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Gepner point and strong Bogomolov-Gieseker
inequality for quintic 3-folds

Yukinobu Toda

Abstract.

We propose a conjectural stronger version of Bogomolov-Gieseker
inequality for stable sheaves on quintic 3-folds. Our conjecture is de-
rived from an attempt to construct a Bridgeland stability condition
on graded matrix factorizations, which should correspond to the Gep-
ner point via mirror symmetry and Orlov equivalence. We prove our
conjecture in the rank two case.
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§1. Introduction

1.1. Bogomolov-Gieseker (BG) inequality

First of all, let us recall the following classical result by Bogomolov
and Gieseker:

Theorem 1. ([Bog78], [Gie79]) Let X be a smooth projective com-
plex variety and H an ample divisor in X. For any torsion free H-slope
stable sheaf E on X, we have

Δ(E) ·HdimX−2 ≥ 0.
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Here Δ(E) is the discriminant

Δ(E) := ch1(E)2 − 2 ch0(E) ch2(E).

It has been an interesting problem to improve the BG inequality
for higher rank stable sheaves (cf. [Jar07], [Nak07]). So far such an im-
provement is only known for some particular surfaces, e.g. K3 surfaces
or Del Pezzo surfaces, which easily follows from Riemann-Roch theorem
and Serre duality (cf. Lemma 16, [DRY, Appendix A]). In the 3-fold
case, such an improvement is only known for rank two stable sheaves on
P3 by Hartshorne [Har78]. In a case of other 3-fold, even a conjectural
improvement is not known. The purpose of this note is to propose a
conjectural improvement of BG inequality for stable sheaves on quintic
3-folds, motivated by an idea from mirror symmetry and matrix factor-
izations. We first state the resulting conjecture:

Conjecture 1.1. Let X ⊂ P4
C
be a smooth quintic 3-fold and H :=

c1(OX(1)). Then for any torsion free H-slope stable sheaf on X with
c1(E)/ rank(E) = −H/2, we have the following inequality:

Δ(E) ·H
rank(E)2

> 1.5139 · · · .(1)

The RHS of (1) is a certain irrational real number contained in

Q(e2π
√−1/5), and the detail will be discussed in Conjecture 3.2. Our

conjecture is derived from an attempt to construct a Bridgeland stabil-
ity condition on Db Coh(X) corresponding to the Gepner point in the
stringy Kähler moduli space of X (cf. Subsection 3.1). The RHS of (1)
is related to the coefficient of the corresponding central charge. It seems
that Conjecture 1.1 does not appear in literatures even in the rank two
case, which we will give a proof in this note:

Proposition 1.1. Conjecture 1.1 is true if rank(E) = 2.

The above result will be proved in Subsection 3.7. Based on a sim-
ilar idea, we also propose a conjectural Clifford type bound for stable
coherent systems on quintic surfaces (cf. Section 4). Below we discuss
background of the derivation of the above conjecture.

1.2. Background

The notion of stability conditions on triangulated categories intro-
duced by Bridgeland [Bri07] has turned out to be an important mathe-
matical object to study. However it has been a problem for more than
ten years to construct Bridgeland stability conditions on the derived
categories of coherent sheaves on quintic 3-folds. From a picture of the
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mirror symmetry, the space of stability conditions on a quintic 3-fold
is expected to be related to its stringy Kähler moduli space, which is
described in Figure 1. In Figure 1, we see three special points, large
volume limit, conifold point and Gepner point. A conjectural construc-
tion of a Bridgeland stability condition near the large volume limit was
proposed by Bayer, Macri and the author [BMT], and we reduced the
problem to showing a BG type inequality evaluating ch3(∗) for certain
two term complexes. The main conjecture in [BMT] is not yet proved
except in the P3 case [Mac], and we face our lack of knowledge on the
set of Chern characters of stable objects.

In this note, we focus on the Gepner point. A corresponding sta-
bility condition is presumably constructed as a Gepner type stability
condition [Toda] with respect to the pair(

STOX ◦ ⊗OX(1),
2

5

)
where STOX is the Seidel-Thomas twist [ST01] associated to OX . Com-
bined with Orlov’s result [Orl09], as discussed in [Wal], such a stability
condition is expected to give a natural stability condition on graded
matrix factorizations of the defining polynomial of the quintic 3-fold.
One may expect that constructing a Gepner type stability condition
also requires such a conjectural inequality. It seems worth formulating a
conjectural BG type inequality which arises in an attempt to construct
a Gepner point, so that making it clear what we should know on Chern
characters of stable sheaves. Our Conjecture 1.1 is the resulting output.
The inequality (1) itself is interesting since there have been several at-
tempts to improve the classical BG inequality. Assuming Conjecture 1,
we construct data which presumably give a Bridgeland stability condi-
tion corresponding to the Gepner point.

Compared to the lower degree cases studied in [Toda], constructing
Gepner type stability conditions is much harder in the quintic case,
and most of the attempts are still conjectural. This is the reason we
have separated the arguments for the quintic case from the previous
paper [Toda]. We hope that the arguments in this note lead to future
developments of the study of Chern characters of stable objects on 3-
folds.
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Fig. 1. Stringy Kähler moduli space of a quintic 3-fold
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1.4. Notation and convention

All the varieties or polynomials are defined over complex numbers.
For a smooth projective variety X of dimension n and E ∈ Coh(X), we
write its Chern character as a vector

ch(E) = (ch0(E), ch1(E), · · · , chn(E))

for chi(E) ∈ H2i(X). For a triangulated category D and a set of objects
S in D, we denote by 〈S〉ex the smallest extension closed subcategory in
D which contains S.

