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Abstract.

Given a family (F, h) → X × S of Hermite-Einstein bundles on a
compact Kähler manifold (X, g) we consider the higher direct image
sheaves Rqp∗O(F ) on S, where p : X × S → S is the projection. On
the complement of an analytic subset these sheaves are locally free and
carry a natural metric, induced by the L2 inner product of harmonic
forms on the fibers. We compute the curvature of this metric which
has a simpler form for families with fixed determinant and families of
endomorphism bundles. Furthermore, we discuss the metric for moduli
spaces of stable vector bundles.

§1. Introduction

Given a compact Kähler manifold (X, g) and a complex space S,
a family of Hermite-Einstein bundles on X parameterized by S is a
holomorphic vector bundle F → X × S with a hermitian metric h such
that the restriction hs of h to Fs = F |X × {s} is a Hermite-Einstein
metric for every s ∈ S. If p : X × S → S denotes the projection, the
higher direct image sheaf Rqp∗O(F ) for q ∈ N is locally free outside
some analytic set of S and carries a natural hermitian metric, fiberwise
induced by the L2 inner product of harmonic representatives.
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If ρk ∈ A0,1(X,End(Fs)) denotes the harmonic representatives of
Kodaira-Spencer classes, then for all q there exist natural mappings

ρk ∪ : A0,q(X,Fs) → A0,q+1(X,Fs)

ρ∗k ∩ : A0,q(X,Fs) → A0,q−1(X,Fs),

where the second mappings are adjoint to the first. Denote by ξσ har-
monic sections of A0,q(X,Fs). Then we denote the pointwise inner prod-
uct of such sections (on a fiber X ×{s}) that is induced by hs and g by
(ξρ, ξσ) and the above L2 inner product by

〈ξρ, ξσ〉 =
∫
X×{s}

(ξρ, ξσ)
ωn

n!
,

where n is the dimension of X and ω the Kähler form of g. We assume
that S is smooth and compute the curvature of the natural metric on
Rqp∗O(F ). Under the above assumptions we have:

Theorem 1. Let (F, h) be a holomorphic, hermitian vector bundle
on X×S such that all vector bundles Fs = F |X×{s}, s ∈ S are simple,
and all metrics hs are Hermite-Einstein. Then the curvature tensor of
the induced metric on Rqp∗O(F ) is given by:

Rρσkl = 〈G(ρ∗l ∩ ξρ), ρ
∗
k ∩ ξσ〉

+ 〈G (√−1Λg [ρk, ρ
∗
l ]
)
ξρ, ξσ〉

− 〈G(ρk ∪ ξρ), ρl ∪ ξσ〉
+ 〈H(ρkl) ξρ, ξσ〉.

For q = 0 the first, and for q = dimX the third summand vanishes.

The meaning of the function H(ρkl) that depends only on the base
parameter s will be explained in Section 3.

The obvious key point about this formula is to express the curvature
tensor in terms of intrinsically given data like harmonic Kodaira-Spencer
classes. Technically this means the elimination of second order deriva-
tives of the metric tensor when computing the curvature.

This result contains the case of direct image sheaves (q = 0) which
was solved in the work of To and Weng [11]. Our main motivation is
the study of the curvature of the Weil-Petersson metric on the moduli
space of stable bundles in [10] and also Berndtsson’s positivity results
for higher direct image sheaves [1], which was continued in the work of
Berndtsson-Păun [2] and Mourougane-Takayama [6, 7].

At the end of section 3 we obtain the following results that are
related to the Theorem 1. Namely, for families with fixed determinant we
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can rescale the Hermite-Einstein metrics locally and see thatH(ρkl|s0) =
0 so that the fourth summand in the curvature formula vanishes for
such families. Furthermore, this fourth summand vanishes for induced
families of endomorphism bundles without further assumptions.

This last case is especially interesting for applications to the moduli
spaces of stable bundles. Let us consider the Kodaira-Spencer map

ρs : TsS −→ H1(X,O(End(Fs)))

for s ∈ S, associated to a family (F, h) → X × S of hermitian bundles
on X. For any complex tangent vector v of S at s the Kodaira-Spencer
map in terms of Dolbeault cohomology is given by

(1) ρs(v|s) =
[−(v �Ωh)|s

]
where Ωh denotes the curvature form of h, and |s always denotes a
restriction to X × {s}. We use this notation unless obvious. Further-
more, the Hermite-Einstein condition implies that −(v �Ωh)|s is har-
monic [8, 10]. In particular, one can read off this formula that the
harmonic Kodaira-Spencer tensors depend in a differentiable way on the
parameter. Altogether, we have a close relationship between the varia-
tion of the holomorphic structure on a complex vector bundle and the
metric structure that is induced by h on F over X × S.

