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Several problems on groups of diffeomorphisms

Takashi Tsuboi

Abstract.

This is a survey on several problems related to the study of groups
of diffeomorphisms.

§1. Introduction

In this article we discuss several problems related to the study of
groups of diffeomorphisms which the author worked on for a while with
some hope to find new phenomena.

For a compact manifold M , let Diffr(M) (r = 0, 1 � r � ∞, or
r = ω) denote the group of Cr diffeomorphisms of M . Diffr(M) is
equipped with the Cr topology and let Diffr(M)0 denote the identity
component of it. The family of diffeomorphisms generated by a time
dependent vector field is called an isotopy. A Cr diffeomorphism near the
identity (r � 1) is contained in an isotopy from the identity. Diffr(M)
has a manifold structure modelled on the space X r(M) of Cr vector
fields. The manifold structure of Diffr(M) for a compact manifold M
is given by using the exponential map with respect to a Riemannian
metric so that a neighborhood of 0 ∈ X r(M) is homeomorphic to a
neighborhood of the identity of Diffr(M). It is worth noticing that the
composition (g1, g2) → g1 ◦ g2 in Diffr(M) (1 � r < ∞) is C∞ smooth
with respect to g1 but not smooth with respect to g2 (see [34] §4 p. 51
for the case of Rn).
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§2. Foliated products

A smooth singular simplex σ : Δm → Diffr(M) corresponds to the
multi dimensional isotopy which is the foliation of Δm×M transverse to
the fibers of the projection Δm ×M → Δm whose leaf passing through
(t, x) is {σ(s)σ(t)−1(x) | s ∈ Δ}. These multi isotopies naturally match
up along the boundary and form the universal foliated M -product over
the classifying space BDiffr(M). See the following figure and [26].

Let BΓ r
n be the classifying space for Haefliger’s Γ r

n structures with
trivialized normal bundles ([15], [16]). Since BΓ r

n classifies Cr foli-
ations with trivialized normal bundles, for an n-dimensional parallelized
manifold Mn, we obtain the map BDiffr(Mn) × Mn → BΓ r

n , and
hence the map BDiffr(Mn) → Map(Mn, BΓ r

n). The deep result by
Mather–Thurston says that the last map induces an isomorphism on
integral homology.

Theorem 2.1 (Mather–Thurston [24], [28]). For an n-dimensional
parallelized manifold Mn (for simplicity) and for 1 � r � ∞,

H∗(BDiffr(Mn);Z) ∼= H∗(Map(Mn, BΓ r
n);Z).

In particular, H∗(BDiffr
c(R

n);Z) ∼= H∗(ΩnBΓ r
n ;Z) for the group

Diffr
c(R

n) of Cr diffeomorphisms of Rn with compact support.

On the other hand, H1(BDiffr(Mn);Z) = 0 (1 � r � ∞, r �= n+1)
has been shown by Herman–Mather–Thurston ([18], [24], [28]). Note

that H1(BDiffr(Mn);Z) ∼= H1(B˜Diffr(Mn)δ0;Z), where ˜Diffr(Mn)0 is
the universal covering group and δ means that the group is equipped with
the discrete topology when we take its classifying space. In general,
the abelianization of a group G is isomorphic to H1(BG

δ;Z) and a
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group is said to be perfect if its abelianization is trivial. Moreover, by
the fragmentation technique, H1(BDiffr(Mn);Z) = 0 is equivalent to

H1(BDiffr
c(R

n);Z) = 0, and if ˜Diffr
c(R

n)0 is perfect, then ˜Diffr(Mn)0
and Diffr(Mn)0 are perfect (cf. [4]).

Theorem 2.2 (Herman–Mather–Thurston [18], [24], [28]).
Diffr

c(M
n)0 (1 � r � ∞, r �= n + 1) is a perfect group. It is a sim-

ple group if Mn is connected.

It is known that for r > 2 − 1/(n + 1), there is a characteristic co-
homology class called the Godbillon–Vey class in Hn+1(BDiffr(Mn);R)
([13], [38]). BDiffr(Mn) is conjectured to be n-acyclic. For the higher
dimensional homology, it is only known ([34], [35]) that

H2(BDiffr
c(R

n);Z) = 0 if 1 � r < [n/2],

Hm(BDiffr
c(R

n);Z) = 0 if 1 � r < [(n+ 1)/m]− 1 and

Hm(BDiff1
c(R

n);Z) = 0 for m � 1.