§2. Background

2.1. Bridgeland stability condition

Let D be a triangulated category and K(D) its Grothendieck group.
We first recall Bridgeland’s definition of stability conditions on it.

Definition 2.1. ([Bri07]) A stability condition σ on D consists of
a pair (Z, {P(φ)}φ∈R)

Z : K(D) → C, P(φ) ⊂ D(2)

where Z is a group homomorphism (called central charge) and P(φ) is a
full subcategory (called σ-semistable objects with phase φ) satisfying the
following conditions:
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• For 0 �= E ∈ P(φ), we have Z(E) ∈ R>0 exp(
√
−1πφ).

• For all φ ∈ R, we have P(φ+ 1) = P(φ)[1].
• For φ1 > φ2 and Ei ∈ P(φi), we have Hom(E1, E2) = 0.
• For each 0 �= E ∈ D, there is a collection of distinguished

triangles

Ei−1 → Ei → Fi → Ei−1[1], EN = E, E0 = 0

with Fi ∈ P(φi) and φ1 > φ2 > · · · > φN .

The full subcategory P(φ) ⊂ D is shown to be an abelian category,
and its simple objects are called σ-stable. In [Bri07], Bridgeland shows
that there is a natural topology on the set of ‘good’ stability conditions
Stab(D), and its each connected component has a structure of a com-
plex manifold. (The above ‘good’ property means that Z factors through
a fixed group homomorphism K(D) → Γ for a fixed finitely generated
abelian group Γ, together with a technical condition called support prop-
erty introduced in [KS].) Let Aut(D) be the group of autoequivalences
on D. There is a left Aut(D)-action on the set of stability conditions on
D. For Φ ∈ Aut(D), it acts on the pair (2) as follows:

Φ∗(Z, {P(φ)}φ∈R) = (Z ◦ Φ−1, {Φ(P(φ))}φ∈R).

There is also a right C-action on the set of stability conditions on D.
For λ ∈ C, it acts on the pair (2) as follows:

(Z, {P(φ)}φ∈R) · (λ) = (e−
√−1πλZ, {P(φ+Reλ)}φ∈R).

The notion of Gepner type stability conditions is defined as follows:

Definition 2.2. ([Toda]) A stability condition σ on D is called Gep-
ner type with respect to (Φ, λ) ∈ Aut(D) × C if the following condition
holds:

Φ∗σ = σ · (λ).

2.2. Gepner type stability conditions on graded matrix
factorizations

Let W be a homogeneous element

W ∈ A := C[x1, x2, · · · , xn](3)

of degree d such that (W = 0) ⊂ Cn has an isolated singularity at
the origin. For a graded A-module P , we denote by Pi its degree i-
part, and P (k) the graded A-module whose grade is shifted by k, i.e.
P (k)i = Pi+k.
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Definition 2.3. A graded matrix factorization of W is data

P 0 p0

→ P 1 p1

→ P 0(d)(4)

where P i are graded free A-modules of finite rank, pi are homomorphisms
of graded A-modules, satisfying the following conditions:

p1 ◦ p0 = ·W, p0(d) ◦ p1 = ·W.

The category HMFgr(W ) is defined to be the triangulated category
whose objects consist of graded matrix factorizations of W (cf. [Orl09]).
The grade shift functor P • → P •(1) induces the autoequivalence τ of
HMFgr(W ), which satisfies the following identity:

τ×d = [2].(5)

The following is the main conjecture in [Toda]:

Conjecture 2.1. There is a Gepner type stability condition

σG = (ZG, {PG(φ)}φ∈R) ∈ Stab(HMFgr(W ))

with respect to (τ, 2/d), whose central charge ZG is given by

ZG(P
•) = str(e2π

√−1/d : P • → P •).(6)

The definition of the central charge ZG first appeared in [Wal]. It is
more precisely written as follows: since P i are free A-modules of finite
rank, they are written as

P i ∼=
m⊕
j=1

A(ni
j), ni

j ∈ Z.

Then (6) is written as

ZG(P
•) =

m∑
j=1

(
e2n

0
jπ

√−1/d − e2n
1
jπ

√−1/d
)
.

So far Conjecture 2.1 is proved when n = 1 [Tak], d < n = 3 [KST07],
and n ≤ d ≤ 4 [Toda]. The most important unproven case is when
n = d = 5, in which the variety X is a quintic Calabi-Yau 3-fold.
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2.3. Orlov’s theorem

We recall Orlov’s theorem [Orl09] relating the triangulated category
HMFgr(W ) with the derived category of coherent sheaves on the smooth
projective variety

X := (W = 0) ⊂ Pn−1.(7)

We only use the results for d = n case, i.e. X is a Calabi-Yau manifold,
and d = n+ 1 case, i.e. X is general type.

