ((3)((5)((2) 

((3)2((2)2 
((2)5 

dimiQlZN 5 7 

The dimensions at the bottom are conjectural, and it is not even 
known whether ((5) and ((3)((2) are linearly independent over Q. 

For example, the table implies that there exists a relation between 
the two multiple zeta values ((3) and ((1, 2) in weight 3, and indeed it 
was shown by Euler that ((3) = ((1, 2). In weight 8 there appears the 
first multiple zeta value ((3, 5) which conjecturally cannot be expressed 
as a polynomial in the single zetas ((n) with coefficients in Q. One 
expects 

{((2),((3),((5),((7),((3,5),((9),((3, 7)} 
to be algebraically independent over Q. 

§3. Motivic formalism 

3.1. The category of mixed Tate motives over Z 

Let MT(Z) denote the category of mixed Tate motives over Z [4]. 
This is a Tannakian category whose simple objects are the Tate motives 
Q( n), indexed by n E Z, and which have weight - 2n. The structure of 
MT(Z) is determined by the data: 

(3.1) Extl (Q(O) Q(n)) ~ { Q if n 2': ~is odd, 
MT(Z) ' 0 otherwise, 

and the fact that the Ext2 's vanish. Thus MT(Z) is equivalent to the 
category of representations of an affine group scheme gMT over Q, which 
is a semi-direct product 

(3.2) 
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where Qu is the prounipotent algebraic group over Q whose Lie algebra 
is the free Lie algebra with one generator o-2n+l in degree ~(2n + 1) for 
all n :::: 1. The generators correspond to (3.1), and the freeness follows 
from the vanishing of the Ext2 's. The motivic weight is twice the degree. 

Remark 3.1. Henceforth we shall use the word weight to refer 
to half the motivic weight, in keeping with the usual terminology for 
MZV's. 

Definition 3.2. Let AMT denote the graded ring of affine functions 
on Qu over Q. It is a commutative graded Hopf algebra whose coproduct 
we denote by 

~ : AMT ---+ AMT ®l(ll AMT_ 

Define a graded algebra-comodule over AMT by: 

(3.3) 

where h is defined to be of degree 2 and has trivial coaction. The map 
JiMT + --7 AMT sends fz to 0. As a graded vector space, 

1{MT+ ~ EBAMT[2k], 
k?:O 

where [2k] denotes a shift in degree of +2k. We also write the coaction: 

~ : 1{MT + ---+ AMT ®IQl1iMT +. 

It is determined by (3.3) and the formula ~(h) = 1 ® fz. 

The structure of JiMT + can be described explicitly as follows. It 
follows from the remarks above that AMT is non-canonically isomorphic 
to the cofree Hopf algebra on cogenerators hr+l in degree 2r + 1 :::: 3: 

U' = Q(h, j5, ... ). 

This has a basis consisting of all non-commutative words in the !odd's. 
The notation U' is superfluous but useful since we will need to consider 
many different isomorphisms AMT ~ U'. Again, we denote the coprod­
uct on U' by ~ (no confusion arises in practice, since the coproducts on 
AMT and U' are compatible). It is given by deconcatenation: 

(3.4) ~ : U' ---+ U' ®IQl U' 

~(k ... k) 1 ® fil ... k + fil ... k ® 1 
r-1 

+ L Ji1 · • · Jik Q9 Jik+l · · ·fir· 
k=l 
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The multiplication on U' is given by the shuffle product (2.2). 
By analogy with HMT + let us define a trivial algebra-comodule 

where h is of degree 2 and commutes with the !odd· The coaction 

satisfies tJ.(h) = 1 ® h· The total degree gives a grading Uk on U which 
we call the weight (Remark 3.1). 

Thus we have a non-canonical isomorphism 

(3.5) 

of graded algebra-comodules, which induces an isomorphism of the un­
derlying graded Hopf algebras AMT and U', and maps h to h· 

Lemma 3.3. Let dk = dimUk =dim H{:T+. Then 

(3.6) L k 1 
dkt = 2 3. 1- t - t 

k2':1 

In particular, do = 1, d1 = 0, d2 = 1 and dk = dk-2 + dk-3 fork ::=::: 3. 

Proof. The Poincare series of Q(h, f 5 , •• . ) is given by 

1 

1- t 3 - t 5 - ... 

Multiplying by the Poincare series 1!t2 for Q[h] gives (3.6). Q.E.D. 

If we define the depth of hi+l to be 1 for all i > 0, and the depth 
of h to be 0, then we obtain a grading on U which simply counts 
the number of odd elements hi+l· The motivic depth is the associ­
ated increasing filtration and can be defined in terms of the coaction 
HMT + ---+ AMT ®Q! HMT +. One checks that the motivic depth filtra­
tion induced on HMT + by (3.5) is well-defined, and independent of the 
choice of 7/J. In other words, the depth filtration is motivic, but the depth 
grading is not. This stems from the fact that u2i+1 is well-defined only 
up to addition of commutators of CTj for j < 2i + 1. 

Example 3.4. Compare the structure of HMT + in low weights with 
the table of multiple zeta values given in §2.5: 
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Weight k 1 2 3 4 5 6 7 8 9 10 

0 h h J5 fs hlllh h fsh fg hh 
Basis for hh fg fsh f3Illfs hlllhlllh f3Illf7 

MT+ 
Jdi f3Illhf2 hh fs Ill fs Hk 

Ji fsfl fshh 
hh f3Illfsf2 

f3Illf3Ji 
fg 

dim 0 1 1 1 2 2 3 4 5 7 

The following well-known conjecture is of a transcendental nature. 

