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Abstract.

Given a derived equivalence of orbifolds associated to projective
varieties with (not necessarily Gorenstein) quotient singularities, we
deduce consequences related to the behavior of orbifold Hodge numbers
and the Picard variety, extending what is known in the smooth case.

§1. Introduction

An important step in the development of the parallelism between
derived equivalences and the minimal model program, as emphasized
especially in the work of Kawamata (see [22] for a survey), is to extend
results about smooth projective Fourier-Mukai partners to the singular
case. While in general there are foundational issues still to be resolved,
good progress has been made in the case of varieties with quotient singu-
larities X, where the natural object to consider is the bounded derived
category of coherent sheaves D(X ) := Db(Coh(X )) on the associated
canonical smooth Deligne-Mumford stack X [19], [21]. The main result
of this paper is an addition in this direction, regarding the behavior of
the orbifold cohomology and Picard variety.

Theorem A. Let X and Y be normal projective varieties of dimen-
sion n, with quotient singularities, and let X and Y be the associated
canonical smooth Deligne-Mumford stacks (or orbifolds). Assume that
D(X ) � D(Y). Then
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(i) For every −n ≤ i ≤ n, one has an isomorphism⊕
p−q=i

Hp,q
orb(X ) �

⊕
p−q=i

Hp,q
orb(Y),

where Hp,q
orb(X ) are the orbifold Dolbeaut cohomology groups (see §2.1).

(ii) Pic0(X ) and Pic0(Y) are isogenous; in particular h0,1
orb(X ) = h0,1

orb(Y).
This is inspired by similar results in the smooth setting, where: (i)

is a consequence of the homological Fourier-Mukai transform and the
Grothendieck-Riemann-Roch theorem [27] Ch.2 (see also [18] §5.2), or
of the invariance of Hochschild homology [7] §8, [27] Ch.2; (ii) is the main
result of [28], relying on Rouquier’s study of the connected component
of the group of derived autoequivalences, and the study of actions of
non-affine algebraic groups. It makes progress towards the following:

Problem B. Let X and Y be normal projective varieties with quo-
tient singularities, and let X and Y be the associated smooth Deligne-
Mumford stacks. Assume that D(X ) � D(Y). Given p, q ∈ Q, does one
have hp,q

orb(X ) = hp,q
orb(Y)?

One reason this problem is more subtle than in the smooth projec-
tive case is that when the singularities of X and Y are not Gorenstein,
orbifold Hodge numbers indexed by rational numbers p, q, as opposed
to integers, are guaranteed to enter the picture (see §2.1). Thus even in
low dimension Theorem A potentially does not provide enough relations
to solve for all orbifold Hodge numbers; in general we can only deduce
the following about individual ones:

Corollary C. Let X and Y be normal projective varieties with quo-
tient singularities, and let X and Y be the associated smooth Deligne-
Mumford stacks. Assume that D(X ) � D(Y). Then

hn,0
orb(X ) = hn,0

orb(Y), hn−1,0
orb (X ) = hn−1,0

orb (Y), and h1,0
orb(X ) = h1,0

orb(Y).
In particular, if X and Y are of dimension up to three, then

hp,0
orb(X ) = hp,0

orb(Y), for all p.

The last identity follows directly from Theorem A, while the first
two are explained in Corollary 14. However, as in the smooth case [28],
the theorem does suffice in the Gorenstein case in dimension up to three.

Corollary D. Assume in addition that X and Y are Gorenstein of
dimension up to three. Then

hp,q
orb(X ) = hp,q

orb(Y), for all p, q.
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Proof. We will note below that in the Gorenstein case we only have
p, q ∈ Z, and that (in general) Serre duality hp,q

orb(X ) = hn−p,n−q
orb (X )

still holds. Therefore the statement follows immediately using all of
the numerical information given by Theorem A, as in [28] Corollary
C. Q.E.D.

It is explained in §5 that this last corollary could also be approached
using the more sophisticated derived and cohomological McKay corre-
spondence, combined with [28]. However, in the present context it is
a consequence of general methods that do not rely on the existence of
crepant resolutions; it just happens to be a case of Theorem A where
one can fully solve the system of equations in the Hodge numbers that it
provides. In §5 I also speculate on analogues of Problem B for arbitrary
singularities in the minimal model program, with the place of orbifold
Hodge numbers being taken by the stringy Hodge numbers.

The structure of the proof of Theorem A completely follows the ap-
proach in the smooth projective case, so from the strategy point of view
it is fair to say that there are no truly new ideas here. There are how-
ever various technical difficulties related to both definitions and proofs
in the orbifold case, whose solution is facilitated by recent developments
in the study of Deligne-Mumford stacks. Along the way, in §2 I pro-
vide a cohomological orbifold Fourier-Mukai transform using an orbifold
Mukai vector inspired by the Grothendieck-Riemann-Roch theorem for
quotient stacks; this leads to Theorem A(i). In §3 I present a proof of an
orbifold analogue of Rouquier’s theorem on the invariance of Aut0×Pic0,
which is applied in §4 in order to deduce Theorem A(ii) along the lines
of [28].

Acknowledgements. This paper could not exist without Professor
Yujiro Kawamata’s systematic study of derived categories associated to
singular varieties, and their relationship with the minimal model pro-
gram. I have also benefitted greatly from ideas in the joint work with
C. Schnell [28]. I would like to thank them, as well as A. Căldăraru,
I. Coskun, D. Edidin, M. Olsson, O. Serman, T. Yasuda and E. Zaslow
for answering my questions and for providing corrections and references.
Finally, thanks are due to the referee for a careful reading of the paper
and useful suggestions.