Theorem 2. ([Orl09, Theorem 2.5], [BFK12, Proposition 5.8]) If
d = n, there is an equivalence of triangulated categories

Ψ: Db Coh(X)
∼→ HMFgr(W )

such that the following diagram commutes:

Db Coh(X)
Ψ ��

F

��

HMFgr(W )

τ

��
Db Coh(X)

Ψ �� HMFgr(W ).

Here F is the autoequivalence given by F = STOX ◦ ⊗OX(1).

Recall that STOX is the Seidel-Thomas twist [ST01], given by

STOX (∗) = Cone(RHom(OX , ∗)⊗OX → ∗).

Theorem 3. ([Orl09, Theorem 2.5], [Toda, Proposition 3.22]) If
d = n+ 1, then there is a fully faithful functor

Ψ: Db Coh(X) ↪→ HMFgr(W )

such that we have the semiorthogonal decomposition

HMFgr(W ) = 〈C(0),ΨDb Coh(X)〉

where C(0) is a certain exceptional object. Moreover the subcategory

AW := 〈C(0),ΨCoh(X)〉ex

is the heart of a bounded t-structure on HMFgr(W ), and there is an
equivalence of abelian categories

Θ: Syst(X)
∼→ AW .

Here Syst(X) is the abelian category of coherent systems on X.
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Recall that a coherent system on X consists of data

V ⊗OX
s→ F

where V is a finite dimensional C-vector space, F ∈ Coh(X) and s is a
morphism in Coh(X). The set of morphisms in Syst(X) is given by the
commutative diagrams in Coh(X)

V ⊗OX
s ��

��

F

��
V ′ ⊗OX

s′ �� F ′.

The equivalence Θ sends (OX → 0) to C(0) and (0 → F ) for F ∈ Coh(X)
to Ψ(F ) ∈ AW .

§3. Stronger BG inequality for quintic 3-folds

In this section, we take W to be a quintic homogeneous polynomial
with five variables

W ∈ C[x0, x1, x2, x3, x4], deg(W ) = 5.(8)

The variety

X := (W = 0) ⊂ P4

is a smooth quintic Calabi-Yau 3-fold. This is the most interesting case
in the study of Conjecture 2.1. We have an equivalence by Theorem 2

Ψ: Db Coh(X)
∼→ HMFgr(W ).(9)

The goal of this section is to translate Conjecture 2.1 in terms of
Db Coh(X), and relate it to a stronger version of BG inequality for
stable sheaves on X.

3.1. Stringy Kähler moduli space of a quintic 3-fold

Let us first recall a mirror family of a quintic 3-foldX and its stringy
Kähler moduli space. The mirror family of X is a simultaneous crepant

resolution Ŷψ → Yψ of the following one parameter family of quotient
varieties [CdlOGP91]:

Yψ :=

{
5∑

i=0

y5i − 5ψ

5∏
i=0

yi = 0

}
/G.
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Here [y1 : y2 : y3 : y4 : y5] is the homogeneous coordinate of P4, and G =
(Z/5Z)3 acts on P4 by

ξ · [y1 : y2 : y3 : y4 : y5] = [ξ1y1 : ξ2y2 : ξ3y3 : ξ
−1
1 ξ−1

2 ξ−1
3 y4 : y5]

for ξ = (ξi)1≤i≤3 ∈ G. Let α be the root of unity

α := e2π
√−1/5.

Note that we have the isomorphism

Ŷψ

∼=→ Ŷαψ(10)

by yi → yi for 1 ≤ i ≤ 4 and y5 → αy5. Also Ŷψ is a non-singular

Calabi-Yau 3-fold if and only if ψ5 �= 1. Hence the mirror family Ŷψ is
parametrized by the following quotient stack (see Figure 1)

MK :=

[{ψ ∈ C : ψ5 �= 1}
μ5

]
where the generator of μ5 acts on C by the multiplication of α. The
stack MK is called the stringy Kähler moduli space of X. We see that
there are 3-special points in Figure 1:

• The point ψ5 = ∞, called Large volume limit.
• The point ψ5 = 1, called Conifold point.
• The point ψ5 = 0, called Gepner point.

The mirror variety Ŷψ is non-singular except at the first two special
points. It is also non-singular at the Gepner point, but there admits a
non-trivial Z/5Z-action by the isomorphism (10).

3.2. Relation to Bridgeland stability

We discuss a relationship between the spaceMK and the Bridgeland’s
space

Stab(X) := Stab(Db Coh(X))

based on the papers [Asp], [Bri09]. Let Auteq(X) be the group of au-
toequivalences of Db Coh(X). It is expected that there is an embedding

I : MK ↪→ [Auteq(X)\Stab(X)/C](11)

such that, if we write

I(ψ) = (Zψ, {Pψ(φ)}φ∈R)
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then the central charge Zψ(E) for E ∈ Db Coh(X) is a solution of the
Picard-Fuchs (PF) equation which the period integrals of the mirror

family Ŷψ should satisfy. Using the following notation

z := 5−5ψ−5, θz := z
d

dz

the PF equation is given by

θ4zΦ− 5z(5θz + 1)(5θz + 2)(5θz + 3)(5θz + 4)Φ = 0.(12)

The solution space of the above PF equation is known to be four dimen-
sional. The basis at ψ = 0 is given by (cf. [CdlOGP91])

�j(ψ) := −1

5

∞∑
m=1

Γ(m/5)