The main technical reason of the above regularity conditions can be
seen in the infinite iteration construction using (Z+∗Z+)

n action onRn.
As is well-known, by the homothety of ratio A, the Cr-norm of a foliated
Rn-product is multiplied by A1−r ([25]). For the easiest case of divisible
abelianm-cycle c represented by time 1 maps of commuting vector fields,

we divide it into 2m pieces [n/m] times and we use Z2n

+ action generated
by homotheties of ratio A = 1/(2 + ε), then the infinite iteration con-
struction converges in the Cr topology if 2−[n/m]/(2 + ε)1−r < 1, that
is, if r − [n/m] − 1 < 0 ([34]). To treat general cycles we loose a little
more regularity.

For the connectivity of BΓ r
n , it seems that it increases when r tends

to 1. It is true that in Diff1+α
c (Rn), we can construct a Zk action which

permutes open sets, where k tends to infinity as α tends to 0 ([36]), and
we think that we can use it to construct infinite iterations of chains. The
bound of the ranks of such actions has been studied by Deroin, Kleptsyn
and Navas ([8]), and the study of group actions which permute open sets
became a new direction of study of group of diffeomorphisms (cf. [27]).

For seeking more regular construction, it is necessary to know that
abelian cycles are null homologous.

Problem 2.3. For the action ϕ : Rm → Diffr(Mn), show that
B(Rm)δ → BDiffr(Mn) induces the trivial homomorphism on integral
homology.

Remark 2.4. It is true for Diff∞
c (R) ([29], [31]). It is probably true

form = 1 and Diff∞
c (Rn). The first interesting case isR2 → Diff∞

c (R2).



242 T. Tsuboi

To treat non abelian cycles, we notice that the theorem of Mather–
Thurston implies that any class of H2(BDiffr(Mn);Z) (r �= n + 1)
can be represented by a foliated Mn product over the surface Σ2 of
genus 2 ([29]).

For the smooth codimension 1 foliations, there is the interesting
problem of determining the kernel of the Godbillon–Vey class.

Problem 2.5. Determine the kernel ofGV :H2(BDiffr
c(R);Z)→R.

Remark 2.6. There is a group G which contains both Diffr
c(R)

(r > 1+1/2) and the group PLc(R) of piecewise linear homeomorphisms
of R with compact support, with a metric such that GV cocycle is
continuous ([32], [33]). We know that for a G-foliated R-product F
with compact support over a compact oriented surface, GV (F) = 0 if
and only if F is homologous to a G-foliated R-product H0 over a surface
Σ which is the limit of G-foliated R-products Hk with compact support
over the surface Σ representing 0 in H2(G;Z) ([33]). Hk are in fact
transversely piecewise linear foliations and the topology of the classifying
space BPLc(R)δ has been known by the work of Peter Greenberg ([14]).

Remark 2.7. It will be nice if we can take Hk to be C1 piecewise
PSL(2;R) foliated S1-products. The group of C1 piecewise PSL(2;R)
diffeomorphisms of S1 contains the Thompson simple group (consisting
of C1 piecewise PSL(2;Z) diffeomorphisms) which gives other interests
to study this group.

Remark 2.8. It is also very interesting to know whether the amal-
gamate product of the k-fold covering groups PSL(2;R)(k) of PSL(2;R)
over their subgroups of rotations is dense in Diffr(S1)0 (r � 1). See [30].

§3. BΓω
1

Many years ago, Haefliger showed that BΓω
1 is aK(π, 1) space ([15]).

If one understands the definition of the Γω
1 structures, though π is a huge

group, it is easy to show that H1(BΓω
1 ;Z) = 0.

Problem 3.1. Prove or disprove that H2(BΓω
1 ;Z) = 0.
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Remark 3.2. The homology group H2(BΓω
1 ;Z) is generated by

cycles represented by surfaces Σ2 of genus 2 with Cω singular foliations
with 2 saddles. These are obtained from the two copies of real analytic
foliations of pairs of pants which looks topologically as above. Since
BΓω

1 is a K(π, 1), a homology class represented by the map from
S2 is trivial. A homology class represented by the map from T 2 is
homologous to a union of suspensions of Cω diffeomorphisms of S1, and
these are trivial because Diffω(S1)0 is perfect by a result of Arnold ([2]).

