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Quantum Lakshmibai-Seshadri paths
and root operators
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Anne Schilling and Mark Shimozono

Abstract.

We give an explicit description of the image of a quantum LS
path, regarded as a rational path, under the action of root operators,
and show that the set of quantum LS paths is stable under the action
of the root operators. As a by-product, we obtain a new proof of the
fact that a projected level-zero LS path is just a quantum LS path.

§1. Introduction.

In our previous papers [NS1], [NS3], [NS2], we gave a combina-
torial realization of the crystal bases of level-zero fundamental repre-
sentations W (zw;), i € Iy, and their tensor products &), ; W (w;)®™,
m; € Zx, over a quantum affine algebra U, (g), by using projected level-
zero Lakshmibai-Seshadri (LS for short) paths. Here, for a level-zero
dominant integral weight A\ = . 1, Mi@i, with w@; the i-th level-zero
fundamental weight, the set of projected level-zero LS paths of shape
A, which is a “simple” crystal denoted by B())g, is obtained from the
set B(A) of LS paths of shape A (in the sense of [L2]) by factoring out
the null root 0 of an affine Lie algebra g. However, from the nature of
the above definition of projected level-zero LS paths, our description of
these objects in [NS1], [NS3], [NS2] was not as explicit as the one (given
in [L1]) of usual LS paths, the shape of which is a dominant integral
weight.

Recently, in [LNSSS1], [LNSSS2], we proved that a projected level-
zero LS path is identical to a certain “rational path”, which we call a
quantum LS path. A quantum LS path is described in terms of the (par-
abolic) quantum Bruhat graph (QBG for short), which was introduced
by [BFP] (and by [LS] in the parabolic case) in the study of the quantum
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cohomology ring of the (partial) flag variety; see §3.1 for the definition
of the (parabolic) QBG. It is noteworthy that the description of a quan-
tum LS path as a rational path is very similar to the one of a usual LS
path given in [L1], in which we replace the Hasse diagram of the (par-
abolic) Bruhat graph by the (parabolic) QBG. Also, remark that the
vertices of the (parabolic) QBG are the minimal-length representatives
for the cosets of a parabolic subgroup W of the finite Weyl group Wy,
though we consider finite-dimensional representations W (w;), ¢ € Iy, of
the quantum affine algebra U, (g).

The purpose of this paper is to give an explicit description, in terms
of rational paths, of the image of a quantum LS path (= projected level-
zero LS path) under root operators in a way similar to the one given in
[L1]; see Theorem 4.1.1 for details. This explicit description, together
with the Diamond Lemmas [LNSSS1, Lemma 5.14], for the parabolic
QBG, provides us with a proof of the fact that the set of quantum LS
paths (the shape of which is a level-zero dominant integral weight \) is
stable under the action of the root operators.

As a by-product of the stability property above, we obtain another
(but somewhat roundabout) proof of the fact that a projected level-
zero LS path is just a quantum LS path; see [LNSSS1], [LNSSS2] for
a more direct proof. This new proof is accomplished by making use of
a characterization (Theorem 2.4.1) of the set B()\). of projected level-
zero LS paths of shape A in terms of root operators, which is based
upon the connectedness of the (crystal graph for the) tensor product
crystal @;cz B(@i)g™ =~ B(A)e; recall from [NS1], [NS3], [NS2] that
for a level-zero dominant integral weight A = >, ; m;w;, the crystal
B(A)a decomposes into the tensor product @), B(;)5™ of crystals,
and that B(w;)q for each i € Iy is isomorphic to the crystal basis of the
level-zero fundamental representation W (w;).

This paper is organized as follows. In §2, we fix our basic notation,
and recall some fundamental facts about (level-zero) LS path crystals.
Also, we give a characterization (Theorem 2.4.1) of projected level-zero
LS paths, which is needed to obtain our main result (Theorem 4.1.1).
In §3, we recall the notion of the (parabolic) quantum Bruhat graph,
and then give the definition of quantum LS paths. In §4, we first state
our main result. Then, after preparing several technical lemmas, we
finally obtain an explicit description (Proposition 4.2.1) of the image of
a quantum LS path as a rational path under the action of root operators.
Our main result follows immediately from this description, together with
the characterization above of projected level-zero LS paths.
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§2. Lakshmibai-Seshadri paths.

2.1. Basic notation.

Let g be an untwisted affine Lie algebra over C with Cartan matrix
A = (a;5);, jer; throughout this paper, the elements of the index set I
are numbered as in [Kac, §4.8, Table Aff 1]. Take a distinguished vertex
0 € I as in [Kac], and set Iy := I\ {0}. Let h = (EBjel Ca) &Cd denote
the Cartan subalgebra of g, where ITV := {a]V }jeI C b is the set of simple
coroots, and d € b is the scaling element (or degree operator). Also, we
denote by IT := {aj}jel C b* := Homg(h, C) the set of simple roots, and
by Aj € b*, j € I, the fundamental weights; note that a;(d) = 6,0 and
Aj(d)=0forj el Letd =3, a;a; € andc= 3", afa) €h
denote the null root and the canonical central element of g, respectively.
The Weyl group W of g is defined by W := (r; | j € I) C GL(h*), where
r; € GL(h*) denotes the simple reflection associated to a; for j € I,
with £ : W — Zx>( the length function on W. Denote by A, the set of
real roots, i.e., A, := WII, and by A} C A, the set of positive real
roots; for § € Ay, we denote by 8V the dual root of 3, and by rg € W
the reflection with respect to 8. We take a dual weight lattice PV and
a weight lattice P as follows:
(2.1.1)

PY=|za) |©Zd ch and P=|EDHZA; | ©Z5Ch".
jel jeI

It is clear that P contains Q := ;; Za;, and that P = Homgz(P",Z).

Let Wy be the subgroup of W generated by 7, j € Iy, and set
AO = Are N @jéfo ZO[]‘, Aar = Are N ®jelo Zzoaj, and Aa = —Aar
Note that Wy (resp., Ag, Al, Ay ) can be thought of as the (finite) Weyl
group (resp., the set of roots, the set of positive roots, the set of negative
roots) of the finite-dimensional simple Lie subalgebra corresponding to
Iy. Denote by 6 € Aj the highest root for the (finite) root system Ap;
note that ag = —60 + § and oy = —60Y + c.
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Definition 2.1.1.

