
Advanced Studies in Pure Mathematics 72, 2017

Geometry, Dynamics, and Foliations 2013

pp. 301–348

Cones of foliations almost without holonomy

John Cantwell and Lawrence Conlon

Abstract.

On sutured 3-manifolds M , we classify taut foliations almost with-
out holonomy up to isotopy. We assume that the compact leaves lie
in ∂M . The classification is given by finitely many convex, polyhedral
cones in H1(M ;R) which have disjoint interiors. The classes in the
interiors of these cones determine the isotopy classes. This work relies
heavily on the Handel–Miller classification of the isotopy classes of end-
periodic surface automorphisms. While the Handel–Miller theory was
not published by the originators, the authors have given a complete
account elsewhere.

§1. Introduction

Throughout this paper, (M,F) is a smoothly foliated 3-manifold,
M being compact and oriented and F being transversely oriented, co-
dimension one, and taut. Recall that a foliation is taut if each leaf meets
either a closed transversal or a transverse arc from one leaf in ∂M to
another. Such foliations are interesting because they are Reebless and
hence, by the well known theorems of S. P. Novikov [28], reflect topo-
logical features of the manifold. For a detailed discussion of Reebless
foliations, see [4, Chapter 9].

In this note, we classify such foliations that are almost without
holonomy.

Definition 1.1. A taut, transversely oriented, codimension one fo-
liation F of a compact 3-manifold M will be said to be almost without
holonomy if only the compact leaves can have nontrivial holonomy. The
foliation is of depth 1 if it fibers the complement of the compact leaves
over S1.
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We will suppose that all compact leaves have holonomy, lie in ∂M
and have negative Euler characteristic. It may be that the boundary
decomposes as ∂M = ∂τM ∪ ∂�M , separated by convex corners, where
∂τM is the union of the compact leaves and ∂�M is met transversely
by the foliation. The components of ∂�M are annuli and/or tori. We
will always assume tautness not only for F but for F|∂�M . The de-
composition ∂M = ∂τM ∪ ∂�M makes M a sutured manifold in the
sense of Gabai [19]. In standard sutured manifold notation, ∂�M = γ
and ∂τM = R(γ). It is important to emphasize that the sutured struc-
ture includes a choice of transverse orientations of the components of
R(γ). All foliations of sutured manifolds are required to be transversely
oriented in a way consistent with the transverse orientation of R(γ).

Smooth foliations almost without holonomy fall into two classes.
Those of depth 1 fiber M◦ = M � ∂τM over S1, and the remaining
ones have the property that each leaf of F|M◦ is dense in M . (For
C1 foliations, the situation is more complicated due to the existence of
Denjoy type foliations.)

Our main theorem is,

Theorem 1.2. There is a finite set of nonoverlapping, closed, con-
vex, polyhedral cones C1,C2, . . . ,Cr ⊂ H1(M ;R) with common vertex at
the origin, such that the C0 ambient isotopy classes of codimension 1
foliations F almost without holonomy of M are in natural one-to-one
correspondence with the rays 〈F〉 out of the origin in the interiors of
these cones. Furthermore,

(1) the rational rays (those that meet nontrivial elements of the
integer lattice H1(M ;Z)) correspond exactly to the depth 1 fo-
liations;

(2) the irrational rays (those that do not meet nontrivial elements
of the integer lattice H1(M ;Z)) correspond exactly to the dense
leaved type.

Here, the assertion that the cones do not overlap means that they
have disjoint interiors.

Theorem 1.2 is closely analogous to the classification of smooth
foliations without holonomy transverse to ∂M . These foliations are
either fibrations of M over S1 or they are dense leaved. A well known
theorem of W. P. Thurston [35] shows that, if M has any such foli-
ations, certain top dimensional faces of the “Thurston ball” (a convex
polyhedron which is the unit ball of the Thurston norm) subtend cones
C1,C2, . . . ,Cr ⊂ H1(M ;R) such that the rational rays in the interior of
these cones correspond one-to-one to the isotopy classes of fibrations.
Furthermore, combining the Laudenbach–Blank theorem [26] with a
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theorem of the authors [10], the irrational rays in the interiors of the
Thurston cones correspond one-to-one to the C0 isotopy classes of dense
leaved foliations without holonomy.

Remark. Thurston’s set of cones is invariant under multiplication
by −1, but ours is not. This is due to the fact that ours classify only
those foliations whose transverse orientations agree with that of R(γ).

Remark. Thurston’s paper [35] is the main motivation for our re-
search and we assume familiarity with it.

Remark. Recently, I. Altman [1] has shown that, with some im-
portant restrictions on the sutured manifold (M,γ), our cones are sub-
tended by certain top dimensional faces of the dual Juhász polytope
[25], the unit ball for a nonsymmetric norm defined via sutured Floer
homology.

Remark. Our work depends on the Schwartzmann–Sullivan theory
of foliation currents [34, 33] and the Handel–Miller classification of end-
periodic automorphisms of surfaces (unpublished). The first of these is
well understood and rigorous. The second has been largely folklore and
not well understood at all. In fact, to the best of our knowledge, the only
published accounts of the Handel–Miller theory are some short sketches
without proofs in the early work of S. Fenley [16, 17]. Consequently, our
earlier work on foliation cones [8, 9] did not have a rigorous foundation
and, in fact, contained serious errors due to our imperfect understand-
ing of the Handel–Miller theory. In [5], we have tried to remedy this
situation by putting the Handel–Miller theory on a rigorous axiomatic
foundation and using these axioms to prove new theorems essential to
the construction and analysis of the foliation cones. This makes it pos-
sible to recover the key ideas of [8] in a new and rigorous setting and to
extend the classification theory there to include all taut foliations almost
without holonomy, not just those of depth 1.

This paper can be read independently of [8] with one exception. The
proof that there are only finitely many foliation cones, given in [8], is
rigorous and we see no need to reproduce it here.

§2. Monodromy

We consider a depth 1 foliation F of M . Let L be a smooth,
1-dimensional foliation of M everywhere transverse to F and let L be
a noncompact leaf of F . Then the first return map f : L → L defined
by flowing along L is the monodromy of L defined by L. From now on,
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when emphasizing the monodromy f , we denote the 1-dimensional foli-
ation by Lf . Varying f by a smooth isotopy ft corresponds to varying
L by a smooth homotopy Lft .

Generally, L will be smooth and so the monodromy will be a diffeo-
morphism. Serious smoothness problems arise when we try to isotope
the monodromy to have the “tightest” dynamics in its isotopy class.
This is the Handel–Miller theory which we have analyzed in great detail
in [5]. The smoothness issue is resolved there. In Section 5 we sketch the
Handel–Miller theory as developed in [5] and state the main theorems
we need for this paper.

Suppose L ⊃ V1 ⊃ . . . ⊃ Vn ⊃ V n+1 ⊃ Vn+1 ⊃ . . . with the Vn

open, connected,
⋂∞

n=1 Vn = ∅, and V n � Vn compact. Then the nested
sequence of sets {Vn} defines an end of L.

If {Vn} and {Un} define ends of L, then {Vn} is said to be equivalent
to {Un} if for every n there exists an m such that Vn ⊃ Um and for
every m there exists an n such that Um ⊃ Vn. The equivalence classes,
e = [{Vn}], are called the ends of L and the set E(L) of equivalence
classes is called the endset of L.

Let T be the topology on L, that is T is the family of open sets in
L. For V ∈ T let,

V̂ = V ∪ {e = [{Vn}] ∈ E(L) | there exists an n with V ⊃ Vn}.

Then it is well known that B̂ = T ∪{V̂ | V ∈ T } is a basis for a compact,

separable metrizable topology T̂ on L∪E(L) which restricts to a totally
disconnected topology on the closed set E(L).

If e ∈ E(L), we will say that U ⊂ L is a neighborhood of the end e

if Û is a neighborhood of e in the space (L ∪ E(L), T̂ ).

It is well known that f induces a homeomorphism f̂ : E(L) → E(L).
By the well understood way in which the leaf L winds in on ∂τM , the
monodromy diffeomorphism is “endperiodic”.

This term needs explanation. Let f : L → L be a homeomorphism

of a noncompact surface. If an end e is periodic under iterations of f̂ ,
we let pe denote the period of e, the smallest positive integer such that

f̂pe(e) = e.

Definition 2.1. Let f : L → L be a homeomorphism and let e be a
periodic end of L. The end is attracting (or a positive end) if there is a
closed, connected neighborhood U of e such that L�U is connected and

(1) fpe(U) ⊂ U ;
(2)

⋂∞
n=0 f

npe(U) = ∅.
The end is repelling (or a negative end) if the parallel assertions hold
with pe replaced by −pe.
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Definition 2.2. A homeomorphism f : L → L of a noncompact
surface is endperiodic if L has only finitely many periodic ends, each of
which is attracting or repelling. The homeomorphism f is also called an
endperiodic automorphism of L.

Remark. In the literature (e.g., [3, 17]) and in some earlier work
of the authors, it is required in Definition 2.1 that fpe(U) ⊂ intU .
(This was only implicit in [3] where the term “endperiodic” does not
occur. The pertinent discussion is in Section 8.4 of that reference.)
This excludes some natural examples of endperiodic homeomorphisms.
The definitions given above are to be taken as the “canonical” ones.
For further discussion of these definitions and their consequences, cf. [5,
pp. 3–11].

The following is well known and elementary.

Theorem 2.3. Every monodromy map f : L → L of a noncompact
leaf of a depth 1 foliation is endperiodic and L has only finitely
many ends.

We also need the following.

Theorem 2.4. Suppose the surface L has finitely many ends. Every
endperiodic automorphism f : L → L occurs as the monodromy of a
noncompact leaf of a taut depth 1 foliation F of a compact manifold
M , and f is the first return map defined by a transverse, 1-dimensional
foliation Lf . If f is a diffeomorphism, M , F and Lf are smooth.

In fact, with care, one can show that (M,F) can be given a smooth
structure, but not Lf , even if f is only a homeomorphism. However we
do not need this. For a sketch of the construction proving this theorem,
see [5, Section 12.3].

Example 2.5. An endperiodic automorphism f is depicted in Fig-
ure 1. Here, the ends e1 and e2 are periodic and negative, with pe2 =
pe1 = 2. The end e is periodic and positive, with pe = 1. As the arrows
indicate, f exchanges the shaded neighborhoods Ui of ei, i = 1, 2, and
f2 shifts to the right the compact segments of these neighborhoods that
are cut off by the circles. The shaded neighborhood U of e is invariant
under f and its segments are also shifted to the right as indicated. In
this example, the stronger requirement that f(U) ⊂ intU is fulfilled
and, similarly, f−2(Ui) ⊂ intUi, i = 1, 2. While there are infinitely
many ways to define f in the compact unshaded region, one can see
intuitively that it can be defined there to have only one periodic point.
This is the point p of intersection of the two boldfaced curves and is
fixed by f . These curves are each f -invariant and all points outside
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Fig. 1. An example with two negative ends

their union approach e under iterations of f and cluster at e1 and e2
under iterations of f−1. In one of these curves, the points other than
p approach e under iteration of f and converge to p under iteration of
f−1. In the other, the points other than p cluster at e1 and e2 under
iterations of f−1 and converge to p under iteration of f . When realizing
this endperiodic automorphism as the monodromy of a noncompact leaf
of a depth 1 foliated manifold (M,F), ∂M = ∂τM and consists of two
surfaces of genus 2.

Example 2.6. We describe a 2-ended surface L and an endperiodic
automorphism f . The surface L will be formed by cutting pairs of
pants Pi along certain essential, properly imbedded subarcs and then
pasting the resulting disks P ′

i to one another along these subarcs. The
endperiodic map f : L → L will take P ′

i to P ′
i+1.

In Figure 2, we depict the typical pair of pants and the essential arcs
with transverse orientation. After cutting, Pi becomes a disk P ′

i , with Ai

and Di split and indexed as indicated in Figure 3. Here i varies over the
integers. The index i on A+

i , D
+
i indicates that these arcs are identified

with the original Ai and Di, while the index on A−
i+2 indicates that it

is to be attached to A+
i+2, forming a single arc to be labeled Ai+2, and

the index on D−
i+3 indicates that it is to be attached to D+

i+3, forming a
single arc to be labeled Di+3. In this way, a connected, 2-ended surface

L =
⋃

−∞<i<∞
P ′
i

is assembled.
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Fig. 2. A pair of pants Pi

Fig. 3. Arcs A±, D± with indices

For the closed, connected neighborhood of the positive end take

U =
∞⋃
i=0

P ′
i .

One notes that f(U) ⊂ U and

∂U = D0 ∪D1 ∪D2 ∪ A0 ∪ A1

while
∂f(U) = D1 ∪D2 ∪D3 ∪A1 ∪A2.

In this example, therefore, f(U) 
⊂ intU . Once again this is easily
realized as the monodromy of a noncompact leaf of a depth 1 foliated
manifold M . In this case, M = P × I, where P is a pair of pants, and
Lf is just the foliation by the I-factors.