As for the perfectness of the group Diffω(Mn)0 of real-analytic
diffeomorphisms of Mn, Herman showed that Diffω(Tn)0 is simple al-
most 40 years ago ([18]). Rather recently, we could show that if Mn

admits a nice circle action then Diffω(Mn)0 is perfect ([39]). These are
applications of Arnold’s work on the small denominators ([2]). With this
method, it should be at least generalized to the manifolds with non triv-
ial circle actions. There are torus bundles which admits a flow whose
orbit closures are fibers. It might be possible to apply the argument
of [39].

Remark 3.3. As for the classifying space BΓC
n for complex analytic

Γ structures with terivialized normal bundles, there are no progress after
the works by Landweber, Adachi and Haefliger–Sithananthan. In [38],
the connectivity of BΓC

n was wrongly stated. It should read BΓC
n is

n-connected in general by Landweber ([23]), Adachi ([1]) and BΓC
1 is

2-connected by Haefliger–Sithananthan ([17]).

§4. Uniform perfectness

For a perfect group G, every element g can be written as a product of
commutators. The least number of commutators to write g is called the
commutator length of g and written as cl(g). A group G is uniformly
perfect if cl is a bounded function. The least bound cw(G) is called
the commutator width. After the result by Burago–Ivanov–Polterovich
([6]), we showed that for a compact n-dimensional manifold Mn which
admits a handle decomposition without handles of the middle index
n/2, cw(Diffr(Mn)0) � 3 if n is even, cw(Diffr(Mn)0) � 4 if n is odd
(r �= n + 1). For a compact 2m-dimensional manifold M2m (2m � 6),
cw(Diffr(M2m)0) < ∞ (r �= 2m+ 1) ([41]).

Remark 4.1. The upper bounds 3 and 4 above are better than
those in Theorem 1.1 (2) and (3) of [41] by one. This is shown by
adding a simple observation in the proof in [41]. We use a self indexing
Morse function and the stratification by stable manifolds and that of
unstable manifolds for the gradient flow. In the proof of Theorem 1.1
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(2) of [41], with respect to the stratified sets P (m−1) and Q(m−1), we
write f = g ◦ h with g ∈ Diffc(M

2m \ k(Qm−1))0 and h ∈ Diffc(M
2m \

P (m−1))0, where the support of k ∈ Diffc(M
2m \ P (m−1))0 is contained

in a small neighborhood of Q(m−1). Then by the argument of Lemma
2.5 of [41], there is a diffeomorphism F ∈ Diffc(M

2m \ k(Qm−1)) such
that F (supp(g)) ∩ P (m−1) = ∅. Then f = [g, F ] ◦ (F ◦ g ◦ F−1) ◦ h
and (F ◦ g ◦ F−1) ◦ h ∈ Diffc(M

2m \ P (m−1))0. Since F ◦ g ◦ F−1 ◦ h
can be written as a product of two commutators by Theorem 1.1 (1) of
[41], f can be written as a product of three commutators. The proof of
Theorem 1.1 (3) of [41] can be modified in a similar way.

Problem 4.2. Estimate cw(Diffr(T 2)0), cw(Diffr(CP 2)0),
cw(Diffr(S2 × S2)0), . . . .

For the group of homeomorphisms, we managed to prove that for
the spheres Sn and the Menger compact space μn, cw(Homeo(Sn)0) = 1
and cw(Homeo(μn)) = 1 ([42]). It is probably true that for the Menger-
type compact space μn

k , cw(Homeo(μn
k )+) = 1, where + means a certain

condition concerning the orientation. The idea of proof comes from
the fact that the typical homeomorphism of such a space is the one
with one source and one sink and that the conjugacy class of such a
homeomorphism should be unique.

Problem 4.3. Find other examples of groups of commutator
width one.

In 1980, Fathi showed that for the group Homeoμ(M
n)0 of homeo-

morphisms preserving a good measure μ of Mn (n � 3), the kernel
of the flux homomorphism Homeoμ(M

n)0 → Hn−1(Mn;R)/Γ is per-
fect, where Γ is the image of π1(Homeoμ(M

n)0) under the flux homo-
morphism defined on the universal covering group of Homeoμ(M

n)0
([11]). It seems that he proved that the kernel is uniformly perfect
(at least he proved it for the spheres). For the group Diffvol(M

n)0 of
volume preserving diffeomorphisms, Thurston showed that the kernel of
the flux homomorphism is perfect ([3], cf. [4] §5.1 p. 126).