§2. Cohomological Fourier-Mukai transform for orbifolds

Orbifold cohomology of Deligne-Mumford stacks. In this paper,
a Deligne-Mumford stack is more precisely a separated Deligne-Mumford
stack of finite type over C, with a scheme as coarse moduli space. If X
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is one such, we can consider the abelian category Coh(X ) of coherent
sheaves on X , and its bounded derived category D(X ).

We will be mostly concerned with orbifolds. These can be defined
using the standard orbifold terminology (cf. e.g. [2] Ch.4 or [19] §2), or
equivalently in the language of Deligne-Mumford stacks (see e.g. [25] or
[21] §4); namely an orbifold is a smooth Deligne-Mumford stack X whose
generic point has trivial automorphism group. We will always assume
that the orbifold has no pseudo-reflections, i.e. no codimension one fixed
loci for the elements of the local groups; the coarse moduli scheme of X
is then a variety X with quotient singularities, and X is determined by
X. Note that conversely every variety with quotient singularities arises
in this fashion, i.e. is the coarse moduli scheme of an orbifold without
pseudo-reflections (see e.g. [5] Lemma 4.29). In what follows we consider
only projective orbifolds.

In the standard orbifold language, orbifold cohomology and orbifold
Hodge numbers have been defined and studied in [10]. Here I follow
the presentation of Yasuda [5] §3.4, [6] §4.3, who describes the algebraic
theory in the context of stacks. Given a smooth Deligne-Mumford stack
X over C, with projective coarse moduli scheme, one defines the orbifold
cohomology groups of X as

Hi
orb(X ,Q) :=

⊕
Z⊂IX

Hi−2a(Z)(Z,Q)⊗Q
(− a(Z)

)
,

where Q
( − a(Z)

)
is a Tate twist. Here IX denotes the inertia stack

of X ; when X is an orbifold, IX is finite and unramified over X , and
is a disjoint union of irreducible closed stacks Z (which are themselves
inertia stacks for various fixed loci). We denote by Z the coarse mod-
uli space of each such component; since IX is a smooth stack and the
map Z → X is quasi-finite, Z is again a variety and has quotient sin-
gularities. It is well known that in this case the rational cohomology
groups Hk(Z,Q) continue to carry pure Hodge structures, with Serre
and Poincaré duality; see [33] §1. The number a(Z) is the age or shift
number of the component Z, defined as follows: assume that the generic
point of Z, which consists of a pair (x, α) such that x is a closed point
of X and α ∈ Aut(x), is such that ord(α) = l. We have then that α
acts on the tangent space TxX such that in a suitable bases this action
is given by a diagonal matrix

diag
(
νa1

l , . . . , νan

l

)
,
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where νl is an l-th root of unity, 1 ≤ ai ≤ l, and n = dim X . Then

a(Z) := n− 1

n

n∑
i=1

ai.

It is a standard fact that this depends only on the component Z. The
orbifold Hodge numbers of X are the Hodge numbers associated to the
Hodge structure Hi

orb(X ,Q). Note that this is a pure Hodge structure
of weight i; see [6] Lemma 76. We have

(1) hp,q
orb(X ) =

∑
Z⊂IX

hp−a(Z),q−a(Z)(Z).

Note of course that ignoring the grading one has an identification of the
total cohomology

H∗
orb(X ,Q) = H∗(IX ,Q).

On the other hand, it is straightforward to deduce from the Hodge de-
composition for each individual component that there is a Hodge de-
composition for orbifold cohomology; see also [10] Proposition 3.2.2.

(2) Hi
orb(X ,C) �

⊕
p+q=i

Hp,q
orb(X ).

Some remarks are in order: all a(Z) are integers precisely when X has
Gorenstein quotient singularities. This is well known to correspond to
the case when the matrix diag

(
νa1

l , . . . , νan

l

)
is in SLn(C). In general

however, in the above we are using the following conventions:
• Hi(Z,Q) = 0 if i /∈ Z.
• Hp,q(Z) = 0 if p, q /∈ Z.
Thus in (1) the sum is taken over all p, q ∈ Q such that p − a(Z),
q − a(Z) ∈ Z.

The orbifold Hodge numbers are easily identified in the special case
of birationally invariant Hodge numbers.

Lemma 1. Let X be a normal projective variety with quotient sin-

gularities, X the associated orbifold, and X̃ a resolution of singularities
of X. Then

h0,q
orb(X ) = h0,q(X̃) for all q.

Proof. It is clear from (1) that the only contribution to h0,q
orb(X )

can come from the “untwisted sector”, i.e. when Z = X, corresponding
to the case a(Z) = 0. But in the pure Hodge structure on Hq(X,Q)
described in [33], the Hq,0 part can be computed on any resolution of
singularities. Q.E.D.
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Cohomological Fourier-Mukai transform. According to Kawamata
[21] Theorem 1.1, Orlov’s theorem continues to hold in this setting: if
X and Y are the orbifolds associated to normal projective varieties with
quotient singularities, and Φ is an equivalence between the triangulated
categories D(X ) and D(Y), then there exists a (unique up to isomor-
phism) object E ∈ D(X × Y) such that

Φ = ΦE : D(X ) → D(Y), ΦE(·) = Rp2∗
(
p∗1(·)

L⊗ E),
the Fourier-Mukai transform induced by E . We will see that, as in
the setting of smooth projective varieties, this induces a cohomological
Fourier-Mukai transform, this time at the level of orbifold cohomology.

Assumption. The first part of the discussion below works for arbitrary
quotient stacks. As explained in [12] §3.2, this is a very mild restric-
tion; for instance, every Deligne-Mumford stack that has the resolution
property is a quotient stack. This is certainly the case for orbifolds,
according to [35] Theorem 1.2 (see also [21] Theorem 4.2).