For complex tangent vectors v and w on S at s the induced natural
inner product reads

〈v, w〉WP(s) = 〈ρs(v), ρs(w)〉(s) = 〈 (v �Ωh)
∣∣
s
, (w �Ωh)

∣∣
s
〉

for s ∈ S. For effective families we get a hermitian metric on S which
is known to be Kähler. Moreover, this construction is functorial, i.e.
compatible with base change and, as a consequence, descends to the
corresponding moduli space of stable bundles. Due to its analogy with
the Weil-Petersson metric on the Teichmüller space of Riemann surfaces,
it is also called Weil-Petersson metric. In [10] the curvature tensor of
this metric was computed. The result follows as a special case of our
main theorem. Under our assumptions the fibers of R1p∗O(End(F ))
are H1(X,O(End(Fs))). So it is sufficient to apply the Theorem to the
induced family of endomorphism bundles in the case q = 1 and use the
simplification for families of endomorphism bundles mentioned above.

Acknowledgement. This article is dedicated to Professor Yujiro
Kawamata on the occasion of his birthday with respect and admiration.



174 Th. Geiger and G. Schumacher

§2. The natural L2 metric

By a theorem of Grauert, for any family of holomorphic vector bun-
dles (F, h) → X×S parameterized by a reduced space S, the dimension
hq(X,O(Fs)) is constant on the complement of a certain analytic subset
of S. Furthermore, the sheaf Rqp∗O(F ) is locally free over this comple-
ment and the natural morphism

(2) (Rqp∗O(F ))s ⊗OS,s C(s)
∼−→ Hq(X,O(Fs))

is an isomorphism by the base-change theorem (cf. [3]). Given the Kähler
structure on X and the hermitian metric h on F over X ×S we identify
the cohomology groups with the spaces H0,q(X,Fs) of forms that are
harmonic with respect to g and hs. On these we have a natural inner
product, given by

〈μ, η〉 =
∫
X

(μ, η)
ωn

n!
.

Since our arguments will be local with respect to the parameter space
S, we may assume that S is Stein and identify sections of direct image
sheaves with cohomology classes in Hq(X × S,O(F )). On one hand,
these are represented by ∂-closed forms overX×S, on the other hand, by
families of harmonic forms in H0,q(X,Fs). The following lemma (cf. [9,
Lemma 2]) shows that both properties can be achieved simultaneously,
a fact that is necessary for later computations.

Lemma 2.1. Let (F, h) → X×S be a family of hermitian bundles on
a compact Kähler manifold (X, g) parameterized by a complex manifold
S and assume that Rqp∗O(F ) is locally free. If φ ∈ A0,q(X × S, F ) is
∂-closed and s0 ∈ S any point, then there exists a form χ ∈ A0,q−1(X ×
V, F ) on some open neighborhood V ⊂ S of s0 such that

(φ+ ∂χ)|s = H(φ|s)
for every s ∈ V , where H is the harmonic projection for the fiber Fs.
In particular, any class in Hq(X × S,O(F )) can be represented by a
∂-closed form, whose restrictions to all fibers of s ∈ V are harmonic.

Proof. First, there exist relative (0, q) forms ψ′
G and ψ′

H along the
fibers Fs → X with ψ′

G|s = G(φ|s) as well as ψ′
H |s = H(φ|s) for every

s ∈ S, where G denotes the Green operator on Fs-valued forms. In fact,
this is a consequence of our assumption and follows from the fundamental
theorem in [4], proved in [5, Theorem 7]. On some open neighborhood

V of s0 the relative form ψ′
H as well as ∂

∗
relψ

′
G, where ∂

∗
rel is the relative

∂
∗
operator, are induced by forms ψH ∈ A0,q(X × V, F ) and ψG ∈
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A0,q−1(X × V, F ), respectively. Initially the extensions of the relative
forms can be taken locally, and then glued together by a partition of

unity. We get ψG|s = ∂
∗
G(φ|s) and also ψH |s = H(φ|s) for every s ∈ V .

Using ∂φ = 0 we obtain

φ|s = H(φ|s) + ∂∂
∗
G(φ|s)

and, as a consequence, by choosing χ := −ψG we finally have

(φ+ ∂χ)|s = φ|s − ∂(ψG|s) = H(φ|s).
Q.E.D.

