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Abstract. 

We present the foundations of the theory of functions of bounded 
variation and sets of finite perimeter in abstract Wiener spaces. 
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This paper is an extended version of two talks given by the sec
ond and third author during the summer school Variational methods 
for evolving objects. As both talks were concerned with some infinite di
mensional analysis, we took the opportunity of this report to present the 
whole research area in a quite self-contained way, as it arises today. In
deed, even though geometric analysis on infinite dimensional spaces and 
the theory of BV functions is presently an active research field and there 
are still many important open problems (some are presented in Section 
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8), the foundations of the theory and some methods that have proved to 
be useful are ripe enough as to be presented in an introductory paper. 
In particular, we think that our purpose fits into the general aim of a 
collection of lecture notes-that of being useful to students and young 
researchers who attended the summer school and could be interested in 
having an active part in further developments of the theory. 

Malliavin calculus is essentially a differential calculus in Wiener 
spaces and was initiated by P. Malliavin [44] in the seventies with the 
aim, among the others, of obtaining a probabilistic proof of Hormander 
hypoellipticity theorem. This quickly led to study connections to sto
chastic differential equations and applications in various fields in Math
ematics and Physics, such as mathematical finance, statistical mechan
ics and hydrodynamics and the path approach to quantum theory or 
stationary phase estimation in stochastic oscillatory integrals with qua
dratic phase function. In general, solutions of SDEs are not continuous 
(and sometimes not even everywhere defined) functionals, hence the no
tion of weak derivative and Sobolev functional comes into play. Notice 
that there is no Sobolev embedding in the context of Malliavin calculus, 
which requires very little regularity. Looking at weak differentiation and 
the study of the behaviour of stochastic processes in domains leads im
mediately to the need for a good comprehension of integration by parts 
formulae, something that in the Euclidean case has been completely un
derstood in the frameworks of geometric measure theory, sets with finite 
perimeter and more generally functions of bounded variation. This ap
proach has been considered by Fukushima in [32] and Fukushima-Hino 
in [33], where the first definition of BV functions in infinite dimensional 
spaces has been given, most likely inspired by a stochastic characterisa
tion of finite perimeter sets in finite dimension given by Fukushima in 
[31], see Theorem 4 below. In this paper we follow the integralgeometric 
approach to BV functions developed in [9], [10], [5], [6]. Among the first 
applications of the theory, let us mention some results in a geometric 
vein in [18], [19] and in a probabilistic vein in [50]. On a more analytical 
perspective, some results are available on integral functionals, see [20], 
[21], and weak flows with Sobolev vector fields, see [4]. In this connec
tion, the extension to BV vector fields seems to require the analysis of 
fine properties of BV functions and perimeters. 

Added in proof. After the completion of the present paper, new 
contributions on the subject have appeared. We list the reference we 
know, whose results are not discussed in this paper. 
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§2. Preliminaries 

As explained in the Introduction, motivations and possible applica
tions of the theory we are going to present come from different areas, as 
well as the possible audience of the present notes. Indeed, it sits in the 
intersection between Calculus of Variations, Geometric Measure Theory, 
Functional Analysis, Stochastics and Mathematical Physics. Therefore, 
we have collected several prerequisites, divided in subsections, also with 
the purpose of fixing notation and basic results. Our aim is to introduce 
basic ideas and connections between the different perspectives, rather 
than giving precise and general results (this would take too much room). 
At the end of each subsection some general references for the sketched 
arguments are indicated. 
When dealing with finite dimensional spaces JRd, we always use Euclidean 
inner product x · y and norm lxl. Balls of radius (2 and centre x in a 
Banach space are denoted by B 12 (x), omitting the centre if x = 0. The 
cr-algebra of Borel sets in X is denoted by B(X). Moreover, we denote 
by II · llx the norm in the Banach space X and by X* the topological 
dual, with duality (-, ·). 

2.1. Measure theory 

In this subsection we briefly discuss a few properties of general mea
sures with some details on Gaussian measures in finite and infinite di
mensions. 
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A measurable space is a pair (X, F), where X is a set and Fa a-algebra 
of subsets of X. By measure on (X, F) we mean a countably additive 
function on F with values in a normed vector space; if a measure f.t is 
given on (X, F), we say that (X, F, f.l) is a measure space (a probability 
space if 1-l is positive and f.t(X) = 1) and omit F whenever it is clear from 
the context or F = B(X). For a measure f.t with values in a normed vec
tor space V with norm ll·llv we define the total variation IMI as the real 
valued positive measure 

IMI(B) = sup{L IIM(Bi)llv :B = U Bj, Bi E F, 
jEN jEN 

Bin Bh = 0 for j =f. h }; 

the measure f.t is said to be finite if IMI(X) < +oo. Given two measurable 
spaces (X, F) and (Y, 9), a measure 1-l on X and a measurable function 
f : X ---+ Y (i.e., such that f- 1(B) E F for all B E 9), the push
forward measure v = f#l-l on Y is defined by setting v(B) = f.t(f-1(B)) 
for every B E g. Let us also recall that, given two measure spaces 
(X1, B1, f.tl) and (X2, B2, f.t2), the product measure f.t118l /-l2 is defined on 
xl X x2 by first defining the product a-algebra Bas that generated by 
{B1 x B 2 , B1 E B1, B2 E B2} and then defining /-ll l8l /-l2 as the unique 
measure on B such that /-l118l /-l2(B1 x B2) = f.tl(Bl)/-l2(B2) for all pairs 
B 1 E B1. The construction generalises to the product of several spaces. 

In ffi.d we consider as reference measure either the Lebesgue measure 
.Cd or some absolutely· continuous measure A = p.Cd with nonnegative 
density p. The main examples among these are Gaussian measures. For 
d = 1, these measures have densities G given by 

(1) 
1 

G(x) = ~ exp{ -lx- ai 2 /2q} 
y27rq 

for some a E ffi. (centre or mean) and q > 0 (variance); the quantity ..fii 
is also called mean-square deviation. For d > 1, a measure A on ffi.d is 
Gaussian if f#A is Gaussian on ffi. for every linear function f : ffi.d ---+ R 
Generalising (1), a Gaussian measure 'Y on ffi.d is characterised by its 
centre a = JIRd x d"f and its covariance matrix Q = ( Qhk) with 

(2) Qhk = { (xh- ah) (xk- ak) d"f(x), h, k E {1, ... , d} 
J]Rd 

and is denoted N(a, Q). A Gaussian measures 'Y is nondegenerate if 
'Y = G.Cd with G(x) > 0 (equivalently, Q positive definite) for all x E ffi.d, 
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and is standard if 

(3) 

i.e.,"(= N(O, Id). According to the preceding discussion on products, a 
standard Gaussian measure "/d on JRd = JRk x JRm factors in the product 
of standard Gaussian measures "/d = "/k Q9 "/m for k + m =d. A measure 
"(on a Banach space (X, B(X)) is said Gaussian if xifo is Gaussian in 
lR for every x* E X*. In this case, the centre is defined as above by 
(Bochner integral, see [13]) 

(4) a= L xd"((x) 

and the covariance operator Q E 2(X*, X) is a symmetric and positive 
operator uniquely determined by the relation, cf (2), 

(5) (Qx*,y*)= L(x-a,x*)(x-a,y*)d"!(x), Vx*,y*EX*. 

The fact that the operator Q defined by (5) is bounded is a consequence 
of Fernique's theorem (see e.g. [13, Theorem 2.8.5]), asserting the exis
tence of a positive f3 > 0 such that 

(6) L exp{/3llxii~Jd'"Y(x) < oo; 

indeed, Q belongs to a special ideal of compact operators called "(
Radonifying. As above, we write "( = N(a, Q) and we say that "( is 
nondegenerate if Ker Q = {0}. Notice that the Dirac measure at x 0 is 
considered as the (fully degenerate) Gaussian measure with centre x 0 

and covariance Q = 0. For the arguments of the present subsection we 
refer to [13], [14]. 

2.2. Geometric measure theory 

A general class of (non absolutely continuous) measures of interest 
in the sequel is that of Hausdorff measures, which we briefly discuss 
here, together with the related notions of rectifiable set and approximate 
tangent space. 
The measure H8 , 0 < s < oo, is defined in a general metric space by 

00 00 

(7) H 8 (B) = ~= supinf{l_)diamBj) 8
, B C U Bj, diamB1 < 8 }, 

8>0 j=l j=l 

where, using Euler's r function, Ws = r(1/2) 8 ;r(s/2 + 1) (= _cd(B!) 
if s = d E N) is a normalising constant and the infimum runs along 



250 M. Miranda, M. Novaga and D. Pallara 

all the countable coverings. Beside the Hausdorff measures, it is useful 
to introduce the Minkowski content, which provides a more elementary, 
though less efficient, way of measuring "thin" sets. Given a closed set 
C c JRd and an integer s between 0 and d, the idea is to look at the rate 
of convergence to 0 of(! r-+ £d (Ig(C)) as(! .,I. 0, where Ig(C) denotes the 
open (!-neighbourhood of C. In general, given a closed set C C JRd, the 
upper and lowers-dimensional Minkowski contents M* 8 (C), M!(C) are 
defined by 

(8) 

M s(C) -1· . f £d(Ig(C)) 
* - lmln d ' g{.O Wd-s(! -s 

respectively. If M* 8 (S) = M!(C), their common value is denoted by 
M 8 (C) (Minkowski content of C) and we say that C admits Minkowski 
content. Unlike the Hausdorff measures, the Minkowski content is not 
subadditive. Nevertheless, in some important cases the two procedures 
give the same result. We compare later the Hausdorff measures and the 
Minkowski contents. 