We denote by K0(X ) the Grothendieck group of vector bundles on
X , or equivalently of coherent sheaves as X has the resolution property.
As usual, if X is smooth, there exist a Chern character and a Todd class

ch, Td : K0(X ) −→ Ch∗(X )⊗Q.

(Note that over Q we have an isomorphism Ch∗(X )⊗Q � Ch∗(X)⊗Q,
where X is the coarse moduli space of X ; see e.g. [17] Theorem 6.8.)
Via the cycle class map of X , we can also consider the Chern character
at the cohomology level:

ch : K0(X ) −→ H∗(X ,Q).

A detailed discussion of these constructions for Deligne-Mumford stacks
can be found for instance in [12] and the references therein.

Following [34] and [12], the Grothendieck-Riemann-Roch theorem
for (quotient) Deligne-Mumford stacks is best expressed in terms of a
Chern character which takes values in the complex cohomology of IX ,
i.e. in the orbifold cohomology of X . More precisely, inspired by the
localization theorem, as explained in [12] §5 one produces a homomor-
phism

K0(X ) → Ch∗(IX )⊗ C

which is an isomorphism over C, and is given by

IτX ([V ]) := ch(p∗V ) · ch(α−1
X ) · Td(IX ).
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Here p : IX → X is the natural projection morphism, while α−1
X is a

“localization” class in K0(IX ); see [34] p.29. Via the cycle class map
this also induces a homomorphism (we use the same notation):

IτX : K0(X ) −→ H∗(IX ,C).

The Grothendieck-Riemann-Roch theorem in [34] §4 and [12] §5 states
that if f : X → Y is a proper morphism of quotient stacks with the
resolution property, then there is a commutative diagram

K0(X )
IτX ��

f∗
��

Ch∗(IX )⊗ C

f∗
��

K0(Y)
IτY �� Ch∗(IY)⊗ C.

As a final piece of notation, following the standard case, for every stack
X as above and every F ∈ D(X ) we define the orbifold Mukai vector
associated to F as

vorb(F) := ch(p∗F) ·
√
ch(α−1

X ) · Td(IX ) ∈ H∗(IX ,C).

Going back to orbifolds, let X and Y be two such, and E ∈ D(X×Y)
inducing the integral functor ΦE : D(X ) → D(Y). Using vorb(E) ∈
H∗(IX × IY,C), we define the orbifold cohomological Fourier-Mukai
transform as

ΦH
E : H∗(IX ,C) −→ H∗(IY,C), α �→ p2∗

(
p∗1α · vorb(E)

)
.

Note that the product above is the usual cup product rather than the
orbifold cup-product of [10].

The following results are analogues of standard facts in the case of
smooth projective varieties; see for instance [18] Corollary 5.29, Propo-
sition 5.33 and Proposition 5.39.

Proposition 2. If ΦE is an equivalence of derived categories, then
the induced orbifold cohomological Fourier-Mukai transform

ΦH
E : H∗(IX ,C) −→ H∗(IY,C)

is a (non-graded) isomorphism of vector spaces.

Proof. Denote by F the right adjoint of E . The composition ΨF ◦
ΦE is the identity on D(X ), given by the kernel OΔX . Similarly, the
composition ΦE ◦ΨF is the identity on D(Y), given by the kernel OΔY .
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It is not hard to see then that the composition ΨH
F ◦ΦH

E is the endomor-
phism ΦH

OΔX
of H∗(IX ,C), and similarly in the opposite direction.

It suffices to show that this endomorphism is the identity. Note that
it corresponds to the Mukai vector

vorb(OΔX ) =
IτX×X (OΔX )√

ch(α−1
X×X ) · Td(IX × IX )

∈ H∗(IX × IX ,C).

In order to prove the assertion, we apply the Grothendieck-Riemann-
Roch theorem stated above to the diagonal embedding iX : X ↪→ X×X .
This induces a commutative diagram

IX iIX ��

pX
��

IX × IX
pX×pX
��

X iX �� X × X
and the theorem applied to the object OΔX gives

IτX×X (OΔX ) = (iIX )∗IτX (OX ).

Note now that

IτX (OX ) = ch(α−1
X ) · td(IX ) = i∗IX

√
ch(α−1

X×X ) · Td(IX × IX ),

where the first equality follows from the definition, while the second is
just restriction to the diagonal. The projection formula then implies

vorb(OΔX ) = iIX ∗(1),

from which it is immediate to conclude that ΦH
OΔX

is the identity. Q.E.D.

Proposition 3. Let ΦE : D(X ) → D(Y) be an equivalence of de-
rived categories of orbifolds of dimension n. Then, for every p and q,
we have

ΦH
E
(
Hp,q

orb(X )
) ⊂ ⊕

r−s=p−q

Hr,s
orb(Y).

Proof. The orbifold Mukai vector vorb(E) ∈ H∗(IX × IY,C) is an
algebraic class, so

vorb(E) =
∑

αu,v � βr,s, r − s = v − u,

with αu,v ∈ Hu,v
orb(X ) and βr,s ∈ Hr,s

orb(Y).
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Let now αp,q be a class in Hp,q
orb(X ). In order for (αp,q · αu,v)� βr,s

to contribute non-trivially to q∗(p∗αp,q · vorb(E)), we must have that
αp,q · αu,v ∈ Hn,n

orb (X ). This implies that p + u = q + v = n, and in
particular

p− q = v − u = r − s.

Q.E.D.