Remark. Example 2.6 provides an example of an endperiodic map
where a natural choice of U does not satisfy the condition “f(U) ⊂
intU”.
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Remark. It should be noted that in both of these examples the
neighborhood U can be partitioned into compact submanifolds Fi, 0 ≤
i < ∞, such that Fi is attached to finitely many Fj ’s, j > i, along some
common boundary components. If ∂L = ∅ (the situation envisioned
in much of the literature), Fi is exactly attached to Fi+1. This is the
case in Example 2.5. But example 2.6 shows that the situation can be
much more complex. In all cases, however, U can be chosen so that
f(Fi) = Fi+1, 0 ≤ i < ∞. In particular, this implies that ∂U and f(∂U)
intersect, if at all, only in common components. Similar remarks hold
for neighborhoods of negative ends. For a careful discussion of this, see
[5, Section 2.4].

§3. The asymptotic cycles

Let (M,F) be a taut, depth 1 foliated manifold, let L be a non-
compact leaf and f : L → L the endperiodic monodromy defined by a
transverse, 1-dimensional foliation Lf . Throughout this section, f and
Lf are fixed, so we will denote the 1-dimensional foliation simply by L.

It will not be necessary to assume that L is smooth, only that it is
integral to a nonsingular C0 vector field v.

Definition 3.1. The core lamination X ⊂ L is the set of leaves of
L that do not meet ∂τM .

We emphasize that L is oriented by the transverse orientation of F
and so X is also an oriented lamination.

The only way that X can be empty is if M = F × I, F is transverse
to the interval fibers {x} × I, and these are the leaves of L. We call
(M,F) a foliated product. In this case, f : L → L is a translation and
this whole scenario is of very limited topological interest.

From now on we suppose that (M,F) is not a foliated
product.

The union |X | of the leaves of the core lamination is called the
support of the lamination and is clearly compact. (We say that the
lamination is compact.) Sullivan’s theory of foliation cycles [34] works
perfectly well for compact laminations. It is only required that none
of the leaves have boundary. When applied to X , it produces closed
de Rham 1-currents in M which are the asymptotic cycles introduced
by S. Schwartzmann in [33].

3.1. Forms and currents

We give a fairly detailed sketch of the theory of de Rham cur-
rents. For more details, see [3, Section 10.1] and for the definitive
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treatment see [13]. In this section, M can be a compact manifold of
arbitrary dimension.

Slightly modifying the notation of [13] so as to keep track of the
degrees of forms and currents, we set Dp = Dp(M), the locally convex
topological vector space of p-forms of class C∞. The underlying vec-
tor space is Ap(M) and the topology T is generated by the increasing
union of the topologies Tk defined by the Ck norm ‖ · ‖k, 0 ≤ k < ∞.
More precisely, fix a choice of finite C∞ atlas {Ui, xi}1≤i≤m on M . For
each p-form ϕ ∈ Ap(M), set ‖ϕ‖k equal to the maximum value of the
function obtained by summing the absolute values of the mixed par-
tials of the coefficients of ϕ|Ui of order ≤ k (including the 0th-order
partials), computed relative to the coordinates xi, and then summing
over i = 1, 2, . . . ,m. This is the Ck-norm and defines a locally con-
vex, Hausdorff topology Tk on Ap(M). While the norm depends on
the choice of C∞ atlas, the topology is independent of that choice and
Tk ⊆ Tk+1, k ≥ 0. The union of these topologies generates a topology T

which makes Ap(M) into a locally convex, topological vector space Dp.

Definition 3.2. A subset S ⊂ Dp is bounded if, for each k ≥ 0,
it is bounded relative to the Ck-norm. A linear map θ : Dp → Dr is
bounded if it takes bounded sets to bounded sets, and similarly for linear
functionals θ : Dp → R.

Lemma 3.3. A bounded linear map θ : Dp → Dr is continuous. A
continuous linear functional θ : Dp → R is bounded.

Corollary 3.4. Exterior differentiation

d : Dp → Dp+1

is a continuous linear map.

Definition 3.5. The strong dual D′
p of Dp is the space of continuous

linear functionals on Dp. The elements of D′
p are called (de Rham) p-

currents on M .

Example 3.6. Any tangent vector v ∈ Tx(M) is a 1-current. In-
deed, v : D1 → R is defined by v(ϕ) = ϕx(v). This is easily shown to be
a continuous linear functional, called a Dirac current.

Example 3.7. A probability measure μ on M is a 0-current. In-
deed, D0 = C∞(M), the space of real valued C∞ functions on M
with the C∞-topology. One defines μ : D0 → R by μ(f) =

∫
M

f dμ,
a continuous linear functional.
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Example 3.8. A smooth singular p-chain c on M is a p-current.
Indeed, for ϕ ∈ Dp, set c(ϕ) =

∫
c
ϕ, again obtaining a continuous linear

functional c : Dp → R.

The space of p-currents carries a natural topology also.

Definition 3.9. If B ⊂ Dp is bounded and ε > 0, let

VB,ε ⊂ D′
p

be the set of p-currents ψ such that ψ(B) ⊂ [−ε, ε]. A subset S0 ⊂ D′
p

is a neighborhood of 0 if VB,ε ⊆ S0, for some such B and ε. If ψ is a
p-current, the neighborhoods of ψ are sets Sψ = ψ + S0, where S0 is a
neighborhood of 0. A subset W ⊆ D′

p is open if each of its points has a
neighborhood in W .

This makes D′
p into a locally convex, topological vector space. Both

Dp and D′
p are strong duals of one another [13, p. 89, Théorème 13].

All of these spaces are Montel, meaning that every bounded subset is
precompact. For the case p = 0, this is proven in [32, p. 70, Théorèm VII
and p. 74, Théorème XII], the general case being similar.

Since the exterior derivative d : Dp → Dp+1 is continuous, its adjoint
∂ : D′

p+1 → D′
p is also continuous. Since d2 = 0, we see that ∂2 = 0.

The homology of the chain complex (D′
∗, ∂) gives the dual space Hp(M)

to the de Rham cohomology Hp(M), for each p ≥ 0. One calls Hp(M)
the de Rham homology. By the de Rham theorem, these spaces are
canonically the same as the real singular cohomology and homology of
M , respectively.

We denote the kernel of ∂ : D′
p → D′

p−1 by Zp, called the space of
de Rham p-cycles, and the image of ∂ : Dp+1 → Dp by Bp, the space of
de Rham p-boundaries. These are closed subspaces of Dp and Hp(M) =
Zp/Bp.

3.2. The 1-currents and cones associated to X
We return to the core lamination X associated to L.
Definition 3.10. A Dirac current for X is a positively oriented,

nontrivial tangent vector to X . The closure in D′
1 of the union of all

positive linear combinations of Dirac currents is a closed, convex cone
CX ⊂ D′

1, called the cone of asymptotic currents.

This cone lies on one side of a hyperplane H = ω−1(0), where
ω : D′

1 → R is a 1-form such that ω(v) > 0 on |X |. (Recall that we
assume that L is integral to a continuous, nonsingular vector field v.)
Such a form is easily produced. Indeed, a small perturbation of v pro-
duces a nonsingular C∞ field v′ which, together with a Riemannian
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metric, defines a 1-form ω = 〈v′, · 〉 which is everywhere positive on v|X
as desired.

The base ĈX = CX ∩ ω−1(1) of the cone CX is compact (cf. [3,
Lemma 10.2.3]. The cited proof goes through by the compactness of
|X | and the fact that our spaces are Montel.) Those continuous linear

functionals η : D′
1 → R which are strictly positive on ĈX are exactly the

smooth 1-forms on M which are transverse to X (meaning that they
take a positive value on each Dirac current). Sullivan applies the Hahn–
Banach theorem, using compactness of the base, to produce interesting
1-forms that are transverse to X (see [3, Subsection 10.2]).

The cone CX ∩Z1 of asymptotic cycles is also a closed, convex cone
with compact base. There is a natural continuous linear surjection of
Z1 onto H1(M), carriying the cone of asymptotic cycles onto a convex
cone C′

X ⊂ H1(M) with compact base. Compactness of the base implies
that this cone is closed. There is a dual closed, convex cone in H1(M)
defined by

CX = {[η] ∈ H1(M) | [η]([z]) ≥ 0, ∀[z] ∈ C′
X }.

Definition 3.11. The homology cone C′
X and the cohomology cone

CX will be called Sullivan cones.

Generally, the Sullivan cone CX does not have a compact base, as
the following example shows.

Example 3.12. In Example 2.5, every point of L except p escapes
under forward and/or backward iterations of f to ends of L. Conse-
quently, in the depth 1 foliated manifold M in which f is the mon-
odromy of a depth 1 leaf L, the leaves of Lf (oriented by the transverse
orientation of the foliation) that do not pass through p all meet ∂τM .
The leaf σ through p is an oriented loop, hence a singular 1-cycle. This
loop is all of X and one can prove that it is an asymptotic cycle. All
asymptotic cycles are obtained by adding elements of B1 to nonnegative
multiples of σ. Thus, C′

X reduces to the single ray {a[σ]}a≥0 ⊂ H1(M).
It follows that CX is a whole half-space in H1(M), hence does not have
compact base.

Examples of asymptotic cycles are nonnegative, transverse, holo-
nomy invariant measures μ on X that are finite on (transverse) compact
sets. By Sullivan (cf. [3, Theorem 10.2.12]), these are the only ones.

Theorem 3.13. The asymptotic cycles for X are exactly the non-
negative, transverse, holonomy invariant measures on X that are finite
on compact sets.
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By a well known theorem of J. F. Plante [29] and the fact that
the leaves of X , being 1-dimensional, are either compact or have linear
growth, we obtain the following.

Lemma 3.14. There are nontrivial asymptotic cycles for X .

Lemma 3.15. No nontrivial asymptotic cycle bounds.

Proof. Recall that F|M◦ defines a fibration π : M◦ → S1. If dθ
is the canonical closed, nonsingular 1-form on S1, let ω = π∗(dθ), a
closed, nonsingular 1-form on M◦ transverse to X . A small deformation
retraction of M into M◦ pulls ω back to a closed form ω′ on M which
is also transverse to X . Thus, ω′ takes positive values on all nontrivial
asymptotic cycles which, therefore, cannot bound. Q.E.D.

Theorem 3.16. The interior of CX is nonempty and consists
exactly of those classes [η] ∈ H1(M) that are represented by closed
1-forms η transverse to X .

For the proof, see [3, Lemma 10.2.8].

3.3. Homology directions

It will be important to characterize a particularly simple spanning
set of C′

X , the so called “homology directions” of Fried [18, p. 260].
Parametrize L|M◦ as a nonsingular flow Φt, preserving F|M◦, such
that Φ1 sends each leaf of F|M◦ to itself. Select a point x ∈ X and let
Γ (depending on x) denote the Φ-orbit of x. If this is a closed orbit,
it defines an asymptotic cycle which we will denote by Γ. If it is not a
closed orbit, let Γτ = {Φt(x) | 0 ≤ t ≤ τ}. Let τk ↑ ∞ and set Γk = Γτk .
The singular chain (1/τk)Γk is called a “long, almost closed orbit” of
X . After passing to a subsequence, we obtain an asymptotic current as
the limit

Γ = lim
k→∞

1

τk

∫
Γk

in the topological vector space D1.

Lemma 3.17. The currents Γ are asymptotic cycles.

Proof. The endpoints of Γk lie in the compact set |X |, hence Γk

can be closed by adding a curve sk in M of length uniformly bounded
independently of k. This gives a singular cycle Γ′

k = Γk + sk which can
be viewed as a closed de Rham current. Since the sk’s have uniformly
bounded length, the cycles (1/τk)Γ

′
k also limit on Γ. Since Z1 is closed

in D1, Γ ∈ Z1. Q.E.D.

Another proof can be given by appealing to Stokes’ theorem.
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Definition 3.18. The asymptotic cycles Γ and their homology
classes (also denoted by Γ) will be called “homology directions”. Both
(1/τk)Γk and (1/τk)Γ

′
k will be called long, almost closed orbits.

An elementary application of ergodic theory proves the following
(see [34, Proposition II.25] and [3, Proposition 10.3.11]).

Lemma 3.19. Any asymptotic cycle μ ∈ Z1 can be arbitrarily well
approximated by finite, nonnegative linear combinations

∑r
i=1 aiΓi of

homology directions. If μ 
= 0, the coefficients ai are strictly positive and
their sum is bounded below by a constant bμ > 0 depending only on the
cycle μ.

§4. Properties of Sullivan cones

We establish some important properties of the Sullivan cones and
their relations to foliations.

4.1. Independence of the choice of Lf

The Sullivan cones CX and C′
X seem to depend not merely on the

monodromy f : L → L, but on the choice of the transverse 1-dimensional
foliation L = Lf which defines f as first return map. Our first task will
be to show that these cones depend only on f . After that, we will denote
them by Cf and C′

f .