Γ(m)Γ(1−m/5)4
(5α2+jψ)m

for 0 ≤ j ≤ 3. For an object E ∈ Db Coh(X), the central charge Zψ(E)
should satisfy the above PF equation, hence is written as

Zψ(E) =
3∑

i=0

Φi(ψ) ·H3−i chi(E)

where H := c1(OX(1)) and Φi(ψ) is a linear combination of the ba-
sis {�j(ψ)}0≤j≤1 which is independent of E. Here we have identified
H6(X,Q) with Q via the integration map. On the other hand, around
the large volume limit and the conifold point, the monodromy transfor-
mations induce linear isomorphismsML, MC on the solution space of the
PF equation (12). Hence that monodromy transformations act on the
central charge Zψ(E), which are expected to coincide with the actions of
autoequivalences ⊗OX(1), STOX respectively. Namely we should have
the following identities:

Zψ(E ⊗OX(1)) =

3∑
i=0

MLΦi(ψ) ·H3−i chi(E)

Zψ(STOX (E)) =

3∑
i=0

MCΦi(ψ) ·H3−i chi(E).

The coefficients of Φi(ψ) are uniquely determined by the above matching
property of the monodromy transformations on both sides of (11).

Indeed, the above idea is used to give an embedding similar to (11)
when X is the local projective plane in [BM11]. In the quintic 3-fold
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case, based on a similar idea as above, the central charges Zψ(E) for line
bundles E = OX(m) are computed by Aspinwall [Asp, Equation (217)]:

Zψ(OX(m)) =
1

6
(5m3 + 3m2 + 16m+ 6)�0(ψ)

− 1

2
(3m2 + 3m+ 2)�1(ψ)−m2�2(ψ)−

1

2
m(m− 1)�3(ψ).

Since emH for m ∈ Z span Heven(X,Q), the above formula uniquely
determines Φi(ψ). A direct computation shows that

Φ0(ψ) =
1

5
(�0(ψ)−�0(ψ))

Φ1(ψ) =
1

30
(16�0(ψ)− 9�1(ψ) + 3�3(ψ))

Φ2(ψ) =
1

5
(�0(ψ)− 3�1(ψ)− 2�2(ψ)−�3(ψ))

Φ3(ψ) = �0(ψ).

As a result, Zψ(E) is written as

(�0(ψ)−�1(ψ)) ch0(E) +
1

30
(16�0(ψ)− 9�1(ψ) + 3�3(ψ))H

2 ch1(E)

+
1

5
(�0(ψ)− 3�1(ψ)− 2�2(ψ)−�3(ψ))H ch2(E) +�0(ψ) ch3(E).

3.3. Gepner point and Gepner type stability conditions

Let us consider a conjectural stability condition σG ∈ Stab(X) sat-
isfying

[σG] = I(0) ∈ [Auteq(X)\Stab(X)/C]

where I is an expected embedding (11). Since the point ψ5 = 0 (Gep-
ner point) in MK is an orbifold point with stabilizer group Z/5Z, the
stability condition σG should also have the stabilizer group Z/5Z with
respect to the Auteq(X)×C action on Stab(X). Under a suitable choice
of σG, the generator of the above stabilizer group should be given by(

STOX ◦ ⊗OX(1),−2

5

)
∈ Auteq(X)× C(13)

since the action of STOX ◦ ⊗OX(1) on Heven(X,Q) corresponds to the
composition of monodromy transformations at the large volume limit
and the conifold point under the embedding (11), and the five times
composition of STOX ◦ ⊗OX(1) coincides with [2]. (This is a con-
sequence of Theorem 2 and the identity (5).) The property of σG
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fixed by (13) is nothing but the Gepner type property with respect to
(STOX ◦⊗OX(1), 2/5). By the above argument and Theorem 2, a stabil-
ity condition corresponding to the Gepner point gives a desired stability
condition in Conjecture 2.1 via Orlov equivalence (9).

As for the central charge at the Gepner point, we consider the nor-

malized central charge Z†
G so that Z†

G(Ox) = −1 holds for any x ∈ X.

Under this normalization, Z†
G is given by

Z†
G(E) := lim

ψ→0
−Zψ(E)/�0(ψ)

=− ch3(E) +
1

5
(α3 + 2α2 + 3α− 1)H ch2(E)

+
1

30
(−3α3 + 9α− 16)H2 ch1(E) + (α− 1) ch0(E).

Indeed, the coefficients α†
j ∈ CH3−j of Z†

G(E) at chj(E) are checked to
form the unique solution of the linear equation

(α†
0, · · · , α†

3) ·M = α · (α†
0, · · · , α†

3), α†
3 = −1

where M is given by the composition of matrices (cf. [Toda, Subsec-
tion 4.1])

M :=

⎛⎜⎜⎝
1 −(tdX)2 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
H 1 0 0

H2/2 H 1 0
H3/6 H2/2 H 1

⎞⎟⎟⎠ .