Theorem A(i) follows by putting together Proposition 2, Proposition 3
and (2).

Corollary 4. If ΦE : D(X ) → D(Y) is an equivalence of derived
categories of orbifolds of dimension n, then ΦH

E induces an isomorphism⊕
p−q=i

Hp,q
orb(X ) �

⊕
p−q=i

Hp,q
orb(Y)

for every i = −n, . . . , n and p, q ∈ Q.

For the sake of completeness, note finally that the Riemann-Roch
formula stated above also implies the analogue of the usual commutation
of the derived and cohomological Fourier-Mukai transforms, again with
a very similar proof which I do not repeat here.

Proposition 5. Let E ∈ D(X × Y). Then for every A ∈ D(X )

ΦH
E
(
vorb(A)

) � vorb
(
ΦE(A)

)
.

Further remarks in the case of global quotients. When our orb-
ifold is a global quotient X = [Z/G], then just as in the case of smooth
projective varieties the result in Corollary 4 can be interpreted as the
derived invariance of orbifold Hochschild homology, after applying the
Hochschild-Kostant-Rosenberg isomorphism on all (covers of the) com-
ponents of the inertia stack. As A. Căldăraru points out, this approach
should work for all orbifolds, but the corresponding interpretation of
Hochschild homology (i.e. the analogue of Theorem 6 below) has not
yet been proved in the non-global case.

I start by recalling a slightly different interpretation of the orbifold
cohomology groups in the case of global quotients. We assume hence-
forth that Z is a smooth projective complex variety of dimension n, and
G a finite group of automorphisms acting on Z. Given an element g ∈ G,
we denote by:
• Zg the fixed point set of g, and Zg

α its connected components.
• a(g, x) the age of g at a point x ∈ Zg; this is defined as in §1, and
depends only on the connected component Zg

α of x ∈ Zg, so it will be
denoted a(g, α).
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An equivalent interpretation of orbifold singular cohomology and
Dolbeaut cohomology spaces was given by Fantechi-Göttsche in [13] §1.
Concretely, for the complex orbifold cohomology groups of [Z/G] one
has

Hi
orb([Z/G],C) �

(⊕
g,α

Hi−2a(g,α)(Zg
α,C)

)G

,

where the invariants are taken with respect to the action of G by con-
jugation. Similarly, the orbifold Dolbeaut cohomology groups of [Z/G]
satisfy

(3) Hp,q
orb([Z/G]) �

(⊕
g,α

Hp−a(g,α),q−a(g,α)(Zg
α)

)G

,

with dimensions equal to the orbifold Hodge numbers hp,q
orb([Z/G]).

In the context of this section, by orbifold Hochschild homology we
mean the Hochschild homology HH•([Z/G]) of the stack. By analogy
with the isomorphisms above one has the following result, which appears
in various forms in [1] Theorem 1, [8] Theorem 6.16, and [16] Theorem
6.3 (the cohomology version).

Theorem 6. There is an isomorphism

HH•([Z/G]) �
(⊕

g,α

HH•(Zg
α)

)G

,

where the spaces on the right hand side are the direct sums of the usual
Hochschild homology spaces of Zg

α, and the invariants are taken with
respect to the action by conjugation.

Note that, denoting by i the diagonal embedding of Y , I am using
the indexing notation from the papers above, namely

HHi(Y ) := Exti−dimY
Y×Y (i∗OY , i∗ωY ),

which is slightly different from that in [18] §6. With this convention, if Y
is smooth projective and n = dimY , the Hochschild-Kostant-Rosenberg
isomorphism (see e.g. [18] §6.1) reads

(4) HHi(Y ) �
⊕

p−q=i

Hp,q(Y ).

Combining this with Theorem 6, we have the following orbifold ana-
logue:
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Proposition 7. If n = dimZ, for each i there is an isomorphism

HHi([Z/G]) �
⊕

p−q=i

Hp,q
orb([Z/G]).

Proof. Theorem 6 initiates the following sequence of isomorphisms:

HHi([Z/G]) �
(⊕

g,α

HHi(Z
g
α)

)G

�
⎛⎝⊕

g,α

⊕
p′−q′=i

Hp′,q′(Zg
α)

⎞⎠G

�
⎛⎝⊕

g,α

⊕
p−q=i

Hp−a(g,α),q−a(g,α)(Zg
α)

⎞⎠G

�
⊕

p−q=i

(⊕
g,α

Hp−a(g,α),q−a(g,α)(Zg
α)

)G

�
⊕

p−q=i

Hp,q
orb([Z/G]),

where the last three sums are taken over p and q rational such that
p− a(g, α), q− a(g, α) ∈ Z. The second isomorphism uses (4), while the
last is (3). Q.E.D.

Since Hochschild homology is well known to be an invariant of the
derived category, this gives in particular another approach to Corollary
2.4 in the global quotient case.

§3. Rouquier’s theorem in the orbifold setting

Orbifold Picard group. The group Pic(X ) parametrizes isomorphism
classes of line bundles on the Deligne-Mumford stack X , with the tensor
product operation. (In the case of orbifolds, this is equivalent to the
notion of orbifold line bundles on the coarse space X, as for instance
in [2] §4.4.3.) We denote by Pic0(X ) its connected component of the
identity, which is an abelian variety determined via the standard:

Lemma 8. Let X be a normal projective variety with quotient sin-

gularities, X the associated orbifold, and X̃ a resolution of singularities
of X. Then

Pic0(X ) � Pic0(X) � Pic0(X̃).
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In particular, dimPic0(X ) = h0,1
orb(X ).