Conjecture 1. The Ql-algebra of MZV's is graded by the weight: 

(3.7) 

and there is an isomorphism of graded algebras: 

(3.8) 

The first part (3. 7) implies that there should be no relations between 
multiple zeta values of different weights. The second (3.8) implies in 
particular that the multiple zeta values should inherit a coaction by 
the motivic Hop£ algebra AMT. To see what this coaction should be 
requires introducing motivic multiple zetas, for which the independence 
in different weights (3. 7) is automatic. 

3.2. Motivic multiple zeta values. 

In [5], Goncharov showed how to lift the ordinary iterated integrals 
I(ao; a1, ... , an; an+l), where ai E Ql to periods of mixed Tate motives. 
In the case where the ai E {0, 1 }, he showed that these motives are 
unramified over Z (see also [6]), and therefore define objects in AMT. 

In his version of motivic multiple zeta values, the element corresponding 
to ((2) is zero. 

One can show using the formalism of [4] that these can in turn be 
lifted to elements of HMT + in such a way that the motivic version of 
((2) is non-zero. However, the tollation involves making some choices 
(see [1], §2 for the definitions). In summary, there is a graded algebra 

of motivic multiple zeta values with the following properties: 

• The vector space underlying Hn is the quotient of the Ql­
vector space spanned by symbols (ao; a1, ... , an; an+d where 



40 

(3.9) 

(3.10) 
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ao, ... , an+l E {0, 1 }, modulo some (non-explicit) relations. 
The class of such a symbol is denoted 

and is called a motivic iterated integral. Elements of Hn are 
said to have weight n. Examples of relations between the ele­
ments (3.9) are (compare lemma 2.2): 

10: Im (ao; a1, ... , an; an+l) = 0 if ao = an+l and n :::': 1. 
11: Jm (ao;a1;a2) 0 for all ao,a1,a2 E {0,1}, 

and Jm (ao;al) = 1 for all ao,al E {0,1}. 
12: Im (O;a1, ... ,an;1) = (-1)nJm (l;an, ... ,a1;0). 
13: Jm (O;al, ... ,an;1)=(-1)nim (0;1-an, ... ,1-a1;1). 

The algebra structure on H is given by the shuffle product: 

for any ai,x,y E {0, 1}. 

L Im (x;a""(l), ... ,aO"(r+s);y), 
O"E~(r,s) 

• There is a well-defined map (the period) 

per: H ---+ JR. 

Im (ao; a1, ... , an; an+d ---+ I(ao; a1, ... , an; an+l) 

which is a ring homomorphism. In particular, all relations 
satisfied by the Jm ( ao; a 1 , ... , an; an+l) are also satisfied by 
the iterated integrals I(ao; a1, ... , an; an+d· 

• Let n1, ... , nr E N+, where nr :::': 2. Define the motivic multiple 
zeta value to be 

Its period is ((n1 , ... ,nr)· The element (m(2) E H 2 is non­
zero, since its period is ((2) i= 0. One easily shows using rela­
tions 10- 13 that every generator (3.9) is a linear combination 
of (m(n1, ... ,nr), where ni :::': 1 and nr :::': 2. 

• Let A = H/(m(2)H. It is graded by the weight, so we write 
A= EBn>O An· Then A is a Hop£ subalgebra of AMT and H 
is an algehra-comodule over A. Thus there is a coaction 
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which we describe explicitly in §3.4. One can show from the 
formula given in §3.4 that D._(m(2) = 10 (m(2). 

• There is a non-canonical isomorphism 1{ ~ A ®!QI Q[(m(2)]. 
Since A~ AMT it follows that there is a non-canonical em­
bedding of graded algebra-comodules 

which maps (m(2) to h 

Remark 3.5. The relations between the motivic multiple zeta val­
ues em ( nl' ... 'nr) are not known explicitly, but a standard conjecture 
states that they are given by the regularized double shuffle relations (it 
is not presently known if there are more relations). One does not need 
to know these relations (in fact, any relations besides those given above) 
in order to do effective computations with motivic multiple zeta values. 

Remark 3.6. The formalism described above is rather powerful. 
For instance, it immediately implies that 

where the numbers dk are defined by (3.6). The first inequality arises 
because per : 7-lk ---+ Zk is surjective. The bound dim!QI Zk :S dk was first 
proved independently by Goncharov (see Deligne~Goncharov [4]) and 
Terasoma [8]. The main result of [1] is the lower bound dim!QI 7-lk :2: dk, 
which in turn implies that (3.11) is an isomorphism. We shall not need 
this fact for the sequel. It is not known if dim zk > 1 for any k. 

The various choices made above (namely (3.5) and (3.11)) will be 
absorbed into a single morphism of graded algebra-comodules 

(3.12) ¢:7-l-+U 

which is obtained by composing (3.11) with (3.5). It maps (m(2) to 
h, and induces a morphism of Hop£ algebras ¢ : A ---+ U' which only 
depends on (3.5), i.e., a choice of generators of the motivic Lie algebra. 