(1) An integral weight A € P is said to be of level zero if (), ¢) = 0.
(2) An integral weight A € P is said to be level-zero dominant if
(A, ¢) =0, and (\, af) >0 for all j € Iy =T\ {0}.

Remark 2.1.2. If X € P is of level zero, then (X, ogf) = — (X, 0Y).

For each 7 € Iy, we define a level-zero fundamental weight w; € P
by

(212) w; ‘= Az - a;/A().

The w; for ¢ € Iy is actually a level-zero dominant integral weight;
indeed, (@;, ¢) = 0 and (w;, o) = & ; for j € Io.

Let cl : h* — h*/C4 be the canonical projection from h* onto h*/Cd,
and define P, and Py by

(2.1.3)  Pg:=cl(P @ch and Py := @Za cpPY.
Jjel Jjel

We see that P.) & P/7Z4, and that P can be identified with Homg (P

cl»y Z)
as a Z-module by

(2.1.4) (cl(A), h) = (\, h) for A€ P and h € Py.

Also, there exists a natural action of the Weyl group W on h*/Cé in-
duced by the one on h*, since W§ = §; it is obvious that w o cl = clow
for all w € W.

Remark 2.1.3. Let A € P be a level-zero integral weight. It is easy
to check that cl(WA) = Wy cl(A) (see the proof of [NS4, Lemma 2.3.3]).
In particular, we have cl(rg\) = rgcl(\) since ag = —0 + ¢ and a =
-0V +c.

For simplicity of notation, we often write /3 instead of cl(f) € Pq

for € Q = EBjeI Zaj; note that ag = —6 in P since ap = —0 + 6 in
P.

2.2. Paths and root operators.

A path with weight in Py = cl(P) is, by definition, a piecewise-
linear, continuous map 7 : [0,1] — R ®; Py such that 7(0) = 0 and
m(1) € P,. We denote by P the set of all paths with weight in P, and
define wt : P — P by

(2.2.1) wt(n) :==n(1l) forn € Py.
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For n € P, and j € I, we set

H(t) == (n(t), af) for t €[0,1],

(2.2.2)
m!] = min{H]'(t) | t € [0,1]}.

For each j € I, let PY).  denote the subset of P consisting of all paths

cl,int
1) for which all local minima of the function HY'(t) are integers; note that

if n € PY). | then mj € L<o and H}'(1) —m] € Z>q. We set

cl, int?
— @ .
]Pcl,int = n Pcl, int?
jeI

see also [NS2, §2.3]. Here we should warn the reader that the set Pey int
itself is not necessarily stable under the action of the root operators e;
and f; for j € I, defined below.

Now, for j € I and 7 € ng)mt, we define e;n as follows. If m] =0,
then e;n := 0, where 0 is an additional element not contained in Py. If

m;’ < —1, then we define e;n € P by

n(t) if 0<t<to,
(2:2.3) (e5m)(t) :=  n(to) +r;(n(t) —n(te)) if to <t <ty
n(t) + a; if 4 <t <1,
where we set
t :=min{t € [0,1] | H}'(t) = m[},

(2.2.4) ) )
to := max{t € [0,¢] | Hj( )=m]+ 1};

note that the function H;’(t) is strictly decreasing on [to,t1] since ) €
P(])

ol int- Because

HY(t) if 0 <t <ty,

e;n _ .
H'(t) = 2(m] +1) — HI(t) if to <t <ty

H)(t) +2 if t1 <t<1,

it is easily seen that e;n € PY. and mjm

ol int? = m/ + 1. Therefore, if we
set

(2.2.5) gj(n) :=max{n >0|efn#0}
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forj e Tandn € IP’gl)mt, then £;(n) = —m] (see also [L2, Lemma 2.1 c)]).

By convention, we set e;0 := 0 for all j € I.

Remark 2.2.1. Assume that n € IP’CI it Satisfies the condition that
mg < —1 and (n(t), ¢) =0 for all ¢t € [0, 1] Then we have

n(t) if 0<t<to,
(2.2.6) (eon)(t) = ¢ nto) +ra(n(t) —n(te)) if to <t <ty
n(t) — 0 if t <t<1,

where to and t; are defined by (2.2.4) for j = 0.

Similarly, for j € I and n € P‘(:'f?int, we define f;n as follows. If

H!(1) —mj] = 0, then f;n := 0. If H'(1) —m] > 1, then we define
fjn € Py by

n(t) if 0<t<to,
(2.2.7) (fim)(@) :=  nlto) +ri(n(t) —nlto)) if to <t <ty,
T](t)—Otj if t1§t§1,

where we set
to = max{t € [0,1] | H;’(t) = m?}7

(2.2.8) _ ) )
ty == min{t € [to, 1] | H}'(t) = m] + 1};

note that the function H;’(t) is strictly increasing on [to, 1] since n €
]Py(J)

o int- Because

H(t) if 0<t<to,

fﬂl _ n n .
Hj (t)— Qmj—Hj(t) if t0§t§t1,

H(t) -2 if t <t<1,

it is easily seen that f;n € PY and mfj" = m;? — 1. Therefore, if we

set
(2.2.9) @j(n) :=max{n >0]| fin#0}

foryeIandne]P’() then ¢;(n) = HJ (1) -

cl, int>

cl, 1nt7

(see also [L2, Lemma

m"
m;
el

2.1¢)]). By convention, we set f;0 := 0 for all j
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Remark 2.2.2. Assume that n € Pg(l)’)im satisfies the condition that
HJ(1) —mg > 1 and (n(t), ¢) = 0 for all ¢ € [0,1]. Then we have

n(t) if 0<t<t,
(2:2.10) (fom)(t) = § n(to) +ro(n(t) —n(to)) if to <t <t,
n(t) +0 if 4, <t<1,

where to and ¢ are defined by (2.2.8) for j = 0.

We know the following theorem from [L2, §2] (see also [NS2, Theo-
rem 2.4]); for the definition of crystals, see [Kasl, §7.2] or [HK, §4.5] for
example.