Problem 4.4. Prove or disprove that Diffvol(S
n)0 (n � 3) is uni-

formly perfect.

Burago–Ivanov–Polterovich gave the notion of norms on the group
and studied its properties ([6]). ν : G → R�0 is a (conjugate invariant)

norm if it satisfies (i) ν(1) = 0; (ii) ν(f) = ν(f−1); (iii) ν(fg) � ν(f) +
ν(g); (iv) ν(f) = ν(gfg−1) and (v) ν(f) > 0 for f �= 1. For a symmetric
subset K ⊂ G normally generating G, any f ∈ G can be written as
a product of conjugates of elements of K and the function giving the
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minimum number qK(f) of the conjugates is a norm. Then cl(f) =
qK(f) for K being the set of single commutators.

For the groups of diffeomorphism with the fragmentation property,
the perfectness implies the simplicity (cf. [4]). For a simple group G,
the norm q{g,g−1} : G → Z�0 is defined for g ∈ G. If {q{g,g−1}}g∈G\{1}
is bounded then G is said to be uniformly simple. In other words, for
any f ∈ G and g ∈ G \ {1}, f is written as a product of a bounded
number of conjugates of g or g−1. We have a distance function d on the
set {C{g,g−1}}g �=1 of symmetrized nontrivial conjugate classes:

d(C{f,f−1}, C{g,g−1}) = logmax{q{f,f−1}(g), q{g,g−1}(f)}.
For simple groups which are not uniformly simple, for example,
Diffvol,c(R

n)0 (n � 3), A∞, etc., it is interesting to study the metric d.
For the infinite alternative group A∞, Hiroki Kodama and Yoshifumi
Matsuda showed that the set of symmetrized nontrivial conjugate
classes of A∞ \ {id} with the metric d is quasi-isometric to the half line
([22]). The quasi-isometry is given by the logarithm of cardinality of
the support. (Added in proof: Kodama put the result on arXiv [21].)

A real valued function φ on a group G is a homogeneous quasi-
morphism if (g1, g2) �→ φ(g2)− φ(g1g2) + φ(g1) is bounded and φ(gn) =
nφ(g) for n ∈ Z. Put

D(φ) = sup{|φ(g2)− φ(g1g2) + φ(g1)| | (g1, g2) ∈ G×G}.
Then Bavard’s duality says that

scl(g) =
1

2
sup

φ∈Q(G)/H1(G;R)

φ(g)

D(φ)
,

where scl(g) = limn→∞
cl(gn)

n (stable commutator length) and Q(G) is
the real vector space of homogeneous quasimorphisms on G ([5], see also
[7] p. 35). Of course, for groups with infinite commutator width, we
need to study their stable commutator length function. If the commuta-
tor width of a group G is infinite, G is not uniformly simple, hence the
distance function d is unbounded. We might have more information on
the distance d by looking at relative quasimorphisms. For a symmetric
subset K ⊂ G normally generating G, let Q(G,K) be the real vector
space of homogeneous quasimorphisms on G which vanishes on K. If
there is a nontrivial element φ ∈ Q(G,K) (for example, if dimQ(G)
is larger than the order of K), then φ(f) � (qK(f) − 1)D(φ) and
qK is not bounded. Entov–Polterovich ([10]), Gambaudo–Ghys ([12]),
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Ishida ([20]), and others have shown that Q(Diffvol(D
2, rel ∂D2)) is in-

finite dimensional, and hence as they remarked, the kernel of the Calabi
homomorphism Diffvol(D

2, rel ∂D2) → R is not uniformly simple.

Problem 4.5. For the kernel of the Calabi homomorphism
Diffvol(D

2, rel ∂D2) → R, show that {C{g,g−1}}g �=1 with metric d is
not quasi-isometric to the half line.

As for the group Homeovol(D
2, rel ∂D2), despite attempts by many

people, its simplicity is still an open problem. The following problem
seems to be the first step to show it.

Problem 4.6. Using area preserving homeomorphisms with the
Calabi invariant being infinity, show that an area preserving diffeo-
morphism with nontrivial Calabi invariant is a product of commutators.
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isotopes à l’identité, du tore de dimension n, C. R. Acad. Sci. Paris Sér.
A-B 273 (1971), A232–A234.

[19] M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du
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