3.3. Notations 

The motivic multiple zeta values can exist on three different levels: 
the highest being the comodule 7-l; next the Hop£ algebra 
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in which (m(2) is killed; and finally the Lie coalgebra 

(3.13) 

of indecomposable elements of A. We use the notation (m to denote an 
element in H; (" its image in A; and (" its image in £: 

(3.14) \.l) \.l) \.l) 

Thus the elements (" ( n 1 , ... , nr) are exactly the motivic multiple zeta 
values considered by Goncharov in [5], and ("(2) = 0. We use the same 
superscripts for the motivic iterated integrals, viz. Im , I" , F . 

3.4. Formula for the coaction 

Goncharov computed the coproduct ~ : A --+ A 1291Ql A on the el­
ements I" (a0 ; ... ; an+d in [5], Theorem 1.2. The coaction on 1{ is 
essentially given by the same formula (see [1], §2). 

Theorem 3.7. The coaction 

(3.15) 

can be computed explicitly as follows. For any ao, ... , an+l E {0, 1 }, the 
image of a generator~ Im (ao; a1, ... , an; an+d is given by 

k 

(3.16) L (IJI" (aip;aip+I, .. ,aip+1 -l;aip+,))Q9 
io<i1 < ... <ik<ik+l p=O 

where the sum is over indices satisfying i 0 = 0 and ik+l = n + 1, and 
all 0:::; k:::; n. Note that the trivial elements I" (a; b) are equal to 1. 

This formula has an elegant interpretation in terms of cutting off 
segments of a semicircular polygon, for which we refer to [5] for further 
details. Note that the formula (3.16) is very inefficient for practical 
and theoretical computations as it contains a huge amount of redundant 
information. This is the main reason for introducing the derivation 
operators in §4.3 below. 
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3.5. Zeta cogenerators 

The following lemma ([5], Theorem 6.4) is an easy consequence of 
the set up of §3.2, Theorem 3.7, and the fact that ((2n + 1) # 0. 

Lemma 3.8. For n 2: 1, (m(2n + 1) E 1-l is non-zero and satisfies 

Furthermore, Euler's relation for even zeta values implies that 

where bn = ( -l)n+l ~ Bzn ~~~)~, and the Bzn are Bernoulli numbers. 

We can therefore normalize our choice of map (3.12) so that 

1-l~U 

maps (m(2n + 1) to hn+l· For notational convenience we define 

(3.17) 

where bn is defined in the previous lemma. We can therefore write: 

(3.18) 

Remark 3.9. If~ E 1-l is of weight N then e = ~ + a(m(N), for 
any a E CQl, cannot be distinguished from ~ using the coaction L).. This 
is the basic reason why our decomposition algorithm (§5) is not exact. 

§4. Explicit computations with motivic multiple zeta values 

The purpose of this paragraph is to explain how to compute the 
Galois coaction on motivic multiple zeta values explicitly. Since motivic 
multiple zetas are a torsor over the motivic Galois group, and since we 
do not have canonical generators of the motivic Lie algebra, we have to 
make some choices. 

The basic idea is that fixing a map ¢ : 1-l~N '-+ u~N in low weights 
which is compatible with the grading, shuffle multiplication and the re­
spective coactions fixes a choice of generators of the motivic Lie algebra 
a 2n+l for 2n + 1 <::: N, and enables us to compute their action on the 
motivic multiple zeta values in all weights (in §5, such a ¢ will be de­
termined by a choice of polynomial basis of 1-l~N). Thus the choice of 
¢ gives derivation operators for all 1 < 2n + 1 <::: N: 

for all m 2: 2n + 1, 
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which can be computed explicitly from an infinitesimal version of the 
coaction ( 3.15), and a certain coefficient function c~n+l : H2n+ 1 --+ Ql 
which is derived from ¢. One advantage is that the infinitesimal coac­
tion (which we denote by operators D2n+l defined below) enormously 
simplifies the formula (3.16) for the full coaction. 

4.1. Derivation operators on the model U 

In order to detect elements in U we can use a set of derivations as 
follows. For each n ~ 1, define linear maps by 

(4.1) 02n+l : Ql(h, fs, · · .) 

if i 1 = 2n + 1, 
otherwise. 

It is easy to verify that 82n+l is a derivation for the shuffle product, i.e., 

for any a, bE Ql(h, fs, .. . ) . The map 82n+l decreases the motivic depth 
by 1, and the weight by 2n + 1. If we set 82n+l (h)= 0, then the maps 
82n+1 uniquely extend to derivations: 

Definition 4.1. Let o<N be the sum of 82i+1 for 1 < 2i + 1 < N: 

(4.2) O<N: UN --'t EB UN-2i-l· 
l:c;i<LcifJ 

Lemma 4.2. The following sequence is exact: 

Proof. It is clear that every element F E UN can be uniquely writ­
ten in the following form: 

( 4.4) F = L hi+lVN-2i-l + cfN 
l:c;i<llf J 

where c E Ql and the Vj E Uj, and the product on the right is concate­
nation. The elements VN-2i-l are equal to 82i+lF by definition. Every 
tuple (vN-2i-d 1:c;i<llf J arises in this way. Q.E.D. 



Decomposition of motivic multiple zetas 45 

Thus by repeatedly applying operators 82i+1 for 2i + 1 < N, we can 
detect elements in UN, up to elements in the kernel fN~J2. The reason 
for this kernel is that, in the multiple zeta setting, these elements are 
the ones which are invisible to the coaction (Remark 3.9), and can only 
be detected by the (transcendental) period map. 