Theorem 2.2.3.
(1) Letjel, andne€ P(j,)int- If ejn # 0, then fije;n =n. Also, if

cl
fin # 0, then e; fin =n.
(2) Let B be a subset of Pey,iny such that the set B U {0} is stable
under the action of the root operators e; and f; for all j € I.
The set B, equipped with the root operators e;, f; for j € I and
the maps (2.2.1), (2.2.5), (2.2.9), is a crystal with weights in

P,.

Remark 2.2.4. In §2.3, we will give a typical example of a subset B of
P ing such that BU{0} is stable under the action of the root operators.

For each path n € P; and N € Z>, we define a path Nn € P by:
(Nn)(t) = Nn(t) for t € [0,1]; by convention, we set NO := 0 for all
N € Z>i. It is easily verified that if n € ]P’fi)int
NpePY.  forall N € Zs,.

cl, int

for some j € I, then

Lemma 2.2.5 (see [L2, Lemma 2.4] and also [NS2, Lemma 2.5)).
Let j € I. For everyn € pY) . and N € Z>1, we have

cl,in

j(Nn) = Nej(n) and  ¢;(Nn) = Ne;(n),
N(ejn) =l (Nn) and N(f;n) = f; (Nn).

For j € I and n € Pg)int, we define e}"**n := ejj(n)n e PY). and

cl, int
firen = f;-p j(n)n € Pg}int. The next lemma follows immediately from
Lemma 2.2.5.
Lemma 2.2.6. Let j € I. For everyn € IP’g)int and N € Z>1, we

have e***(Nn) = N(e***n) and fj***(Nn) = N(fj**n).
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Now, for n1, n2, ..., 7y € Pe, define the concatenation 7y 79 % - - - *
M € Per by
(1 7 %+ ) (t Zm +p(nt —k+1)
(2.2.11)
/4;—1 k
for —— <t<—and 1<k<n
n n

For a subset B of Py and n € Z>,, we set B*™ := {171 K T)g ko x 1)y |
nkGIB%forlgkgn}.

Proposition 2.2.7 (see [L2, Lemma 2.7], [NS2, Proposition 1.3.3]).
Let B be a subset of Pqi iny such that the set BU {0} is stable under the
action of the root operators e; and f; for all j € I; note that B is a
crystal with weights in Py by Theorem 2.2.5.

(1) For every n € Z>1, the set B*" U {0} is stable under the root
operators e; and f; for all j € I. Therefore, B*" is a crystal
with weights in Py by Theorem 2.2.5.

(2) For every n € Z>1, the crystal B*™ is isomorphic as a crystal
to the tensor product B :=B® --- @B (n times), where the
isomorphism is given by: My xNo k- kN > N QN2 R+ Ny,
formy xmg x - xm, € B,

2.3. Lakshmibai-Seshadri paths.

Let us recall the definition of Lakshmibai-Seshadri (LS for short)
paths from [L2, §4]. In this subsection, we fix an integral weight A € P,
which is not necessarily dominant.

Definition 2.3.1. For pu, v € WA, let us write p > v if there exists
a sequence [, = g, f41, - - -, Un = v of elements in WA and a sequence
Bis ..., Bn € Af of positive real roots such that puy = rg, pup—1 and
(pr—1, BY) <0 for k=1,2,...,n. If u> v, then we define dist(p,v)
to be the maximal length n of all possible such sequences pg, 1, - .., fn
for (u,v).

Definition 2.3.2. For p, v € WA with g > v and a rational number
0 < o0 < 1, a o-chain for (u,v) is, by definition, a sequence p = g >
1 > -+ > p, = v of elements in WA such that dist(ug—1,0r) = 1 and
o(pk—1, BY) € Z<o for all k =1, 2, ..., n, where [ is the positive real
root such that rg, ptr—1 = fir.

Definition 2.3.3. An LS path of shape A € P is, by definition, a
pair (v; o) of a sequence v : vy > vy > -+ > v, of elements in WA
and a sequence g : 0 = 09 < 01 < --- < 04 = 1 of rational numbers
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satisfying the condition that there exists a oj-chain for (v, vg41) for
each k =1,2,..., s — 1. We denote by B()\) the set of all LS paths of
shape .

Let # = (v1, vo, ..., Vs; 00, 01, ..., 05) be a pair of a sequence
vy, Vo, ..., Us of integral weights with vy # vy for 1 <k <s—1anda
sequence 0 = 0g < 01 < -+ < 05 = 1 of rational numbers. We identify m
with the following piecewise-linear, continuous map 7 : [0, 1] = R ®y P:
(2.3.1)

k—1
W(t) = Z(O’l - O’l_l)l/l + (t — Uk—l)l/k for Ok—1 S t § Ok, 1 S k S S.
=1

Remark 2.3.4. It is obvious from the definition that for each v € WA,
7, = (v;0,1) is an LS path of shape A, which corresponds (under
(2.3.1)) to the straight line m,(t) = tv, t € [0, 1], connecting 0 to v.

For each 7 € B(X), we define cl(7) : [0,1] = R®yz Py by: (cl(m))(t) =
cl(n(t)) for ¢t € [0,1]. We set

B(A)er := {cl(m) | 7 € B(A)}.

We know from [NS2, §3.1] that B(\)q is a subset of Pg ine such that
B(A)a U {0} is stable under the action of the root operators e; and f;
for all j € I. In particular, B(\) is a crystal with weights in Py by
Theorem 2.2.3.

Here we recall the notion of simple crystals. A crystal B with weights
in P, is said to be regular if for every proper subset J C I, B is isomor-
phic, as a crystal for Uy (gs), to the crystal basis of a finite-dimensional
U,(g)-module, where g is the (finite-dimensional) Levi subalgebra of g
corresponding to J (see [Kas2, §2.2]). A regular crystal B with weights
in P is said to be simple if the set of extremal elements in B coincides
with a W-orbit in B through an (extremal) element in B (cf. [Kas2,
Definition 4.9]).

Remark 2.3.5.
(1) The crystal graph of a simple crystal is connected (see [Kas2,
Lemma 4.10]).

(2) A tensor product of simple crystals is also a simple crystal (see
[Kas2, Lemma 4.11]).