§3. Computation of the curvature

Again we will always assume that all Rqp∗O(F ) are locally free.
Although some statements are possible for reduced base spaces, we will
also assume that S is smooth. Since curvature computations are local
with respect to the base, we can assume without loss of generality that
S is Stein with local coordinates (s1, . . . , sm) and replace the space S by
a neighborhood of a given point s0 ∈ S, if necessary.

We will use holomorphic coordinates (z1, . . . , zn) for the Kähler
manifold X and denote the Kähler form by

ω =

√−1

2
gαβdz

α ∧ dzβ .

Greek indices refer to the z-coordinates on X (or to sections of the given
vector bundle), whereas Latin indices are reserved for s-coordinates.

Let Ξ1, . . . ,ΞR ∈ Rqp∗O(F )(S) define a holomorphic frame so that
the inner product is given by Hτσ. Then the curvature form Ω ∈
A1,1(X × S,End(Rqp∗O(F ))) is equal to

Ω = R τ
ρ kl

dsk ∧ dsl,

in s-coordinates, and we have

Rρσkl = HτσR
τ
ρ kl

.

Furthermore, we will work in normal coordinates at a given point s0.
After replacing S by a neighborhood of s0, if necessary, we can assume
that

Hτσ(s0) = δστ and
∂

∂sk
Hρσ(s0) = 0 for all k, σ, ρ.
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We apply Lemma 2.1 which provides representatives

ξ1, . . . , ξR ∈ A0,q(X × S, F )

of the Dolbeault cohomology classes of Ξρ, such that the restrictions ξρ|s
are harmonic. We note

(3) Hρσ(s) = 〈Ξρ,Ξσ〉(s) = 〈ξρ, ξσ〉(s).
With respect to the given normal coordinates, we get

(4) Rρσkl(s0) = −∂l∂kHρσ(s0) = −∂l∂k〈ξρ, ξσ〉(s0)
for the curvature on the direct image sheaves.

For computational reasons we equip S with the flat metric with
respect to the coordinates s and X × S with the product metric. This
convention is not essential, but we are in a position to use covariant
derivatives for tensors with values in F over the total space X × S.

We will use the following notation for differentiable sections χ of F
over X × S. The connection form of h is

θh = ∂h · h−1

so that

∇αχ = ∂αχ+ θhα ◦ χ, and ∇kχ = ∂kχ+ θhk ◦ χ resp.

(and ∇β = ∂β , ∇l = ∂l). Now

(5) ∇β∇αχ = ∇α∇βχ−Rh
αβ

◦ χ

where Rh
αβ

= −∇βθ
h
α etc. denote the components of the curvature tensor

of h with values in End(F ) over X × S. For the components in base
direction the analogous equations hold.

For later use we note that for the metric induced by h on End(F )
and differentiable sections ζ the above formula reads

(6) ∇β∇αζ = ∇α∇βζ − [Rh
αβ

, ζ].

In this section η and μ will denote F -valued (0, q)-forms. The fol-
lowing construction will be essential:

Lemma 3.1. Let μ ∈ A0,q(X ×S, F ), q > 0 with ∂μ = 0. Then for
every 1 ≤ l ≤ m there exists a form Fl(μ) ∈ A0,q−1(X ×S, F ) satisfying
the following equation for every s ∈ S:

∂(Fl(μ)|s) = (∇lμ)|s.
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In other words, the derivative in a (conjugate) parameter direction of a
∂-closed form, restricted to a fiber is ∂-exact.

Proof. We write

μ =
1

q!

∑
β

μβ1,...,βq
dzβ1 ∧ . . . ∧ dzβq

+
1

(q − 1)!

∑
β,k

μβ1,...,βq−1,k
dzβ1 ∧ . . . ∧ dzβq−1 ∧ dsk

+ summands with more than one ds-factor.

Because ∂μ = 0, for the fixed l the factors dzβ1 ∧ . . . ∧ dzβq ∧ ds� yield:

1

q!

∑
β

∂lμβ1,...,βq
dzβ1 ∧ . . . ∧ dzβq

(7)

=
(−1)q+1

q!

∑
β

∑
ν

(−1)ν+1∂βν
μ
β1,...,β̂ν ,...,βq,l

dzβ1 ∧ . . . ∧ dzβq .

After restricting to X ×{s} the left hand side of (7) equals (∇lμ)|s. So

(8) Fl(μ) :=
(−1)q+1

(q − 1)!