Proof. The numerical equality follows from the first statement and
Lemma 1. The second isomorphism in the first statement is essentially
definitional (the Picard variety is a birational invariant among smooth
varieties, so independent of the smooth model chosen, while on a normal
variety it can be recovered from the smooth locus). To prove the first
isomorphism, observe first that there is a standard inclusion

(5) Pic(X) ↪→ Pic(X ), L �→ π∗L.

Recall that the order of an orbifold is the least common multiple of the
orders of the stabilizer groups of points on local charts of X of the form
U → U/G (see e.g. [2] 4.1.5). As X is projective, it can be covered by
finitely many such orbifold charts, and so its order is finite; let’s denote
it by r. We get a group homomorphism

(6) Pic(X ) −→ Pic(X), L �→ L⊗r,

as taking the r-th power turns any local linearization of L into the trivial
linearization. This is an isogeny onto its image, and so dimPic0(X ) ≥
dimPic0(X). Combining this with the inclusion in (5), we immediately
obtain that the inclusion of π∗Pic0(X) in Pic0(X ) is in fact an equality.

Q.E.D.

As a well-known concrete example, recall that when X = [Z/G] be
a global quotient orbifold, with Z a smooth projective variety and G a
finite group of automorphisms of Z, then

Pic(X ) � Pic(Z;G),

the Picard group of G-linearized line bundles on Z. On the other hand,
Pic(Z)G is the group of G-invariant line bundles on Z, and we have an
exact sequence

0 → H1(G,C∗) → Pic(Z;G) → Pic(Z)G → H2(G,C∗),

where the map in the middle is given by forgetting the linearization; see

e.g. [11] Remark 7.2. This gives a surjection Pic0(Z;G) → (
Pic(Z)G

)0
at the level of connected components of the identity, and in view of the
Lemma above we obtain

Pic0(X ) � Pic0(Z;G) � (
Pic(Z)G

)0 � Pic0(Z/G).

Orbifold automorphism group. The automorphism group Aut(X )
has been studied extensively in the context of complex orbifolds, see
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e.g. [15], [26]; note that it has the structure of an algebraic group. In
the general context of stacks, it is a more complicated categorical group
object. However, when the Deligne-Mumford stack X is the canonical
orbifold (without pseudo-reflections) associated to a variety X with quo-
tient singularities, Aut(X ) is a group, and in fact (see e.g. [14] Corollary
4.8):

Aut(X ) � Aut(X).

We denote by Aut0(X ) its connected component of the identity; its
tangent space at the origin is isomorphic to H0(X , TX ), the space of
global vector fields on the stack X .

Chevalley’s theorem on the structure of connected algebraic groups
(see e.g. [4] p.1) implies that there is a natural exact sequence

0 −→ Aff(Aut0(X )) −→ Aut0(X ) −→ Alb(Aut0(X )) → 0,

where Aff(Aut0(X)) is the maximal connected affine subgroup of Aut0(X ),
and Alb(Aut0(X )) is its Albanese variety. According to a theorem of
Fujiki [15], analogous to the Matsumura-Nishi theorem [24] in the case
of projective varieties, the induced morphism of abelian varieties

(7) Alb(Aut0(X )) → Alb(X )

has finite kernel.

Remark 9. We have, for instance by the discussion of Pic0(X )
above, that

Alb(X ) � Alb(X) = Alb(Y ),

where Y is any resolution of singularities of X. What is proved in [15],
and can also be derived by slightly expanding the context in [24], is that
the induced morphism

Alb(Aut0(X)) −→ Alb(X)

has finite kernel.

Finally, note that there is a natural action of Aut(X ) on Pic0(X )
(and more generally on Pic(X )). Since Pic0(X ) is an abelian variety, it
is not hard to check as in [28], footnote on p.531, that the restriction of
this action to Aut0(X ) is trivial.

Rouquier’s theorem. Our next goal is to extend Rouquier’s result
[32] Théorème 4.18 on the connected component of the group of derived
autoequivalences, together with the related formula in [28] Lemma 3.1,
to the orbifold setting:
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Theorem 10. Let X and Y be projective orbifolds such that there
exists a Fourier-Mukai equivalence ΦE : D(X ) → D(Y), correspond-
ing to an object E ∈ D(X × Y). Then there exists an isomorphism of
algebraic groups

FE : Aut0(X )× Pic0(X ) −→ Aut0(Y)× Pic0(Y)
determined by the fact that FE(ϕ,L) = (ψ,M) if and only if on X × Y
one has

(8) p∗1L⊗ (ϕ× id)∗E � p∗2M ⊗ (id× ψ)∗E .
Remark 11. A related statement, as in [30], is that the group of

derived autoequivalences Aut(D(X )) is a locally algebraic group scheme
whose identity component is given by

Aut0(D(X )) � Aut0(X )× Pic0(X ).

This provides a very natural interpretation of the derived invariance of
this quantity. The precise formula (8) is however important in what
follows. Note also that at the end of the day, due to the nature of the
stacks we are considering, the Theorem really proves the invariance of
the familiar quantity

Aut0(X)× Pic0(X)

attached to the singular variety X.

Proof. This closely follows Rouquier’s strategy in the case of smooth
projective varieties, with extra care to check that all intermediate asser-
tions continue to hold in the case of orbifolds. Note first that ΦE induces
a group isomorphism

(9) H : Aut(D(X )) −→ Aut(D(Y)), ΦR → ΦE ◦ ΦR ◦ Φ−1
E .