The natural regularity category in geometric measure theory is that 
of Lipschitz continuous functions. Let us recall (Rademacher theorem) 
that a Lipschitz function defined on JRd with values in a finite dimensional 
vector space is differentiable £d-a.e. (the differentiability properties of 
Lipschitz functions defined on infinite dimensional vector spaces is a 
much more delicate issue, see [13], [46]). For s integer between 0 and 
d, we say that a 1l8 measurable set B C JRd is countably s-rectijiable if 
there are countably many Lipschitz functions fj : lR8 -t JRd such that 

00 

(9) B C u /j(JRs). 
j=l 

We say that B is countably 1l8 -rectijiable if there are countably many 
Lipschitz functions /j : lR8 -t JRd such that 

00 

(10) 1-ls ( B \ u /j(JRS)) = 0. 
j=O 

Finally, we say that B is 1l8 -rectijiable if B is countably 1l8 -rectifiable 
and 1l8 (B) < oo. All these classes of sets are stable under Lipschitz 
mapping. Notice that countable 1l8 -rectifiability is equivalent to the 
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seemingly stronger requirement that JiB-almost all of the set can be 
covered by a sequence of Lipschitz s-graphs. Notice that if the admissible 
coverings in (7) are made only by balls we get the spherical Hausdorff 
measure SB. The measures JiB and S 8 are comparable in the sense that 

and coincide on JiB-rectifiable sets. However, an important difference be
tween JiB and SB measures is relevant in Subsection 4.3, where Hausdorff 
measures are discussed in the infinite dimensional setting, see Lemma 6. 
Analogously, the Hausdorff measure coincide with the Minkowski con
tent on rectifiable sets. Even though rectifiable sets can be very irregular 
from the point of view of classical analysis, nevertheless they enjoy useful 
properties from the point of view of geometric measure theory. Indeed, 
for JiB-a.e. point x of a countably JiB-rectifiable set B there exists an 
s-dimensional subspace S (approximate tangent space) such that 

(11) 

If s = d- 1 an approximate unit normal vector v( x) to B at x is defined 
(up to the sign) as the unit vector normal to S. In the same vein, we 
say that a function u E Lfoc(JR.d,JR.k) admits an approximate limit at xo, 
if there is z E JR.k such that 

(12) 0 1 1 hm --d iu(x)- zi dx = 0 
e-+0 Wd(! Be(xo) 

(z = ap limx-+xo u(x) for short) and in this case we say that u is approx
imately continuous at x 0 if x 0 is a Lebesgue point of u and (12) holds 
with z = u( x 0 ). Analogously, if u is approximately continuous at x 0 we 
say that u is approximately differentiable at x 0 if there is a linear map 
L : JR. d -t JR. k such that 

(13) 1. u(x)- u(xo)- L(x- xo) 0 ap 1m = . 
x-+xo lx - Xo I 

For the arguments of the present subsection we refer to [7], [28]. 

2.3. Stochastic analysis 

Let a probability space (0, F, JP) be given. If (X, 13) is a measurable 
space, a measurable function ~ : 0 -+ X is called an X -valued random 
variable (r.v. for short) and its law is the push-forward measure of lP 
under~' i.e., ~#JP(B) = JP(~- 1 (B)), BE 13. If~ E L1 (0,JP) we define its 
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expectation by lE[~] = fn ~diP'; if~ E L 2 (0, IP') we define its variance by 
Var(~) = JE[(~ -JE[~J?l = lE[eJ-lE[~] 2 and for~' ryE L2 (0, IP') we define 
the covariance by cov(~, ry) = JE[~ry] -lE[~]lE[ry]. Given a sub CT-algebra 
Q c F, the conditional expectation of a summable ~ given Q is the unique 
Q-measurable random variable ry = JE(~IQ) such that JB ~diP'= JB 'T] diP' 
for all B E Q. Given N random variables ~j : 0 -+ Xj, they are 
independent if for every Aj c Xj, setting Bj ={wE 0: ~j(w) E Aj}, 
IP'(B1 n· · -nBN) = IP'(B1 ) · · ·IP'(BN ), or, equivalently, if the law of the r.v. 
~: 0-+ X= xl X ... X XN whose components are the ~j is the product 
measure of the laws of the ~j on X. A random variable is Gaussian if 
its law is a Gaussian measure. 

An X -valued continuous stochastic process~ on [0, oo) is the assign
ment, fortE [0, oo), of a family of random variables ~t: (0, F, IP')-+ X. 
An increasing family of sub CT-algebras Ft c F is called a filtration; a 
process~ is said adapted to a given filtration Ft if ~t is Ft-measurable for 
every t. If the filtration is not explicitly assigned, the natural filtration is 
understood, i.e., Ft is the smallest CT-algebra such that ~s is measurable 
for all s :::;: t, s E J. If ~t is an adapted process, summable for every t 
and lE(~tiFs) = ~s for all s :::;: t, the process ~ is a martingale. Due to 
the dependence of ~t(w) on two variables, we may think of w r+ ~t(w), 
for fixed t, as a family of r.v. defined on 0, or as t r+ ~t(w), for w fixed, 
as a set of trajectories. A real stochastic process on an interval I defines 
the distribution functions 

called finite-dimensional joint distributions. In general, F(x) is said 
to be a distribution function if it is increasing with respect to all the 
Xk variables, left-continuous, F(x1, ... , Xn) -+ 0 if some Xk -+ -oo, 
F(x1, . .. ,xn)-+ 1 if all Xk-+ +oo and for any intervals h = [ak,bk), 
1 :::;: k :::;: n, the inequality 

holds, where tlhF(x) = F(x1, ... , bk, ... , Xn)- F(x1, ... , ak, ... , Xn)· 
A (remarkable) result of Kolmogorov's states that, given a sequence 
Fn(xl, ... , Xn) of distribution functions, there is always a stochastic 
process whose distribution functions are the given ones, provided the 
(necessary) consistency condition 
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holds. A stochastic process on [0, oo) is stationary if its distribution 
function is invariant under translations on time, i.e., 

v h ~ 0. 

Given a filtration Ft, t E I, a random variable T : 0 ~I= [0, +oo] is 
a stopping time if { T :s; t} E Ft for all t E I. Accordingly, a process ~ 
is a local martingale if there is an increasing sequence of stopping times 
Tn ~ +oo such that (~tATJ is a martingale for every n EN. 

A particular class of processes which is relevant for our purposes 
is that of Markov processes. Let us start from the notion of time
homogeneous Markov transition function, i.e., a function p(t, x, B), t E 

[0, oo), x EX, BE B, which is measurable with respect to x, is a prob
ability measure on (X, B) with respect to B (we also write p(t, x, dy) to 
stress the last property) and verifies the Chapman-Kolmogorov equation 

(14) p(t, x, B)= l p(t- s, y, B)p(s, x, dy), v 0 :s; s :s; t. 

Given a transition function p as above and a probability distribution p, 
on (X, B), there is a stochastic process ~ such that the law of ~0 is p, 
and lP'(~t E B) = p(t, ~t, B) for all t ~ 0 and it is called Markov process 
associated with p with initial law p,. The initial law p, is invariant with 
respect to the process (see also next Subsection) if 

(15) p,(B)= lp(t,y,B)p,(dy), V t ~ 0, BE B. 

An JR.d valued Q-Brownian motion starting from a or Wiener process Bt 
is a stochastic process such that B 0 =a E JR.d lP'-a.s., for every 0 :s; s < t 
the difference Bt - B 8 is a Gaussian random variable with centre 0 and 
covariance (t- s)Q, i.e., N(O, (t- s)Q) and for every 0 :s; h < ... < tn 
the random variables Bt2 - Bt,, . .. , Btn - Btn-l are independent. This 
in partucular implies that the Brownian motion has a version whose 
trajectories are continuous and is a martingale, since the independence 
of Bt- B 8 from Bs implies that Bt- B 8 is independent from F 8 , that is 

According to the quoted Kolmogorov theorem, Brownian motions exist. 
Notice that a Brownian motion is a Markov process whose transition 
function is Gaussian, p(t, x, dx) = N(x, tQ). Moreover, as we have al
ready observed, any Brownian motion has a continuous version and is a 
martingale; in the sequel we always assume that the continuous version 
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has been selected. A Brownian motion is standard (or normalised) if 
a = 0 and Q = Id. 

The Ito integral with respect to a given real Brownian motion Bt, 
whose (completed) natural filtration we denote by Ft, can be defined 
through suitable Riemannian sums, even though the usual Stiltjes ap
proach cannot be pursued, due to the fact that Bt has not bounded 
variation in time. Let ~t, t E [0, T] be an adapted continuous simple 
process, i.e., such that there are a partition 0 = t 0 < t 1 < · · · < tN :::; T 
and Ftj_ 1 -measurable r.v. ~j, j = 1, ... , N, for which 

N 

~t(w) = L~j(w)X[tj-l,tj)(t). 
j=l 

For such a process, define 

As a consequence of the independence of the increments of the Brownian 
motion, we get the Ito isometry 

(16) 

for every~' T/ as above. The Ito isometry extends to JRd valued processes 
and Brownian motion in an obvious way. Thanks to the Ito isometry and 

the fact that every adapted process ~ such that 1F'(J0T l~s 12 ds < oo) = 1 
can be approximated by elementary processes, it is possible to extend 
the stochastic integral to the described class of processes, or to processes 
defined for 0 :::; t < oo such that the finiteness condition holds for every 
T > 0. Notice that the stochastic integral is, in turn, a random variable. 
It can be proved as well that the function t f--7 J~ ~s dBs is continuous 
IF'-a.s. 

The stochastic integral allows for a rigorous theory of stochastic 
differential equations, SDEs for short, which are intuitively dynamical 
systems perturbed by noise. We deal here only with autonomous SDEs 
on JRd, assuming that the noise is given in terms of a Brownian motion. 
Something more in the Wiener space will be added in Subsection 4.5 in 
connection with the Ornstein-Uhlenbeck process. In the present case 
the Cauchy problem can be written (at least formally) as 

(17) ~o given r.v., 
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where Bt is a Brownian motion, u and A are the diffusion and drift term, 
respectively. The meaning of (17) is that the process ~ is a solution if 

Under general hypotheses a unique solution exists and is a continuous 
Markov process. Presenting a general theory goes far from the aim of 
this short presentation; detailed results are discussed on concrete cases. 
For the arguments of the present subsection we refer to [13], [30], [45]. 

2.4. Semigroup theory 

The theory of one-parameter semigroups of linear operators in Ba
nach spaces was born as a general method to solve autonomous evolution 
equations, has been widely studied and is very rich of abstract results 
and applications. We need very few basic results, and the main point 
which is worth discussing here is the link between semigroups as a tool 
for solving linear parabolic partial differential equations and the related 
stochastic differential equations, as explained at the end of this subsec
tion. First, we say that (St)t~o is a semigroup of linear operators on a 
Banach space E if St E 2?(E), i.e., St is a bounded linear operator onE 
for every t ?: 0, So = Id, St+s = St o 8 8 ; if t f---7 Stf is norm continuous 
for every x E E then St is said to be Co (or strongly continuous). If 
St is strongly continuous then, setting wo = inft~o t log IIStii.S::?(E), for 
every s > 0 there is M" ?: 1 such that II St II2(E) :s; M"e(wo+E:)t for all 
t ?: 0. A semigroup defined on E = Cb(X) (the space of bounded con
tinuous functions on a Banach space X) is Feller if Stf E Cb(X) for all 
f E Cb(X) and is strong Feller if Stf E Cb(X) for all f E Bb(X) (the 
space of bounded Borel functions). A Markov semigroup is a semigroup 
St on Cb(X) such that Btl = 1, IIStii.S::?(E) :s; 1 for every t ?: 0, and 
Stf ?: 0 for every f ?: 0 and t > 0 (here 1 is the constant function with 
value 1). Given a time homogeneous Markov transition function p and 
the associated process ~f starting at x (which means that the law of ~0 
is bx), the family of operators 

(18) Stf(x) = L f(y)p(t, x, dy) = JE[f(~f)], X EX, 

due to (14), is a Markov semigroup. Notice that St can be extended to 
Bb(X). With each semigroup it is possible to associate a generator, i.e., 
a linear closed operator (L, D(L)) such that Lf = limt--+o(Sd- f)jt, 
f in the domain D(L) C E. Here the limit is in the norm sense if St 
is strongly continuous or can be in weaker senses (uniform convergence 
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on bounded or compact sets or even pointwise with bounds on the sup 
norm) in the case of Markov semigroups. We are mainly interested in 
the case where p comes from a process which solves a SDE (17) on a 
Banach space X. In this case, L is a linear elliptic operator given by 
L = -~Tr[aa* D 2] + (Ax, \7), at least on suitable smooth functions, 
giving rise to the Kolmogorov backward parabolic operator Ot- L. Under 
suitable conditions, the solution of the Cauchy problem OtU - Lu = 0, 
u(O) = f E Cb(X) will be given by u(t) = Stf. In this setting, the 
trajectories of the Markov process play a role analogous to that of the 
characteristic curves in a hyperbolic problem. Finally, we introduce the 
notion of invariant measure associated with the semigroup St, i.e., a 
probability measure p, on X such that 

[ Stf(x) dp,(x) = [ f(x) dp,(x), 

The meaning of the above equality is that the distribution p, is invariant 
under the flow described by equation (17), see (15). Typically, if /-lt is the 
law of ~t and the weak limit p, = limt-+= 1-lt exists, then p, is invariant 
and the semigroup St extends to a Co semigroup in all the LP(X, p,) 
spaces, 1 ::; p < oo. For the arguments of the present subsection we 
refer to [13], [30]. 