Here (tdX)2 = 5H2/6 is the H2,2(X)-component of tdX . The above
matrix M induces the isomorphism on Heven(X), which is identified
with the action of STOX ◦ ⊗OX(1) on it. By [Toda, Proposition 4.4],

the central charge Z†
G is related to the central charge ZG on HMFgr(W )

given by (6) as

ZG(Ψ(E)) = −(1− α)4 · Z†
G(E)

for any E ∈ Db Coh(X). Here Ψ is the equivalence (9). By applying
C-action on Stab(X), Conjecture 2.1 for the polynomial (8) leads to the
following conjecture:

Conjecture 3.1. Let X ⊂ P4
C

be a smooth quintic 3-fold, H :=

c1(OX(1)) and α := e2π
√−1/5. Then there is a Gepner type stability

condition

(Z†
G, {P

†
G(φ)}φ∈R) ∈ Stab(X)(14)
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with respect to (STOX ◦⊗OX(1), 2/5), whose central charge Z†
G is given

by

Z†
G(E) =− ch3(E) +

1

5
(α3 + 2α2 + 3α− 1)H ch2(E)

+
1

30
(−3α3 + 9α− 16)H2 ch1(E) + (α− 1) ch0(E).

3.4. Some observations

Let us try to construct a desired stability condition in Conjec-
ture 3.1. By [Bri07, Proposition 5.3], giving data (14) is equivalent
to giving the heart of a bounded t-structure

AG ⊂ Db Coh(X)

satisfying

Z†
G(AG \ {0}) ⊂ {r exp(

√
−1πφ) : r > 0, φ ∈ (0, 1]}(15)

and any object E ∈ AG admits a Harder-Narasimhan filtration with

respect to the Z†
G-stability. We propose that a desired heart AG is

constructed as a double tilting of Coh(X), similar to the one in [BMT].
This is motivated by the following observations:

Firstly in [Toda], we constructed a Gepner type stability condition
for a quartic K3 surface S via a tilting of Coh(S). The construction
is similar to the one near the large volume limit in [Bri08], [AB13]. A
different point is that, although we only need a classical BG inequality to
construct a stability condition near the large volume limit, a construction
at the Gepner point requires a stronger version of BG inequality given
as follows:

Lemma 3.1. Let S be a K3 surface and E a torsion free stable
sheaf E on S with rank(E) ≥ 2. Then we have the following inequality

Δ(E)

rank(E)2
≥ 2− 2

rank(E)2
≥ 3

2
.(16)

The above lemma is an easy consequence of the Riemann-Roch the-
orem and Serre duality (cf. [Muk87, Corollary 2.5]) and a similar im-
provement is not known for other surfaces except Del Pezzo surfaces.
By the above observation, we expect that a desired Gepner type sta-
bility condition on a quintic 3-fold is also constructed in a way similar
to the one near the large volume limit, after an improvement of BG
inequality.
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Secondly we can rewrite the central charge Z†
G(E) in the following

way:

− chB3 (E) + aH2 chB1 (E) +
√
−1

(
bH chB2 (E) + c chB0 (E)

)
.(17)

Here B = −H/2 and chB(E) is the twisted Chern character

chB(E) := e−B ch(E).

In (17), a, b, c are some real numbers in Q(α,
√
−1), given by

a = −1

5
α3 − 1

5
α2 − 67

120

b
√
−1 =

1

5
α3 +

2

5
α2 +

3

5
α+

3

10

c
√
−1 =

3

8
α3 +

1

4
α2 +

5

8
α+

5

16
.

They are approximated by

a = −0.8819 · · · , b = 0.68819 · · · , c = 0.52088 · · · .

The expression (17) is very similar to the central charge near the large
volume limit, given by

ZB,tH(E) := −
∫
X

e−
√−1tH chB(E)

for t ∈ R>0. The above integration is expanded as

− chB3 (E) +
t2

2
H2 chB1 (E) +

√
−1

(
tH chB2 (E)− 5t3

6
chB0 (E)

)
.(18)

By comparing (17) with (18), although they are in a similar form, we
see that some signs of the coefficients are different. In [BMT], we con-
structed a double tilting of Coh(X) which, together with the central
charge (18), conjecturally gives a Bridgeland stability condition near the
large volume limit. We propose to construct the heart AG via a double
tilting of Coh(X) in a way similar to [BMT], by taking the difference of
the signs of the coefficients into consideration.

3.5. Conjectural stronger Bogomolov-Gieseker inequality

We imitate the argument in [BMT] to construct AG. In what fol-
lows, we fix B = −H/2. Let μB,H be the twisted slope function on
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Coh(X) defined by

μB,H(E) :=
H2 chB1 (E)

rank(E)
.

Here we set μB,H(E) = ∞ if E is a torsion sheaf. The above slope
function defines the classical slope stability on Coh(X). We define the
pair of full subcategories (TB,H ,FB,H) of Coh(X) to be

TB,H := 〈E : μB,H -semistable with μB,H(E) > 0〉ex
FB,H := 〈E : μB,H -semistable with μB,H(E) ≤ 0〉ex.

The above subcategories form a torsion pair in Coh(X). The associated
tilting BB,H is defined to be

BB,H := 〈FB,H [1], TB,H〉ex.