In [8], the following elementary theorem was deduced as a corollary
of a much deeper result (Lemma 4.10 in that reference) which we at-
tempted to deduce from results of M. E. Hamstrom [21] [22] [23]. A
correct proof of that lemma needs a deep result of T. Yagasaki [37], but
we omit this because we do not need it.

Theorem 4.1. Let L be a leaf of F|M◦, and let L and L� be
1-dimensional foliations of M transverse to F , having respective core
laminations X and X�, and inducing the same endperiodic monodromy
f : L → L. Then C′

X = C′
X�

and CX = CX�
.

We will show that the homology directions of X are exactly the same
as the ones of X� and the theorem will follow.

Our proof of Theorem 4.1 depends on Lemma 4.2 and its corollary
below. In this lemma and its corollary, we consider an arbitrary
connected surface L that is either compact with strictly negative Euler
characteristic or is noncompact, noncontractible and not homotopy
equivalent to the circle. It will not matter in the proofs of the lemma
or its corollary whether L is a leaf of a foliation, let alone a leaf at
depth 1.
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Let I be the compact interval [0, 1] and consider the product L× I.
(One obtains such a product, for instance, by cutting M apart along the
depth 1 leaf L and taking as the interval fibers the resulting segments
of the leaves of L.) For each x ∈ L, denote by Ix the interval fiber with
endpoints {x}×{0, 1}. Consider a second fibration of L× I by intervals
Jx, requiring that the endpoints of Jx coincide with those of Ix, for all
x ∈ L. (In using the lemma and its corollary to prove Theorem 4.1, this
second fibration arises by cutting apart along L and using the segments
of leaves of L� as the fibers Jx.) For each x ∈ L, let αx denote the loop in
L×I obtained by following Ix from (x, 0) to (x, 1) and then following Jx
from (x, 1) to (x, 0). Finally, if p : L×I → L is the canonical projection,
let βx = p ◦ αx, a loop in L.

For the following two results, fix the hypothesis that L is an ar-
bitrary connected surface that is either compact with strictly negative
Euler characteristic or is noncompact, noncontractible and not homo-
topy equivalent to the circle.

Lemma 4.2. Let x0 ∈ L and set δ = βx0 . If γ(s), 0 ≤ s ≤ 1, is
any other closed curve in L based at x0, then γ · δ = δ · γ in π1(L, x0).

Proof. Define F (s, t) = βγ(s)(t). Then F (s, 0) = γ(s) = F (s, 1).
Also F (0, t) = F (1, t) = βx0(t) = δ(t). Because of this last, we can view
F as a map from the cylinder S1 × [0, 1] into L. The curve obtained by
following F (0, t), 0 ≤ t ≤ 1, followed by F (s, 1), 0 ≤ s ≤ 1, and then
F (0, 1 − t), 0 ≤ t ≤ 1, is the composite loop δ · γ · δ−1. We show how
to deform this curve continuously to γ, keeping the basepoint x0 fixed
throughout the deformation.

Let σt be the curve obtained by following F (0, τ), 0 ≤ τ ≤ t, followed
by F (s, t), 0 ≤ s ≤ 1, followed by F (0, t − τ), 0 ≤ τ ≤ t. Since σ0 = γ
and σ1 = δ · γ · δ−1, we have the desired deformation. Q.E.D.

Corollary 4.3. If there exists an x0 ∈ L so that Jx0 cannot be de-
formed into Ix0 keeping the endpoints fixed, then L is either compact with
nonnegative Euler characteristic, or is contractible, or has the homotopy
type of the circle.

Proof. The hypothesis implies that αx0 is essential in L × I, and
so βx0 is essential in L and thus is a nontrivial element of π1(L, x0). By
Lemma 4.2, every element of π1(L, x0) commutes with βx0 . Thus, if L
is compact, χ(L) ≥ 0. If L is not compact and not contractible, L is
homotopically equivalent to a bouquet B of circles. The only bouquet
of circles that contains a nontrivial element of π1(B, ∗) that commutes
with every other element of π1(B, ∗) is one circle. Q.E.D.
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Proof of Theorem 4.1. Under our ongoing hypotheses (see the sec-
ond page of this article), our depth 1 leaves are obviously noncompact,
noncontractible and do not have the homotopy type of the circle.

Let Γ ∈ H1(M ;R) be a homology direction for X .
First assume that Γ is not represented by a closed orbit in X

and write

Γ = lim
k→∞

1

τk
[Γ′

k],

a limit inH1(M). Recall that Γ′
k is the singular cycle obtained by closing

Γk by adding an arc sk of length uniformly bounded independently of
k. The numbers τk are the “lengths” of Γk (measured by the transverse,
invariant measure for F|M◦) and increase to ∞ with k. Thus, except for
a uniformly bounded arc in L, Γ′

k is a sequence of segments, σ1, . . . , σnk

of an orbit in X , each starting and ending in L. There is a corresponding
sequence σ′

1, . . . , σ
′
nk

of segments of an orbit in X� such that σi and
σ′
i have the same endpoints and the same lengths, 1 ≤ i ≤ nk. By

Corollary 4.3, these respective segments are homotopic by a homotopy
that keeps their endpoints fixed. Thus, we see that Γ is also a homology
direction for X�. In the case that Γ is represented by a closed orbit, the
argument adapts and is simpler. Finally, the roles of X and X� can be
interchanged, proving that the two laminations have the same homology
directions. Q.E.D.

4.2. Invariance under certain isotopies

Generally, the Sullivan cones change as the monodromy f is varied
by an isotopy. In fact, one of the primary goals of this paper is to
find an endperiodic automorphism h, isotopic to f , so that C′

h ⊆ C′
g for

all endperiodic automorphisms g isotopic to f . This Sullivan cone is,
therefore, minimal and the dual cone Ch is maximal for the isotopy class
of f .

We will see, however, that these cones do not change if f is varied
by what we will call a “strong isotopy”.

Definition 4.4. A leafwise isotopy is an ambient isotopy ϕt of M
such that ϕ0 = id and ϕt carries each leaf of F to itself, 0 ≤ t ≤ 1.

We think of a leafwise isotopy as “sliding along the leaves of F”.

Proposition 4.5. Let L and L� be two 1-dimensional foliations
transverse to F . Suppose that the respective core laminations X and X�

are isotopic by a leafwise isotopy ϕt, X = ϕ0(X ), X� = ϕ1(X ). Then
C′
X = C′

X�
and CX = CX�

.
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Proof. Parametrize the two foliations as flows using the same trans-
verse invariant measure θ for F . Since F is leafwise invariant under the
isotopy, the flow parameter is preserved and the singular cycles Γ′

k giv-
ing rise to a homology direction for X are isotoped to those for X�.
Notice that the lengths τk given by the transverse invariant measure
are invariant by such an isotopy and the arcs sk also remain uniformly
bounded. Homotopic singular cycles are homologous and the assertions
follow. Q.E.D.

Definition 4.6. Homeomorphisms f, g : L → L are strongly isotopic
if there is an ambient isotopy ϕt : L → L, ϕ0 = id, such that g =
ϕ1 ◦ f ◦ ϕ−1

1 .

Corollary 4.7. Let f, g : L → L be endperiodic first return homeo-
morphisms induced on a leaf L of F by transverse 1-dimensional foliation
Lf and Lg of class C0. If f and g are strongly isotopic, then C′

f = C′
g.

Proof. Let N be a closed normal neighborhood of L in M◦ which
is a foliated product with leaves the leaves of F meeting N and normal
fibers the arcs of L∩N . Write N = L×[−ε, ε] and consider each arc �x of
a leaf of L issuing in the positive direction from (x, ε) ∈ L×{ε} and first
returning to N at (f(x),−ε). In N , replace each arc τy = {y} × [−ε, ε]
of L ∩N with an arc σy : [−1, 1] → N defined by

σy(t) = (ϕt+1(y), εt), − 1 ≤ t ≤ 0,

σy(t) = (ϕ−1
t (ϕ1(y)), εt), 0 ≤ t ≤ 1.

Notice that this still connects (y,−ε) to (y, ε). We construct an ambient
leaf-preserving isotopy ψ, supported in N and carrying each τy to σy, by

ψs(y, εt) = (ϕs(t+1)(y), εt), − 1 ≤ t ≤ 0, 0 ≤ s ≤ 1,

ψs(y, εt) = (ϕ−1
st (ϕs(y)), εt), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1.

We obtain L′ from L by replacing τy with σy, ∀y ∈ L, observing that

the monodromy induced by L′ on L = L × {0} is ϕ1 ◦ f ◦ ϕ−1
1 . The

assertion follows by Proposition 4.5. Q.E.D.

4.3. Foliated forms

In this subsection we consider the general situation in which L is
assumed to be transverse to a foliation F almost without holonomy
which is possibly dense leaved in M◦. We will need that L�X is smooth
and that L itself is integral to a nonsingular C0. vector field. Our
discussion will be valid for all dimensions ≥ 3 and without restrictions
on the topology of leaves.
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Definition 4.8. A 1-form η ∈ A1(M◦) is a foliated form if it is
closed, nowhere vanishing and becomes unbounded at ∂τM in such a
way that the corresponding foliation F◦

η that it defines on M◦ extends
by adjunction of ∂τM to a C∞ foliation Fη of M , C∞-flat at ∂τM .

We will prove the following.

Theorem 4.9. The open cone intCX consists of classes in H1(M)
that can be represented by foliated forms transverse to L|M◦.

Remark that foliated forms only live inM◦, not in M , but H1(M) =
H1(M◦) and any form representing a class in M◦ can be taken to be
equal to that representing the class in M outside of any small neighbor-
hood of ∂τM .

The rays out of the origin in intCX correspond to smooth foliations
almost without holonomy. The rational rays correspond to foliations
defined by forms η with period group infinite cyclic, defining depth 1
foliations of M . The rest of the rays in intCX consist of classes having
period group dense in R and so define foliations that are dense leaved
in M◦.

Proof of Theorem 4.9. Fix a class [η] ∈ intCX , the 1-form η ∈
[η] being defined on M and transverse to X (Theorem 3.16). Select a
neighborhood U of |X | such that η � (L|U). We need to show that η is
cohomologous to a foliated form.

Given x ∈ M◦
� |X |, let s(t) be the smooth trajectory along L in

that set, smoothly reparametrized so that x = s(0) and the trajectory
either reaches an outwardly oreiented boundary leaf at time t = 1 or
an inwardly oriented one at time t = −1, or both. Let F+ denote the
union of outwardly oriented components of ∂τM and F− the union of the
inwardly oriented ones. For definiteness, consider the case s(−1) ∈ F−.
Define a tubular neighborhood Vx = D × [−1, 3/4) of s so that s(t) =
(0, t) and {z} × [−1, 3/4) is an arc in L, ∀z ∈ D. Here, D is the open
unit (n−1)-ball with polar coordinates (r, θ1, . . . , θn−2), 0 ≤ r < 1. This
gives cylindrical coordinates (t, r, θ1, . . . , θn−2) on Vx. On Vx, define a
smooth, real valued function

�x(t, r, θ1, . . . , θn−1) = �x(t, r) = �(t)λ(r),

where �(t) = t−1, −1 ≤ t ≤ 1/2, and damps off to 0 smoothly and with
positive derivative as t → 3/4, and λ(r) ≡ 1, 0 ≤ r ≤ 1/2, and damps off
to 0 smoothly through positive values as r → 1. Thus, �x(t, r) vanishes
outside of Vx and d�x is transverse to L in Vx. Let V ′

x ⊂ Vx be the
neighborhood of x defined by −1 ≤ t < 1/2 and 0 ≤ r < 1/2. Perform
an analogous construction for trajectories out of x with s(1) ∈ F+. If the
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trajectory through x goes from s(−1) ∈ F− to s(1) ∈ F+, the cylinder
Vx = D × [−1, 1] and the construction of �x is simpler.

A suitable choice of these open cylinders gives an open cover

{U, V ′
x}x∈M◦

of M . Using the local compactness, pass to a finite subcover

{U, V ′
x1
, V ′

x2
, . . . , V ′

xr
}.

For suitable choices of positive constants ci, set � =
∑r

i=1 ci�xi , a smooth
function, supported in M � |X |, with d� � L outside of a compact
neighborhood of |X | in U . Since η is transverse to L in U , we can
choose the coefficients ci > 0 large enough that η′ = η + d� is a closed
form in M , cohomologous to η and transverse to L. This form might be
badly behaved at ∂τM , hence we must modify it by adding on a suitable
exact form supported in a neighborhood of the boundary leaves.