4.2. Hopf algebra interpretation 

Recalling that U' = U / h U, consider the set of indecomposables: 

L = u;o 
u;au;o' 

which is the cofree graded Lie coalgebra on cogenerators h, f 5 , ... in all 
odd degrees 2:: 3. Its (weight) graded dual L v is the free Lie algebra on 
dual generators Pi, f~, ... in all negative odd degrees ~ -3. In each 
graded weight N there is a perfect pairing L N ®Q L 'fv -+ Ql of finite­
dimensional vector spaces. Thus every dual generator defines a map 
Ffn+l : L -+ Ql. Let 7r : u;o -+ L denote the quotient map, and for 
1 < 2n + 1 ~ N consider the map 

(4.5) 
A I p, 'd JV @id 

U ~ u;o ®Q U ~ L ®Q U 2n~ U 

where f:..' f:.. - 1 ® id. It follows from the structure of U that this 
map is precisely 82n+l (4.1). Note that (4.5), restricted to UN, factors 
through: 

(4.6) 

where the first map is the (2n + 1, N- 2n- 1)-graded part off:... 

4.3. Derivations on 1i 

Consider the infinitesimal version of (3.16). 

Definition 4.3. For each odd r 2:: 3, and all m 2:: 1, define 

.6.r,rn-r 1r@id 
Dr : Hm --'------+ Ar ®QHm-r --=---+ Lr ®QHm-r 

to be the weight ( r, m - r )-graded part of the coaction, followed by 
projection onto the Lie coalgebra. It follows from Theorem 3.7 that the 
action of Dr on the element Jm (ao; a1, ... , am; am+ I) is given by: 

m-r 

(4.7) z= r (ap; ap+l, .. , ap+r; ap+r+d 0 
p=O 
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Note that this formula is closely related to the Connes-Kreimer co­
product formula for a class of linear graphs with two external legs. By 
analogy, we call the sequence (ap; ap+l' ... , ap+r; ap+r+d on the left the 
subsequence and the sequence (ao; a1, .. , ap, ap+r+l, .. , am; am+d on the 
right the quotient sequence of our original sequence ( ao; a1, ... , am; am+ 1). 

Definition 4.4. Let N 2: 0, and observe that 1i<::N c 1i and u<::N c 
U are subcomodules. A trivialisation of 1i up to weight N is a map 

( 4.8) 

which is homogeneous for the weight, linear, injective, respects the coac­
tions, i.e., tl¢ = ¢tl, and the shuffle multiplication laws, i.e., ¢(x1x2) = 
¢(xl)¢(x2) for all x 1 ,x2 E 1i such that degx1 + degx2 ::; N. We say 
that such a trivialization ¢ is normalized if¢( (m (2)) = h and 

(4.9) 

for all 1 < 2n + 1 ::; N. 

Remark 4.5. We know by [1] that dim 1i5,N = dimU5,N for all N, 
so any trivialisation ( 4.8) will automatically be an isomorphism. 

The map ¢ sends every motivic multiple zeta value of weight less 
than or equal to N to a non-commutative polynomial in the fi 's. Let 
1r : A>o -+ £ denote the quotient map, where £ is the Lie coalgebra 
of indecomposables (3.13). Given a trivialisation ¢, we denote the map 
L<::N -+ L5,N induced by ( 4.8) by ¢ also. 

Definition 4.6. If ¢ is a trivialisation of 1i up to weight N, then 
define the coefficient map for all 1 < 2n + 1 ::; N, to be 

ctn+l = f:fn+l o ¢ : £2n+1 ---+ Q. 

We sometimes extend the coefficient map to A2n+l (or H2n+l) via 
the natural map, and denote it by ctn+l also. For an element~ E H 2n+l, 

the number ctn+l (~) is simply the coefficient of hn+l in the expansion 
(4.4) of¢(~) as a non-commutative polynomial in the f's. 

Finally, define operators atn+l : 1i -+ 1i by 

( 4.10) 

These define derivations on the whole of H. Their restriction to the set 
of elements of weight at most N satisfies 

¢ 0 atn+li = 82n+l 0 ¢1 
H~N H~N 
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for all1 < 2n + 1 ::s; N. By analogy with O<N, we define 

(4.11) 0~N = EB ati+1 · 
1=:;i<L ~ J 

4.4. The coefficient map in depth 1 
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Suppose that ¢ is a normalized trivialisation of 1{ up to weight N, 
and let 1 < 2n + 1 ::s; N. The coefficient c~n+ 1 (m ( 2n + 1) is 1. By the 
shuffle relations for motivic iterated integrals, one can check that 

(4.12) r (0; 0, ... '0, 1, 0, ... '0; 1) = ( -1)a+1 ( 2n)cm(2n + 1). 
'--v--' '--v--' a 

a 2n-a 

Therefore for any such normalized ¢ we have 

(4.13) 1> ( £ ( • • )) - ( )a+1 (2n) c2n+1 I 0,0, ... ,0,1,0, ... ,0,1 - -1 . 
'--v--' '--v--' a 

a 2n-a 

In the later examples, this equation will be used many times. 