Here Φ−1
E : D(Y) → D(X ) can be identified with the left adjoint of ΦE ,

and is given by the kernel EL := E ⊗ p∗ωY [n], where ωY is the orbifold
canonical bundle of Y, and n = dimX = dimY. (Grothendieck duality
and the Serre functor function as in the smooth projective case; see [19]
§2 and [21] §7.) The equivalence ΦE ◦ ΦR ◦ Φ−1

E is given in turn by the
convolution kernel E ∗R ∗ EL ∈ D(Y × Y).1

1Recall that given spaces X ,Y ,Z and objects F ∈ D(X × Y) and G ∈
D(Y × Z) respectively, the convolution of F and G is defined as F ∗ G :=
Rp13∗(p

∗
12F ⊗ p∗23G).
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Recall now that a pair (ϕ,L) ∈ GX := Aut0(X ) × Pic0(X ) induces
an autoequivalence of D(X ) given by the kernel (1, ϕ)∗L, i.e. the line
bundle L supported on the graph Γϕ ⊂ X × X . We see the inclusion
GX ↪→ Aut(D(X )) as a family F of kernels inD(X×X ) parametrized by
GX . Concretely, this is obtained as follows. We consider the embedding

f : X ×GX → X ×X ×GX

given by (x, ϕ, L) �→ (x, ϕ(x), ϕ, L), and define

F := f∗p∗13P ∈ D (X × X ×GX ) ,

where P is a Poincaré line bundle on X × Pic0(X ). Via the correspon-
dence above, this maps to the family of kernels of autoequivalences of
D(Y)

H := p∗12E ∗ F ∗ p∗12EL ∈ D (Y × Y ×GX ) ,

where p12 denotes the projection of X×Y×GX onto the first two factors.
Over the origin of GX , the fiber of H is given by

H0 = E ∗ EL � OΔY .

(It is well known that this holds for any Fourier-Mukai equivalence, and
continues to hold in the orbifold case by the remark above.)

The claim now is that there is an open neighborhood of the origin
U ⊂ GX such that the restrictionHu ∈ D(Y×Y) over u ∈ U continues to
be a line bundle in Pic0(Y) supported on the graph of an automorphism
of Y. Indeed, we can represent the object H by a bounded complex
of orbifold vector bundles, and since H0 is the structure sheaf of the
diagonal, by general semicontinuity of rank it follows that there exists
such a neighborhood so that this complex has cohomology only in degree
zero. Moreover, by possibly shrinking U , we can also assume that for
every y ∈ Y and u ∈ U one has that H|{y}×Y×{u} is the structure sheaf
of a point. The claim then follows from the general Lemma 12 below;
note that its proof shows that HY×Y×{u} is a line bundle on the graph of
an automorphism of Y (and that in fact this line bundle is the restriction
of one defined on X × U). As this line bundle is a small deformation of
OΔY , it must be in Pic0(Y).

We deduce that H(U) is mapped into the algebraic subgroup
Aut0(Y) × Pic0(Y) ⊂ Aut(D(Y)), and given the fact that U gener-
ates Aut0(X ) × Pic0(X ) as a group, by restricting H to GX we get an
induced morphism of algebraic groups

FE : Aut0(X )× Pic0(X ) −→ Aut0(Y)× Pic0(Y).
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Going in the other direction, the similar morphism obtained from Φ−1
E

provides an inverse for FE . Finally, given that the isomorphism is
induced by H, the formula in (8) follows exactly as in [28] Lemma
3.1. Q.E.D.

Lemma 12. Fix a projective orbifold X , and consider the functor
G associating to every scheme of finite type S the set G(S) consisting
of isomorphism classes of objects F in D(X × X × S) satisfying the
following two conditions:
• for every s ∈ S, the restriction Fs ∈ D(X ×X ) of F to X ×X × {s}
induces an autoequivalence of D(X ).
• for every s ∈ S and every x ∈ X , there exists y ∈ X such that
Fs|{x}×X � Oy.

We denote by G̃ the functor obtained by modding out G(S) by the
action of Pic(S) obtained by tensoring with pullbacks of line bundles

on S. Then G̃ is represented by the algebraic group scheme Aut(X ) �
Pic(X ).

Proof. Fix s ∈ S. Since for every x ∈ X we have that Li∗xFs is a
sheaf, where ix is the inclusion of {x}×X in X ×X , by analogy with [18]
Lemma 3.31 one sees that Fs is an (orbifold) sheaf, flat over X via the
first projection. A similar reasoning then shows that F itself is a sheaf
(flat over S). For any x ∈ X , writing fs(x) = y as in the hypothesis
defines a mapping fs : X → X . As the restriction of F to any point
(x, y) on the graph of this map is O(x,y), using the local sections of the
orbifold sheaf F around every such point we obtain that fs is in fact an
orbifold morphism.

Now completely analogously to the proof of [18] Corollary 5.23 in the
case of smooth projective varieties, given that Fs induces an autoequiv-
alence, one concludes that fs is an automorphism and Fs is isomorphic
to a line bundle supported on the graph of fs (which can be thought of
as a line bundle on X ). As the Fs form a flat family over S, we obtain
an induced morphism f : S → Aut(X ), and it follows that F = Ψ∗L,
where

Ψ : X × S −→ X ×X × S, (x, s) �→ (x, fs(x), s),

and with L an orbifold line bundle on X × S, rigidified after mod-
ding out by pullbacks from S. This produces a canonical element in
Hom(S,Aut(X )� Pic(X )). Q.E.D.

§4. The Picard variety

The following is the orbifold analogue of the main result of [28].
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Theorem 13. Let X and Y be normal projective varieties with
quotient singularities, and X and Y the associated orbifolds. If D(X ) �
D(Y), then Pic0(X ) and Pic0(Y) are isogenous. In particular h0,1

orb(X ) =

h0,1
orb(Y) and h0(X , TX ) = h0(Y, TY).