Let V = F− × [0, 1) be a normal neighborhood of F− ≡ F− × {0}
in M , the fibers being arcs in leaves of L. Let λ be a smooth function
on the deleted normal neighborhood V � F−, depending only on the

normal parameter t, and having λ′(t) ≥ 0, with λ′(t) = e1/t
2

near F−.
Make a similar construction near F+. Now η̃ = η′ + dλ is everywhere
transverse to L, hence nonsingular on M◦, it is cohomologous to η′ and
it becomes unbounded at ∂τM . We must show that ker η̃ extends C∞-
smoothly to a plane field on M by adding on the tangent planes to
∂τM . For this, set η = η̃/λ′ = η′/λ′ + dt, a form defined on a small
enough deleted neighborhood of F−. This form is no longer closed but
satisfies ker η = ker η̃ in that neighborhood. Since η′ is bounded on
M , it is clear that η approaches dt in the C∞ topology as t → 0 and
that the resulting foliation of M is of class C∞ which is C∞-trivial at
∂τM . After a similar construction in a normal neighborhood of F+, we
obtain a foliated form, again denoted by η̃, transverse to L. The proof
of Theorem 4.9 is complete. Q.E.D.

Remark. Thus, CX can be called a foliation cone, but we will re-
serve this term for the maximal cone which will be produced using the
Handel–Miller theory.

Definition 4.10. A ray out of the origin in H1(M ;R) containing
a class represented by a foliated form will be called a foliated ray.

§5. The Handel–Miller theory

For the reader’s convenience, we give here a sketch of the main
features of the Handel–Miller theory, as established in great detail in
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[5]. This theory was developed in analogy with the Nielsen–Thurston
theory which we will also need, so we begin with a sketch of that.

5.1. Nielsen–Thurston theory

We will state the central theorem and then offer some explanations
and heuristics.

Theorem 5.1. Let N be a compact, connected, oriented surface of
negative Euler characteristic, possibly with boundary, and let f : N → N
be a homeomorphism. Then f is isotopic to a homeomorphism h such
that one of the following holds:

(1) hn = id, some integer n > 0;
(2) h is pseudo-Anosov ;
(3) there is a finite collection {s1, . . . , sk} of disjoint simple closed

curves such that h permutes these curves and, in fact, permutes
open, annular regular neighborhoods Vi of si. Let S1, . . . , Sm be

the components of N�
⋃k

i=1 Vi and nj the least positive integer
such that hnj (Sj) = Sj . Then hnj |Sj satisfies (1) or (2).

The third case is called the reducible case. Briefly, then, the isotopy
class of every automorphism f of N has a representative that is either
periodic, pseudo-Anosov or reducible.

A proof was sketched in [36] and given in full detail in [15]. A very
readable account will be found in [24], but with a weaker version of (1),
asserting only that hn is isotopic to the identity. See also [2]. The
stronger assertion was made by Nielsen who gave a false proof. It was
established by Thurston using Smith theory and his deep analysis of the
boundary of Teichmüller space.

It is necessary to explain (2). For the homeomorphism h to be
pseudo-Anosov, there must be a pair of measured, h-invariant, geodesic
laminations Λs (the stable lamination) and Λu (the unstable lamination).
The measures are transverse, holonomy invariant measures μs and μu,
respectively, and there is a constant λ > 1 such that, under the action
of h, μs is multiplied by 1/λ and μu by λ. Thus, under h, the stable
lamination contracts transversely and the unstable lamination expands
transversely.

There is a real difficulty, at least for our purposes, with the pseudo-
Anosov case. While the periodic automorphism h in (1) can be taken
to be a diffeomorphism, there are serious obstructions to smoothing
the automorphism in (2). In order to remedy this problem, at least
partially, one “blows down” the laminations to singular foliations Fs

and Fu. The laminations are transversely Cantor and the blow down
mimics the standard way of mapping a Cantor subset of R onto an
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Fig. 4. Dual principal regions and nucleus

Fig. 5. A 3-pronged common singularity

interval by collapsing each of its gaps to a point. The singularities of
these foliations are very important and will now be described.

The complement of Λs consists of finitely many components, called
principal regions, which outside of a bounded region look like infinitely
long strips. In Figure 4 a principal region is depicted. A dual principal
region in Λu is indicated by dashed lines. The shaded intersection of
these dual principal regions is their common nucleus. The principal
regions of the two laminations all come in such dual pairs. The blow
down collapses the nucleus to a point, this being a common singularity
for the foliations Fs and Fu. The picture of the foliations near this
singularity is given in Figure 5. Such a singularity is called “p-pronged”.
In our figure, p = 3, there being 3 prongs issuing from the singularity
which are leaves of Fs and 3 which are leaves of Fu.
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The measures survive the blowdown and the pseudo-Anosov map
passes to a homeomorphism, again denoted by h and called pseudo-
Anosov, preserving each of the foliations and again multiplying μs by
1/λ and μu by λ. These measures define a coordinate atlas on N which is
smooth except at the singularities and which makes h a diffeomorphism
except at the singularities. For more details, see [10, Appendix], where
the structure of the foliations at the boundary of N is also described and
the smoothness of h there is established. This latter fact was obscured
in the literature (cf. [15, pp. 216–217, erratum, p. 286]).

Theorem 5.2. The dynamical system generated by the pseudo-
Anosov map h admits a Markov partition.

For a definition and quick proof, see [2, Corollary 6.5.1]. For more
detail, see [15, pp. 191–204]. This implies that h is semi-conjugate to a
2-ended subshift of finite type. We will need this fact in proving that
our cones are polyhedral.

Finally, a word about the construction of Λs and Λu. To begin
with, one is given the automorphism f : N → N . Fix a choice of hyper-
bolic metric on N , choose any simple closed geodesic s and apply f
to s. Tighten f(s) to a closed geodesic and again apply f . Iterate
this procedure, ad infinitum, producing a sequence of simple, closed
geodesics which, to the naked eye, begin to look more and more like
laminations. In fact, a subsequence converges to a geodesic lamination
in the Hausdorff metric. This is not generally the right lamination, but
after some more work, one produces Λs. One produces Λu similarly by
using f−1 instead of f

Remark 5.3. The homeomorphism h of Theorem 5.1 can be taken
to be a diffeomorphism except at the finitely many singularities. With
a slight and common abuse of terminology, we will call it a (Nielsen–
Thurston) diffeomorphism. In our application of this theorem, another
mild problem arises. Our compact surface N will have piecewise smooth
boundary anf f will be a diffeomorphism in a small open annular neigh-
borhood V of ∂N , where ∂V � ∂N is smooth. A preliminary isotopy
allows us to assume that f preserves N ′ = N � V . One applies The-
orem 5.1 to f |N ′, extending f over V to agree with its original definition
near ∂N .

5.2. A heuristic example for the Handel–Miller theory

The example (which we learned from [16]) sketched here is a little
too simple to illustrate all the subtleties of the Handel–Miller theory,
but has enough complexity to give the general idea. In Figure 6, an
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Fig. 6. f = τ ◦ g is the composition of a translation and a Dehn
twist

Fig. 7. f(J) tightened to a geodesic with the same endpoints

endperiodic automorphism f : L → L is indicated, where g is a simple
translation, τ is a Dehn twist in the dotted oval curve, and f = τ ◦ g.

We fasten our attention on the arc J and observe that f(J) looks
roughly like the curve pictured in Figure 7. In fact, we should view
this curve as the tightening of f(J) to a geodesic relative to a choice of
hyperbolic metric on L. In this tightening, the endpoints remain fixed.

Finally, in Figure 8, we depict the geodesic tightening of f2(J). It
is intuitively plausible that this process converges in some reasonable
sense to a geodesic lamination Λ+. This is, in fact true. The proof uses
standard methods in hyperbolic geometry and is not very deep. It is
hard to draw a picture of the limit lamination, but fairly easy to draw
the “train track” that carries it. We do this in Figure 9. The lamination
is transversely Cantor, so each segment of the track represents a Cantor-
like packet of arcs. The dotted track carries the geodesic lamination Λ−
obtained by a similar process using f−1 rather than f and a new choice of
J on the opposite side of the circle in which the Dehn twist is performed.
At the switches, the Cantor packets split at a gap, one packet heading
off the main line into a side track, the other continuing on the main
line. Finally, one shows that there is an endperiodic homeomorphism h,
isotopic to f , which preserves these laminations.
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Fig. 8. f2(J) tightened to a geodesic with the same endpoints

Fig. 9. Traintracks carrying the laminations

The laminations Λ+ and Λ− are analogues of Λs and Λu, respect-
ively, in the Nielsen–Thurston theory. The analogy is not complete.
For example, the transverse measures do not generally have full sup-
port. There is still a weak sense in which Λ+ contracts transversely and
Λ− expands transversely. Our choice of notation emphasizes the fact
that Λ+ lives entirely outside a neighborhood of the negative end and
Λ− outside a neighborhood of the positive end. In [5], it seemed more
important to emphasize this distinction than the notions of “stable”
and “unstable”.

Very important for our purposes is the Cantor set X0 = Λ+ ∩ Λ−.
This set is h-invariant and the dynamical system generated by h|X0

admits a Markov partition. When L is realized as a noncompact leaf of
a depth 1 foliation with monodromy h, the Lh-saturation of X0 will be
the core lamination X .

Remark. Another example, but way oversimple, is given by Ex-
ample 2.5. The two circles bounding the unshaded region on the left can
play the role of J in our example. Repeatedly applying f and tightening
limits on the boldface curve outside a neighborhood of the negative ends
e1, e2. The similar iteration process, using f−1 and the right bound-
ary circle of the unshaded region, limits on the boldface curve outside
a neighborhood of the positive end e. Thus, each of the laminations
Λ+ and Λ− consists of a single geodesic and X0 degenerates to a single
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point fixed by h. As earlier observed, X is just the closed leaf of L = Lh

through this point.

5.3. A brief sketch of the Handel–Miller theory

Let L be a complete hyperbolic surface with finitely many ends and
geodesic boundary. Let f : L → L be an endperiodic automorphism. It
is necessary to assume that no end has a neighborhood homeomorphic
to K × [0,∞), K being a circle or compact interval. In this paper,
the assumption that each compact leaf has negative Euler characteris-
tic guarantees this hypothesis. It is also necessary that the hyperbolic
surface contains no isometrically imbedded hyperbolic half-planes. Be-
cause L is to be a leaf of a depth 1 foliation, this hypothesis is easily
guaranteed.

In their original work, Handel and Miller proceeded, in analogy with
our heuristic discussion, to generate geodesic laminations Λ+, disjoint
from a neighborhood of the negative ends, and Λ−, disjoint from a neigh-
borhood of the positive ends. The compact 1-manifold J to which iter-
ates of f are applied is the union of components of ∂U as U ranges over
the neighborhoods of positive ends given in Definition 2.1. Some caution
is needed here. As earlier remarked, one must choose U carefully so that
∂U and f(∂U) intersect, if at all, only in common connected components
(cf. [5, Proposition 2.30]). The lamination Λ− is constructed similarly
and an endperiodic automorphism h, isotopic to f and preserving the
laminations is constructed. For details on the construction of Λ±, see [5,
Section 4.7]. For the construction of h, See Section 9 of that reference.

It is prohibitively inconvenient for many purposes to require the
laminations to be geodesic. By axiomatizing the structure of the lamin-
ations in [5, Section 4.3], we relax this condition while keeping the theory
on a rigorous foundation. We will not give these axioms here, but de-
scribe the general setup and state the principal theorems proven in the
above reference.

Definition 5.4. A endperiodic map h : L → L which preserves Λ±
and is isotopic to f wil be called a Handel–Miller automorphism associ-
ated to f .

Recall that, if ∂L = ∅, the universal cover L̃, together with the lifted
metric, is the hyperbolic plane. We use the Poincaré disk model. This
is the open unit disk Δ with the standard hyperbolic metric. The unit
circle S1

∞, while not part of the hyperbolic plane, plays a fundamental
role. It is called the circle at infinity or the ideal boundary. If ∂L 
= ∅,
L̃ with its metric can be viewed as imbedded in Δ with boundary an
infinite family of complete geodesics. As is standard, these geodesics
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have ideal endpoints in S1
∞ and the closure of the set of such endpoints

in S1
∞ is a Cantor set K. This is called the ideal boundary of L̃. In

general, then, the term “ideal boundary” refers either to S1
∞, if ∂L = ∅,

or to K otherwise.
As is standard, every complete geodesic in L without endpoints

has lifts to geodesics in L̃ with well defined ideal endpoints in the

ideal boundary of L̃. The only other geodesics are properly imbedded

geodesics with one or two endpoints in ∂L and they lift to geodesics in L̃

having either two endpoints in ∂L̃, or one endpoint there and the other
in the ideal boundary.

Definition 5.5. A pseudo-geodesic is a curve in L whose lifts have

two distinct, well defined endpoints either in S1
∞, if ∂L = ∅, or in K∪∂L̃

otherwise, except that both endpoints may not be in a component of ∂L̃.

Remark. This definition is a bit more general than [5, Defin-
ition 4.5]. For completeness, we allow the case of a pseudo-geodesic
with one end on ∂L. Remark that any essential closed curve in L is a
pseudo-geodesic, its lifts having endpoints in the ideal boundary. Also,
every pseudo-geodesic is associated to a unique geodesic to which it is
homotopic.