We know the following theorem from [NS1, Proposition 5.8], [NS3,
Theorem 2.1.1 and Proposition 3.4.2], and [NS2, Theorem 3.2].
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Theorem 2.3.6.

(1)  For each i € Iy, the crystal B(w;)q is isomorphic, as a crys-
tal with weights in P, to the crystal basis of the level-zero
fundamental representation W (w;), introduced in [Kas2, The-
orem 5.17], of the quantum affine algebra U,(g). In particular,
B(w;)a is a simple crystal.

(2) Let iy, ia, ..., 1, be an arbitrary sequence of elements of Iy
(with repetitions allowed), and set \ := w;, + @i, + - + @,
The crystal B(X)a is isomorphic, as a crystal with weights in
Py, to the tensor product B(w;, ) a®@B(w;, )a®- - -@B(w;, )a. In
particular, B(\)e is also a simple crystal by Remark 2.3.5(2).

Remark 2.3.7. Let A € >
gral weight.

iclo Z>ow; be a level-zero dominant inte-

(1) Itis easily seen from Remark 2.3.4 that n,(t) := tu is contained
in B(A)q for all u € cl(WA) = Wy cl(A).

(2)  We know from [NS2, Lemma 3.19] that 7y € B(\)a is an
extremal element in the sense of [Kas2, §3.1]. Therefore, it fol-
lows from [AK, Lemma 1.5] and the definition of simple crystals

that for each € B(X)ql, there exist ji, jo, ..., jp € I such that
e R = oy

Also, by the same argument as for [AK, Lemma 1.5], we can

show that for each n € B(\)a, there exist kq, ko, ..., kg € T
such that
ke S S = e

Lemma 2.3.8. Let \ € Zielo Z>ow; be a level-zero dominant in-
tegral weight, and let n € Zx1. Then, the set B(N\)X' is identical to
B(TL)\)C].

Proof. First, let us show the inclusion B(A)}" D B(nA)a. It is
easily seen that the element 7y * - -+ % 7a(x) € B(A)X" is identical to
Nei(nn)- Hence it follows that the crystal B())}" contains the connected
component containing 7,y € B(nA)c1. Here we recall that the crystal
B(n\)q is simple (see Theorem 2.3.6), and hence connected (see Re-
mark 2.3.5(1)). Therefore, the connected component above is identical
to B(nA)q. Thus, we have shown the inclusion B(A)X" D B(nA)q.

Now, it follows from Proposition 2.2.7 that B(\)" is isomorphic as

a crystal to the tensor product B(A\)5™. Therefore, B(A)* = B(A\)S™ is
a simple crystal by Theorem 2.3.6 (2) and Remark 2.3.5(2), and hence
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connected by Remark 2.3.5(1). From this, we conclude that B(\)}" =
B(nA), as desired. Q.E.D.

2.4. Characterization of the set B()\). of paths.

Theorem 2.4.1. Let A\ € >, Z>ow; be a level-zero dominant
integral weight. If a subset B of Pej ing satisfies the following two condi-
tions, then the set B is identical to B(X)q.

(a) The set BU{0} is stable under the action of the root operators

fj foralljel.

(b)  For each n € B, there exist a sequence py, pa, ..., jis of ele-

ments in (W) = Wycl(N) and a sequence 0 = op < 01 <
- < o0 =1 of rational numbers such that
(2.4.1)

k-1
201—01 D+ (t — ok for oy <t <oy, 1 <k <s.
=1

Remark 2.4.2. The equality B = B(\)¢ also holds when we replace
the root operators f; for j € I by e; for j € I in the theorem above; for
its proof, simply replace f;’s by e;’s in the proof below.

Proof of Theorem 2.4.1. First, let us show the inclusion B C B(\).;.
Fix an element ) € B arbitrarily, and assume that 7 is of the form (2.4.1).
Take N € Z>; such that No,, € Z for all 0 < u < s. Then, the element
N1 € Py, int is of the form:

NT]: 77/11*"‘*77/41 *77#2*...*17“2*...* nﬂs*.“*nus
—_———

N(o1 — 0g)-times  N(o2 — o1)-times N(os — 0s—1)-times

Since 7, € B(A)a for every p € cl(WA) (see Remark 2.3.7 (1)), we have
Nn € B\, and hence Nn € B(NA)y by Lemma 2.3.8. Hence, by
Remark 2.3.7, there exists ki, kg, ..., k4 € I such that

[ fmaxflgllax(Nn) = Tcl(NA)-

Also, by using Lemma 2.2.6 and condition (a) repeatedly, we deduce
that
I S (Ng) = NP S ).

Combining these equalities, we obtain N (f{® ... flx fii%n) = n)ny).
Since neyva) = Nei(n), we get

(242) max : f}?lax ;?Iaxﬁ = Tlel(N) € IB%()‘)cl
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Therefore, by Theorem 2.2.3(1), n = 62116222“'62{;7761(/\) € B(\)q for
some cy, Cg, ..., ¢q € Z>o. Thus we have shown the inclusion B C
B(A)c. In addition, we should remark that 7y € B by (2.4.2) and
condition (a).

Next, let us show the opposite inclusion B D B(A)q. Fix an element

7' € B(\)q arbitrarily. By Remark 2.3.7, there exists ji, jo, ..., jp € I
such that

e;l;ax . e;r;axe;?axnl _ ncl()\)-
Therefore, by Theorem 2.2.3(1), ' = J?'lll fj?'lj e f;i:ncl()\) for some
di, da, ..., d, € Z>q. Since 1) € B as shown above, it follows from
condition (a) that 7" € B. Thus we have shown the inclusion B D B(\),
thereby completing the proof of the theorem. Q.E.D.

§3. Quantum Lakshmibai-Seshadri paths.

3.1. Quantum Bruhat graph.
In this subsection, we fix a subset J of Iy. Set

Wy = (rj|jeJ)yCW.

It is well-known that each coset in Wy/W, has a unique element of
minimal length, called the minimal coset representative for the coset;
we denote by W C Wj the set of minimal coset representatives for
the cosets in Wo/Wy, and by |- | = |-];: Wy — W = Wy/W the
canonical projection. Also, we set Ay := AgN (EBjGJZaj), Af =

A(jf N (EBjGJZaj), and p:= (1/2) ZaeAg a, py = (1/2) ZaeA? Q.