The category BB,H is the heart of a bounded t-structure on Db Coh(X).
In [BMT, Lemma 3.2.1], it is observed that the central charge (18) sat-

isfies the following condition: an object E ∈ BB,H with H2 chB1 (E) = 0
satisfies ImZB,tH(E) ≥ 0. The classical BG inequality is used to show
the above property. We propose that a similar property also holds for

the central charge Z†
G, i.e. an object E ∈ BB,H with H2 chB1 (E) = 0

satisfies ImZ†
G(E) ≥ 0. Note that such an object E is contained in the

category

〈F [1],Coh≤1(X) : F is μB,H -stable with H2 chB1 (F ) = 0〉ex

where Coh≤1(X) is the category of coherent sheaves T ∈ Coh(X) with
dimSupp(T ) ≤ 1. Also noting the equality

Δ(E) = chB1 (E)2 − 2 chB0 (E) chB2 (E)

the above requirement leads to the following conjecture:

Conjecture 3.2. Let X ⊂ P4 be a smooth quintic 3-fold and E a
torsion free slope stable sheaf on X with c1(E)/ rank(E) = −H/2. Then
we have the following inequality:

Δ(E) ·H
rank(E)2

>
2c

b
= 1.5139 · · · .(19)

The RHS of (19) is irrational, hence the equality is not achieved.
Note that the RHS in (19) is very close to the RHS in (16) for the K3
surface case.
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Remark 3.1. A stronger BG inequality similar to (19) is predicted
by [DRY] without the condition c1(E)/ rank(E) = −H/2. The prediction
in [DRY] is shown to be false in [Jar07], [Nak07]. Conjecture 3.2 does
not contradict to the results in [Jar07], [Nak07] since we restrict to the
sheaves with fixed slope c1(E)/ rank(E) = −H/2.

There are few examples of stable sheaves on quintic 3-folds in liter-
atures. The following example is taken in [Jar07]:

Example 3.1. Let E be the kernel of the morphism O⊕6
X → OX(1)⊕2

given by the matrix(
x0 x1 0 x2 x3 0
0 x0 x1 0 x2 x3

)
.

Here [x0 : x1 : x2 : x3 : x4] is the homogeneous coordinates in P4.
By [Jar07], E is a stable vector bundle on X with

ch(E) = (4,−2H,−H2,−H3/3).

Then we have

Δ(E) ·H
rank(E)2

=
15

4
> 1.5139 · · · .

The rank two case will be treated in Subsection 3.7.

3.6. Conjectural construction of a Gepner type stability
condition

We now give a conjectural construction of a desired AG assuming
Conjecture 3.2. Similarly to [BMT, Lemma 3.2.1], we have the following
lemma:

Lemma 3.2. Suppose that Conjecture 3.2 is true. Then for any
non-zero E ∈ BB,H , we have the following:

• We have H2 chB1 (E) ≥ 0.

• If H2 chB1 (E) = 0, then we have ImZ†
G(E) ≥ 0.

• If H2 chB1 (E) = ImZ†
G(E) = 0, then −ReZ†

G(E) > 0.

Proof. The same argument of [BMT, Lemma 3.2.1] is applied by
using Conjecture 3.2 instead of the classical BG inequality. Q.E.D.

The above lemma shows that the triple

(H2 chB1 (E), ImZ†
G(E),−ReZ†

G(E))
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should behave like (rank, c1, ch2) on coherent sheaves on algebraic sur-
faces. Similarly to the slope function on coherent sheaves, we consider
the following slope function on BB,H

νG(E) :=
ImZ†

G(E)

H2 chB1 (E)
.

Here we set μG(E) = ∞ if H2 chB1 (E) = 0. If we assume Conjecture 3.2,
then Lemma 3.2 shows that the slope function νG satisfies the weak
see-saw property.

Definition 3.1. An object E ∈ BB,H is νG-(semi)stable if, for any
non-zero proper subobject F ⊂ E in BB,H , we have the inequality

νB,H(F ) < (≤)νB,H(E/F ).

We have the following lemma:

Lemma 3.3. Suppose that Conjecture 3.2 is true. Then the νG-
stability on BB,H satisfies the Harder-Narasimhan property.

Proof. Although the central charge Z†
G(∗) is irrational, the values

H2 chB1 (∗) are contained in 1
2 + Z, hence they are discrete. This is

enough to apply the same argument of [BMT, Lemma 3.2.4], [Bri08,
Proposition 7.1] to show the existence of Harder-Narasimhan filtrations
with respect to νG-stability. Q.E.D.

Assuming Conjecture 3.2, we define the full subcategories in BB,H

TG := 〈E : νG-semistable with νG(E) > 0〉ex
FG := 〈E : νG-semistable with νG(E) ≤ 0〉ex.

As before, the pair (TG,FG) forms a torsion pair on BB,H . By taking
the tilting, we obtain the heart of a bounded t-structure

AG := 〈FG[1], TG〉ex.

We propose the following conjecture:

Conjecture 3.3. Let X ⊂ P4 be a smooth quintic 3-fold and assume
that Conjecture 3.2 is true. Then the pair

(Z†
G,AG)(20)

determines a Gepner type stability condition on Db Coh(X) with respect
to (STOX ◦ ⊗OX(1), 2/5).
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Remark 3.2. By the construction and the irrationality of Z†
G, the

pair (20) satisfies the condition (15). On the other hand, the irrationality

of Z†
G makes it hard to prove the Harder-Narasimhan property of the pair

(20).

3.7. Conjecture 3.2 for the rank two case

We show that Conjecture 3.2 is true in the rank two case.

Proposition 3.1. Conjecture 3.2 is true when rank(E) = 2.