4.5. Extending a trivialisation 1{ 

One way to construct a trivialisation of 1{ is as follows. Suppose 
that ¢ : 1i<N--+ u<N is a trivialisation up to weight N. Then we have 
differential-operat;rs 8fn+1 on 1{ for all 1 < 2n + 1 ::s; N. Suppose that 
we wish to extend ¢ to a trivialisation ¢' : H::;N +1--+ U::;N + 1 such that 
¢'11-l::;N = ¢. Then for any~ E HN+l we must have 

for all1 ::s; 2n+ 1 ::s; N, by the defining properties of a trivialisation. Since 
by Lemma 4.3 the kernel of 8<N+1 is one dimensional, this determines 
¢'(~)up to a rational multiple of fN+ 1. This rational multiple, call it c~, 
must be chosen consistently for all such ~ in such a way that ¢' respects 
the shuffle products. 

The decomposition algorithm of §5 proceeds by fixing a polynomial 
basis for 1i::;N+1 , and by choosing values of c~ when ~ is a generator 
of this basis. The values of ¢' on the monomials in the basis are then 
deduced by multiplication. Finally, for a general ~ E 1iN+1 we can 
compute its coefficient c~ by applying the period map, provided that 
diiDtQJ1iN+1 = dimiQIUN+1 (which we know to hold for all N by Remark 
4.5). In general, this last step can only be done by numerical approxi­
mation since the period map is transcendental. 
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Examples 4.7. i). Suppose that ¢ : 1i<3--+U<3 is a normalized 
trivialisation. Then since H 3 = Q (m(3), the- operator at is uniquely 
defined. Consider (m(2, 3) = Im (0; 10100; 1) E H 5 . We have 

D 3 Im (0; 10100; 1) =F· (1; 010; 0) Q9 r (0; 10; 1) 

+I£ (o; 1oo; 1) ® r (o; 1o; 1). 

The reflection relation yields Im (1; 010; 0) = -Im (0; 010; 1) which 
equals 21m (0; 100; 1) by (4.12), so we conclude that D 3 (m(2, 3) = 
3 (£ (3) Q9 (m(2), and in particular at(m(2, 3) = 3 (m(2). Thus any ex­
tension ¢' : 1i~5 --+ U~5 must satisfy ¢' ( (m (2, 3)) = 3hh + cfs where 
c E Q remains to be determined. 

ii). Now let ¢ : 1i<s--+U<5 be a normalized trivialisation, so at 
and at are defined. Con;ider (m(4,3) = Im (0;1000100;1) E 1i7. We 
have 

D3Im (0; 1000100; 1) I£ (o; 1oo; 1) ® r (o; 10oo; 1) 

(£ (3) Q9 (m(4). 

F (1; 00010; 0) Q9 Im (0; 10; 1) 

+F (O; o01oo; 1) ® r (O; 1o; 1) 

10 (£ (5) Q9 (m(2). 

Thus at(m(4, 3) = (m(4) and at(m(4, 3) = 10 (m(2). Thus for any 
extension¢': 1i<s--+ U<s, we have ¢'((m(4, 3)) = hf4 + 10fsh + ch, - -
where c E Q is to be calculated. 

These examples can be depicted graphically as follows. The deriva­
tions D 2r+l cut off a segment from the marked semi-circles indicated 
below. Only the segments which give non-zero contributions are indi­
cated. 

Im (0; 10100; 1) Im (0; 1000100; 1) 
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Remark 4.8. These examples perhaps give the wrong impression 
that modifying the choice of a normalised map ¢ only alters the coef­
ficient of fN. This is false: in higher weights, increasingly many coef­
ficients (but not all) will depend on the choice of¢. Note also that to 
compute the image of¢ on an element~ E 1-lN modulo the coefficient of 
fN only requires knowing ¢ on all sub and quotient sequences of~· 

It follows from ( 4.3) that the operators D2r+l yield a lot of explicit 
information about multiple zeta values and their motivic versions. 

As a further illustration of this, consider the family of elements 

(m(l, 3, 0 0 0' 1, 3) = r (0; 1100 0 0 0 1100; 1). 

It is easy to verify that D2r+l(m(1,3, ... ,1,3) vanishes for all r?: 1. 
When r is odd, this follows from 10, and when r is even this follows 
from 12 since consecutive terms cancel. Now for any map¢: 1i Y U as 
in (3.5), we can define afn+l by (4.10). Irrespective of the choice of¢, 

we have afr+l (m(1, 3, ... , 1, 3) = 0 for all r ?: 1. Therefore by ( 4.3) the 
element (m(1, 3, ... , 1, 3) is a rational multiple of (m(N), where N is its 
weight. On taking the period map we deduce that 

((1, 3, ... , 1, 3) = O!n7r4n 
'-v-" 

n 

for some O!n E Q. David Broadhurst showed that O!n = (2n+l)(4n+l)!. 

§5. Decomposition of motivic multiple zetas into a basis 

By using the comodule structure of U and the explicit formula for 
the operators D2r+l, one obtains an 'exact-numerical' algorithm for the 
decomposition of multiple zeta values into any predefined polynomial 
basis, along the lines of §4.5. 

5.1. Preliminary definitions 

Suppose that we wish to decompose multiple zeta values up to some 
weight M?: 2. We need the following set-up. 

1). For 2 ::; N ::; M let VN be the Q-vector space spanned by 
symbols: 

(5.1) 

where ni ?: 1, nr ?: 2, and n1 + ... + nr = N. We call N the weight. 
We also represent these elements another way using a different set of 
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symbols 

(5.2) where ai E {0, 1}. 

Any symbol (5.2) can be reduced to a linear combination of elements of 
the form (5.1) using the following relations: 

RO: Forni;::: 1, nr;::: 2, and n1 + ... + nr = N, we set 

Rl: Im (ao; a1, ... , aN; aN+d = 0 if ao = aN+l or a1 
aN. 