2.5. Dirichlet forms 
In this subsection we collect a few notions on Dirichlet forms, confin

ing to what we need in Theorem 4, and to show some further connections 
between the various areas we are quickly touching. 

Given a a-finite measure space (X, p,) consider the Hilbert space 
L2 (X, p,) with the inner product [u, v]. A functional£: D(£) x D(£)-+ 
lR is a Dirichlet form if it is 

(1) bilinear, i.e., linear with respect to both variables; 
(2) nonnegative: E(u, u) ~ 0 for all u E L2 (X, p,); 
(3) closed: D(£) is complete with respect to the metric induced by 

the inner product £(u,v) + [u,v], u,v ED(£); 
(4) Markovian: if u E D(£) then v := (0 V u) 1\ 1 E D(£) and 

E(v,v)::; £(u,u). 

A Dirichlet form£ is symmetric if E(u, v) = E(v, u) for all u, v E L2 (X, p,) 
and is local if£( u, v) = 0 whenever u, v E D(£) have disjoint compact 
supports. The subspace D(£) of L 2 (X, p,) is called the domain of the 
form£. 

Dirichlet forms are strictly connected with Markov semigroups and 
processes. First, notice that a nonnegative operator L can be associated 
with any Dirichlet form as shown in the following theorem of Kato's. 
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Theorem 1. There is a one-to-one correspondence between closed 
symmetric forms and nonnegative self-adjoint operators given by 

u E D(L) {o} :::Jf E L2 (X,t-L): E(u,v) = [f,v] 'Vv E D(E), Lu :=f. 

Moreover, D(E) = D( v'L) and the operator (-L, D(L)) is the generator 
of a strongly continuous Markov semigroup St of self-adjoint operators. 

According to the discussion in the preceding Subsection and the 
above Theorem, it is possible to associate with a Markov process, be
side a Markov semigroup, a Dirichlet form. Of course, not all Markov 
processes give raise to a Dirichlet form. Moreover, the transition func
tion must be symmetric, i.e., such that p(x, y, B) = p(y, x, B) for all 
x, y E X and B E B(X) in order to get a symmetric Dirichlet form 
and if the process has continuous trajectories then the associated form 
is local. 

Viceversa, given a regular Dirichlet form, there is a unique (in a 
suitable sense) Markov process whose Dirichlet form is the given one. 
Let us now discuss two key examples that will play a relevant role in the 
sequel. 

Example 1. Let D C JKd be open and bounded with Lipschitz 
continuous boundary, and define the Dirichlet form on L2 (D) by 

E(u, v) = l '\lu · '\lv dx, 

for u, v E D(E) = W 1,2 (D). The operator L defined as in Theorem 1 is 
the Neumann Laplacean, i.e., 

D(L) = {u E H 2 ' 2 (D): 8vu = 0 on 8D}, 

where al/ denotes the differentiation with respect to the normal direc
tion. Then, ( -L, D(L)) is the generator of a strongly continuous Markov 
semigroup on L 2 (D) and the related Markov process is the reflecting 
Brownian motion in D. 

Example 2. Let '/ = Gd.Cd be the standard Gaussian measure. 
Define the Dirichlet form E on L2 (JKd, '/) by 

E(u, v) = { '\lu · '\lv d'/, 
}Jf!!.d 

u, v E D(E) = W 1,2 (JKd, 'I) = { u E w,;';(JKd): u, IVul E L2(JKd' '"'()}. The 
operator L defined as in Theorem 1 is the Ornstein-Uhlenbeck operator 
defined on smooth functions by L = -6+x· '\1 and D(L) = W 2,2(JKd, '/), 
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(-L,D(L)) is the generator of the strongly continuous Markov semi
group Tt on L 2 (1Rd,1) defined in (21) and the related Markov process is 
the Ornstein-Uhlenbeck process in JRd given by (25) below. Moreover, 1 
is the invariant measure of Tt. 

For the arguments of the present subsection we refer to [34], [42]. 

§3. BV functions in the finite-dimensional case 

In this section we present the main properties of BV functions in 
JRd. In order to pave the way to the generalisations to Wiener spaces, 
we discuss now at the same time the case when the reference measure is 
the Lebesgue one or the finite dimensional standard Gaussian measure. 
Of course, BV functions with general densities can be studied, but this 
is not of our concern here. Standard Gaussian measures have regular 
and non-degenerate densities, hence there is no basic difference at the 
level of local properties of BV functions, which are basically the same 
in the two cases. Instead, the global properties are different, due to the 
very different behaviour of the densities at infinity. Let us start from 
the classical case. There are various ways of defining BV functions on 
JRd, which are useful in different contexts. 

(19) 

Theorem 2. Let u E L1 (JRd). The following are equivalent: 

1 there exist real finite measures J.Lj, j = 1, ... , d, on JRd such 
that 

i.e., the distributional gradient Du = J.L is an JRd-valued mea
sure with finite total variation IDui(JRd); 

2 the quantity 

V(u) =sup { Ld udiv¢dx: ¢ E C1(1Rd,1Rd), ll¢lloo:::; 1} 

is finite; 
3 the quantity 

L(u) = inf { liminf r I'Vuhl dx: Uh E Lip(JRd), Uh ~ u} 
h-+oo }JRd 

is finite; 
4 if (Wt)t>o denotes the heat semigroup in JRd, then 

#"[u] = lim r I'VWtul dx < ()(). 
t-+0 JJRd 
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Moreover, IDui(IRd) = V(u) = L(u) = 'W[u]. 

If one of (hence all) the conditions in Theorem 2 holds, we say 
that u E BV(JR.d). The statement above is well known, a sketch of 
its proof, with more references, can be found in [8]. We observe that 
in 3 we may replace Lipschitz functions with functions in W 1,1 (JR. d). 

The translation of the above result in the case of a standard Gaussian 
measure 1 = N(O, Id) = Gd.Cd is an easy matter, taking into account 
that the integration by parts formula has to be modified because the 
density of r is not constant and reads 

(20) r u(x)Djv(x) dr(x) =- r [v(x)Dju(x)- Xju(x)v(x)] dr(x). 
J~d J~d 

Hence, BV (JR.d, r) functions and the weighted total variation measure 
ID1 ul can be defined, for u E L 1 (JR.d, 1), as in the above Theorem, 
according to the following suggestions: 

(21) 

(1) replace the measure dx with dr everywhere; 
(2) in 1, replace Dj¢(x) with Dj¢(x) = Dj¢(x)- Xjcp(x); 

(3) in 2, replace div ¢ with L;~=l Dj ¢]; 
( 4) in 4, replace the heat semigroup Wt with the Ornstein~Uhlen

beck semigroup 

Ttu(x) = { u(e~tx + V1- e-2ty) dr(Y) 
J~d 

= (27r)~d/2 r u(e~tx + )1- e~2ty)e~lyl2/2 dy 
J~d 

= (27r(1- e~2t))~d/2ld u(y) exp{ ~~(~-=- :~t2~;2 }dy 

which plays a fundamental role in the infinite-dimensional anal
ysis. 

Using Dirichlet forms, a further characterisation of BV functions can 
be given in the Gaussian setting. Indeed, given u E P (JR.d, r), for j = 

1, ... , d the linear projections xj belong to the domain of the form 

Eu(w,v) = { Vw · Vv u dr 
J~d 

and u E BV (JR.d, 1) if and only if there is C > 0 such that 

(22) 

Notice that both the heat and the Ornstein-Uhlenbeck semigroups are 
Markov semigroups whose transition functions in JR.d in the sense of (18) 
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are given by 

p(t,x,dy) = G(t,x,y)dy, 

(23) 1 (x- y) 1 { lx- Yl 2 } 
G(t, x, y) = td/2 Gd Vt = (27rt)-d/2 exp - 2t 

p(t,x,dy) = ~(t,x,y)dy, 

(24) "!'( ) _ ( ( _ -2t))-d/2 {_IY- e-txl2 } 
'f/ t, x, y - 27r 1 e exp 2(1 - e-2t) . 

The only non trivial point is ( 4), which is discussed in detail in the 
Wiener case. For the moment, as discussed also in Subsection 2.5 and 
in particular in Example 2, let us only point out that the infinitesi
mal generator of Tt is the operator defined on smooth functions by the 
expression 

-Lu(x) = L).u(x)- x · V'u(x) 

and that "! turns out to be the invariant measure associated with Tt. 
The semigroup Tt is related to the Ornstein-Uhlenbeck process 

(25) ~t = e-t/2~0 + lt e(s-t)/2 dEs, 

solution of the Langevin SDE 

(26) 

From this point of view, let us recall that the generator of Wt is the 
Laplace operator, and that the Lebesgue measure is invariant under 
the heat flow (this does not fit completely into the theory of invariant 
measures, as _cd is not finite). 

Differently from the Sobolev case, BV functions are allowed to be 
discontinuous along hypersurfaces, and indeed characteristic functions 
XE may belong to BV. If E c JRd and IDxEI(JRd) is finite, we say that E 
is a set with finite perimeter, use the notation P(E) (perimeter of E) for 
the total variation of the measure DxE and write P(E, ·) for IDXEI(-). 
Analogously, we set P1 (E) and P1 (E, ·)in the Gaussian case. The study 
of structure of sets with finite perimeter is important on its own, but 
also because it gives information on general BV functions, through the 
coarea formula: if u E BV (JR. d), then P( { u > t}) is finite for a. e. t E lR 
and for every B E B(JRd) the following equality holds: 

(27) IDui(B) = 1 P({u > t},B)dt, 
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with P"' in place of P and D"'u in place of Du in the Gaussian case. 
Let us come at a very short discussion of fine properties of BV 

functions. Observing that, as usual, BV!oc functions can be defined as 
those Lfoc(JR.d) functions such that 

V(u, A) =sup { L udiv ¢dx: ¢ E C~(A, :IR.d), ll¢lloo :S: 1} < oo 

for all bounded open sets A C JR.d, clearly BV (JR.d, 'Y) C BV!oc (JR. d), 
hence we may confine to BV!oc(:IR.d) to treat both the Lebesgue and the 
Gaussian case. On the other hand, it is clear that BV(JR.d) C BV(JR.d, 'Y) 
and that in this case D"'u = Gd Du. 