Our axioms stipulate that the laminations Λ± have all leaves pseudo-
geodesics with lifts connecting two points of the ideal boundary. It is

also required that a leaf of the lifted lamination Λ̃+ can meet a leaf

of Λ̃− in at most one point. This prevents the leaves of Λ+ and Λ−
from having intersections that form “digons”. It is well known that, in
a hyperbolic surface, there can be no geodesic digons. The axioms are
all in this spirit, reflecting a few key properties of the Handel–Miller
construction, but a detailed account would take us too far afield. Here
are some important theorems.

The following is [5, Theorem 8.1].

Theorem 5.6. If Λ± are pseudo-geodesic laminations satisfying the
axioms and Λ′

± are the Handel–Miller geodesic laminations, then there is
a homeomorphism ϕ : L → L, isotopic to the identity, such that ϕ(Λ+) =
Λ′
+ and ϕ(Λ−) = Λ′

−.

Once this has been established, we can use ϕ to conjugate a choice
of the Handel–Miller automorphism h for the geodesic laminations to
obtain a choice of h for the pseudo-geodesic laminations. We fix such
a choice.

Let X be the set of points of L which do not cluster at any ends of
L under forward or backward iteration of h. This is clearly the maximal
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compact, h-invariant set. It may have nonempty interior. An important
subset, also compact and h-invariant, is X0 = Λ+ ∩ Λ−. This is totally
disconnected (typically, but not always, a Cantor set).

The following result [5, Theorem 10.3] is key to proving that our
foliation cones are polyhedral.

Theorem 5.7. The dynamical system h : X0 → X0 admits a Markov
partition.

The following [5, Theorem 11.2] is key to showing that Lh has suf-
ficient regularity to allow application of the theory of asymptotic cycles
to the core lamination X .

Theorem 5.8. The choice of pseudo-geodesic laminations Λ± sat-
isfying the axioms, and of the endperiodic automorphism isotopic to f
and preserving the laminations, can be made so that the laminations are
smooth and h is a diffeomorphism.

The final result we will cite [5, Theorem 12.8] is key to showing
that the foliation cones corresponding to a monodromy map h which is
Handel–Miller are maximal. More precisely, there is no foliated ray on
the boundary of such a cone.

Recall the notion of monodromy for depth 1 foliations discussed in
Section 2.

Definition 5.9. Let F be a depth 1 foliation of a compact
3-manifold, L a transverse 1-dimensional foliation. If the monodromy h
induced on a depth 1 leaf L is a Handel–Miller automorphism, we will
say that the monodromy is Handel–Miller.

Theorem 5.10. Let F be a depth 1 foliation and Lh a trans-
verse, 1-dimensional foliation inducing Handel–Miller monodromy on
some noncompact leaf. Let F ′ be a depth 1 foliation transverse to Lh.
Then Lh induces Handel–Miller monodromy on each noncompact leaf
of F ′. In particular, Lh induces Handel–Miller monodromy on every
noncompact leaf of F .

Indeed, the proof of Theorem 5.10 uses the local projections along
Lh of small neighborhoods on L to small neighborhoods on a noncompact
leaf L′ of F ′ to transfer the laminations locally. An easy continuation
argument allows us to transfer the laminations. The monodromy maps
h : L → L and h′ : L′ → L′ are both first return maps along Lh and one
must show that the truth of the axioms for the system (Λ±, h) implies
their truth for (Λ′

±, h
′). The proof is delicate.

Remark that Theorem 5.8 is almost certainly false (except for some
trivial cases) for geodesic laminations and Theorem 5.10 wouldn’t even
make sense if it were required that the laminations be geodesic.



Cones of foliations almost without holonomy 327

5.4. Principal regions and tight Handel–Miller auto-
morphisms

In the Nielsen–Thurston theory, the components of N � Λs and of
N � Λu are called principal regions and were described above. In the
Handel–Miller theory, the situation is more complicated. The comple-
ment L�Λ+ consists of two disjoint, open sets, U− and P+. The first of
these consists of all points which escape to negative ends of L under it-
erations of h−1. The second, which might be empty, has at most finitely
many connected components, called positive principal regions. Similarly,
L � Λ− decomposes into U+ and P−, the positive escaping set and the
union of negative principal regions, respectively. The principal regions
again come in dual pairs, a positive principal region being paired with
a negative one. Figure 4 is only roughly accurate for the Handel–Miller
theory, the shaded region (called the nucleus N of the dual principal re-
gions) is connected and may be topologically complicated. Its boundary
may not be connected and so, out of each boundary component there
radiates a family of arms for the positive principal region and a family
of arms for the negative one. Since P± is h-invariant, h permutes the
positive principal regions, the negative principal regions, and the nuclei.

By Theorem 5.8, we may assume that h is a diffeomorphism and
that the laminations are smooth.

If a nucleus N is a disk or an annulus, we will not be concerned with
it, but if χ(N) < 0, we will change h by an isotopy supported in intN ,
using the Nielsen–Thurston theory.

Suppose first that h(N) = N . Then the remark at the end of Sec-
tion 5.1 tells us exactly how to make the modification. If n ≥ 2 is the
smallest integer such that hn(N) = N , then a little fussing is necessary.
Set Ni = hi(N) and hi = h|Ni , 0 ≤ i < n. Note that N0 = N . Let
ϕ : N0 → N0 be the Nielsen–Thurston representative of hn|N0 and define
h′
0 : N0 → N1 by

h′
0 = h−1

1 ◦ h−1
2 ◦ · · · ◦ h−1

n−1 ◦ ϕ.

Replace h0 with h′
0, do not modify hi, 1 ≤ i < n, and check that this new

definition of h has hn|Ni a Nielsen–Thurston diffeomorphism, 0 ≤ i < n.

Definition 5.11. If the Handel–Miller automorphism h, which has
been modified as above for every h-cycle of nuclei of principal regions, ex-
cept for those of non-negative Euler characteristic, is a diffeomorphism,
it will be called a tight Handel–Miller automorphism. Monodromy of a
depth 1 leaf which is a tight Handel–Miller automorphism is called tight
Handel–Miller monodromy.
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In Section 6.4, we will sketch how to modify the proof of The-
orem 5.10 to obtain the following.

Theorem 5.12. Let F be a depth 1 foliation and Lh a trans-
verse, 1-dimensional foliation inducing tight Handel–Miller monodromy
on some noncompact leaf. Let F ′ be a depth 1 foliation transverse to Lh.
Then Lh induces tight Handel–Miller monodromy on each noncompact
leaf of F ′. In particular, Lh induces tight Handel–Miller monodromy on
every noncompact leaf of F .

Recall that, in abuse of terminology, our “diffeomorphisms” are
diffeomorphisms except at finitely many singularities. See Remark 5.3.

§6. The Handel–Miller cones

We consider a smooth depth 1 foliation of a compact 3-manifold M .
Let h : L → L be a tight Handel–Miller representative of the isotopy class
of the monodromy f of L. One difficulty is that there are infinitely many
such representatives h. We will show, however, that Ch is independent
of the choice of tight Handel–Miller monodromy h and is, indeed, the
maximal Sullivan cone Cf as f ranges over the isotopy class of h. We
need to investigate the asymptotic cycles for the core lamination X = Xh

more carefully.

Definition 6.1. The Sullivan cones C′
h and Ch, defined by a tight

Handel–Miller automorphism h, will be called Handel–Miller cones.

By definition, h is an honest diffeomorphism except at a possibly
nonempty but finite set of p-pronged singularities, hence the proof of
Theorem 2.4 shows that (M,F ,Lh) can be chosen to be smooth ex-
cept at the finitely many closed orbits passing through the singularities.
Happily, the well understood properties of the Nielsen–Thurston singu-
larities will ensure that M has a differentiable structure agreeing with
the one already constructed outside of the singular orbits and that F is
smooth in this structure and Lh remains smooth away from these orbits
and is integral to a nonsingular, C0 vector field everywhere. This allows
us to use the Schwartzmann–Sullivan theory of asymptotic cycles and
Theorem 4.9. For details, see [10, Appendix, Part B].

6.1. The invariant set and generating cycles of C′
h

The lamination X = Xh is the Lh-saturation of the invariant set
X = L � (U+ ∪ U−), the set of points that do not escape to ends of
L under forward or backward iteration of h. We recall that h leaves
invariant a pair of pseudo-geodesic laminations Λ± and that the totally
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disconnected set X0 = Λ+ ∩ Λ− is also, therefore, h-invariant. We will
call X0 ⊆ X the meager invariant set. Generally, X0 
= X, X being the
union of X0, the nuclei of the principal regions, the union of components
of Λ+ ∩ P− and the union of components of Λ− ∩ P+. These latter are
(possibly infinite) collections of compact arcs in the arms of principal
regions with endpoints in X0.

Similarly, we define X0 ⊆ X as the saturation of X0.

Definition 6.2. A closed, convex cone K in a real vector space is
said to be spanned by a subset Σ ⊂ K if K is the closure of the set of
finite linear combinations of elements of Σ with positive coefficients.

Lemma 6.3. Suppose the core lamination X is expressed as a not
necessarily disjoint union, X =

⋃
α∈A Xα, of not necessarily closed sub-

laminations, and let C′
α denote the homology cone spanned by the hom-

ology directions detemined by orbits (leaves) of Xα. Then C′
h is spanned

by the set
⋃

α∈A C′
α.

Proof. Indeed, every homology direction in C′
h corresponds to a

single orbit in X , hence in some Xα. We now appeal to Lemma 3.19.
Q.E.D.

Our goal is to prove the following.

Theorem 6.4. The cone C′
X is spanned by finitely many of its hom-

ology directions.

The proof of theorem 6.4 will be given in the rest of Section 6.1
and Section 6.2. We decompose the invariant set X into finitely masny
parts, prove that each part contributes either no new generators to C′

h

or contributes a finite set of generators, and then use Lemma 6.3 to
verify that the cone C′

h is thus spanned by finitely many of its homolgy
directions.

Lemma 6.5. The Lh-saturation of a component σ of Λ± ∩ P∓,
contributes no classes to C′

h not already contributed by C′
X0

.

Proof. A long, almost closed orbit of a point of σ is clearly hom-
ologous to a long, almost closed orbit through an endpoint of σ (the
number τk in Definition 3.18 can be measured by a transverse, invariant
measure for F|M◦, hence is independent of the point on σ). Since the
endpoints of σ are in X0, the assertion follows. Q.E.D.

Lemma 6.6. If the nucleus N of a principal region is a disk, the
Lh-saturation of N contributes no classes to C′

h not already contributed
by C′

X0
.
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Indeed, the vertices of ∂N are in X0, hence the proof closely mimics
that of Lemma 6.5.

The nucleus of a principal region might be an annulus. There are
at most finitely many of these. The set of such annuli is permuted by
h. When the nucleus has negative Euler characteristic, the Nielsen–
Thurston theory provides a finite, h-invariant family of annuli (part (3)
of Theorem 5.1).

In the following discussion, the claim that a sublamination of X
contributes only finitely many generators to C′

X means that the set of
homology directions contributed by this sublamination consists of posi-
tive linear combinations of a finite subset.

Lemma 6.7. The Lh-saturation of the finite, h-invariant family of
annuli provides only finitely many generators of C′

X .

Proof. Let T be the Lh-saturation of one of these annuli. This is
a thickened torus, hence H1(T) = R

2 and the cone of asymptotic cycles
in this space is 2-dimensional with compact base. Such a cone is the set
of positive linear combinations of two of its elements. Since there are
only finitely many of these annuli, they contribute at most finitely many
generators to C′

X . Q.E.D.

Let N be a nucleus of a principal region, χ(N) < 0, and n ≥ 1 the
smallest integer such that hn(N) = N . Let N ′ be the subsurface cut
off by the annular neighborhood of ∂N as in the remark at the end of
Section 5.1.

Lemma 6.8. If hn : N ′ → N ′ is periodic, its Lh-saturation con-
tributes at most one generator to C′

h.

Proof. The Lh-orbits through points of N ′ are all closed. If � and
�′ are two of these orbits, one easily sees that, for suitable choices of
positive integers p and q, the singular cycles p� and q�′ are homologous.
The assertion follows. Q.E.D.

If hn|N is reducible, the same argument applies to the periodic
components of the reduction. In order to prove Theorem 6.4, we need to
show that any pseudo-Anosov component of the reduction contributes
only finitely many generators and that C′

X0
has a finite spanning set.

This uses the Markov system for pseudo-Anosov maps (Theorem 5.2)
and for h : X0 → X0 (Theorem 5.7).