Definition 3.1.1. The (parabolic) quantum Bruhat graph is the
(A$ \ AT)-labeled, directed graph with vertex set Wy and (AJ \ A¥T)-
labeled, directed edges of the following form: |wrpg| Loy for w e wy
and B € Af \ AT such that either

(1) (lwrg]) =L(w) + 1, or

(i) L(lwrg]) = Lw) =2(p = ps, BY) + 1;
if (i) holds (resp., (ii) holds), then the edge is called a Bruhat edge (resp.,
a quantum edge).

Remark 3.1.2. If w € W and B € Af \ A} satisfy the condition
that £(|wrg]) = £(w) + 1, then wrg € Wy. Indeed, since £(wrg) >
L(lwrg]) = £(w)+1, it follows that wrs is greater than w in the ordinary
Bruhat order. Therefore, by [BB, Proposition 2.5.1], |wrg] is greater
than or equal to |w| = w in the ordinary Bruhat order. Since ((|wrg]) =
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{(w)+1 by the assumption, there exists v € A such that |wrg| = wr,.
Now, we take a dominant integral weight A € P, with respect to the
finite root system Ag such that {j € Iy | (A, a}) = 0} = J; note that
(A, BY) > 0since B € AZ\AT. Then we have wrgA = |wrg] A = wr, A,
and hence rgA = ryA. It follows that (A, 8V)8 = (A, vV)v. Since 3
and 7 are both contained in A7, and since (A, 8V) > 0, we deduce
that § = v. Thus, we obtain |wrg] = wry = wrg, which implies that
wrg € Wg.

Remark 3.1.3. We know from [LS, Lemma 10.18] that the condition
(ii) above is equivalent to the following condition:
(it)  (lwrs)) = £w) — 2p — pg, 8Y) + 1 and Lwrg) = Ew) -
2(p, BY) + 1.

Let z, y € Wy. A directed path d from y to x in the parabolic quan-

tum Bruhat graph is, by definition, a pair of a sequence wg, wy, ..., wy,
of elements in W/ and a sequence 1, B2, ..., B, of elements in AS’ \A'(']r
such that
(3.1.1) d:x:wog—lwl(ﬁ—z--wﬁiwn:y.
A directed path d from y to z is said to be shortest if its length n
is minimal among all possible directed paths from y to x. Denote by
£(y, x) the length of a shortest directed path from y to « in the parabolic
quantum Bruhat graph.

3.2. Definition of quantum Lakshmibai-Seshadri paths.

In this subsection, we fix a level-zero dominant integral weight A\ €
> i1, Z>0wi, and set A := cl(A) for simplicity of notation. Also, we set

J:Z{jEI()|<A,Oé}/>:O}CIo.

Definition 3.2.1. Let z,y € Wy, and let 0 € Q be such that
0 < o < 1. A directed o-path from y to z is, by definition, a directed

path
x:woﬁwlﬁwg&---?—"wn:y
from y to z in the parabolic quantum Bruhat graph satisfying the con-
dition that
ol\, By E€Z forall<k<n.

Definition 3.2.2. Denote by B(A)a (resp., B(A)q) the set of all
pairs n = (z; o) of a sequence x : Ty, Ta, ..., T, of elements in W,
with xp # zpy1 for 1 <k < s—1, and a sequence ¢ : 0 = 0p < 01 <
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- < 0g = 1 of rational numbers satisfying the condition that there
exists a directed og-path (resp., a directed oy-path of length ¢(x41, z1))
from xpy1 to zy for each 1 < k < s — 1; observe that @(A)Cl - @()\)Cl.
We call an element of ]E%(A)Cl a quantum Lakshmibai-Seshadri path of
shape A.

Let n = (x4, z2, ..., xs; 00, 01, ..., Os) be a rational path, that is,
a pair of a sequence 1, T3, ..., x5 of elements in Wy, with x), # zx11
for1 <k <s—1, and a sequence 0 = og < 01 < -+ < g5 = 1 of rational
numbers. We identify 1 with the following piecewise-linear, continuous
map 7 :[0,1] = R®gz Py (cf. (2.3.1)):

(3.2.1)
k—1

n(t) = Z(Ul*Ul—l)l’lA+(t*O'k_1)IkA for op_1 <t <o, 1<k<s;
=1

note that the map Wy — WoA, w — wA, is bijective. We will prove
that under this identification, both B(\).; and B(M)¢ can be regarded as
a subset of P¢ int (see Proposition 4.1.12). Furthermore, we will prove

that both of the sets B(A)¢ U {0} and B(A)q U {0} are stable under the
action of the root operators (see Proposition 4.2.1).

§4. Main result.

4.1. Statement of the main result and some technical lem-
mas.

In this subsection and the next subsection, we fix a level-zero dom-

inant integral weight A € >, Z>ow;. Set A :=cl()), and

J={jel| A of)=0}CI.
The following theorem is the main result of this paper; it is obtained as
a by-product of an explicit description, given in §4.2, of the image of a

quantum LS path as a rational path under the action of root operators
on quantum LS paths.

Theorem 4.1.1. With the notation and setting above, we have
B(A)e = B(A\)a = B(A)al.

In view of Theorem 2.4.1, in order to prove Theorem 4.1.1, it suf-
fices to prove that both E(A)cl and @()\)01 are contained in Pey in (see
Proposition 4.1.12 below), and that both of the sets B(A)q U {0} and
B(A)e U {0} are stable under the action of the root operators f; for
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all j € I (see Proposition 4.2.1 below). To prove these, we need some
lemmas.

Lemma 4.1.2 ([LNSSS1, Proposition 5.11)). Let w € Wy . If

-1
w0 € Ay, then there exists a quantum edge |row| 2w from
w to |rew] in the parabolic quantum Bruhat graph.

Lemma 4.1.3 ([LNSSS1, Proposition 5.10 (1) and (3)]). Let w €
W¢ and j € Iy. If w™ta; € Ag\ Ay, then rjw € Wy.

Lemma 4.1.4. Letw € Wy and 8 € AJ\AT be such that |wrg| £
w. Let j € I.