R2: For k,n1, ... ,nr;::: 1, 

(-1)kim (0;0, ... ,0,1,0, ... ,0, ... ,1,0, ... ,0;1) = 
'-v-" '"-v-" '"-v-" 

k n1 nr 

"' (nt +it-1) (nr+ir-l)Jm (0·1 0 0 1 0 O· 1) 
. ~ i1 ··· ir '~'''''~' · 

<t + ... +<r=k n1 +it nr+ir 

R3: Im (O;a1, ... ,aN;1) = (-1)Nim (1;aN, ... ,a1;0). 

R4: Jm (O;al, ... ,aN;1)=(-1)Nim (0;1-aN, ... ,1-a1;1). 

To see this, take any element of the form (5.2) and use Rl and R3 to 
ensure that a0 = 0 and aN+l = 1. Then use R2 to rewrite it as a linear 
combination of elements satisfying a 1 = 1. By R4 this ensures that 
aN = 0 and finally apply R2 once more to force a1 = 1. Conclude using 
RO. 

Remark 5.1. Relations RO and R4 actually induce an extra re­
lation (known as duality) on the generators (5.1). One could take the 
quotient of VN modulo this relation if one chooses, but we shall not do 
this here. 

Finally, for any generator of V N, define its period to be the real 
number 

(5.3) 

2). For 2 :S: N :S: M define a Ql-vector space UN with basis elements 

(5.4) hi1 +1 · • • hir+d~ 
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where r,k 2: O,i1, ... ,ir 2:1, and 2(i1 + ... +ir) +r+2k = N. We also 
need the multiplication rule ill : Urn X Un -+ Um+n defined by 

hi1 +1 • • • hir+df ill hir+l +1 • • • hir+s+dg 

L hia(1)+1 · · · hia(r+s)+df+£ 
uEE(r,s) 

where ~(r, s) is the set of (r, s) shuffles, i.e., permutations CJ of 1, ... , r+s 
such that CJ- 1 (1) < ... < CJ- 1 (r) and CJ- 1 (r + 1) < ... < CJ- 1 (r + s). 

3). Suppose that we have some conjectural polynomial basis of 
(motivic) multiple zeta values B C ffi2<n<M Vn up to weight M. We 
shall assume that B contains the elements-

B 0 = { (m(2)} U { (m(3), (m(5), ... , (m(2r + 1)} 

where r is the largest integer such that 2r+ 1 :::; M. Denote the remaining 
elements of B by B' = B\B0 , and let En denote the set of elements of 
B of weight n. For 2 :::; N :::; M, let (B) N denote the IQl-vector space 
spanned by monomials in elements of the set B which are of total weight 
N, where the weight is additive with respect to multiplication. Part of 
the decomposition algorithm is to verify that B is indeed a polynomial 
basis for the (motivic) multiple zeta values. As a first check, one should 
have 

(5.5) 

where do 1, d1 = 0, d2 = 1 and dk = dk-2 + dk-3 for k 2: 3. The 
integer dN is the dimension of the vector space UN. 

5.2. Inductive definition of the algorithm 

The algorithm is defined by induction on the weight and has two 
parts: 

(1) For all n:::; N, we construct a map 

cp: En-+ Un, 

which assigns a IQl-linear combination of monomials of the form 
(5.4) to every element of our basis B of weight at most N. Us­
ing the multiplication law ill, extend this map multiplicatively 
to monomials in the elements of B to give a map 

for all n :::; N. We require that p be an isomorphism to continue 
(otherwise, the present choice B is not a polynomial basis). 
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(5.6) 
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(2) An algorithm to extend ¢ to the whole of Vn: 

for all n :::; N. Thus there is an algorithm to assign a Q-linear 
combination of monomials of the form (5.4) to every element 
(5.1), but note that it does not actually need to be computed 
explicitly on all elements of Vn, only on the basis elements Bn. 

Once (1) and (2) have been constructed, they give a way to decom­
pose any element~ E VN as a polynomial in our basis: simply compute 

Computing p-1 involves inverting a square matrix which is of size dN, 
where dN is defined by (3.6) (one could do better by exploiting the 
motivic depth filtration if one wished). 

We now show how to define (1) and (2) by a bootstrapping pro­
cedure. Suppose that they have been constructed up to and including 
weight N. For the initial case N = 2, simply set ¢((m(2)) = h 

From (2), we have an algorithm to compute a set of coefficient func­
tions 

(5.7) 

for all 2r + 1 :::; N, which to any element ~ E V2r+l takes the coefficient 
of the monomial fzr+l in¢(~) E Uzr+l· The induction steps are: 

Step 1. Define¢ on elements~ E BN+l as follows. If~= (m(2n+1) 
then set ¢(0 = fzn+l· Otherwise, write~ (or-~) in the form 

(5.8) 

where ai E {0, 1}, using relation RO. Define for all 3:::; 2r + 1:::; N, 

N+l-2r 

(5.9) 6r+l = L c~r+l(Im (ap;ap+l, ... ,ap+2r+l;ap+2r+2))x 
p=O 

¢(Jm (ao; a1, ... , ap, ap+2r+2, ... , aN+l; aN+z)). 