6.2. Markov partitions and homology directions

Let X1,X2, . . . ,Xq be pseudo-Anosov pieces of nuclei of principal
regions, one for each h-orbit of such pieces. Of course, X0 continues to
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denote the meager invariant set. There are minimal positive integers
mj , 1 ≤ j ≤ q, such that

hmj : Xj → Xj

and these are pseudo-Anosov. Let us concentrate first on h : X0 → X0.
As in [5, Section 10], the Markov partition implies that the dy-

namical system generated by h|X0 is conjugate to a 2-ended subshift of
finite type. More precisely, each point of X0 is encoded by a periodic,
bi-infinite sequence ι = (ik)k∈Z of finitely many letters, say 1, 2, . . . , r.
There is an r × r matrix A = [aij ] of 0’s and 1’s encoding which letter
can follow which. That is, j can follow i if and only if aij = 1. The set
of all allowable sequences is denoted by SA and the so-called subshift
of finite type σA : SA → SA shifts each sequence one step to the right.
There is a compact, discrete (usually Cantor) topology on SA and h|X0

is semi-conjugate to σA as we now describe.
The letters i = 1, 2, . . . , r each label a rectangle Ri ⊂ L of a Markov

partition. (As in [5, Section 10], we allow degenerate rectangles, either
intervals or points.) These rectangles cover X0 and do not properly
overlap. An element ι = (ik)k∈Z ∈ SA represents a unique point xι ∈
Ri0 ∩ X0 such that hk(xι) ∈ Rik , ∀k ∈ Z. In terms of the lamination
X0, this means that the leaf issuing from xι meets L successively in
Ri0 , Ri1 , . . . , Rik , . . . in forward time, with a corresponding statement
for backward time. While each ι ∈ SA encodes a unique point of X0,
some points of X0 may have finitely many such representatives. The
problem is that distinct Markov rectangles in N ′ may meet along parts
of their boundaries. Thus the map ι �→ xι is finite to one, defining a
semi-conjugacy of σA to h|X0.

Remark. Actually, in the proof of Theorem 5.7, we were able to
make the rectangles disjoint, but this is not generally possible in the
pseudo-Anosov case. For ease in carrying our discussion over to that
case, we do not require disjointness here.

The periodic elements of SA are those carried to themselves by some
power σq

A, q ≥ 1. These correspond to closed orbits in X0. The substring
(i0, i1, . . . , iq−1) of a periodic sequence ι, σq

A(ι) = ι, where q ≥ 1 is
minimal, will be called the period of ι. The substring (i0, i1, . . . , iq−1, i0)
will be called a periodic string. If no proper substring of a period is a
periodic string, we say that the period is minimal. Since there are only
finitely many distinct entries occurring in the sequences ι ∈ SA, it is
evident that there are only finitely many minimal periods.
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Definition 6.9. Those finitely many closed leaves γ of X0 that cor-
respond to minimal periods in the symbolic system will be called the
minimal loops in X0.

Let Φt denote the flow on M that stabilizes ∂τM pointwise, has flow
lines in M◦ coinciding with the leaves of Lh and is parametrized so as
to preserve F|M◦ and so that Φ1|L = h.

Let ι = (ik)
∞
k=−∞ ∈ SA and suppose that iq = i0 for some q > 0.

Let x ∈ Rι =
⋂∞

j=−∞ h−j(Rij ). Then there is a corresponding singular

cycle Γq formed from the orbit segment γq = {Φt(x)}0≤t≤q and an arc
τ ⊂ Ri0 from Φq(x) = hq(x) to x. Also, since iq = i0, there is a periodic
element ι′ ∈ SA with period (i0, . . . , iq−1) and a corresponding closed
leaf Γι′ = Γ′ of X0. The loop Γ′ is the orbit segment {Φt(y)}0≤t≤q, for
a periodic point

y ∈ Ri0 ∩ h−1(Ri1) ∩ · · · ∩ h−q(Riq ) = R′.

Lemma 6.10. The singular cycle Γq and closed leaf Γ′, obtained
as above, are homologous in M . In particular, the homology class of Γq

depends only on the periodic element ι′.

Proof. Remark that x ∈ R′ also. Let τ ′ be an arc in the rectangle
R′ from x to y and set τ ′′ = hq(τ ′), an arc in hq(R′) from hq(x) to y.
Since iq = i0, h

q(R′) ⊂ Ri0 and the cycle τ + τ ′ − τ ′′ in the rectangle
Ri0 is homologous to 0. That is, we can replace the cycle Γq = γq + τ
by the homologous cycle γq − τ ′ + τ ′′. Finally, a homology between this
cycle and Γ′ is given by the map

H : [0, 1]× [0, q] → M,

defined by parametrizing τ ′ on [0, 1] and setting

H(s, t) = Φt(τ
′(s)).

Q.E.D.

Corollary 6.11. Every closed leaf Γ of X0 is homologous in M to a
linear combination of the minimal loops in X0 with non-negative integer
coefficients.

Proof. The closed leaf Γ corresponds to a period (i0, . . . , iq−1). If
this period is minimal, we are done. Otherwise, after a cyclic permu-
tation, we can assume that the period is of the form (i0, i1, . . . , ip =
i0, ip+1, . . . , iq−1). We then see that Γ is homologous to the sum of two
loops, one being the arc γ of Γ corresponding to the periodic string
(i0, . . . , ip = i0) followed by an arc τ from the endpoint of γ to its initial
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point, and one being −τ + γ′, where γ′ is the subarc of Γ corresponding
to the periodic string (i0, ip+1, . . . , iq−1, iq = i0). By Lemma 6.10, both
γ + τ and −τ + γ′ are homologous to closed orbits corresponding to
periods strictly shorter than (i0, . . . , iq−1). Thus, finite iteration of this
procedure proves the corollary. Q.E.D.

Let ι = (ik)
∞
k=−∞, ι′ = (i′k)

∞
k=−∞ ∈ SA and suppose that

(i0, i1, . . . , iq) = (i′0, i
′
1, . . . , i

′
q),

not necessarily a period. Let x = xι and x′ = xι′ . Both of these points
are in

R′ = Ri0 ∩ h−1(Ri1) ∩ · · · ∩ h−q(Riq ).

Choose a path τ in Ri0 from x′ to x and a path τ ′ ⊂ Riq from
hq(x′) to hq(x). Consider the orbit segments Γ = {Φt(x)}qt=0 and
Γ′ = {Φt(x

′)}qt=0. Let K be an upper bound of the diameters of Ri,
1 ≤ i ≤ r. Then the paths τ and τ ′ can always be chosen to have
length less than K.

The following is proven analogously to Lemma 6.10.

Lemma 6.12. The singular chains Γ′ and τ+Γ−τ ′ are homologous.
In particular, for each closed 1-form η on M ,∫

Γ′
η =

∫
τ+Γ−τ ′

η.

Here, the paths τ and τ ′ have length less than K.

Proposition 6.13. Every homology direction in the cone C′
X0

can
be arbitrarily well approximated by nonnegative linear combinations of
the minimal loops.

Proof. Let Γ = {Φ(t)(x)}∞t=−∞ be an orbit and suppose that x
corresponds to the symbol ι = {ir}∞r=−∞. By a suitable shift, we can
assume that i0 occurs infinitely often in forward time in this symbol.
Consequently, for each index i in ι, there is a positive integer ki such
the the (i, i0)-entry in Aki is strictly positive. Let k be the largest of
the ki. Thus, given a substring (i0, i1, . . . , ip) of ι, there is a periodic
element ι′ ∈ SA with period (i0, i1, . . . , ip, ip+1, . . . , ip+s), where s ≤ k.
Let Γ′

p denote the corresponding periodic orbit. If we parametrize the
flow Φt by the invariant measure for F of period 1, then the length
of the segment Γp of Γ corresponding to the string (i0, i1, . . . , ip) is p.
Choosing a suitable sequence p ↑ ∞, we obtain a homology direction

μ = lim
p→∞

1

p

∫
Γp

.
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Passing to a subsequence, we also obtain a cycle

μ′ = lim
p→∞

1

p

∫
Γ′
p

.

Since s is bounded independently of p, Lemma 6.12 implies that μ and
μ′ agree on all closed 1-forms, and so μ′ is a cycle homologous to μ in
(D′

∗, ∂). Corollary 6.11 then implies the assertion. Q.E.D.

At this point, we have proven the following.

Proposition 6.14. The cone C′
X0

is spanned by the finitely many
homology directions corresponding to the minimal loops in X0 (Defin-
ition 6.9).

For 1 ≤ j ≤ q, hmj : Xj → Xj is the pseudo-Anosov first return map
induced by the sublamination Xj ⊂ X obtained as the X -saturation of
Xj . Since pseudo-Anosov homeomorphisms have a Markov partition,
the above discussion applies and gives

Proposition 6.15. The cone C′
Xj

is spanned by the finitely many

homology directions corresponding to the minimal loops in Xj , 1 ≤ j ≤ q.

These propositions, together with the discussion in the previous sec-
tion, establish Theorem 6.4. This, in turn, gives the following import-
ant result.

Theorem 6.16. Each Handel–Miller cone Ch ⊂ H1(M) is
polyhedral.

Indeed, the finite spanning set θ1, θ2, . . . , θ
 of C′
h defines finitely

many linear equalities

θi ≥ 0, 1 ≤ i ≤ �,

on the vector space H1(M). These inequalities exactly define Ch. Of
course, the homology cone C′

h is also polyhedral.

6.3. Uniqueness of the Handel–Miller cone

Each periodic piece in the Nielsen–Thurston decomposition of the
nuclei contributes just a ray of homology classes to C′

h. Each pseudo-
Anosov piece contributes a closed, convex subcone. Although the choice
of the restriction of h to the pseudo-Anosov pieces Xi is not unique,
any two choices h and h′ are related by (h′)mi = ϕ ◦ hmi ◦ ϕ−1, where
ϕ : L → L is a homeomorphism isotopic to the identity and supported
on the pseudo-Anosov piece (cf. [36]). This also holds, by the same
reference, for the periodic pieces. By an argument entirely analogous to
the proof of Corollary 4.7, we obtain the following.
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Proposition 6.17. The Handel–Miller cone C′
h = C′

hp , p ≥ 1, is
independent of the allowable choices of h on the pseudo-Anosov and
periodic pieces in the nuclei.

Remark. In particular, not only are the cones independent of the
allowable choices of h but also the homology directions associated to the
map hp span the same cone as those of h.

Theorem 6.18. The Handel–Miller cone C′
h ⊂ H1(M) is independ-

ent of the choice of the tight Handel–Miller representative of the isotopy
class of the endperiodic monodromy of L.

Proof. Let h and h′ be two such choices. By Theorem 5.6, the
laminations Λ± associated to h and the laminations Λ′

± associated to
h′ are simultaneously ambiently isotopic. That is Λ′

± = ϕ(Λ±) where
ϕ : L → L is a homeomorphism isotopic to the identity. Denote by X ′

and X ′
0 the sets ϕ(X) and ϕ(X0), respectively.

While the choices of h and h′ associated to these laminations is not
unique, the restrictions h|X0 and h′|X ′

0 are unique. Combined with
Proposition 6.17, this allows us to assume that ϕ−1 ◦ h′ ◦ ϕ = h on the
union of X0 and the pseudo-Anosov and periodic pieces of the nuclei.
By Corollary 4.7, C′

h = C′
h′ . Q.E.D.

Remark. Because of this theorem, we will denote the cone C′
h by

C′
F and the dual cohomology cone by CF .

Definition 6.19. The cone CF will be called a Handel–Miller foli-
ation cone or simply a foliation cone.

6.4. Maximality of the Handel–Miller foliation cones

Our next goal is to show that, if g is an endperiodic map in the
isotopy class of h, then Cg ⊆ CF . Recall Theorem 5.12, the mild gener-
alization of Theorem 5.10 to the case of tight Handel–Miller monodromy.
In this theorem, Lh is smooth except at the finitely many closed orbits
through the p-pronged singularities. Thus, the smooth laminations on
L transfer to smooth laminations on L′ and h′ : L′ → L′, the first return
map along Lh, is a diffeomorphism except at finitely many points. The
proof of Theorem 5.10 given in [5, Theorem 12.8] shows that dual pairs
of principal regions in L transfer to dual pairs of principal regions in
L′, hence nuclei transfer to nuclei. (Since the transfer is not globally
defined, several principal regions might transfer to the same one and/or
a principal region might have several transfers to distinct principal re-
gions.) The periodic pieces in nuclei clearly transfer to periodic pieces.
So do the pseudo-Anosov pieces. Indeed, the singular foliations transfer
just as the Handel–Miller laminations did. The measures are also easy
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to transfer and since in L they are multiplied by λ and 1/λ, respectively,
by the first return map h, the same is true for h′. Finally, the transferred
singularities remain p-pronged. We believe that this adequately sketches
how to modify the proof of Theorem 5.10 given in [5, Theorem 12.8] so
as to prove Theorem 5.12.

We will use the notation 〈G〉 for the foliated ray in H1(M) which
represents the foliation (almost without holonomy) G. Recall that, if
this foliated ray meets a nonzero element of the integer lattice G =
H1(M ;Z), it is said to be rational and represents a depth 1 foliation.
The following is proven in [7].

Proposition 6.20. A depth 1 foliation Fω is uniquely determined
up to isotopy by the associated rational foliated ray, the isotopy being
ambient, smooth in M◦ and C0 on M , pointwise fixing ∂τM .