(1) If (wA, af) > 0 and wp # +a;, then (wrgh, o) > 0. Also,

both rj|wrg] and rjw are contained in W', and rj|wrg] £
Tiw.

(2)  If (wrgA, o)) <0 and wf # +ay, then (wA, o) < 0. Also,
both rj|wrg] and rjw are contained in W, and rj|wrg] £
Tiw.

(3)  If (wrgA, o

(4)  If (wrgA, o

Proof. (1) Since (wA, o) > 0, we see that w™'a; € AT\ AT By

) <0 and (wA, of) >0, then wf = +a;.
><Oand<wAa>>0 then wf = +a;.

S8

[LNSSS1, Proposition 5.10 (3)], there exists a Bruhat edge rjw <—'
w in the parabolic quantum Bruhat graph, with rjw € Wy 1If the

edge |wrg] £ w is a Bruhat (resp., quantum) edge, then it follows
from the left diagram of (5.3) (resp., (5.4)) in part (1) (resp., part (2))
of [LNSSS1, Lemma 5.14] that r;|wrg| = [rjwrg|] € Wy, and that

there exists a Bruhat (resp., quantum) edge r;|wrg] L rjw and a

lwrg] oy

Bruhat edge r;|wrg| = ¢— 7 |wrg] in the parabolic quantum Bruhat
graph. In particular, we have |wrg] ~ta; € A\ A, which implies that
(wrgA, o) > 0. This proves part (1).

(2) Since (wrgA, af) < 0, we see that [wrg| 'a; € Ay \ AJ. By
[LNSSSI, PI‘OpOSlthH 5.10(1)], there exists a Bruhat edge

—lwrg| ey

lwrg] ' 7j|wrg] in the parabolic quantum Bruhat graph, with

rilwrg] € Wg. If the edge |wrg] £ w is a Bruhat (resp., quantum)
edge, then it follows from the right diagram of (5.3) (resp., (5.4)) in
part (1) (resp., part (2)) of [LNSSS1, Lemma 5.14] that rjw € W/, and

that there exists a Bruhat (resp., quantum) edge r; | wrg] L rjw and a

Bruhat edge w <— r]w in the parabolic quantum Bruhat graph. In
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particular, we have w™'a; € Ay \ A7, which implies that (wA, a]V> < 0.
This proves part (2).

(3) (resp., (4)) Assume that (wrgh, af) < 0 and (wA, af) > 0
(resp., (wrgA, o) < 0 and (wA, o) > 0). Suppose that wf # +ay;.
Then it follows from part (2) (resp., (1)) that (wA, ) < 0 (resp.,
(wrgh, ) > 0), which is a contradiction. Thus we obtain wf = +a;.
This completes the proof of Lemma 4.1.4. Q.E.D.

Lemma 4.1.5. Letw € Wyl and B € AJ\AT be such that |wrg] Vil
w. Let z € Wy be such that row = [rew]z; note that 28 € AJ \ AT.

(1) If (wA, o) > 0 and wB # %6, then (wrgh, o) > 0 and
|rowrgs] Z |row].

(2)  If (wrgA, af) < 0 and wB # £6, then (WA, o) < 0 and
|rowrg] <Z—B |row].

(3)  If (wrgA, of) < 0 and (wA, o) >0, then wp = £6.

(4)  If (wrgA, o) <0 and (wA, o) > 0, then wp = £6.

Proof. (1) Since (wA, ay) > 0, we see that w10 € Ay \ A7. By

[LNSSS1, Proposition 5.11 (1)], there exists a quantum edge |rgw] o

w in the parabolic quantum Bruhat graph. If the edge [wrs] ﬁ w is
a Bruhat (resp., quantum) edge, then it follows from the left diagram
of (5.5) or (5.6) (resp., (5.7) or (5.8)) in part (3) (resp., part (4)) of
[LNSSS1, Lemma 5.14] that there exists an edge |[rgwrs| Z [row] and

_ —1g
a quantum edge |[rowrg| el |wrg| in the parabolic quantum

Bruhat graph. In particular, we have [wrg]~'0 € Ay \ A7, which
implies that (wrgA, ay) > 0. This proves part (1).

(2) Since (wrgh, ay) < 0, we see that |wrg|~'0 € Al \ AT. By
[LNSSS1, Proposition 5.11(3)], there exists a quantum edge

’ . —1 9
[wrg ] - LHM |rowrg] in the parabolic quantum Bruhat graph, where

z' € Wy is defined by: rg|wrg] = |rewrg|z’. If the edge |wrg] Low
is a Bruhat (resp., quantum) edge, then it follows from the right dia-
gram of (5.5) or (5.6) (resp., (5.7) or (5.8)) in part (3) (resp., part (4))
of [LNSSS1, Lemma 5.14] that there exists an edge [rgwrs| # [row]

-1
and a quantum edge w p 0 |rgw]| in the parabolic quantum Bruhat
graph. In particular, we have w='0 € AS‘ \ A'J", which implies that
(wA, o) < 0. This proves part (2).
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Parts (3) and (4) can be shown by using parts (2) and (1) in the same
way as parts (3) and (4) of Lemma 4.1.4, respectively. This completes
the proof of Lemma 4.1.5. Q.E.D.

Lemma 4.1.6. Let \, A, and J be as above. Let x,y € Wy, and
let 0 € Q be such that 0 < o < 1. Assume that there exists a directed
o-path from y to x as follows:

xsz?—lwl(ﬁ—zU@(ﬁi'”&wn:y.
Then, o(xA —yA) is contained in Qo := D¢, L.

Proof. We have

n

o(zA —yA) = Z o(wg—1A —wiA) = Z o(wgrg, A — wiA)
k=1 k=1

n

ZU (A, BY) wi B

It follows from the definition of a directed o-path that o(A, 3)) € Z
for all 1 < k < n. Also, it is obvious that wiB; € Qg for all 1 < k <
n. Therefore, we conclude that o(xA — yA) € Qp. This proves the
lemma. Q.E.D.

Lemma 4.1.7. Let A\, A, and J be as above. If n € IE(/\)Cl, then
n(1) is contained in A + Qo, and hence in P.