According to the general discussion on approximate limits, we may 
assume that all the functions are approximately continuous in their 
Lebesgue set, and we may call Su the complement of the Lebesgue set 
of u. Let us list some properties of BV!oc functions. 

Theorem 3. Let u belong to BV!oc(:IR.d). Then, the following hold: 

(1) Su is an J:d-negligible and countably (d- I)-rectifiable Borel 
set; 

(2) there is Ju C Su such that for every x E Ju there are u+(x) -f. 
u-(x) E JR. and vu(x) E §d-1 such that, setting 

(28) 

Bt(x) = Be(x) n {(y- x). Vu(x) > 0}, 

B;(x) = Be(x) n {(y- x). Vu(x) < 0}, 

the following equalities hold: 

Ju is called approximate jump set, the values u±(x) approxi
mate one-sided limits and vu(x) approximate normal to Ju at 
x. Moreover, the triple (u+(x),u-(x),vu(x)) is determined up 
to an exchange between u+(x) and u-(x) and a change of sign 
of vu(x); 

(3) Hd- 1 (Su \ Ju) = 0, the functions x f-t u±(x), x E Ju, are 
Borel, if B is such that Hd- 1 (B) = 0 then IDui(B) = 0 and 
the measure DuLJu coincides with (u+- u-)vuHd- 1 LJu. 
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If u = XE E BV!oc(IR.d) is a characteristic function, we say that 
the set E has locally finite perimeter and we can say more on the set 
where the measure P(E) is concentrated. Simple examples show that the 
topological boundary 8E is too large (it can be the whole space), hence 
some suitable relevant subsets should be identified. In this connection, 
the notion of density, which is slightly weaker than that of approximate 
limit but has a more direct geometric meaning, turns out to be useful. 
We say that E c IR.d has density a E [0, 1] at x E JRd if 

(29) lim £d(E n Be(x)) =a 
e-+0 £d(B 12 (x)) 

and in this case we write x E Ea. We introduce the essential boundary 

8* E = IR.d \ (E0 u E 1 ) 

and the reduced boundary FE, defined as follows: x E FE if the following 
conditions hold: 

(30) 
. DxE(B12 (x)) 

IDxEI(B12 (x)) > 0 V [! > 0 and 3 vE(x) = !~ IDxEI(Be(x)) 

with lvE(x)l = 1. If x E FE, the hyperplane T(x) = TvE(x) = {y E 

Rd : y · vE(x) = 0} is the approximate tangent space to FE as in (11). 
Indeed, 

(31) 
E-x 

lim--= {y E JRd: y · VE(x) > 0} 
e-+O [! 

locally in measure in !Rd. Looking at the properties of u XE, the 
following inclusions hold: 

FE= Ju c E 1/ 2 c 8* E =Bu. 

On the other hand, 1id-1 (1Rd \ (E0 U E 1 U E 112)) = 0 and in particular 
Hd- 1 (8* E \FE) = 0. For further reference, it is worth noticing that 
densities are related to the short-time behaviour of the heat semigroup, 
i.e., 

(32) x E Ea ===} lim WtXE(x) =a. 
t-+0 

Let us point out now that there are still (at least) two relevant issues 
concerning the infinite dimensional setting, the slicing and the discussion 
of embedding theorems, both for Sobolev and BV spaces and the related 
isoperimetric inequalities. Of course, we are interested here in these ar
guments in the Gaussian case, and indeed they can be discussed directly 
in the Wiener case, because these results are dimension independent, 
hence there is not a big difference with respect to (IR.d, 'Y) setting. 
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§4. The Wiener space 

In this section we present the measure theoretic and the differential 
structure which characterise the Wiener spaces. After briefly describing 
the classical Wiener space, whose elements are stochastic processes, we 
introduce the abstract structure. 

4.1. Classical Wiener space 

For a E ~d, let X = Ca([O, 1],~d) be the Banach space of ~d
valued continuous functions w on [0, 1] such that w(O) = a, endowed 
with the sup norm and the Borel a-algebra B(X). Looking at (X, B(X)) 
as a measurable space, consider the canonical process Bt ( w) = w ( t), 
0 :::; t :::; 1. Then, there is one probability measure IP' (called Wiener 
measure) such that Bt is a Brownian motion in ~d such that B 0 =a. If 
we want to identify the measure IP', we can exploit the fact that linear and 
bounded functionals on X, i.e., Radon measures, can be thought of as 
random variables. Using the fact that Bt = Ot and that delta measures 
are dense in the dual of X, it is possible to conclude that IP' = N(a, Q) 
is a Gaussian measure with covariance Q = (qhk), qhk = qhohk with 

Given Borel sets Bj E B(~d), j = 1, ... , m and 0 = to < t1 < ... < 
tm :::; 1, define the cylinder 

C={wEX: w(tj)EBj, j=1, ... ,m}; 

we have 

(33) IP'(C) = r G(h,a,xl)dxl r G(t2 -h,X1JX2)dx2 
Js1 Js2 
... r G(tm-tm-l,Xm-l,Xm)dxm, 

ls= 
where G is defined in (23). 

For what follows (see (39) below), it is important to know for which 
functions h E X the measure IP'h (B) = IP'( h +B) is absolutely continuous 
with respect to IP': this happens if and only if h E H = X n H 1 (0, 1) 
(Cameron-Martin Theorem [13]), i.e., if and only if hE X, h' E L2 (0, 1). 

As a consequence of the above discussion, the space of the directions 
which give absolutely continuous measures under translation has a nat
ural Hilbert space structure. As we are going to see, this is a general 
fact. 
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The same construction of the Wiener measure can be done in the 
(non separable) space of bounded Borel functions on (0, 1), but by Kol
mogorov Theorem (see [53, Chapter 5]) the Wiener measure concentrates 
on C0([0, 1], JR.d). 

In this setting, we present a result due to Fukushima, see [31], which 
has been the starting point of the whole theory, as it highlights a strong 
connection between the theory of perimeters and the stochastic analysis. 
We use the notation of Section 2.5. 

Theorem 4. Given an open set D c ffi.d, the following conditions 
are equivalent: 

i) D has finite perimeter; 
ii) the reflecting Brownian motion (Xt, JPl x) on D is a semimartin

gale, in the sense that the decomposition 

holds, where Bt is the standard d-dimensional Brownian mo
tion and each component Nf is of bounded variation and sat
isfies the property 

lim ~lE [ t XK(Xs)diN!I] < +oo 
t.).O t }0 

for any compact set K c D. 

The idea is that if D is a set with finite perimeter, then in a weak 
sense the Brownian motion Bt is reflected when it reaches the boundary 
of D since an (approximate) tangent space is defined; using the language 
of processes, the reflecting Brownian motion admits an expression of the 
form 

Xt = Xo + Bt +fat VD(Xs)dL 8 , 

where Lt describes the reflection on the boundary; it is the local time, 
i.e., it is an additive functional with Revuz measure given by Hd- 1 L F D, 
that is 

lim ~JE [ t f(Xs)dLs] = { fdHd- 1 

t.j.O t lo JFD 
for continuous f. We refer to [34] for the related notions. The idea 
expressed by this theorem is that, since the Brownian motion has tra
jectories that are not C 1 and the tangent space to aD exists only in an 
approximate sense, a reflection law is not properly defined in terms of 
classical calculus, but the reflection properties of the Brownian motion 
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can be described only in a stochastic sense and are contained in the 
additive functional Lt, the local time. 

Fukushima proves the result for a general BV function p, by con
sidering the Dirichlet form 

£(u, v) = r '\lu. '\lvpdx 
jRd 

with associated process (Xt, lP' x). The idea of the proof is to show that 
the additive functional 

A~u] = u(Xt) - u(Xo) 

admits a semimartingale decomposition 

A~u] = M}uJ + N}uJ' 

with M}ul a martingale and N}ul of bounded variation if and only if 

l£(u, v)l :::; cllvlloo, 
for some positive constant c > 0. The particular choice u(x) =Xi, the 
projection onto the i-th coordinate gives the result. 

4.2. Abstract Wiener spaces 

Let us come to the notion of abstract Wiener space. Given a sep
arable Banach space X, let 'Y = N(O, Q) be a nondegenerate centred 
Gaussian measure on (X,B(X)). As a general comment, let us point 
out that a Gaussian measure can be defined in any Banach space, and it 
is always concentrated on a separable subspace, as briefly recalled in the 
preceding subsection. Moreover, a consequence of Fernique's theorem, 
see (6), is that any x* E X* defines a function x r-+ (x, x*) belonging 
to LP(X, 'Y) for all p ~ 1. In particular, we may think of any x* E X* 
as an element of L 2 (X,1). Let us denote by R* : X* -+ L 2 (X,1) 
the embedding, R*x*(x) = (x, x*). The closure of the image of X* in 
L2 (X, 'Y) under R* is denoted£ and is called the reproducing kernel of 
the Gaussian measure 'Y. The above definition is motivated by the fact 
that if we consider the operator R : £ -+ X whose adjoint is R*, then 

(34) Rh = i h(x)xd1(x), 

(Bochner integral). In fact, denoting by [·, -J.ye the inner product in£ 
and by I · 1£ the norm, the equality 

[h, R*x*]£ = i h(x)(x, x*)d!(x) = ( i h(x)xd1(x), x* ), 
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that holds for all x* E X*, implies (34). With the definition of R, R* 
we obtain directly by (5) the decomposition Q = RR*: 

(RR*x*, y*) = [R*x*, R*y*]£ = L (x, x*)(x, y*)d"f(x) = (Qx*, y*). 