∑
β

μβ1,...,βq−1,l
dzβ1 ∧ . . . ∧ dzβq−1

has the desired properties. Q.E.D.

We will use the notion ∂
∗
only for differential forms on the fibers

X × {s} with respect to g and hs (with variable parameter). In this
sense we have a first application:

Corollary 3.1. If ∂η = 0 and ∂
∗
(μ|s) = 0 for some s ∈ S, then

also 〈μ,∇kη〉(s) = 0.

Proof. In the case q = 0 the result is clear because η is holomorphic.
In the case q > 0 we can apply Lemma 3.1 to get on all fibers X × {s}:

〈μ,∇kη〉(s) = 〈μ, ∂(Fkη)〉(s) = 〈∂∗
μ, Fk(η)〉(s) = 0.

Q.E.D.

We also obtain a formula for the second order derivatives:

Corollary 3.2. If we have ∂η = 0 and ∂
∗
(μ|s) = 0 on all fibers we

get:
∂l∂k〈μ, η〉 = 〈∇kμ,∇lη〉+ 〈∇l∇kμ, η〉.
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The values of ∂
∗
(∇kμ|s) as well as ∂(∇kμ|s) are of particular im-

portance for the computation of the curvature. For the first type we
find:

Lemma 3.2. If ∂
∗
(μ|s) = 0 for every s ∈ S then also

∂
∗
(∇kμ|s) = 0

holds for every s ∈ S.

Proof. Since the connection and curvature forms of h in the direc-
tion of X restricted to X×{s} equal the connection and curvature forms
resp. of hs, we have

gδγ∇γ(∇kμβ1,...,βq−1|δ|s) = (gδγ∇k∇γμβ1,...,βq−1|δ)|s
= (∇k(g

δγ∇γμβ1,...,βq−1|δ))|s
which implies the claim. Q.E.D.

In order to compute expressions of the second type ∂(∇kμ|s) we have
to introduce some more notation. If A is a (p, q) form with values in some
endomorphism bundle End(E), we agree to denote with A∪ the operator
on (r, s) forms with values in E which consists of the application of the
endomorphism part and an exterior multiplication of the form parts. We
will use A∗∩ to denote the formal adjoint of A∪.

In local coordinates we need the following case: Let A =
∑

Aδdz
δ be

an End(E)-valued (0, 1)-form, and μ = (1/q!)
∑

μβ1,...,βq
dzβ1∧. . .∧dzβq

an E-valued (0, q)-form. Then

(9) A ∪ μ =
1

(q + 1)!

∑
Aβ0

(μβ1,...,βq
)dzβ0 ∧ . . . ∧ dzβq ,

and for an E-valued (0, q + 1)-form σ (whose coefficients are already
assumed to be skew-symmetric) we have

(10) A∗ ∩ σ =
∑

gδγA∗
γ(σδ,β1,...,βq

)dzβ1 ∧ . . . dzβq .

Furthermore, we will use the abbreviations

ρk := −∂k �Ωh and ρkl := ∂l � (∂k �Ωh)

as well as some obvious variations on these, where again Ωh denotes the
curvature form of h. Note that, in particular, we can use these to de-
scribe the harmonic representatives of Kodaira-Spencer classes, because
(1) implies that in our notation the harmonic representative ρs(∂k|s)
equals ρk|s. After this remark we obtain:
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Lemma 3.3. Let μ ∈ A0,q(X × S, F ) with ∂(μ|s) = 0 for every
s ∈ S. Then

∂(∇kμ|s) = ρk|s ∪ μ|s
for every s ∈ S.

Proof. We observe that

∇β0
∇k μβ1,...,βq

= ∇k∇β0
μβ1,...,βq

−Rh
kβ0

(μβ1,...,βq
)

and replace

(11) Rh
kβ
dzβ = ∂k �Ωh = −ρk.

Q.E.D.

We continue the calculation of the curvature. First we know from the
construction of the good representatives ξρ of the Dolbeault classes that
the restrictions ξρ|s are harmonic and the above identities are applicable.
In particular, Corollary 3.2 together with (4) implies

Rρσkl(s0) = −(〈∇kξρ,∇lξσ〉(s0) + 〈∇l∇kξρ, ξσ〉(s0)
)
=: −(S1 + S2).