Proof. We start in fact with the proof of the numerical equalities.
The second follows from the first and Theorem 10. We show below that
h0,1
orb(X ) ≤ h0,1

orb(Y), the other inequality following by symmetry.
Let E ∈ D(X × Y) be the kernel defining the equivalence, and let

F = FE : Aut0(X )× Pic0(X ) −→ Aut0(Y)× Pic0(Y)
be the isomorphism of algebraic groups given by Theorem 10. To prove
the assertion, we study the map

π : Pic0(X ) → Aut0(Y), π(L) = p1
(
F (id, L)

)
.

Note that if ψ = π(L), so that F (id, L) = (ψ,M), then by Theorem 10
we have

(10) p∗1L⊗ E � p∗2M ⊗ (id× ψ)∗E .
The abelian variety A = Im π naturally acts on Y by automor-

phisms. If dimA = 0, i.e. π(L) = id for all L ∈ Pic0(X ), then F re-
stricted to {id}×Pic0(X ) induces an embedding of Pic0(X ) into Pic0(Y),
and so h0,1

orb(X ) ≤ h0,1
orb(Y) by Lemma 8.

We can thus assume that dimA > 0. We have a commutative
diagram

Pic0(X )

π
����

���
���

��
�� A

g ��

iA

��

Alb(Y)

Aut0(Y) p �� Alb
(
Aut0(Y))
��

which defines the morphism of abelian varieties g, where p is the projec-
tion map in Chevalley’s theorem. Given that the kernel of p is affine, the
composition p◦iA has finite kernel. On the other hand, the right vertical
map is given by (7), so again has finite kernel by the Fujiki-Matsumura-
Nishi Theorem. Consequently g : A → Alb(Y) has finite kernel as well,
hence the dual map g∗ : Pic0(Y) → Pic0(A) is surjective.

Now take a point (x, y) in the support of E , and consider the orbit
map

f : A → Y � {x} × Y ⊂ X × Y, a �→ (x, ψa(y)),
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where ψa denotes the automorphism of Y corresponding to a. Let F =
Lf∗(ix × idY)∗E ∈ D(A), where ix : {x} → X is the inclusion; it is
nontrivial by our choice of (x, y).

For a ∈ A, let ta ∈ Aut0(A) denote translation by a. The identity
in (10) implies that

(11) F � f∗M ⊗ ta∗F ,

whenever L ∈ Pic0(X ) is such that F (id, L) = (ψa,M). (Note that this
means that the cohomology sheaves of F are semihomogeneous vector
bundles on A.) Indeed, note that there is a commutative diagram

A
f ��

ta

��

X × Y
id×ψa

��
A

f �� X × Y
where the vertical maps are isomorphisms, and so we have the formula

f∗(id× ψa)∗E � ta∗f
∗E ,

from which (11) follows by applying f∗ to (10). In particular consider
L ∈ Ker π, so that a is the identity of A and correspondingly

F � f∗M ⊗F .

At least one of the cohomology sheaves of F is nontrivial and therefore
has positive rank r; by passing to determinants we have f∗M⊗r � OA.
We conclude that

p2
(
F (id, r ·Ker π)

) ⊆ Ker g∗ = Ker f∗.

Finally, since F is an isomorphism, combined with Lemma 1 and recall-
ing that g∗ is surjective, this implies
(12)

h0,1
orb(X )− dimA = dim(Ker π) ≤ dim(Ker g∗) = h0,1

orb(Y)− h0,1(A),

and therefore h0,1
orb(X ) ≤ h0,1

orb(Y).
This concludes the proof of the fact that Pic0(X ) and Pic0(Y) have

the same dimension. We now use this to show that they are in fact
isogenous. Consider the construction symmetric to A above, namely the
abelian variety B = Im ν, with

ν : Pic0(Y) → Aut0(X ), ν(M) = p1
(
F−1(id,M)

)
.
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We first claim that Ker π � Ker ν. Indeed, Ker π consists of those
pairs (id, L) such that F (id, L) = (id,M) for some M ∈ Pic0(Y). Since
the definition of Ker ν is similar in the reverse direction, and F is an
isomorphism, the assertion follows. Going back to (12), knowing now

that h0,1
orb(X ) = h0,1

orb(Y), we deduce that dim(Ker π) = dim(Ker g∗).
Putting all of this together, we conclude that

dimA = dimB and dimKer ν = dimKer f∗.

Recall now that for any L and M such that F (id, L) = (id,M) we
have that f∗M is a torsion line bundle in Pic0(A), and in fact for all
such M there exists a fixed r > 0 such that f∗M⊗r � OA. Hence via
multiplication by r on Pic0(Y), Ker ν is mapped onto Ker f∗, so B is
isogenous to Pic0(A), hence to A. Finally, since we have extensions

0 → Ker π → Pic0(X ) → A → 0 and 0 → Ker ν → Pic0(Y) → B → 0

and Ker π � Ker ν, it follows that Pic0(X ) and Pic0(Y) are isogenous
(as their simple factors up to isogeny given by the Poincaré complete
reducibility theorem are the same). Q.E.D.

§5. Further remarks and problems

A note on the McKay correspondence. As emphasized in the In-
troduction, the main result of this paper provides a proof of Corollary D
based on general methods, in particular not relying on the existence of
crepant resolutions and the McKay correspondence. Let’s note however
that the McKay correspondence does suggest another proof, where the
methods apply only to the particular case of Gorenstein quotient singu-
larities of dimension (up to) three. As this is only a side remark here, I
will only give a very brief sketch.