Proposition 6.21. The rational foliated ray 〈G〉 lies in intCF if
and only if CG = CF .

Proof. Suppose that 〈G〉 ⊂ intCF . By Proposition 6.20 and The-
orem 4.9, an isotopy makes the foliation G transverse to Lh. By The-
orem 5.12, Lh induces tight Handel–Miller monodromy g on each leaf
of G|M◦. Thus, the cones CG and CF are determined by the same core
lamination Xg = X and so are identical. For the converse, if CG = CF ,
for rational foliated rays 〈G〉 and 〈F〉, clearly 〈G〉 ⊂ intCF . Q.E.D.

Corollary 6.22. No rational foliated ray is contained in ∂CF .

Proof. If there is a rational foliated ray 〈G〉 ⊂ ∂CF , then intCG ∩
intCF 
= ∅. Since the union of the rational rays in CF is dense in
that cone, there is a rational foliated ray 〈H〉 ⊂ intCG ∩ intCF . By
Proposition 6.21, we see that CG = CH = CF . That is, 〈G〉 ⊂ intCF ,
contrary to our hypothesis. Q.E.D.

The boundary ∂CF is made up of r codimension 1 faces F1, . . . , Fr,
where Fi is a convex, polyhedral cone with nonempty (relative) interior
in the hyperplane Ri ⊂ H1(M) defined by a linear equation of the form
[γi] = 0.

Lemma 6.23. Each Fi contains a dense family of rays that meet
nontrivial points of the integer lattice G.

Proof. Since the spanning vectors of C′
h, given by the proof of

Theorem 6.16 are represented by closed loops in X , they are integral
cohomology classes and Fi meets the integer lattice G ⊂ H1(M) in a
sublattice of full rank. Q.E.D.
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Theorem 6.24. If g is a monodromy map (endperiodic) for a
depth 1 foliation of M , then either (intCg) ∩ CF = ∅, or Cg ⊆ CF .
In particular, CF = Ch is the maximal foliation cone for monodromies
in the isotopy class of h and two maximal foliation cones either coincide
or have disjoint interiors.

Proof. If (intCg)∩CF 
= ∅ and Cg 
⊆ CF , then Lemma 6.23 implies
that there is a rational foliated ray in ∂CF , contradicting Corollary 6.22.

Q.E.D.

Remark. Correspondingly, the dual homology cone C′
F = C′

h is the
minimal C′

g for all monodromies g isotopic to h. In this sense, we can say
that the tight Handel–Miller monodromy has the “tightest” dynamics
in its isotopy class.

6.5. Finiteness of the foliation cones

We refer the reader to [8, Theorem 6.4] for the proof of the following.

Theorem 6.25. There are only finitely many foliation cones in
H1(M).

The idea is to produce a finite family of branched surfaces Σ1, . . . ,Σq

such that every depth 1 foliation is carried by some Σi. The cone of
depth 1 foliations carried by any Σi is contained in a single foliation
cone, hence the number of such cones must be finite.

Remark. An original goal of this work was to quantify the depth 1
foliations F of sutured manifolds M constructed by Gabai’s process of
disk decomposition [19]. If the decomposing disks all live in M from the
start (a simple disk decomposition), the foliation cones can be read off
of the disks. This involves relating the disks in the simple decomposition
to the Markov process induced by the Handel–Miller monodromy. See
[8, Section 7] and [11, Section 5] for examples.

Remark. The key idea to use Handel–Miller monodromy to define
the foliation cones was suggested to us by D. Fried’s use of pseudo-
Anosov monodromy of fibrations to determine the fibered faces of the
Thurston ball in hyperbolic 3-manifolds [18].

§7. Foliations of dense leaved type

Our goal in this section is to prove the following serious extension
of Proposition 6.20 which was conjectured in [7].

Theorem 7.1. The foliated rays in the interior of a foliation cone
determine a foliation almost without holonomy uniquely up to a C0 am-
bient isotopy.
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We will only assume that we are given a foliated ray, hence will
not need to work in the maximal foliation cones. Thus, the Handel–
Miller theory will not be used. Our ongoing assumption that all compact
leaves have strictly negative Euler characteristic is, therefore, no longer
needed. Proposition 6.20, which was proven in [7], proves Theorem 7.1
for proper foliations that are almost without holonomy. Thus, in Sec-
tion 7, we will restrict our attention to the dense leaved type of foliations
which are almost without holonomy. To reduce wordiness, we will call a
codimension 1 foliation almost without holonomy of dense leaved type
an AWHD foliation. The rest of Section 7 is devoted to the proof of
Theorem 7.1 for irrational foliated rays.

Remark. The fact that the isotopy in Proposition 6.20 is ambient
will be critically important for us. This was not emphasized in [7], but
it is clear that all isotopies employed in that paper are ambient.

7.1. Invariant measures and isotopy

In this subsection, there is no restriction on dimM = n ≥ 3. The
notion of an AWHD foliation makes sense in arbitrary dimension.

Remark. Save mention to the contrary, no smoothness is required
either for the AWHD foliations F or the transverse 1-dimensional foli-
ation L.

By a well known theorem of Sacksteder [31], an AWHD foliation F
of M admits a strictly positive, continuous, transverse invariant measure
μ, finite on compact F -transverse intervals. Continuity of the measure
implies that it is non-atomic. At ∂τM , the measure becomes unbounded.
We call this a Sacksteder measure.

As an example, if F is defined by a foliated form ω, that form defines
the desired measure in an obvious way. By “Sacksteder’s trick”, if F is
smooth, the measure μ, even if it is not smooth (i.e., a differential form),
can be used to put a new differentiable structure on M in which μ is a
smooth, closed 1-form ω. We will not employ this trick.

In a standard way, μ can be integrated along compact C0 paths σ in
M◦, this line integral being determined by the homotopy class (modulo
the endpoints) of σ. It is not required that σ be transverse to F . The
line integral clearly vanishes on commutators in π1(M), hence μ defines
a homomorphism

[μ] : H1(M ;Z) → R

which we view as a cohomology class in H1(M) = H1(M◦). The period
group P (μ) ⊂ R of μ is the image of this homomorphism. For more
detail, see [10, Section 2], which is also the source for details of the
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following discussion. In that reference, we assumed ∂M = ∅, but the
adaptation to our more general context is straightforward.

We fix a 1-dimensional foliation L of M transverse to ∂τM and tan-
gent to ∂�M , and assume that F is an AWHD foliation of M , transverse
to L and having Sacksteder measure μ. Let Φt be the C0 flow on M
defined by μ, pointwise fixing ∂τM and having the leaves of L|M◦ as
flow lines.

Lemma 7.2. The period group P (μ) is the set of t ∈ R such that
Φt carries each leaf of F onto itself.

Remark. If F is defined by a foliated form ω, the measure μ is
defined by integrating ω and the period group is denoted by P (ω).

Corollary 7.3. A compact path σ in M◦ has endpoints in the same
leaf of F if and only if

∫
σ
dμ ∈ P (μ).

Suppose now that F0 and F1 are AWHD foliations of M , transverse
to L and having respective Sacksteder measures μ0 and μ1, with [μ0] =
[μ1]. Finally, let Φ0 and Φ1 be the respective C0 flows defined by the
measures and having the leaves of L as flow lines.

For 0 ≤ t ≤ 1, νt = tμ1 + (1− t)μ0 is a continuous, strictly positive
measure along L and has line integrals∫

σ

dνt = t

∫
σ

dμ1 + (1− t)

∫
σ

dμ0.

This defines a cohomology class and [μ0] = [νt] = [μ1], 0 ≤ t ≤ 1. It
is natural to suspect that νt is a transverse, invariant measure for an
AWHD foliation Ht of M transverse to L, that νt blows up at ∂τM
(obvious), 0 ≤ t ≤ 1, and that this homotopy of H0 = F0 with H1 =
F1 is actually a continuous isotopy in M . The following discussion
confirms this.

Fix a leaf L of F0 and a basepoint x ∈ L. For fixed but arbitrary
t ∈ [0, 1], and z ∈ L, choose a path σ in L from x to z and let at(z) =∫
σ
dνt.

Lemma 7.4. The number at(z) depends only on z and t, not on
the choice of σ, and the function at : L → R is continuous.

The measure νt defines a flow tΨ on M◦ with flow lines the leaves
of L|M◦. Define

ϕt : L → M◦,

ϕt(z) =
tΨ−at(z)(z).
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Lemma 7.5. If � is a leaf of L (with its 1-dimensional manifold
topology), then ϕt restricts to an order preserving bijection of the dense
subset � ∩ L onto a dense subset of �.

The order on �, of course, is that induced by the transverse orienta-
tion of F0. In the case that � ∼= S1, this is a cyclic order.

It follows that, for each leaf � of L|M◦, ϕt extends canonically to
a homeomorphism of � onto itself. Furthermore, ϕt : L → M◦ will be
an injective topological immersion extending canonically to a homeo-
morphism ϕt : M

◦ → M◦ which continuously extends by the identity on
∂τM . The continuous dependence of this homeomorphism on t ∈ [0, 1]
is also elementary. We have,

Lemma 7.6. The map

ϕ : M × [0, 1] → M,

defined by ϕ(z, t) = ϕt(z) on M◦× [0, 1] and by ϕ(z, t) = z for z ∈ ∂τM ,
is an isotopy of ϕ1 to ϕ0 = id.

Proposition 7.7. If F0 and F1 are foliations of M with transverse
invariant measures μ0 and μ1 respectively such that [μ0] = [μ1] and with
F0, F1 both transverse to the same 1-dimensional foliation L, then F0

and F1 are topologically ambiently isotopic.

Proof. For each t ∈ [0, 1], we obtain a topological foliation Ht =
ϕt(F0) which we view as an ambient isotopy of F0 = H0 to H1. Remark
that ϕt pushes the invariant measure μ0 forward to the measure νt.
Proposition 7.7 then follows by continuity of the measures and the fact
that L is dense in M◦. Thus, νt is a holonomy invariant measure for Ht,
0 ≤ t ≤ 1, with ν1 = μ1 defining H1 = F1. Q.E.D.

Lemma 7.8. If F is AWHD, it is C0 ambiently isotopic to an
AWHD foliation defined by a foliated form.

Proof. Let μ be a Sacksteder measure for F and let L be a smooth,
transverse 1-dimensional foliation with core lamination X . Evidently,
[μ] is strictly positive on every nontrivial asymptotic cycle of X so [μ] ∈
intCX . Thus, by Theorem 4.9, [μ] = [ω], where ω is a foliated form
transverse to L and, by Proposition 7.7, F and Fω are C0 ambiently
isotopic. Q.E.D.

Finally, the following result, essentially due to J. Moser [27], is basic
to the proof of Theorem 7.1 for AWHD foliations. It can be thought of
as a smooth version of Proposition 7.7.
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Proposition 7.9. If foliated forms ω0 and ω1 on M◦ are cohom-
ologous and transverse to a common 1-dimensional foliation L which is
integral to a nonsingular C0 vector field, then the foliations Fω0 and Fω1

are smoothly ambiently isotopic in M◦ and continuously in M , keeping
∂τM pointwise fixed. Hence the foliated forms are smoothly isotopic.

Proof. By hypothesis, ω1−ω0 = df for a smooth function f : M◦ →
R. Set

ωt = tω1 + (1− t)ω0.

itself a foliated form transverse to L. On M◦ × [0, 1], define

Ω = ωt + f dt,

where t denotes the [0, 1] coordinate. Then Ω is a nonsingular 1-form,
transverse to L, the 1-dimensional foliation with restriction L × {t} on
M◦ × {t}. An easy computation shows that dΩ = 0. This form also
blows up nicely at ∂τM × [0, 1], and so can be thought of as a foliated
form on the open, saturated subset M◦ × [0, 1] of the foliated (n + 1)-
manifold (M × [0, 1],F × [0, 1]). Let H denote the foliation defined
by Ω on M◦ × [0, 1]. Since Ht = H|(M◦ × {t}) = Fωt , this gives a
smooth integrable homotopy of Fω0 to Fω1 on M◦. Since M is compact,
the integrable homotopy (extended continuously to ∂τM) is an ambient
isotopy. One can then view Ω itself as a smooth isotopy of ω0 to ω1

on M◦. Q.E.D.

7.2. Regular coverings

Proofs of assertions in this subsection will be found in [6, Section 3]
and are simpler under our current hypotheses. The setting in [6] was for
foliations without holonomy of open F -saturated subsets U of M , not

necessarily with compact transverse completion Û . Here, U = M◦ and

Û = M . Again, there is no restriction on dimM ≥ 3, but we will make
no use of that fact.

Let F be an AWHD foliation. Assume, by Lemma 7.8, that F
is defined by a foliated form ω and write F = Fω. Let Fω′ be another
foliation ofM defined by a foliated form ω′, not necessarily of dense type.