The space H = R£ is called the Cameron-Martin space; it is a Hilbert 
space, dense in X because 'Y is nondegenerate, with inner product defined 
by 

for all h1 , h2 E H, where hi= Rhi, i = 1, 2, and norm I·IH· As recalled 
in Subsection 2.1, Q is a compact operator. The same holds for Rand 
R*, hence the embeddings X* '--+ £, H '--+ X are compact. Given 
the elements xi, ... ,x;, in X*, we denote by 1l'xi, ... ,x;;. :X---+ JR.m the 
finite dimensional projection of X onto JR.m induced by the elements 
xi, ... , x;,, that is the map 

1l'xi, ... ,x;,. X= ( (x, xr), ... , (x, x:n) ), 

also denoted by 7l'm : X ---+ JR.m if it is not necessary to specify the el
ements xi, ... ,x;,. The symbol ~Ct(X) denotes the space of k times 
continuously differentiable cylindrical functions with bounded deriva
tives up to the order k, that is: u E ~Ct(X) if there are m E N, 
x]', ... , x;, EX* and v E Ct(JR.m) such that u(x) = v(1T'mX). We denote 
by £(X) the cylindrical a-algebra generated by X*, that is the a-algebra 
generated by the sets of the form E = 7!';;,1 B with B E B(JR.m). Since 
X is separable, £(X) and B(X) coincide, see [51, Theorem 1.2.2], even 
if we fix a sequence (xj) C X* which separates the points in X and 
use only elements from that sequence to generate 7l'm· We shall make 
later on some special choices of (xj), induced by the Gaussian proba
bility measure"( in X. Using the embedding R* X* C £, we say that 
a family { xj} of elements of X* is orthonormal if the corresponding 
family {R*xj} is orthonormal in£. It can be proved that "f(H) = 0, 
see [13, Theorem 2.4. 7]. Since X and X* are separable, starting from 
a sequence in X* dense in H, we may construct an orthonormal basis 
(hj) in H with hj = Qxj. Set also Hm = span{h1, ... ,hm}, and de
fine Xj_ = Ker1l'xi, ... ,x;;. and Xm the (m-dimensional) complementary 
space. Accordingly, we have the canonical decomposition "( = 'Ym ® 'Yj_ 
of the measure "(; notice also that these Gaussian measures are rota
tion invariant, i.e., if {! : X x X ---+ X x X is given by Q(x, y) = 

(cos '!1x + sill'Oy, - sin '!1x +cos '!1y) for some 71 E JR., then !!# ("! ® "() = "( ® "( 
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and the following equality holds: 

(35) L L u(cos'l9x + sin'l9y)d--y(x)d'Y(Y) = L u(x)d'Y(x), 

u E L1 (X,')'), which is obtained by the above relation by integrating 
the function u 0 1 on X x X. Notice that if X is decomposed as X = 
Xm EB X j_, the same formula holds in Xm and X j_ separately, with 
measures 'Ym and 'Yj_. 

For every function u E L1 (X,')'), if {hj} is an orthonormal basis 
of H, its canonical cylindrical approximations um are defined as the 
conditional expectations relative to the a--algebras Fm = n;;;_l(B(Rm)), 

for all A E Fm· Then, um --+ u in L1(X, 'Y) and ')'-a.e. (see e.g. [13, 
Corollary 3.5.2]). More explicitly, we set 

where Pm is the projection onto Xm. Notice that the restriction of 'Y to 
Fm is invariant under translations along all the vectors in X j_, hence we 
may write lEmu(x) = v(Pmx) for some function v E L1 (Xm,'Ym), and, 
with an abuse of notation, lEmu(xm) instead of lEmu(x). 

The importance of the Cameron-Martin space relies mainly on the 
fact that the translated measure 

'Yh(B) = 'Y(B- h), BE B(X), hE X 

is absolutely continuous with respect to 'Y if and only if h E H and in 
this case, with the usual notation h = Rh, hE£, we have, see e.g. [13, 
Corollary 2.4:3], 

(37) 

Let us look for the basic integration by parts formula in the present 
context, that generalises (20) and allows to define weak derivatives and 
BV functions. For h E X, define 

ohf(x) =lim f(x + th)- f(x) 
t--+0 t 
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(whenever the limit exists); we look for an operator a;;, such that for 
every j,g E ~C/;(X) the equality 

(38) L g(x)ahf(x)d'Y(x) =-L f(x)a/',g(x)d'Y(x) 

holds. Starting from the incremental ratio, we get 

{ f(x + th)- f(x) g(x)d"f(X) =- { f(y)g(y)- g(y- th) d"fth(Y) 
lx t lx t 

(39) + L f(x)g(x)dt-tt(x) 

where f-tt = t (N(th, Q) -N(O, Q)). From the Cameron-Martin formula 

(37) we know that I-tt« 'Y if and only if hE H. In this case, we can use 
(37) and pass to the limit by dominated convergence as t -t 0, getting 
(38) with 

8/',g(x) = ahg(x)- g(x)h(x), 

where as usual h = Rh. Such notions can be extended to the more gen
eral class of differentiable measures, see [15]. Let us now define the gra
dient and the divergence operators. For f E ~C/;(X), the H-gradient 
of f, denoted by VHf, is the map from X into H defined by 

[VHf(x),h]H = ahf(x), hE H, 

where ahf(x) is defined as before. Notice that if f(x) = fm(1fmX) with 
fm E C1 (1Rm), then 

If we fix an orthonormal basis {hi }j EN of H, we can write 

VHf(x) = Laif(x)hj, 
jEN 

where it is important to notice that the directional derivative {)h is com
puted by normalising h with respect to the norm in H. Considering the 
space ~C/;(X,H), we may define -divH, the adjoint operator of VH, 
as the linear map from ~C/;(X, H) to ~Cb(X) such that 

jEN jEN 
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4.3. Hausdorff measures 

The definition of Hausdorff measures in Wiener spaces goes back to 
[29] and is based on a finite dimensional approximation. If F c X is an 
m-dimensional subspace of H, B C F, recall that we are denoting by 
Sk(B) the spherical k-dimensional Hausdorff measure of B. We stress 
that the balls used in the minimisation above are understood with re
spect to the H distance and we do not emphasise the dependence on 
F. Occasionally we canonically identify F with JR.=, choosing a suitable 
orthonormal basis. 

Let F C QX* be an m-dimensional subspace of H. We denote by 
z = KF(x) the canonical projection induced by an orthonormal basis 
ej = Qej ofF, namely 

m 

7rF(x) = :L)ej,x)ej 
j=1 

and set x = y + z, so that y = x- 7rF(x) belongs to Ker(7rF), the 
kernel of 'ifF· This decomposition induces the factorisation 1 = 11_ ®IF 
with IF standard Gaussian in F and 11_ Gaussian in Ker(7rF) (whose 
Cameron-Martin space is Fj_ ). 

Following [29], we can now define spherical ( oo - 1 )-dimensional 
Hausdorff measures in X relative to F by 

'VB ex. 

Here, for y E Ker(7rF ), by By we denote the section or slice 

( 41) By={zEF: y+zEB}. 

The internal integral in ( 40) is understood in the Choquet sense, namely 

If ByE B(F), as it happens in the case BE B(X), the integral reduces 
to a standard one. Furthermore, we have used the outer integral in order 
to avoid the issue of the measurability of the map y M J B G m ds=- 1 . 

y 

The next basic additivity result is proved in [29]. 

Lemma 5. s;-1 is a a-additive Borel measure on B(X). In addi
tion, for all Borel sets B the map y M Is G7n ds=- 1 is lj_-measurable 

y 

in Ker( 1r F). 
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A remarkable fact is the monotonicity of s;-1 with respect to F, 
which crucially depends on the fact that we are considering spherical 
Hausdorff measures. 

Lemma 6. s;-1 :::; S0-1 on B(X) whenever F c G. 

The above property has been pointed out in [29], relying on [28, 
2.10.27]. We refer to [10, Lemma 3.1] for details. It follows from 
Lemma 6 that the following definition of spherical ( oo - 1)-Hausdorff 
measure s=- 1 in B(X) is well-posed; we set 

(42) 

the limits being understood in the directed set of finite-dimensional sub
spaces of QX*. A direct consequence of Lemma 5 is that s=- 1 is 
CT-additive on B(X). This measure does not coincide with the one of 
[29], since we are considering only subspaces in H generated by ele
ments of QX*. Our approach is a bit simpler because the corresponding 
projections are continuous, whereas general orthogonal decompositions 
of H give merely measurable projections, so that some technical points 
related to removing sets of small capacity has to be addressed. 

4.4. Sobolev spaces and isoperimetric inequality 

There are several possible definitions of Sobolev spaces on Wiener 
spaces. Since the operator \7 H is a closable operator in LP(X, 1), one 
may define the Sobolev space !Dl1 ,P(X, 1) as the domain of the closure 
of 'VH in £P(X,1) 1. Another possible definition, which is closer to our 
point of view, is based on the integration by parts formula (38): f E 

LP(X, 1) is in W 1 ,P(X, 1) if there is FE LP(X, {;H) such that (38) holds 
with [F, h]H in place of ahf and any g E g>Cl(X, H). In this case, we 
denote F by \7 H f. Anyway, the spaces wl,p and 1Dl1 ,P coincide, see [13, 
Section 5.2]. This approach requires some further explanations in the 
case p = 1, as we shall see at the end of this subsection. The definition 
of Sobolev spaces can be given also on domains 0 c X; nevertheless, 
in this case the proof of the coincidence of the different definitions is 
a difficult matter. By now, only with strong condition on the domain 
0 the investigation has been performed; for instance, Hino in [39] has 
considered the case of H-convex domains. 

1 Notice that the space denoted by liJJ1 ,p (X, r) by Fukushima is denoted by 
WP· 1(X,ry) in [13]. 
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The Gaussian isoperimetric inequality says the following, see [41]. 
Let E C X, and set Br = {x E H: lxiH < r}, Er = E + Br; then 

j t e-s2 /2 
where <P(t) := In= ds. 

-oo Y 27r 

We sketch here why this inequality implies the isoperimetric inequality. 
We introduce the function 

02/(t) :=(<I?' o q,- 1 )(t) ~ t.j2log(1/t), t-+ 0. 

Since 0//(t) = 0//(1 - t), the function 02/ has the same behaviour as 
t-+ 1, 0//(t) ~ (1- t)J2log(1- t). Notice that <P(t) is the volume of 
the halfspace {h(x) < t} and that 0//(t) is the perimeter of a halfspace 
of volume t. 

From the above estimate for q,- 1 ('y(Er)) we obtain that 

'Y(Er) ~ <P(<P-1 ('y(E)) + r) = 'Y(E) + r<P'(<P-1 ('y(E))) + o(r) 

= 'Y(E) + rf/('y(E)) + o(r), 

and then 
liminf 'Y(Er)- 'Y(E) ~ 02/('y(E)). 

r-+0 r 

The quantity on the left hand side is related to the Minkowski content of 
the set E constructed using the Cameron-Martin balls, although negli
gible. For instance, if X = ffi.d, 'Y = Gd£d the standard centred Gaussian 
measure on ffi.d and E a set with smooth boundary, then 

P (E)= lim 'Y(Er)- 'Y(E) ~ 02/('y(E)). 
"' r-+0 r 

It is also possible to prove in this case that equality holds if E is a hyper
plane; this sketch of the isoperimetry property of hyperplanes is essen
tially the proof contained in [41]. The original proof of the isoperimeric 
properties of hyperplanes in the finite dimensional Gaussian space has 
been established first in [49]; since the isoperimetric function does not 
depend on the space dimension, the same proof can be extended to the 
infinite dimensional case. In [26], again in the finite dimensional case, 
it is proved that hyperplanes are isoperimetric by using a symmetrisa
tion argument; also in this case, the proof implies that hyperplanes are 
isoperimetric in the infinite dimensional case. The proof that hyper
planes are the unique isoperimetric sets is rather recent and is contained 
in [17]. Let us also point out that the right Minkowski content uses 
enlargements Er of the set E with respect to balls of H and not of 



272 M. Miranda, M. Novaga and D. Pallara 

X. The reason of this can be explained as follows: the Gaussian mea
sure 7 introduces an anisotropy on X due to the covariance operator Q. 
This anisotropy is compensated in the definition of total variation and 
perimeter by the gradient \7 H, since it is defined using vectors that have 
unit H-norm. The corresponding compensation in the computation of 
the Minkowski content is achieved by using the balls of H. 