Proof. Let n = (a1, x2, ..., Ts; 00, 01, ..., Os) € ]E()\)Cl. Then
we have (see (3.2.1))
s—1
n(l) =z, A+ Z oz — xp1 ).
k=1

It is obvious that x,A € A+ Qq. Also, it follows from Lemma 4.1.6 that
oA — xp 1) € Qg for each 1 < k < s — 1. Therefore, we conclude
that (1) € A+ Qo. This proves the lemma. Q.E.D.

In what follows, we set s; := r; for j € Iy, and sy := rg € Wy, in
order to state our results and write their proofs in a way independent of
whether 7 = 0 or not.

Lemma 4.1.8. Let A\, A, and J be as above. Let x,y € Wd]7 and
assume that there exists a directed path

(4.1.1) x—wogwlg—wzm-wﬁiwn:y.
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fromy tox. Let j e I.

(1) If there exists 1 < p < n such that (wiA, af) < 0 for all
0<k<p-—1and (wyA, af) >0, then |sjwp_1| = wy, and
there exists a directed path from y to |s;x]| of the form:

(4.1.2)

Lsj) = Lsjwo) B - P (| = w, - w, =y

Here, if j € Iy, then we define z, € Wy to be the identity
element for all1 <k <p—1;if 7 =0, then we define z;, € W
by rowy, = |rewy|zx for each 1 <k <p—1.

(2)  If the directed path (4.1.1) fromy to x is shortest, i.e., l(y, x) =
n, then the directed path (4.1.2) fromy to |s;x| is also shortest,
i.e., Uy, |sjz]) =n—1.

(3)  If the directed path (4.1.1) is a directed o-path from y to x for
some rational number 0 < o < 1, then the directed path (4.1.2)
is a directed o-path from y to |s;jx|.

Proof. (1) We give a proof only for the case j € Iy. The proof for
the case j = 0 is similar; replace a;; and a}/ by —60 and —0V, respectively,
and use Lemma 4.1.5 instead of Lemma 4.1.4. First, let us check that
wiPr # Eaj for any 1 < k < p — 1. Suppose, contrary to our claim,

that wy B, = £a; for some 1 <k <p— 1. Then,
We—1A = wprg, A = 1y, 8, WA = sjwiA,

and hence (wx_1A, o)) = (sjwiA, o)) = —(wiA, af) > 0, which con-
tradicts our assumption. Thus, w0 # £a; forany 1 <k < p—1. It fol-
lows from Lemma 4.1.4 (2) and our assumption that |s;ws_1 | i |sjwy |
for all 1 <k < p—1. Also, since (w, 1A, af) < 0 and (w,A, af) >0,
it follows from Lemma 4.1.4 (3) that w3, = £« , and hence

sjwp_1A = sjwprg, A = 87y, 5, WpA = sjs;wp A = wpA.

Thus, we obtain a directed path of the form (4.1.2) from y to |s;x].
This proves part (1).

(2) Assume that £(y, ) = n. By the argument above, we have
Ly, |s;xz]) < n—1. Suppose, for a contradiction, that ((y, |s;z|) <
n — 1, and take a directed path

i V2 3 m
lsja] =20 21 ¢ 204 -z =y

from y to |sjz| whose length [ is less than n — 1. Let us show that
x <& |sjx] for some v € A\ AT. Assume first that j € Ip. Since
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(xA, onV> < 0 by the assumption, we have z'a; € Ay \ A7, and hence
{(z) = {(sjz) + 1. Also, since x € W/, it follows from Lemma 4.1.3 that
s;x € W, Therefore, if we set v := 27 !s;a; = —2 1oy € AO"’\A}F, then
we obtain z <~ s;z = |s;x|. Assume next that j = 0. Since (zA, —0Y) =
(zA, agf) < 0 by the assumption, we have 2710 € AJ \ AT. Define an
element v € Wy by rez = |[rez|v. Then we see that v := vz~'0 is
contained in AJ \ A, and that

[Lsox]ry ] = Llrez]ry] = lroxv™ rys-16]

= Lrng_lvx_lrng_lj = L:w_lj =z

since x € Wy and v € W;. Also, note that |soz| 10 = [rez] =10 =
vz lrgd = —y € Ay \ A;. Therefore, we deduce from Lemma 4.1.2
that

x = |[sox]ry] & rgx] = |sox).

Thus, we obtain a directed path

e szl =200l 0 Ll L=y
from y to = whose length is { + 1 < n = {(y, ). This contradicts the
definition of ¢(y, «). This proves part (2).

(3) We should remark that (A, z;8)) = (A, BY) for each 1 < k <
p—1, since z; € W;. Hence the assertion of part (3) follows immediately
from the definition of a directed o-path. This completes the proof of
Lemma 4.1.8. Q.E.D.

The following lemma can be shown in the same way as Lemma 4.1.8.
If j € Iy, then use Lemma 4.1.4 (1) and (4) instead of Lemma 4.1.4 (2)
and (3), respectively; if j = 0, then use Lemma 4.1.5 (1) and (4) instead
of Lemma 4.1.5 (2) and (3), respectively.

Lemma 4.1.9. Keep the notation and setting of Lemma 4.1.8.
(1) If there exists 1 < p < n such that (wpA, o)) > 0 for all
p < k < n and (wp—1A, aJV> < 0, then wp—1 = |sjwp|, and
there exists a directed path from |s;y| to x of the form:
(4.1.3)
Bp—l

w=wp & Wp—1 = [sjwp] e O T |

sjwn] =[5y
Here, if j € Iy, then we define z, € Wy to be the identity
element for allp+1 < k < n;if j =0, then we define z;, € W
by rowy, = |rewy]|zx for eachp+1 <k <n.
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(2)  If the directed path (4.1.1) fromy to x is shortest, i.e., L(y, x) =
n, then the directed path (4.1.3) from |s;y] to x is also shortest,
ie, U(|sjy], ) =n—1.

(3)  If the directed path (4.1.1) is a directed o-path from y to x for
some rational number 0 < o < 1, then the directed path (4.1.3)
is a directed o-path from |s;y| to x.