Proof. Since we have the inequality

Δ(E∨∨) ·H ≥ Δ(E) ·H

we may assume that E is reflexive. Since rank(E) = 2, we have c1(E) =
−H and

Δ(E) ·H = −H3 + 4c2(E) ·H.

The classical BG inequality implies that Δ(E) ·H ≥ 0, i.e. c2(E) ·H ≥
5/4. The conjectural inequality (19) is equivalent to that c2(E) · H >
2.7639 · · · . It is enough to exclude the case c2(E)·H = 2, or equivalently
ch2(E) ·H = 1/2.

Suppose by contradiction that ch2(E)·H = 1/2. Let us set F := E∨,
which is also a torsion free slope stable sheaf. Since F is reflexive, we
have

Exti(F,OX) = 0, i ≥ 2

and Q := Ext1(F,OX) is a zero dimensional sheaf by [HL97, Proposi-
tion 1.1.10]. This implies that there is a distinguished triangle

F∨ → D(F ) → Q[−1]

where D(∗) is the derived dual RHom(∗,OX). Therefore if we write

ch(F ) = (2,H, ch2(F ), ch3(F ))(21)

then we have ch2(F
∨) = ch2(F ) = ch2(E) and

ch(F∨) = (2,−H, ch2(E),− ch3(F ) + |Q|).(22)

Here |Q| is the length of the zero dimensional sheaf Q. On the other
hand, since F is a rank two reflexive sheaf, we have the isomorphism
(cf. [Har80, Proposition 1.10])

F ∼= F∨ ⊗ det(F ).
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Noting that det(F ) = OX(H), and (21), (22), we have

(2,H, ch2(E), ch3(F )) = eH · (2,−H, ch2(E),− ch3(F ) + |Q|).

The above equality and the assumption ch2(E) ·H = 1/2 imply that

ch3(F ) = −1

6
+

|Q|
2

.(23)

Noting that c2(X) = 10H2, the Riemann-Roch theorem and (23) imply
that

χ(F ) :=
3∑

i=0

(−1)i dimHi(X,F )

= 4 +
|Q|
2

.(24)

We divide into two cases:

Case 1. H0(X,F ) = 0.

By the Serre duality and stability, we have

H3(X,F ) ∼= H0(F,OX) ∼= 0.

Therefore, by the assumption H0(X,F ) = 0 and (24), we have

dimExt1(F,OX) = dimH2(X,F ) ≥ 4.(25)

Let us take the universal extension

0 → OX ⊗ Ext1(F,OX)∨ → U → F → 0.

Then by [Todb, Lemma 2.1], the sheaf U is a torsion free slope stable
sheaf. Applying the BG inequality to U , we obtain the inequality

(H2 − 2 ch2(E)(2 + dimExt1(F,OX))) ·H ≥ 0.

The above inequality implies that dimExt1(F,OX) ≤ 3, which contra-
dicts to (25).

Case 2. H0(X,F ) �= 0.

Let us take a non-zero element s ∈ H0(X,F ), and an exact sequence

0 → OX
s→ F → M → 0.(26)
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By [Todb, Lemma 2.2], the sheaf M is a torsion free slope stable sheaf.
Therefore it is written as

M ∼= OX(H)⊗ IZ

for some subscheme Z ⊂ X with dimZ ≤ 1. We have the equalities of
Chern characters

ch2(F ) =
1

2
H2 − [Z]

ch3(F ) =
1

6
H3 −H · [Z]− χ(OZ).

Because ch2(F ) ·H = ch2(E) ·H = 1/2, we have H · [Z] = 2. Hence we
obtain

ch3(F ) = −7

6
− χ(OZ).

On the other hand, (23) implies that ch3(F ) ≥ −1/6, hence we have
χ(OZ) ≤ −1. By taking the generic projection of the one dimensional
subscheme Z ⊂ P4 to P3, the Castelnuovo inequality implies

g(Z) := h1(OZ) ≤
1

2
(H · [Z]− 1)(H · [Z]− 2).

Since H · [Z] = 2, we have h1(OZ) = 0, which contradicts to χ(OZ) ≤
−1. Q.E.D.

§4. Clifford type bound for quintic surfaces

In this section, we take W ′ to be a quintic homogeneous polynomial
with four variables

W ′ ∈ C[x0, x1, x2, x3], deg(W ′) = 5.

We consider Conjecture 2.1 in this case. We relate it with some Clifford
type bound for stable coherent systems on the smooth quintic surface

S := (W ′ = 0) ⊂ P3.

4.1. Computation of the central charge

The surface S is a hyperplane section (x4 = 0) of a quintic 3-fold
X := (W = 0) ⊂ P4, where W is defined by

W := W ′ + x5
4 ∈ C[x0, x1, x2, x3, x4].
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By Theorem 3, there is the heart of a bounded t-structure AW ′ ⊂
HMFgr(W ′), and an equivalence

Θ: Syst(S)
∼→ AW ′ .

Below we abbreviate Θ and regard a coherent system (O⊕R
S → F ) as an

object in AW ′ . There is a natural push-forward functor (cf. [Ued])

i∗ : HMFgr(W ′) → HMFgr(W )

such that by [Toda, Lemma 3.12] and [Toda, Lemma 4.5], we have

i∗(O⊕R
S → F ) ∼= Ψ(O⊕R

X → i∗F ).