The isoperimetric inequality implies also the following: 

and it follows that if \7 H f E L 1 (X,""(, H) then u belongs to the Orlicz 
space 

where A1; 2 (t) = J~ log112 (1 + s)ds. This is important in connection to 
the integration by parts formula (38), because for general f E L 1 (X,7) 
the product hfg is not summable. But, thanks to Fernique's theorem, 
the linear function h belongs to the Orlicz space defined through the 
complementary N-function of A1; 2 , 1/;(t) = J~(e82 -1)ds, i.e., 1/;(..\lhiH) < 
oo for some ..\ > 0. As a consequence, if \7 H f E L 1 (X, 7) then f E 

1/2 A Llog L(X,"f), the product hfg is summable, (38) does make sense 
and the embedding of lDJ1 •1 (X,"f) into Llog1/ 2L(X,"f) follows, see [33, 
Proposition 3.2]. 

4.5. The Ornstein-Uhlenbeck semigroup 

Let us consider the Ornstein-Uhlenbeck semigroup (Tt)t>o, defined 
pointwise by Mehler's formula, which generalises (21): 

(44) 

for all u E L 1 (X,7), t > 0. Unlike the heat semigroup, the Ornstein
Uhlenbeck semigroup Tt does not map L 1 (X, 7) into lDJ1•1 (X, 7). But, 
Tt is strongly continuous in L log112L(X, 7) and it follows from (35) that 
Ttu E lDJ1 •1 (X,"f) for any u E Llog1/ 2L(X,"f), see [33, Proposition 3.6]. 
Moreover, it is a contraction semigroup in LP(X, 7) for every p E [1, +oo] 
(and hence also in Llog112L(X,"f)) and self-adjoint in L2 (X,7). More
over, the following commutation relation holds for any u E lDJ1•1 (X,7) 

( 45) t > 0. 
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Therefore, we get 

for any u E Llog1/ 2L(X,1), see [13, Proposition 5.4.8]. It also follows 
from (45) that 

(46) L Ttf divH ¢dr = e-t L f divH(Ttc/J)d!, 

for all f E P(X,/), ¢ E §Cl(X,H), see [8]. Another important 
consequence of ( 45) is that if u E ]]])1•1 (X, 1) then 

( 47) 

Finally, notice that if um are the canonical cylindrical approximations 
of a function u E Llog1/ 2L(X,1) defined in (36) then the following 
inequality holds, see e.g. [8] 

We end this brief discussion on the Ornstein-Uhlenbeck semigroup by 
presenting the related Ornstein-Uhlenbeck process in the Wiener space. 
Of course, this is close to the finite dimensional case, with important 
modifications. First, we define the cylindrical Brownian motion in X 
as an X-valued continuous process Bfl such that for every x* E X* 
with IQx* IH = 1 the one-dimensional process (x*, Bfl) is the standard 
Brownian motion. After extending the notion of stochastic integral to 
the case of a cylindrical Brownian motion, we may deal with SDEs in 
X. The Ornstein-Uhlenbeck process is given by 

and, as in JR.d, it is the solution of the Cauchy problem for the Langevin 
equation 

~o given r.v., 

where Bfl is a cylindrical Brownian motion. If the law of ~o is Ox for 
x E X, denoting by ~f the corresponding solution, we have the usual 
equality Ttf(x) = lE[f(~t)]. 
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§5. BV functions in the Wiener space 

A definition of BV functions in abstract Wiener spaces has been 
given by M. Fukushima in [32], M. Fukushima and M. Hino in [33], and 
is based upon Dirichlet form theory quoted in Subsection 2.5. When X 
is a Hilbert space, different notion of BV functions can be given, one 
using the definitions of gradient and divergence that compensate the 
anysotropy of the measure 1, and a second one that uses the gradient 
and divergence of the ambient space X; we refer for instance to [2] where 
these two notions are compared. We also refer to the recent paper [48], 
where more general notion of BV functions are given in the Gelfand 
triples setting. In [8], [9] the main aim has been to compare the finite 
and infinite dimensional theory of BV functions from a purely analytical 
point of view, closer to the classical setting. After collecting, in the 
preceding section, the tools we need, we pass now to the definition of BV 
functions in the abstract Wiener space setting. We denote by M(X, H) 
the space of all H-valued finite measures J.L on B(X). 

Definition 5.1. Let u E Llog1/ 2L(X,1). We say that u has boun
ded variation in X and we set u E BV (X, 1) if there exists J.L E M (X, H) 
such that for any¢ E ffGt(X) we have 

(49) i u(x)oj¢(x)d1(x) =-i cp(x)dJ.LJ(x) Vj EN, 

where J.LJ = [hj, J.L]H. In particular, if u = XE and u E BV(X, 1), then 
we say that E has finite perimeter. 

Notice that, as in the Sobolev case JIJl1,1 (X, 1), the assumption u E 

L log112L(X, 1) gives a meaning to (38), as discussed in Subsection 4.4. 
Moreover, in the previous definition we have required that the measure J.L 
is defined on the whole of B(X) and is a-additive there. Since cylindrical 
sets generate the Borel a-algebra, the measure J.L verifying ( 49) is unique, 
and will be denoted D 1 u as in the finite dimensional Gaussian case. 
The total variation measure is denoted as usual by ID1 ul. We also let 
P1 (E) := ID,xEI(X) be the (Gaussian) perimeter of a subset E of X 
and we set, as in the finite dimensional case, P1 (E, ·) = ID1 xEI(·). 

We state now a characterisation of BV(X, 1) functions analogous to 
Theorem 2 and the discussion which follows. 

Theorem 7. Given u E Llog1/ 2L(X,1), the following are equiva
lent: 

(1) u belongs to BV(X, 1); 
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( 2) the quantity 

V,(u) := sup{fx udivH <I>&y; <I> E y>Cl(X, H), I<I>(x)IH ~ 1 Vx EX} 

is finite; 
( 3) the quantity 

L,(u) =in£ { liminf r IV HUniHdr: Un E lDl 1' 1 (X, !), Un ~ u} 
n-+oo lx 

is finite; 
(4) the quantity 

(50) 

is finite. 

Moreover, ID,ui(X) = v,(u) = L,(u) = T[u]. 

As in the finite dimensional case, see (22), u E BV(X, !) if and only 
if there is C > 0 such that 

for all <I> E ffCl (X). The proof of Theorem 7 is contained in [32], 
[33], and also in [9]. The proof in the latter reference relies on a slicing 
argument, a technique that has proved to be very useful in the finite 
dimensional case and we shall use later. For v E Um Hm, denote by av 
and a: the differentiation operator and its adjoint, respectively, and the 
directional total variation along v as 

(51) v;(u) =sup { L u8~¢dr: ¢ E y;vcl(X), l¢(x)l ~ 1 \:j X EX}, 

where¢ E y;vq(X) means that ¢(x) = v((x,x*)) with v E Cl(l~) and 
v = Qx*. Riesz theorem shows that v; ( u) is finite if and only if the 
integration by parts formula 

(52) L ua~ ¢d, = - L ¢dftv 

holds for some real-valued measure ftv with finite total variation, that we 
denote by D~u; if this happens, lfLvi(X) coincides with V{(u). Finally, 

(53) 
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Once a direction v = Qx* E His fixed, let 1fv(x) = (x, x*) be the induced 
projection and let us write x EX as y + 1fv(x)v. Then, denoting by K 
the kernel of 1fv, '/ admits a product decomposition'/ = '/j_ ® '/1 with 
'/j_ Gaussian in K. For u : X --+ lR and y E K we define the function 
uy : lR--+ lR by uy(t) = u(y +tv). The following slicing theorem holds 

Theorem 8. Let u E L log112L(X, 'I) and let v E Um Hm; then 

In particular, the directional total variation of u is independent of the 
choice of the basis and makes sense for all h E H. 

The coarea formula (27) holds as well in Wiener spaces and can 
be proved by following verbatim the proof of [27, Section 5.5]: if u E 

BV(X,'/), then for a.e. t E lR the level set {u > t} has finite perimeter 
and for every Borel set B c X the following equality holds: 

(54) 

We end this section with a recent example of application in the 
classical Wiener space, see [50]. 

Example 3. Let us fix a time t E [0, 1] and consider the classical 
Wiener space X= C0 ([0, 1], JR), see Subsection 4.1. Define 

Mt = sup{B8 , 0::::; s::::; t}. 

It is well-known that Mt E ][))1 ,P(X,IP'), but \lHMt is not differentiable. 
Nevertheless, \1 H Mt belongs to BV(X, IP'), i.e., there exists a H ® H
valued measure D 2 Mt such that 

for every <P E ffC?(X), h1 ,h2 E H. Moreover, the measure IDII'V'HMtl 
is concentrated on the trajectories that attain their maximum exactly 
twice, hence, in particular, all these measures are singular with respect 
to lP'. 

§6. Fine properties of sets with finite perimeter 

We show in this section how is it possible to generalise in the infinite
dimensional setting the properties listed in Theorem 3; we restrict our 
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attention to the case of sets with finite perimeter, so that we can use the 
geometric meaning of points of density stated by formula (29) to give a 
suitable notion of boundary of a set. 

It is worth noticing that in the infinite-dimensional setting things do 
not work as well as for the Euclidean case; Preiss [47] gave an example 
of an infinite-dimensional Hilbert space X, a Gaussian measure "Y and a 
set E C X such that 0 < "Y(E) < 1 and 

(55) lim "Y(E n Be(x)) = 1 
e--+0 "Y(B12 (x)) ' 

Vx EX. 

In the same work, it is also shown that if the eigenvalues of the covariance 
Q decay to zero sufficiently fast, then it is possible to talk about density 
points; in some sense, the requirement on the decay gives properties of 
X closer to the finite-dimensional case. For these reasons, in general the 
notion of point of density as given in (55) is not a good notion. 

In the infinite-dimensional setting, the idea is to use the factorisation 
"Y = "Yj_ ® "'(F, for F C QX* an m-dimensional space, described in 
Subsection 4.3. 