Using Corollary 3.1 and the fact that we chose normal coordinates at s0
we find

〈∇kξρ|s0 , ξσ|s0〉 = ∂k〈ξρ, ξσ〉(s0) = ∂kHρσ(s0) = 0

i.e. the derivatives ∇kξρ|s0 are perpendicular to the space of harmonic
forms H0,q(X,Fs0) that is spanned by all forms ξσ|s0 . Hence, the har-
monic projections H(∇kξρ|s0) vanish so that by Lemma 3.2

∇kξρ|s0 = ∂G∂
∗
(∇kξρ|s0) + ∂

∗
G∂(∇kξρ|s0) = ∂

∗
G∂(∇kξρ|s0),

where G denotes the respective Green operator. As a consequence we
establish for the first summand S1

S1 = 〈∇kξρ,∇lξσ〉(s0) =
〈
∂
∗
G∂(∇kξρ),∇lξσ

〉
(s0)

=
〈
G∂(∇kξρ), ∂∇lξσ

〉
(s0)

=
〈
G(ρk ∪ ξρ), ρl ∪ ξσ

〉
(s0)

where we used Lemma 3.3 in the last step.
In order to calculate the second summand S2 we first proceed with

collecting further relations. For this purpose we note the following local
formula

(12) ∇k∇l μ−∇l∇k μ = ρkl ∪ μ
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which follows from (5) and the definition of ρkl. (It only depends on h
because of the choice of the Kähler metric on X × S). We denote by �
the Laplacian (with non-negative eigenvalues) for Fs-valued (0, q)-forms.

Lemma 3.4. In our situation on all fibers X × {s} the equation

�(ρkl) =
√−1Λg [ρk, ρl]

holds.

Proof. Let Rh be the End(F )-valued curvature tensor of h over
X × S as above. The quantity Rh

kl
, when restricted to a fiber, has to

be treated as a differentiable section of the endomorphism bundle of Fs.
We compute

�(Rh
kl
) = ∂

∗
∂Rh

kl
= −gδγ∇γ∇δR

h
kl

= −gδγ∇γ∇lR
h
kδ

= −gδγ [Rh
γl
, Rh

kδ
]− gδγ∇l∇kR

h
γδ
.

The very last term vanishes because of the Hermite-Einstein condition,
since the degree of the bundles is constant. So the claim follows as above
from (11). Q.E.D.

We need two properties of the forms Fl(μ) from Lemma 3.1:

Lemma 3.5. If ∂μ = 0 and ∂
∗
μ|s = 0 for every s ∈ S, we obtain

fiberwise for all s

∂
∗
∂(Fl(μ)) = ρ∗l ∩ μ.

Proof. We have

∂
∗
∂(Fl(μ)) = ∂

∗
(∇lμ)

= (−1)q
∑

gδγ∇γ∇lμβ1,...,βq−1,δ
dzβ1 ∧ . . . ∧ dzβq−1

= (−1)q+1
∑

gδγRh
γl
(μβ1,...,βq−1,δ

) dzβ1 ∧ . . . ∧ dzβq−1

= −
∑

gδγRh
γl
(μδ,β1,...,βq−1

)dzβ1 ∧ . . . ∧ dzβq−1

so that the claim follows with (10). Q.E.D.

Lemma 3.6. Let μ be a ∂-closed (0, q)-form with values in F . Then
on all fibers X × {s} the following identity holds.

(∇k∇l μ) = ∂(∇kFl(μ))− (ρk ∪ Fl(μ)).

Proof. We pick up the statement of Lemma 3.1 and compute
∇k∂Fl(μ). The claim follows from (6). Q.E.D.
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Now we will finish the proof of Theorem 1 by treating the summand
S2. The first step is to use (12) and split S2 into two parts. For the
inner product taken at s0 we have

S2 = 〈∇l∇kξρ, ξσ〉 = 〈∇k∇lξρ, ξσ〉 − 〈ρkl ∪ ξρ, ξσ〉
=: S2a + S2b .

For S2a we get from Lemma 3.6 that

S2a = 〈∂(∇kFl(ξρ)), ξσ〉 − 〈ρk ∪ Fl(ξρ), ξσ〉
=

〈
(∇kFl(ξρ)), ∂

∗
ξσ
〉− 〈Fl(ξρ), ρ

∗
k ∩ ξσ〉

holds on X ×{s0}. By assumption the forms ξρ are fiberwise harmonic:

∂
∗
ξσ = 0. We apply Lemma 3.5, and again at s0 we obtain

S2a = −〈Fl(ξρ), ∂
∗
∂(Fk(ξσ))〉 = −〈∂Fl(ξρ), ∂(Fk(ξσ))〉.