Then 6r+l E UN-2r· The right hand side of the product is computed 
using the algorithm for ¢ in strictly lower weights (5.6). Finally, define 

¢(~) = 
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where the product on the right is concatenation. Having computed ¢ 
explicitly on the elements of BN+l, compute the map p : (B)N+l --+ 
UN +1 by extending ¢ by multiplicativity with respect to rn, and check 
that it is an isomorphism. If not, then the choice of B is not a basis. In 
the case when the basis B contains linear combinations of terms of the 
form (5.8), ¢is computed in exactly the same way by linearity. 

Step 2. The algorithm to compute ¢ on any generator ~ E VN+l 

proceeds as follows. As above, write ~ in the form (5.8), and compute 
6r+l for 3 :S: 2r + 1 :S: N using the formula (5.9). As before, let 

U= 

Then u is an element of UN+l, and we can compute p- 1 (u) E (B)N+l 
as a polynomial in our basis B. The general theory tells us that 

(5.10) 
_per(~- p-1 (u)) JR. 

c~- ((N + 1) E 

is a rational number. Compute it to as many digits as required in order 
to identify this rational to a satisfactory degree of certainty. Define 

where hn = ~(;)2 f:f in the case where N + 1 = 2n is even. 

Some worked examples of this algorithm are computed in §6. 

5.3. Comments 

i). In order to decompose an element (m ( n 1 , ... , nr) of weight N into 
the basis, one must also decompose all the sub and quotient sequences 
of Jm (0; p( n 1 , ... , nr); 1) as they occur in the definition of D2r+l· Since 
such sequences have strictly smaller weight (the weight decreases by at 
least 3) and strictly smaller depth (numbers of 1's), the total number of 
decompositions is manageable. 

ii). The computation of the coefficients (5.10) requires an efficient 
numerical method for computing the multiple zeta values. There are 
many ways to do this. A simplistic way is to write the path from 0 to 
1 as the composition of paths from 0 to ~ and then from ~ to 1, and 
use the composition of paths formula. The upshot is that every multiple 
zeta value can be written in terms of multiple polylogarithms evaluated 
at ~. Many other methods are also available. 
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iii). This is only an algorithm in the true sense of the word in so far 
as it is possible to compute the coefficients Ct; (5.10), and this is the only 
transcendental input. A different realization of the motivic multiple zeta 
values (say, in the p-adic or even finite mod p setting) might lead to an 
exact algorithm for the computation of these coefficients too. We hope 
that one can give a theoretical upper bound for the prime powers which 
can occur in the denominators Ct; as a function of the weight (and choice 
of basis). 

iv). There is in fact no reason to suppose that our basis contains 
the depth one elements (m(2n + 1). For example, in [1] we proved that 
the set of Lyndon words1 in the Hoffman elements: 

(5.11) 

is a polynomial basis for H, as conjectured in [2]. This choice of basis 
gives a canonical trivialisation ¢ : H ~ U which respects the coactions 
and satisfies 

n-1 

0 if at least two ni 's are equal to 3, 

where (n1 , ... , nr) is a Lyndon word in {2, 3}. The equation for the 
coefficient of (m(3, 2, ... , 2) follows from a theorem of Zagier's [9]. The 
previous algorithm allows one to decompose MZV's into this basis too. 

v ). A similar version of this algorithm also works for multiple poly­
logarithms evaluated at Nth roots of unity, in particular in the case of 
Euler sums (N = 2). In some cases an explicit basis for the motivic 
iterated integrals at roots of unity is known by [3]. In the case N = 2, 
this basis was conjectured by Broadhurst. 

vi). Given a relation between motivic multiple zeta values, one can 

define operators atn+ 1 (for some choice of ¢)' to obtain more relations 
of lower weight. Applying the period map gives a relation between real 
MZV's. Thus a relation between motivic MZV's gives rise to a family 
of relations between real MZV's. 

The converse is also true: the decomposition algorithm allows one to 
prove an identity between motivic MZV's if one knows sufficiently many 
relations between real MZV's to determine all the coefficients (5.10) 

1 A sequence ( n1, ... , nr) with n; = 2, 3 is a Lyndon word if ( n 1 , ... , nr) < 
( n;, ... , nr) for all i ~ 2 in the lexicographic ordering determined by 3 < 2. 
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which arise in the algorithm. This was alluded to in point (2) of the 
introduction. In ([1], §4) this idea was used to lift an identity between 
real MZV's to the motivic level (it is essentially the definition of the 
motivic MZV's). 

§6. Worked example of the decomposition algorithm 

We use the following set of motivic multiple zeta values as our in­
dependent algebra generators up to weight 10 (compare the tables in 
§2.5): 

(6.1) B = {(m(2),(m(3),(m(5),(m(7),(m(3,5),(m(9),(m(3, 7)}. 

We first associate to each element of B an element in U. To economize 
on notations, we denote [)~B by 8., since there is no confusion. 

6.1. Construction of the basis polynomials 

The elements ¢B(b) E U, forb E B, are defined as follows. Firstly, 

by (2) of §5. By direct application of definition 4.3 we have: 

rc (o; 10o; 1) 09 r (o; 1oooo; 1) 

+F'' (1; oo1; o) 09 r (o; 1oooo; 1). 
Jf'' (1; 00100; 0) 09 Jm (0; 100; 1) 

+F' (0; 10000; 1) 09 Im (0; 100; 1). 