Definition 6.1 (Essential boundary relative to F). If we write X= 
FEBKer(nF), we recall by (41) the definition ofthe slice of E in direction 
F 

Ey = { z E F : y + z E E} c F; 

the essential boundary of E relative to F is then defined as 

8;_,E = {x = y + z: z E 8*(Ey)}. 

It is not difficult to show that 8;_,E is a Borel set; moreover, in 
order to pass from the finite dimensional space F to the whole of the 
Cameron-Martin space H, we need the following property. 

Lemma 9. Let G c QX* be a k-dimensional Hilbert space, let 
F c G be an m-dimensional subspace and let E be a set with finite 
perimeter in G. Then, with the orthogonal decomposition G = F EB L 
and the notation 

Ew := { z E F : w + z E E} wE L, 

we have that sm-l ( {z E F: z E 8* Ew, w + z rj:. 8* E}) = 0 for Sk-m_ 

a.e. wE L. 

Thanks to this fact, we have that ifF C G C QX* are two finite 
dimensional spaces, then the relative essential boundary 8;_,E of E is 
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contained, up to negligible sets, into the essential boundary 80E of E 
relative to G, that is 

s;-1 (8}E \ 80E) = 0. 

In [10] there is the proof of the following fact. 

Proposition 1. Let F be a countable family of finite-dimensional 
subspaces of QX* stable under finite unions. For F E F, let AF E B(X) 
be such that 

(i) s~- 1 (AF \ Aa) = 0 whenever F c G; 
(ii) supFs~- 1 (AF)<oo. 

Then lim(s~- 1 LAF) exists, and it is representable as (limS~- 1 ) LA 
F F 

with 
A:= u n Aa E B(X). 

FEFGEF,G~F 

Such Proposition allows for the definition of the cylindrical essential 
boundary. 

Definition 6.2 (Cylindrical essential boundary). Let F be a count
able set of finite-dimensional subspaces of H stable under finite union, 
with U FEF F dense in H. Then, we define cylindrical essential boundary 
8"FE along F the set 

a;E:= U n 80E. 
FEFGEF,G~F 

These definitions are used in [38] and with minor revisions in [10], 
to get a representation of the perimeter measure as follows. 

Theorem 10. Let E E B(X) be a set with finite !-perimeter in X, 
let F be as in Definition 6.2 and let 8"FE be the corresponding cylindrical 
essential boundary. Then 

(56) VB E B(X). 

In particular, 8"FE is uniquely determined by (56) up to S'f"- 1 -negligible 
sets. 

In [10] also a weak rectifiability result of the cylindrical essential 
boundary is given; the term weak refers to the fact that rectifiability is 
done by using Sobolev functions instead of Lipschitz maps as in (10). 
This is not a minor difficulty, since in the infinite-dimensional setting 
no Lusin type properties are known; in particular, it is not known if 
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any Sobolev function coincides with a Lipschitz map in a set of positive 
measure. 

First, we recall the notion of H-graph. 

Definition 6.3 (H-graph). A set r c X is called an H-graph if 
there exist a unit vector k E QX* and u : D c Ker(11"F) --+ IR (here 
F = {sk, s E IR}) such that 

r = {y + u(y)k: y ED}. 

We say thatr is an entire Sobolev H-graph if moreover DE B(Ker(11"F)), 
"Y_l(Ker(11"F) \D)= 0 and u E W1,1 (Ker(11"F),"Y_i). 

With this notion, in [10] the following theorem is proved. 

Theorem 11. For any set E c X with finite perimeter the measure 
ID7 xEI is concentrated on a countable union of entire Sobolev H -graphs. 

In [5], the Ornstein-Uhlenbeck semigroup is used to define points of 
density 1/2; the main result can be summarised in the following Theo
rem. 

Theorem 12. Let E C X be a set with finite perimeter; then 

in particular, there exists a sequence ti .} 0 such that 

(57) 

which ensures that Tt;XE--+ ~ ID7 XEI-a.e. in X. 

Thanks to the previous Theorem, a notion of points of density ~ 
can be given. As explained in connection with the notion of essential 
boundary, the analogue (55) of the finite dimensional procedure (29) 
is not available in the present situation, hence it relies rather on an 
approach analogous to (32). 

Definition 6.4 (Points of density 1/2). Let (ti)i be a sequence such 
that 

(58) L viti< +oo 
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and (57) holds. Then, we say that x is a point of density ~ forE if it 
belongs to 

(59) E 112 := {x EX: 3 .lim Tt,XE(x) = ~} · 
2-++oo 2 

The requirement in (58) is rather natural, since for a set with finite 
perimeter it is possible to prove (see [5, Lemma 2.3]) that 

with 

Ct = {21t e-s ds rv 2 II. 
V; o ,/1- e-2s V; 

Theorem 13. Let (ti)i be a sequence such that L:i y'ti < +oo and 
(57) holds. Then IDI'XEI is concentrated on E 112 defined in (59); more
over E 112 has finite s=-l measure and 

It is worth noticing that the sequence (ti)i depends on the set E 
itself. In [6] it is also proved a part of the rectifiability result for the 
reduced boundary; with minor revision of the definition of cylindrical 
essential boundary, it is possible to define a cylindrical reduced boundary 
by setting 

and 

(60) 

:FpE = {x EX: x = y + z: z E F(Ey) C F}, 

FHE = liminf:FpE = u n FeE, 
FEF 

FEFGEF,G~F 

where here F has two meanings, the first one to denote the reduced 
boundary, the second one when writing F E F is meant as a countable 
collection of finite dimensional sets as in Proposition 1. The liminf of 
sets in (60) is also given in the sense of Proposition 1. 

Given an element h E H, the halfspace having h as its "inner nor
mal" is defined as 

Sh = {x EX: h(x) 2 0}. 

Notice that Sh is a closed halfspace if h = R*x* for some x* EX*; oth
erwise, it is easily seen by approximation that h is linear on a subspace 
of X of full measure, hence the above definition does make sense. Since 
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the convergence of sequences hn E H to h E H in the norm of H implies 
the convergence of shn to sh in the sense of convergence of characteristic 
functions in L 1 (X, r), then, denoting by 

E- e-tx 
E ·- --;===~ x,t .- v'1 - e-2t' 

the following result holds true, see [6]. We notice that the idea under
lying the following result is the last line in (21), which cannot be used 
directly in the infinite-dimensional framework. 

Theorem 14. Let E c X be a set with finite perimeter in X, x E 

FHE and S(x) = SvE(x) where VE is defined by the polar decomposition 
D'YXE = vEID'YXEI; then 

lim r r lxE(e-tx + V1- c 2ty)- XS(x)(Y)I d((y)diD"(xEI(x) = 0. 
t+o Jx Jx 

In other terms, the previous results can be restated by saying that 

that is, Ex,t converge to S(x) in L 1 (X,1), for ID'YXEI-a.e. x EX. This 
result is in some sense the Wiener space formulation of (31). 

6.1. Examples of sets with finite perimeter 

We now provide some examples of sets with finite perimeter; in some 
cases the essential and reduced boundary are directly identifiable, in 
some other they are indicated as candidates, but a proof is not available 
so far. 

6.1.1. Cylindrical sets. Let F be as in Definition 6.2. The easi
est way to construct examples of sets with finite perimeter is to use 
the decomposition X = Xm EB Ker(7rF ); if B C F is a set with XB E 

BV(Xm, rF ), then E = 7rp 1 (B) has finite perimeter in X with 

IfF E F, then 

8}E = 8'FE = 8*B, FHE=FB, 

otherwise the previous equality holds up to ID'YXE !-negligible sets. 
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6.1.2. Level sets of Lipschitz maps: comparison with the Airault
Malliavin surface measure. By coarea formula (54), almost every level 
set of a BV function has finite perimeter; in particular, we can use 
almost every level set of Sobolev or Lipschitz functions. To prove that 
every level set, under some regularity assumption on the function, has 
finite perimeter is quite delicate in this framework. In [1], Airault and 
Malliavin constructed a surface measure on boundaries of regular level 
sets. More precisely, they considered functions f belonging to 

W 00 (X,')') = n Wk,P(X,')'), 
p>l,kEfil 

where Wk,P(X, 'Y) is the Sobolev space of order k with p-integrability, 
such that 

IV 1fl E n LP(X,')'); 
H H PZl 

what they proved is that the image measure f#'Y defined on B(JR) by 

has smooth density p with respect to the Lebesgue measure and that, 
for each t such that p(t) > 0, there exists a Radon measure at supported 
on f- 1(t) such that 

1 d. n. d 1 [ <f>' VHf] H d 
lVH '±' ')' = at. 

{f<t} {f=t} IV H fiH 

The measure at is constructed in terms of the Minkowski content as ex
plained in Subsection 4.4. In [18], it is proved that, under the additional 
technical assumption that f is continuous, the set {! < t} has finite 
perimeter whenever p(t) > 0 with the identity 

P-y( {! < t}) =at( {f = t}) = r divH VH d')', 
lu<t} 

where VH =VHf /IV H fiH. The set {f = t} is expected to be the essen
tial boundary of{! < t}, whereas the points in the reduced boundary 
are expected to be those x where VHf ( x) -:f. 0. 

6.1.3. Balls and convex sets. If we fix a point x 0 EX, the map 

f(x) = llx- xallx 

is Lipschitz and then the sets 

Et = {f < t} = Bt(xo) 
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have finite perimeter for almost every t > 0. The proof that every ball 
has finite perimeter is contained in [18]; if X is a Hilbert space, then 
the function f(x) 2 is continuous and satisfies all the condition imposed 
by Airault and Malliavin and then all balls in Hilbert spaces have finite 
perimeter. In addition, the normal vector in this case is given by 

v(x) = Q(x- xo) 
IQ(x- xo)IH 

(where Q is the covariance operator, 1 = N(O, Q)) and the function 

g(t) = P"~(Bt(xo)) 

is continuous in [0, +oo) with 

lim P"~(Bt(x0 )) = lim P"~(Bt(xo)) = 0. 
t--+0 t--++= 

It is also possible to prove that there exist t 1 < t 2 such that g is increas
ing in [0, t 1] and decreasing in [t2 , +oo). 

The proof that any ball in an infinite-dimensional Banach space 
has finite perimeter is less explicit and is based on a Brunn-Minkowski 
argument stating that for every Borel sets A, B c X, 

). E [0, 1]. 

In [18] it is proved that if Cis an open convex set, then 1(8C) = 0 and 
C has finite perimeter. In this case, it is easily seen that 8]:C c ac and 

(61) ID'Yxci(8C \ a}:C) = 0; 

indeed if x E Cor x EX\ C, then for any F::; H, if we write 

y E Ker(7TF ), Zx E Xm 

then Zx is an interior point either of Cy or of Xm \ Cy, so 8]:C c ac. 
Property (61) follows by the representation of the perimeter measure 
(56). The characterisation of the reduced cylindrical boundary is less 
clear. 