We use the fiberwise equation

∂Fl(ξρ) = ∂G∂
∗
∂Fl(ξρ)

and, consequently, from Lemma 3.5 we get:

S2a = −〈
G∂

∗
∂Fl(ξρ), ∂

∗
∂(Fk(ξσ))

〉
= −〈

G(ρ∗l ∩ ξρ), ρ
∗
k ∩ ξσ

〉
.

For the last summand S2b we apply Lemma 3.4 to obtain fiberwise

ρkl = H(ρkl) +G(
√−1Λg [ρk, ρl]).

Hence, again fiberwise

S2b = −〈ρkl ∪ ξρ, ξσ〉
= −〈G (√−1Λg [ρk, ρl]

) · ξρ, ξσ〉 − 〈H (ρkl) · ξρ, ξσ〉.
This concludes the proof of Theorem 1. Q.E.D.

In the sequel we discuss the above term H(ρkl). Note that H(ρkl)(s)
is a harmonic section of End(Fs) i.e. a constant multiple of the identity,
since the holomorphic vector bundles Fs are simple by assumption. So
H(ρkl) can be identified with a differentiable function on S. This argu-
ment yields the following lemma.

Lemma 3.7. Let r = rk(F ). Then the End(Fs)-valued harmonic
sections H(ρkl)(s) are of the form Φkl(s) · idFs satisfying the equation

(13) Φkl(s) =
1

r

∫
X×{s}

tr(Rh
kl
)ωn

/∫
X

ωn.
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Since Hermite-Einstein metrics are only unique up to a constant
positive factor, the given metrics h on F over X × S may be rescaled,
i.e. modified by a factor exp(ϕ(s)), where ϕ denotes a differentiable
function:

Proposition 3.1. Let (F, h) → X × S be a holomorphic, hermit-
ian vector bundle such that the restrictions (Fs, hs) are simple Hermite-
Einstein vector bundles over a compact Kähler manifold (X, g) such that
all det(Fs) are isomorphic to a fixed line bundle L on X.

Then locally with respect to S the metric h can be rescaled such that
all harmonic projections H(ρkl)(s) vanish.

Proof. Let q : X × S → X be the canonical projection. We may
assume that detF ⊗ q∗L−1 is trivial. We equip L with an auxiliary
hermitian metric hL and consider deth · q∗(h−1

L ), which is of the form
exp(χ). Now

tr(Rh
kl
) = −∂2 log deth

∂sk∂sl
= − ∂2χ

∂sk∂sl
,

since the extra additive term involving log hL does not depend upon s.
Now the components Φkl(s) in the sense of (13) are of the form

Φkl(s) = −∂2ϕ(s)

∂sk∂sl
,

where

ϕ(s) =
1

r

∫
X×{s}

χωn
/∫

X

ωn.

We replace h by exp(−ϕ)h, which yields the claim. Q.E.D.

If S is an arbitrary base space, the bundle detF ⊗ q∗L−1 is of the form
p∗M , where M is a holomorphic line bundle on S. With the same
methods one can see immediately the following somewhat more general
fact.

Proposition 3.2. For any hermitian metric hM on M , there is a
hermitian metric h on F that restricts to a family of Hermite-Einstein
metrics hs such that

√−1H(ρkl)ds
k ∧ dsl = −√−1∂∂ log hM

on S.

In a moduli theoretic situation of a family with det(Fs) � L for all s,

after replacing S by a finite unbranched covering π : S̃ → S, there exists

a line bundle M̃ on S̃ such that M̃⊗r = π∗M . Now the bundle F can
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be replaced by F̃ = π∗F ⊗ q̃∗M̃−1 where q̃ : X × S̃ → S̃ is the canonical
projection. The isomorphism classes of the fibers are unchanged.

Corollary 3.3. In the above situation, the bundle F̃ possesses a
family of Hermite-Einstein metrics such that everywhere all H(ρkl)(s)
vanish.

Let a family (F, h) of (simple) holomorphic Hermite-Einstein bun-
dles be given. We have the induced family of Hermite-Einstein metrics

h̃s on End(Fs), and the connection and curvature forms on End(Fs) are

given by [θhs , ] and [Ωh
s , ] resp. so that tr(Rh̃

kl
) = 0. This fact implies

that the induced term for the curvature formula for the direct images
vanishes. Hence the following proposition holds.

Proposition 3.3. Given a holomorphic family of simple, holomor-
phic Hermite-Einstein bundles, equip the endomorphism bundles with
the induced structure. Then the fiberwise harmonic projections H(ρkl)
for the sheaves Rqp∗(End(F )) vanish identically.
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