Definition 7.10. We say that Fω covers Fω′ if

(1) Fω and Fω′ are transverse to a common, 1-dimensional foli-
ation L of M ;

(2) ker(ω : H1(M ;Z) → R) ⊆ ker(ω′ : H1(M ;Z) → R).

Recall that ω parametrizes L to produce an Fω-preserving flow

Φ: M × R → M,
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fixing ∂τM pointwise and having the leaves of L|M◦ as flow lines in M◦.

Proposition 7.11. If Fω covers Fω′ , if L ∈ Fω and L′ ∈ Fω′

are leaves, and if x0 ∈ L ∩ L′, there is a unique continuous function
τ : L → R such that

(1) τ(x0) = 0;
(2) Φτ(x)(x) ∈ L′, for each x ∈ L.
(3) The map p : L → L′ defined by p(x) = Φτ(x)(x) is a regular

covering with covering group G = {Φτ(x)−τ(y) | p(x) = p(y)}.
Proposition 7.12. Every AWHD foliation Fω covers a depth 1

foliation Fω′ with [ω′] in any preassigned neighborhood of [ω] in H1(M).

7.3. Proof of Theorem 7.1 for irrational foliated rays

The restriction to dimM = 3 is needed in this subsection.
We suppose that the AWHD foliations F and G correspond to the

same foliated ray 〈F〉 = 〈G〉. By Lemma 7.8, these foliations are C0-
isotopic to foliations Fω and Fη, respectively, where ω and η are foliated
forms with [ω] = [η] and the isotopy fixes ∂τM pointwise. We will find a
C0 isotopy between Fη and Fω, smooth on M◦ and the identity on ∂τM .

There exist foliations Fω′ and Fη′ , covered by Fω and Fη, respect-
ively, with [ω′] = [η′] and having rational period group. Indeed, let
L be a 1-dimensional foliation transverse to Fω as usual and L∗ a 1-
dimensional foliation transverse to Fη. Let X and X ∗ be the corres-
ponding core laminations. Then CX ∩CX∗ has nonempty interior U con-
taining [ω] = [η] and, by Proposition 7.12, we find a class [ω′] = [η′] ∈ U
with rational periods, simultaneously representing a depth 1 foliation
Fω′ transverse to L and covered by Fω as well as a depth 1 foliation Fη′

transverse to L∗ and covered by Fη.
Proposition 6.20 gives an isotopy of Fω′ to Fη′ which is smooth in

M◦. This is an ambient isotopy, dragging Fω to an AWHD foliation

Fω̃ covering Fη′ and L to a 1-dimensional foliation L̃ transverse to Fη′

and Fω̃.
We can now simplify (and abuse) notation, denoting Fω′ = Fη′ by

F ′, Fω̃ by Fω, and L̃ by L so that L is transverse both to Fω and F ′

and L∗ is transverse both to Fη and F ′. We keep this notation for the
rest of Section 7.3.

Lemma 7.13. A smooth, transverse foliation L to any foliation F
is unique up to a smooth homotopy through foliations transverse to F .

Proof. Indeed, let L0 and L1 be transverse to F and let v0 be
a smooth, nonsingular vector field tangent to L0 and oriented by the
transverse orientation of F , v1 such a vector field for L1. Then vs =
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sv1 + (1 − s)v0 integrates to give an F -transverse flow with underlying
foliation Ls, 0 ≤ s ≤ 1. Q.E.D.

In particular, the two 1-dimensional foliations L, L∗ are connected
by a homotopy through 1-dimensional foliations transverse to F ′. Re-
mark that this homotopy can be viewed as a 1-dimensional foliation L
on the 4-manifold M = M× [0, 1] which is transverse to the codimension
one foliation F ′ = F ′× [0, 1]. The restriction of L to each 3-dimensional
slice M × {s} is Ls, 0 ≤ s ≤ 1. The core lamination X of L is de-
fined as usual and restricts on M ×{s} to the core lamination Xs of Ls,
0 ≤ s ≤ 1. The homology cone C′

X and the cohomology cone CX are
as defined in Section 3.2, where the dimension of the ambient manifold
was allowed to be ≥ 3.

Remark 7.14. In case ∂τM = ∅, the core lamination coincides with
the whole transverse 1-dimensional foliation. The associated cones can
still be defined as usual, but in this case the maximal cones correspond to
the Nielsen–Thurston monodromy rather than to Handel–Miller. Proofs
are essentially unchanged. These maximal cones can also be defined
(and originally were) as cones subtended by the fibered faces of the
Thurston ball. The idea of determining the fibered faces by the use of
structure cycles for the transverse flow is due to D. Fried [18] and was
the inspiration of our work on foliation cones.

Lemma 7.15. Under the identificationsH1(M) withH1(M×{s}) =
H1(M), 0 ≤ s ≤ 1, induced by the projection π : M → M , we have

C′
X =

⋃
0≤s≤1

C′
Xs

,

CX =
⋂

0≤s≤1

CXs .

Proof. The second equality is an easy consequence of the first. For
the first, it is clear that ⋃

0≤s≤1

C′
Xs

⊆ C′
X

and, the cone C′
X being closed, the closure of the union of the cones

C′
Xs

is also contained in C′
X . For the reverse inclusion, recall that C′

X is
the closure of the union of nonnegative linear combinations of homology
directions. Each homology direction of X is a homology direction of
some Xs, proving the assertion. Q.E.D.



344 J. Cantwell and L. Conlon

Corollary 7.16. Under the identifications H1(M) with H1(M) in-
duced by the projection π : M → M , the cohomology class [π∗ω] = [ω] ∈
intCX .

Proof. Recall that the rational ray in intCX0 corresponding to F ′

is defined by the class [ω′] = [η′]. Under the identification H1(M) =
H1(M), the rational ray in intCX0 corresponding to F ′ and the one in
intCX corresponding to F ′ are identified. Let [ω] = [π∗ω] ∈ H1(M)
denote tyhe cohomology class identified to [ω] ∈ H1(M). We must show
that [ω] takes strictly positive values on C′

X . Indeed, if [ω′] is the class

defining F ′, the fact that Fω covers F ′ implies that

ker([ω]) = ker([ω]) ⊂ ker([ω′]) = ker([ω′]),

where these are the kernels in H1(M ;Z) = H1(M ;Z). Thus, [ω] must
take strictly nonzero values on the homology cone C′

X ⊂ H1(M). This

cone is connected, hence its image under [ω] is a connected subset of R
not containing 0. Since [ω] takes strictly positive values on C′

X0
⊂ C′

X ,

these values are positive on all of C′
X . Q.E.D.

Lemma 7.17. There is a codimension one foliation Fω of M , trans-
verse to L, hence to M ×{s}, 0 ≤ s ≤ 1, which induces Fω on M ×{0}
and covers F ′. This foliation can be interpreted as a smooth ambient
isotopy in M◦ of Fω = F0

ω to a foliation F1
ω that covers F ′ and is trans-

verse to L1 = L∗. The isotopy extends continuously to M , fixing ∂τM
pointwise.

Proof. Recall from the proof of Theorem 4.9 that ω = α+df , where
α is defined on M and hence is bounded near points of ∂τM . Since ω
“blows up nicely” at the tangential boundary ∂τM , so does df . That is,
the 2-planes that are defined by df = 0 converge in the C∞ topology to
the tangent planes to ∂τM . Let

π : M → M

be the projection along the [0, 1]-factors and set α = π∗(α). This rep-
resents the cohomology class [π∗ω] and so, by Corollary 7.16 and The-
orem 4.9, we find an exact form dh on M◦ such that ζ = α + dh is a
foliated form transverse to L. Again by the proof of Theorem 4.9, dh
can be chosen to blow up nicely at ∂τ (M× [0, 1]). The covering property
being purely homological, we see that the foliation defined by ζ covers
F ′. If this form agreed with ω on M◦ ×{0}, we would be done with the
proof of the first assertion of the lemma. We need to further modify ζ.
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Let λ : [0, 1] → [0, 1] be smooth with λ(s) = 0, 0 ≤ s ≤ ε/2, λ(s) = 1,
ε ≤ s ≤ 1, and 0 < λ(s) < 1, for ε/2 < s < ε. Set

ω = α+ d(λ(s)h+ (1− λ(s))f).

(Here we indulge in the notational abuse f = π∗(f).) For 0 ≤ s ≤ ε/2,
this form agrees with π∗ω. In M◦ × [0, ε/2], ω = π∗ω. In M◦ × [ε, 1],
ω = ζ. In M◦ × (ε/2, ε), remark that

d(λ(s)h+ (1− λ(s))f) = (h− f)λ′(s) ds+ λ(s) dh+ (1− λ(s)) df

and in this same range, both α+df and α+dh are transverse to L. Since
λ′(s) ds clearly vanishes along L, ω is transverse to L|(M◦ × (ε/2, ε)).
Indeed, λ(s)α+λ(s) dh and (1−λ(s))α+(1−λ(s)) df are transverse there.
Now, df and dh blow up nicely at the tangential boundary ∂τ (M×[0, 1]),
hence so does λ(s) dh + (1 − λ(s)) df . It remains to investigate the
behavior of (h−f)λ′(s) ds at ∂τ (M× [0, 1]). In the proof of Theorem 4.9
we chose f (respectively, h) to be the sum of a function bounded near

the tangential boundary and an antiderivative of e1/t
2

, where t is the
normal coordinate in a normal neighborhood of the tangential boundary.
Thus, we can assume that the form (h−f)λ′(s) ds remains bounded near
∂τ (M × [0, 1]), completing the proof that ω blows up at the tangential
boundary so as to define a smooth foliation with trivial infinitesimal
holonomy along the tangential boundary. Thus, ω is a foliated form.

We turn to the isotopy assertion. The foliation Fω defined by ω
clearly defines an integrable homotopy in M◦ of Fω = F0

ω to F1
ω. To see

that this integral homotopy is actually an isotopy, even thoughM◦ is not
compact, observe that the vector field ∂/∂t tangent to the I-factors has
nonzero component tangent to Fω. The semiflow that it generates can
be reparametrized by 0 ≤ t ≤ 1 and so serves as the track of the ambient
isotopy in M◦. Viewing Fω as a foliation of M × [0, 1], we see that this
isotopy extends continuously to M , fixing ∂τM pointwise. Q.E.D.

Proof of Theorem 7.1. Lemma 7.17 produces a smooth ambient
isotopy of Fω in M◦, moving it to a foliation F1

ω transverse to the
1-dimensional foliation L∗. The isotopy extends continuously to M ,
fixing ∂τM pointwise. Since F1

ω and Fη are both transverse to the same
1-dimensional foliation L∗, an appeal to Proposition 7.9 completes the
isotopy. The proof of Theorem 7.1 is complete. Q.E.D.

Remark. The arguments in this section are simplified if ∂τM = ∅,
hence we have proven that foliations without holonomy are determined
up to isotopy by the corresponding rays meeting the interior of a fibered
face of the Thurston ball. Our argument in the smooth case recovers the
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Laudenbach–Blank theorem [26] that cohomologous closed, nonsingular
1-forms are smoothly isotopic. This proof is significantly simpler than
the one we offered in [10]. In particular, no appeal is made to the simple
connectivity of Diff0(F ) [14, 20], where F is a compact surface. We
do not, however, achieve the full generality of the Laudenbach–Blank
theorem which allowed nonempty tangential boundary. In this case a
closed, nonsingular 1-form is necessarily exact and their proof showed
that such foliations are isotopic to the product foliation of M = F ×
[0, 1]. This yielded an independent proof of the theorem of J. Cerf [12].
Subsequent attempts [30, 10] at simpler proofs of Laudenbach–Blank
assumed Cerf’s theorem. Our present proof also assumes that theorem
since it is key to the proof that a fibration π : M → S1 is uniquely
determined up to isotopy by the cohomology class π∗[dθ].
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[12] J. Cerf, Sur les Difféomorphismes de la Sphère de Dimension Trois (Γ4 =
0), Lecture Notes in Mathematics 53, Springer, Berlin, 1968.
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surface compacte, Ann. Sci. École Norm. Sup. (4) 6 (1973), 53–66.
[21] M.-E. Hamstrom, Some global properties of the space of homeomorphisms

on a disc with holes, Duke Math. J. 29 (1962), 657–662.
[22] M.-E. Hamstrom, The space of homeomorphisms on a torus, Illinois J.

Math. 9 (1965), 59–65.
[23] M.-E. Hamstrom, Homotopy groups of the space of homeomorphisms on a

2-manifold, Illinois J. Math. 10 (1966), 563–573.
[24] M. Handel and W. P. Thurston, New proofs of some results of Nielsen, Adv.

in Math. 56 (1985), 173–191.
[25] A. Juhász, The sutured Floer homology polytope, Geom. Topol. 14 (2010),

1303–1354.
[26] F. Laudenbach and S. Blank, Isotopie de formes fermées en dimension trois,

Invent. Math. 54 (1979), 103–177.
[27] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc.

120 (1965), 286–294.
[28] S. P. Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14
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