The assumption that C is open is essential; indeed, it is also shown 
that, in the Hilbert space case, there exists a convex set with infinite 
perimeter. Such a set is constructed by fixing a sequence ri such that 

r2 

{2e---1- 1 

V ;----:;:;- = (i + 1)(log(i + 1))~' 
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defining 
m 

Cm = 1rp 1(Qm), Qm = II[-ri, ri] 
i=l 

and letting m -+ +oo. 
6.1.4. An example in the classical Wiener space. In [40] an example 

of a set with finite perimeter in the classical Wiener space is given, using 
the reflecting Brownian motion. The setting is given by a pinned path 
space, that is 

X= {wE C([O, 1],1Rd): w(O) = a,w(1) = b} 

endowed with the pinned Wiener measure lP' a,b defined in the same spirit 
as (33) by 

where Bj E B(JR.d), j = 1, ... , m, 0 = to < t1 < ... < tm < tm+l = 1, 
xa =a and Xm+l = b, 

C={wEX: w(tj)EBj, j=1, ... ,m}. 

In such space, if n c JR.d is an open set containing the two points a and 
b, define the set 

E 0 ={wE X: w(t) ED, \It E [0, 1]}. 

Then E 0 has finite perimeter in X under the assumption that n has 
positive reach, that is an uniform exterior ball condition: there exists 
8 > 0 such that for every yEan there is z E JR.d\D such that B 0(z)nfi = 
{y}. The proof of this fact is done constructing a sequence of Lipschitz 
functions Pn converging to XIJP. in L 1 (X,lP'a,b) and such that 

{ IY'HPniHdlP'a,b ~ nlP'a,b ({wE X: 0 ~ inf q(w(t)) ~ ~}); lx tE[O,l] n 
the sequence is defined in terms of the signed distance function 

as 

q(x) = inf lx- Yl- inf IY- xi 
yEJRd\f2 yEO 

Pn(w) = fn(F(w)), F(w) = inf q(w(t)), 
tE[O,l] 
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where fn is defined as 

fn(s) = min{max{O,ns}, 1}. 

The key point in the proof where the positive reach condition is used is 
in estimating 

since from that it comes that 

In this case, Hino-Uchida prove also that the perimeter measure con
centrates on the set 

8'E0 ={wE X: w(t) ED and 3 a unique t E [0, 1] s.t. w(t) E an}. 
The definition of the previous set has a meaning very close to the set 
of points of density 1/2 for E 0 . Finally, it is worth noticing that the 
proof given by Hino and Uchida of the fact that E 0 has finite perimeter 
is close to the proof that a (sufficiently regular) set in the Euclidean 
setting has finite Minkowski content. 

§7. Convex functionals on BV 

Following [21], we now consider integral functionals on BV(X,/') of 
the form 

u t-tl F(D1 u) 

where F : H -+ JR. U { +oo} is a convex lower semicontinuous function. 
As D1 u is in general a measure, we have to give a precise meaning to 
the above expression. 

Given a convex function F : H -+ JR. U { +oo} we denote by F* its 
convex conjugate, defined as 

F*(<I>) :=sup {[<I>, h]H- F(h): hE H}, <I> E H, 

and by p= its recession function defined as 

p=(h) := lim F(th) 
t-++= t 

hE H. 

We shall consider functions F : H -+ JR. U { +oo} satisfying the following 
assumption: 
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(A) F is a proper (i.e., not identically +oo ), lower semi-continuous, 
convex function on H. 

Notice that a convex function F with p 2': 1 growth, i.e., such that there 
are positive constants o:1, (31, 0:2, (32 such that 

(62) VhEH, 

satisfies automatically assumption (A). 
Given a function F satisfying (A) and u E L 2 (X, "f), we define the 

functional 
(63) L F(D'Yu) :=sup{-L ( udivs <I>+ F*(<I>) )d')', <I> E §Cl(X, H)} 

which is lower semicontinuous in L 2 (X, "f). Similarly, for f-L E M(X, H) 
we set 

The following result has been proved in [21, Theorem 3.2]. 

Theorem 15. Let F : H -+ ffi. U { +oo} satisfy (A) and let f-L E 

M(X, H); then 

where f-L = f-La'Y + f-L 8 is the Radon-Nikodym decomposition of f-L w.r.t. 'Y· 

From Theorem 15 we obtain a representation result for the func
tional in (63). 

Theorem 16. IfF : H -+ ffi. U { +oo} satisfies (A), then 

for all u E BV(X,"f), where D'Yu = '\lsu')'+D~u is the Radon-Nikodym 
decomposition of D'Yu. 

A natural question is whether the functional in (63) coincides with 
the relaxation in £ 2 (X, 'Y) of its restrictions to more regular functions. 
The following result has been proved in [21, Proposition 3.4]. 
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Theorem 17. IfF: H ----7 lR U { +oo} satisfies (A), then the func
tional fx F(D,u) is the relaxation in L 2 (X, 1) of the functional defined 
as fx F(\JHu)dr for u E W1'1 (X,/), and +oo for u fl. W1,1 (X,!)-

If F hasp?: 1 growth in the sense of (62), then the same relaxation 
result holds with the space W1,1 (X,/) replaced by §Cl(X). 

Condition (62) in the above statement is technical, and we expect 
that it is not necessary to obtain the relaxation result in §Cl(X). 

7.1. Convexity of minimisers 

The Direct Method of the Calculus of Variations is a well-known 
method to prove existence of minimisers of variational problems. The 
two conditions a functional has to satisfy in order to apply the method 
are the lower semicontinuity with respect to a given topology, and the 
compactness of a nonempty sublevel set in the same topology. 

We now consider convex functionals of the form 

(65) 

where F : H ----7 lR U { +oo} satisfies (A) and g E L2 (X, 1) is a convex 
function. 

Notice that the functional in (65) is convex on L2 (X,1), hence it 
is also weakly lower semicontinuous. Moreover, its sublevel sets are 
(relatively) compact in the weak topology of L2 (X,1). By the Direct 
Method we then obtain the following existence result. The existence of 
a minimiser follows by the Direct Method of the Calculus of Variations, 
while the uniqueness follows from the strict convexity of the functional, 
due to the second term in (65). 

Proposition 2. There exists a unique minimiser u E L2 (X, 1) of 
the functional (65). 

We state a convexity result for minimisers of (65) which has been 
proved in [21, Theorem 5.1]. 

Theorem 18. The minimiser u of (65) is convex. 

From Theorem 18 and the theory of maximal monotone operators 
(see [16]), one can easily get the following result: 

Theorem 19. Let u0 E L2 (X, 1) be a convex initial datum. Then 
the solution u(t) of the L2 (X, !)-gradient flow of fx F(D,u) with initial 
condition u(O) = uo is convex for every t > 0. 
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Notice that, by taking F(h) = lhiP with p ~ 1, Theorem 18 applies 
to the functional 

(66) 

Recalling the coarea formula (54), when p = 1 the functional (66) can 
be written as 

ID,ui(X)+~ r (u-g) 2 d"t= r (P,({u>t})- r (g-t)d'Y)dt 
2}x }Pi. J{u>t} 

+ ~ r g2d,. 
2 lx 

It then follows (see [19], [21]) that the level set {u > t} of the minimiser 
u minimises the geometric problem 

(67) 

among the subsets E C X of finite perimeter, for all t E JR. Then, from 
Theorem 18 one can derive a convexity result for minimisers to (67) (see 
[21, Corollary 5.7]). 

Theorem 20. Let g E L 2 (X, 1) be a convex function, and consider 
the functional 

(68) 

Then, two situations can occur: 

• If minFg < 0, there exists a unique nonempty minimiser of 
Fg, which is convex. 

• If min Fg = 0, there exists at most one nonempty minimiser of 
Fg, which is then convex. 

7.2. Relaxation of the perimeter in the weak topology 

In view of the previous discussion, a natural problem which arises 
is the classification of the weakly lower semicontinuous functionals on 
L 2 (X, 1). 

While convex functionals are lower semicontinuous with respect to 
both the weak and the strong topology, the perimeter functional 

{ 
P1 (E) 

F(u) := 
+oo 

if u = XE 

otherwise 
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is not weakly lower semicontinuous, as one can easily check by taking 
the sequence of halfspaces En = { (x, x~) < 0}, where x~ is a sequence 
in X* such that hn = Qx~ is an orthonormal basis of H. Indeed, the 
characteristic functions of these sets weakly converge to the constant 
function 1/2, which is not a characteristic function, while the perimeter 
of En is constantly equal to 1/ v'21f. 

In [35] the authors computed the relaxation F of F with respect to 
the weak L 2 (X, !')-topology, showing that 

F(u) ~ { 
where 

L Vtft2(u) + JD'YuJ2 

+oo 

if u E BV(X,f') and JuJ::::; 1 

otherwise 

with D'Yu = \1 HU df' + D~ u as in Theorem 16. Observe that the func

tional F already appears in the seminal works by Bakry and Ledoux [11] 
and Bobkov [12], in the context of log-Sobolev inequalities. See also [9, 
Remark 4.3] where it appears in a setting closer to ours. 

There is also a representation formula for F, which is reminiscent of 
the definition of total variation: 

F(u) =sup{ L (udivH <I>+ 'ft(u)~)df' : <I> E !YCl(X, H), 

~ E !YCl(X), J<I>(x)J~ + J~(x)J 2 ::::; 1 'Vx EX}, 

for all u E BV(X,f'), with Jui::::; 1. 

§8. Open problems 

We collect some open problems whose solution, in our opinion, would 
provide important information on the whole subject and would allow for 
a wide range of applications. 

The first problems that should be solved and would have a great 
influence in the further developments concern the structure theory of 
reduced boundaries and general BV functions. For instance it would be 
important to check whether the well-known Euclidean decomposition re
sult holds in Wiener spaces, i.e., whether the equality X= E 1uE0 UE112 

is true (up to negligible sets). Moreover, as we have seen, a pointwise 
characterisation of reduced boundary like that in (30) is missing, as well 
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as suitable notions of one-sided approximate limits, see (28). In this 
respect, the Ornstein-Uhlenbeck semigroup could come into play, but 
making density computations independent of the sequence ( ti), see (59), 
would certainly be useful, in connection with the coarea formula. Still 
on the side of the structure theory, it is important to improve the weak 
rectifiability Theorem 11, possibly getting Lipschitz rectifiability. All 
these problems are of course connected to the general problem of the 
traces of BV functions. Beside other instances, such as boundary value 
problems, closer to the arguments presented here are applications of the 
structure theory and fine properties to integral functionals. Indeed, it 
would be interesting to extend the results presented in Section 7 to in
tegrands depending on u, see [7, Section 5.5] for the classical case. In 
this connection, it would be important to perform a deeper analysis of 
the singular part of the gradient, possibly distinguishing between the 
jump part and the Cantor part, and defining the one-sided approximate 
limits. This could probably give a representation formula more precise 
than (69). Finally, one could try to provide a complete characterisation 
of weakly lower semicontinuous integral functionals with integrands of 
linear growth. 
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