Here i∗F is the usual sheaf push-forward for the embedding i : S ↪→ X,
Ψ: Db Coh(X)

∼→ HMFgr(W ) an equivalence in Theorem 2 and

(O⊕R
X → i∗F ) ∈ Db Coh(X)

is an object in the derived category with i∗F located in degree zero. Let

us consider the central charge Z
′†
G on HMFgr(W ′) defined by

Z
′†
G (P ) := Z†

G(Ψ
−1i∗P ), P ∈ HMFgr(W ′)

where Z†
G is the central charge (17) on Db Coh(X) considered in the pre-

vious section. By the argument in [Toda, Section 4], the central charge

Z
′†
G on HMFgr(W ′) differs from (6) only up to a scalar multiplication.

For F ∈ Coh(S), let us write

ch(F ) = (r, l, n) ∈ H0(S)⊕H2(S)⊕H4(S)

with r ∈ Z and n ∈ 1
2 + Z. By setting H = c1(OX(1)) and B = −H/2,

we have

chB(Ψ−1i∗(O⊕R
S → F ))

= chB(O⊕R
X → i∗F )

=

(
−R,

(
r − R

2

)
H, i∗l −

R

8
H2, n+

5

24
r − 5

48
R

)
.

Applying the computation of Z†
G in the previous section, we have

Z
′†
G (O⊕R

S → F ) = −n− 5

24
r +

5

48
R+ 5a

(
r − R

2

)
+

√
−1

(
b

(
h · l − 5

8
R

)
− cR

)
.

Here h := H|S and a, b, c are irrational numbers given in (17).
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4.2. Conjectural Clifford type bound

We expect that a desired Gepner type stability condition in this case
is constructed via double tilting ofAW ′ , similarly to the previous section.
Let μ′ be the slope function on AW ′ , given by (using the notation in the
previous subsection)

μ′(O⊕R
S → F ) := −chB1 (i∗F ) ·H2

R

= 5

(
1

2
− rank(F )

R

)
.

Here we set μ′(∗) = −∞ if R = 0. (Also see [Toda, Subsection 5.4].)
The above slope function defines the μ′-stability on AW ′ , which satisfies
the Harder-Narasimhan property (cf. [Toda, Lemma 5.14]). Following
the same argument in the previous section, we expect that any μ′-stable
object E ∈ AW ′ with μ′(E) = 0 satisfies ImZ

′†
G (E) ≥ 0. It leads to the

following conjecture:

Conjecture 4.1. Let S ⊂ P3 be a smooth quintic surface and h =
c1(OS(1)). For a μ′-stable coherent system (O⊕R

S → F ) on S with R =
2 rank(F ) > 0, we have the following inequality

c1(F ) · h
R

>
5

8
+

c

b
= 1.3818 · · · .

If we assume the above conjecture, we are able to construct a double

tilting A′
G of AW ′ , such that the pair (Z

′†
G ,A′

G) satisfies

Z
′†
G (A′

G \ {0}) ⊂ {r exp(
√
−1πφ) : r > 0, φ ∈ (0, 1]}.

We conjecture that the pair (Z
′†
G ,A′

G) gives a Gepner type stability con-
dition on HMFgr(W ′) with respect to (τ, 2/5). The construction of A′

G is
similar to AG in the previous section, and we leave the readers to give its
explicit construction. We just check the easiest case of Conjecture 4.1:

Lemma 4.1. Conjecture 4.1 is true if R = 2 rank(F ) = 2.

Proof. Let (O⊕2
S

s→ F ) be a μ′-stable coherent system on S with
rank(F ) = 1. The inequality in Conjecture 4.1 is equivalent to c1(F )·h >
2.7636 · · · . It is enough to show that c1(F ) · h ≥ 3. Let F � F ′ be a
torsion free quotient. There is a surjection in AW ′

(O⊕2
S → F ) � (O⊕2

S → F ′)
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whose kernel is of the form (0 → F ′′) for a torsion sheaf F ′′ on S.
Obviously (O⊕2

S → F ′) is also μ′-stable, and c1(F
′) · h ≤ c1(F ) · h.

Hence we may assume that F is torsion free. Also note that h0(F ) ≥ 2,
since otherwise there is an injection in AW ′

(OS → 0) ↪→ (O⊕2
S → F )

satisfying

μ′(OS → 0) = 5/2 > 0 = μ′(O⊕2
S → F )

which contradicts to the μ′-stability of (O⊕2
S → F ). Let us set L := F∨∨,

and take a smooth member C ∈ |h|. Note that L is a line bundle
satisfying h0(L) ≥ 2, and C is a smooth quintic curve in P2. Suppose by
contradiction that c1(F ) ·h = c1(L) ·h ≤ 2. We have the exact sequence

0 → L(−C) → L → L|C → 0.

Since c1(L(−C)) · h = c1(L) · h − 5 < 0 by our assumption, we have
h0(L(−C)) = 0 and h0(L|C) ≥ 2. On the other hand, Clifford’s theorem
on C yields (cf. [Har77, Theorem 5.4])

h0(L|C) ≤
1

2
deg(L|C) + 1 ≤ 2.

Furthermore, the first inequality is strict since L|C �= 0,KC , and C is
not hyperelliptic. Therefore we obtain a contradiction. Q.E.D.
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