Indeed, it is known to begin with that threefolds with Gorenstein
quotient singularities admit crepant resolutions [29]. In fact, in the
global quotient case a canonical such resolution is provided by
Nakamura’s G-Hilbert scheme, [3] Theorem 1.2. For an arbitrary such
threefold X, given compatible local presentations as finite group quo-
tients, the corresponding local G-Hilbert scheme structures can be glued
to a crepant resolution X ′. Extrapolating from the global quotient case
in [3], one has a derived version of the McKay correspondence, namely
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D(X ) � D(X ′).2 Now given D(X ) � D(Y), from the induced equiva-
lence D(X ′) � D(Y ′) of derived categories of smooth projective three-
folds, we obtain according to [28] that

hp,q(X ′) = hp,q(Y ′) for all p, q.

On the other hand, in the presence of a crepant resolution, one has

hp,q
orb(X ) = hp,q(X ′) for all p, q,

and similarly for Y , as follows from the cohomological McKay-Ruan
correspondence proved in [23] and [5].3

Invariance of other orbifold Hodge numbers. Due to constraints
on degree shifting numbers and the size of the fixed loci, the following
analogue of a well-known result in the smooth case works even in the
non-Gorenstein case.

Corollary 14. Let X and Y be normal projective varieties with
quotient singularities, of dimension n, and let X and Y be the associated
smooth Deligne-Mumford stacks. Assume that D(X ) � D(Y). Then

hn,0
orb(X ) = hn,0

orb(Y) and hn−1,0
orb (X ) = hn−1,0

orb (Y).
Proof. We have seen in Theorem A(i) that∑

p−q=i

hp,q
orb(X ) =

∑
p−q=i

hp,q
orb(Y)

for all −n ≤ i ≤ n, while in the proof of Lemma 1 it was pointed out
that when p or q are 0, the only contribution to hp,q

orb(X ) can come from

2I thank Y. Kawamata for pointing out to me that this holds in the non-
global quotient case as well. The rough idea is this: the proof is based on
checking the equivalence criterion on a spanning class in D(X ′), so that its
corresponding image in D(X ) is a spanning class as well; see [3] §2.6 and §6,
where this is carried out in the quasi-projective global quotient case. As these
spanning classes are locally provided by the structure sheaves of points on the
G-Hilbert scheme side, and by the structure sheaves of G-clusters on the orbifold
side, they can be identified on overlaps and the derived equivalence is then local
in nature. A gluing procedure of this type is described for instance in [9] §3. In
the case of abelian quotient singularities, an even more general result that holds
in arbitrary dimension can be found in [22] Corollary 3.5.

3In the latter, Yasuda also shows that hp,q
orb(X ) are equal to Batyrev’s stringy

Hodge numbers of X, while in [6] he extends the cohomological McKay-Ruan
correspondence to an appropriate statement in the non-Gorenstein case.
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the untwisted sector, when a(Y) = 0. By taking i = n, this immediately

gives the statement for hn,0
orb.

Take now i = n − 1. In this case, the contributions on say the left
hand side are of the form∑
p−q=n−1

hp,q
orb(X ) = hn,1

orb(X )+hn−1,0
orb (X )+

∑
p−q=n−1

∑
Z

hp−a(Z),q−a(Z)(Z),

where the rightmost sum is taken over components Z ⊂ IX such that
a(Z) > 0, and p − q = n − 1. But note that each Z corresponds to a
nontrivial fixed locus, hence by hypothesis we have dimZ ≤ n− 2. This
means that there are in fact no nontrivial contributions coming from this
sum, and since hn,1

orb(X ) = hn−1,0
orb (X ) by duality, we obtain the derived

invariance of hn−1,0
orb (X )(= hn−1,0(X)). Q.E.D.

Further questions. Due to comparison theorems of Yasuda [5], [6],
the orbifold Hodge numbers in the previous statements are the same as
the stringy Hodge numbers of hp,q

st (X) introduced by Batyrev. (Here
I am glossing over the fact that correctly one should rather speak of
the stringy E-function.) One can hope for a more general picture ex-
tending beyond the case of varieties with quotient singularities, in which
case only the notion of stringy Hodge numbers continues to make sense.
Given any Q-Gorenstein log-terminal variety, Kawamata [22] has pro-
posed the existence of a unique category D(X) associated to X which is
natural from the point of view of the minimal model program, behaves
like the derived category of a smooth projective variety, and satisfies

f∗Perf(X) ⊂ D(X) ⊂ D(X̃)

for any resolution of singularities f : X̃ → X. He showed the existence
of this category in some special case, and argued that in the case when
X has quotient singularities it is given by the orbifold derived category
D(X ). The following question is unfortunately not completely well-
posed at the moment, but worth asking in view of Kawamata’s program.

Question 15. Let X and Y be Q-Gorenstein log-terminal projective
varieties such that D(X) � D(Y ). Does the equality of stringy Hodge
numbers

hp,q
st (X) = hp,q

st (Y )

hold for each p and q whenever all the quantities in the statement are
well-defined?

Another natural question, this time back in the realm of quotient
singularities, stems from the fact that in the non-Gorenstein case the
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isomorphism in Theorem A(i) involves orbifold Dolbeaut cohomology
spaces Hp,q

orb(X ) with p, q ∈ Z. I do not know at this stage whether there
is a more refined way of matching these with special subspaces on the
other side, thus providing more relations in the orbifold Hodge numbers
than the naive columns of the Hodge diamond, but it would of course be
extremely useful if such a construction could be found; for instance, as
T. Yasuda suggests, it is possible that the Frobenius action on the �-adic
version of orbifold cohomology as in [31] might help in this direction.
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