By (4.12), 83 (m(3, 5) = 0, 85 (m(3, 5) = -5 (m(3), and therefore 

(6.2) ¢B((m(3, 5)) = -5fsh 

following the prescription of (2), §5. Similarly, 

Ds(m(3, 7) 

D7(m(3, 7) 

rc (o; 1oo; 1) 09 r (o; 1oooooo; 1) 

+F' (1; 001; 0) 09 Im (0; 1000000; 1). 

F' (1; 00100; 0) 09 Im (0; 10000; 1). 

F (1; 0010000; 0) 09 Im (0; 100; 1) 

+I 52 (O; 1oooooo; 1) 09 r (O; 1oo; 1). 

Thus 83(m(3,7) = 0, 8s(m(3,7) = -6(m(5), 87(m(3,7) = -14(m(3), 
i.e., 

(6.3) 
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This computation proves that B is indeed an algebra basis, since the 
elements in ¢B ( (B)n) for n .:::; 10 are linearly independent. For example, 
in weight 10 one checks that we have the following basis for Uw: 

f~, fsmhf], hmfsh,fsmfs, -5fshh, hmh,-14hh-6fsfs. 

Therefore any motivic MZV of weight 10 can be uniquely written 

~ = ao(m(2)s + al(m(2)2(m(3)2 + a2(m(2)(m(3)(m(5) + a3(m(5)2 

(6.4) +a4(m(2)(m(3, 5) + as(m(3)(m(7) + a6(m(3, 7), 

where a0 , ... , a6 E Q. From the action of 83, 8s, 87 computed in (6.2), 
(6.3), we see that the ai are given by applying the following operators 

(6.5) 

1 1 
a4 = 5c2 [8s, 83] , as = 8783 , a6 = 14 [87, 83], 

to the element ¢B ( ~), where c~ means taking the coefficient of f2. 

6.2. Sample decompositions 

Let us compute (m(4,3,3) as a polynomial in our basis B. From 
the calculations ( 4) below, we shall see that its non-trivial sub and quo­
tient sequences are (m(3,4), (m(4,3), (m(2,3). Working backwards, we 
decompose these elements in increasing order of weight. 

(1) Decomposition of (m(2, 3). By example 4.7, 83(m(2, 3) = 
3(m(2). In weight five, Us ~ Qhh EB Qfs, so it follows that 
(m(2,3) is of the form c(m(5)+3(m(3)(m(2), where cEQ. By 
numerical computation, or some other method, we check that: 

((2, 3) - 3 ((2)((3) 11 
c = ((5) "'-2. 

Thus (m(2, 3) = - 1{(m(5) + 3(m(3)(m(2). 

(2) Decomposition of (m(4, 3). By example 4.7, we have 83(m(4, 3) 
= (m(4) = ~(m(2) 2 , and 8s(m(4, 3) = 10(m(2). In weight 7, 

U7 ~ Qfsf] EB Qfsh EB Qh 

so ¢B((m(4,3)) is of the form ch + lOfsh + ~fsfi. By nu­
merical computation or otherwise, 

(( 4, 3) - 10 ((2)((5) - ~((3)((2? 
c = ((7) "'-18. 
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Thus (m(4,3) = -18(m(7) + 10(m(5)(m(2) + ~ (m(3)(m(2) 2. 

(3) Decomposition of (m(3, 4). We omit the computation, which is 
similar, and merely state that (m(3, 4) = 17(m(7)-
10 (m(5)(m(2). (It also follows immediately from (2) and the so­
called stuffie relation (m(3)(m( 4) = (m(3, 4) +(m( 4, 3)+(m(7).) 

(4) Decomposition of (m(4, 3, 3). By (4.7) and relations 10-12, 

D3(m(4, 3, 3) = (F (0; 100; 1) +I" (1; 001; 0) +I" (0; 100; 1)) 

@Im (0;1000100;1) 

= (" (3) ® (m(4, 3). 

D5(m ( 4, 3, 3) = I" (1; 00010; 0) ® Im (0; 10100; 1) 

+I" (0; 00100; 1) ® Im (0; 10100; 1) 

= 10 (" (5) ® (m(2, 3). 

D7(m(4, 3, 3) 

=(I" (1; 1000100; 0) +I" (1; 0001001; 0) +I" (0; 0100100; 1)) 

® r (o; wo; 1) 

= ((" (4, 3)- (" (3, 4)- 3((" (4, 3) + (" (3, 4)) ® (m(3). 

By (2) and (3), c~B ((" (4, 3)) = -18 and c~E ((" (3, 4)) = 17, 
and so 87(m(4,3,3) = -32((3). Thus we have: 

¢B((m(4, 3)) 

2 2 
-18h + 10f5h + 5hf2. 
10 ¢B ((m(2, 3)) 

-55f5 + 30hfz. 

-32¢B((m(3)) 

-32h 

Using the equations (6.5) we conclude that 

(m(4, 3, 3) =ao (m(2)5 + ~(m(2)2(m(3)2 + 10 (m(2)(m(3)(m(5) 

- 49 (m(5?- 18 (m(3)(m(7)- 4 (m(2)(m(3, 5) + (m(3, 7). 
2 

Finally, by numerical computation, one checks once again that 

[1 ] 271 4336 
(( 4, 3, 3) - 5((2)2((3)2 + ... + ((3, 7) "' 10((10) = 1925 ((2)5 



58 F. Brown 

which gives the coefficient a0 of (m(2) 5 . 

In this example the coefficients a 1 , a 2 , a4 of (6.4) are computed ex­
actly; the others are obtained indirectly via the period map and numer­
ical approximation. 
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