Lemma 4.1.10. Letn = (x1, T2, ..., Ts; 00, 01, -+ ., O5) € IE(A)CI.
Let jeI and 1 <u < s—1 be such that (x, 1A, o) > 0. Let

B B B Bn
xu:w0<—1w1<—2w2<—3~--<—wn:xu+1

be a directed o, -path from x,y1 to x,. If there exists 0 < k < n such

that (wiA, ) <0, then H}(0,) € Z. In particular, if (z,A, o) <0,
then H} (o) € Z.

Proof. We see from the definition that
/. .
n o= (xlazQa-~'7xU7 xu-}-laO.Ov 01y «vvy Oy, O-S)

is an element of B(A)q. Also, observe that n/(t) = n(t) for 0 < t < oyy1,
and hence H} (t) = H](t) for 0 <t < 0,41 Tt follows that

’

H(0,) = H) (o) = H] (1) — (1 - 0u){@ur1h, o).
Since 7/(1) € P (and hence H;]/(l) € Z) by Lemma 4.1.7, it suffices to
show that (1 — o, )(zuy1A, af) € Z.
We deduce from Lemma 4.1.9 that there exists a directed o,-path
from |s;2y41] to z,. Therefore,
/!

77 = (1'1, T2y v ooy Loy szqurlJ 300y, O1y ««vy Oqy 0'5)

is also an element of B(\)¢. Since both /(1) and (1) are contained in
A + Qo by Lemma 4.1.7, we have 1'(1) — /(1) € Qq. Also, we have

(Qo2) (1) —n"(1) = (1 — ow)mus1A — (1 — 0y) 8Ty 1A

B {(1 — o) {Tur1 A, 04;-/>04j if j € I,
(1 = ou)(@ut1h, af )(=0) if j=0.

Here we remark that 0 = d—ag = >,y a;ja;, and the greatest common
divisor of the a;, j € Iy, is equal to 1. From these, we conclude that
(1 = ou)(zus1A, o)) € Z, thereby completing the proof of the lemma.

Q.E.D.
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The following lemma can be shown in the same way as Lemma 4.1.10;
noting that 7" := (24, Tys1 ---, Ts; 00, Ou, Tutl, - -, Os) is an element
of B(\)al, use 7’ instead of i/ and the fact that H;T/(l) - H;T/(l —t) =
H(1) = H}(1—t)for 0 <t <1—0y1.

Lemma 4.1.11. Letn = (z1, 2, ..., Ts; 00, 01, ..., Os) € I@(A)Cl.
Let j €I and 1 <u < s—1 be such that (x,A, ozjv> < 0. Let
quUJQ<I8—1U}1<B—2’lU2<B—3~"<ﬁ1wn:£u+1
be a directed o, -path from x,11 to x,. If there exists 0 < k < n such that
(wiA, of ) > 0, then H}(0y) € Z. In particular, if (zu41A, of) >0,
then H}(0,) € Z.

Proposition 4.1.12. Let A\ € Eielo Z>ow; be as above. Both

@(A)Cl and @(x\)cl are contained in Pa ine under the identification (3.2.1)
of a rational path with a piecewise-linear, continuous map.

Proof. Since I@()\)cl C B(A\)a by the definitions, it suffices to show
that I@(/\)Cl C Peing. Let n = (z1, 22, ..., s 00, 01, ..., 05) € IE(/\)CI.
We have shown that 7(1) € P, for every n € B(A)q (see Lemma 4.1.7).
It remains to show that for every j € I, all local minima of the function
H](t) are integers. Fix j € I, and assume that the function H](t)
attains a local minimum at ¢’ € [0, 1]; we may assume that ¢ = o, for
some 0 < u <s. If u =0 (resp., u = s), then HJ(t') = H](0) =0€ Z
(vesp., HJ(t') = HJ(1) € Z) since n(0) = 0 (vesp., n(1) € Pa). If
0 < u < s, then we have either of the following: (x,A, a;/> < 0 and
(ug1h, af) >0, or (z,A, af) < 0and (v,41A, af) > 0. Therefore, it
follows from Lemma 4.1.10 or 4.1.11 that H}(0,) € Z. This proves the
proposition. Q.E.D.

Lemma 4.1.13. Letn = (z1, ®2, ..., Ts; 00, 01, ..., Os) € IE%()\)Cl.
Letj eI and1 <u < s—1 be such that (x,41A, of) >0 and H}(0,) ¢
Z. Let

(4.1.4) xu:woﬁw1&w2&~--ﬁ<—"wn:xuﬂ

be a directed o,-path from x,41 to x,. Then, (wiA, a{}’) > 0 for all
0 < k < n, and there exists a directed o, -path from |s;jz,q1] to [s;x]
of the form:

(4.15) |s;@a) = [s;w0) 22 [sjwn ] 22 P8 s ) = [852ur1 ).
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Here, if j € Iy, then we define z;, € Wy to be the identity element for
all 1 <k <n;ifj=0, then we define z;, € Wy by rowy, = |rowy]zy for
each 1 < k < n. Moreover, if (4.1.4) is a shortest directed path from
Tyt1 10 Ty, B, L(Tys1, Ty) = n, then (4.1.5) is a shortest directed path
from |sjxuq1] to [sjxn], e, £(|sjTur1], [852a]) = n.

Proof. Tt follows from Lemma 4.1.10 that if H}(o,) ¢ Z, then
(WA, of) > 0 for all 0 < k& < n (in particular, (z,A, of) > 0).
Assume that j € Iy (resp., 7 = 0), and suppose, for a contradic-
tion, that wiBy = Fa; (resp., = £6) for some 1 < k < n. Then,
wr—1 A = wprg, A = Ty, g wpA = sjwiA, and hence (wy_1A, oz]V> =
(sjwrh, af) = —(wiA, ), which contradicts the fact that (wg_1A, o)
> 0 and (wiA, af) > 0. Thus, we conclude that wyfy # +a; (resp.,
# £0) for any 1 < k < n. Therefore, we deduce from Lemma 4.1.4 (1)
(resp., Lemma 4.1.5 (1)) that there exists a directed path of the form
(4.1.5) from |sjzy41] to [s;@,]. Because the directed path (4.1.4) is a
directed o,-path, we have o, (A, 3)/) € Z. Also, it follows immediately
that o, (A, 28)) = ou(A, B)) € Z since z € W,;. Hence the directed
path (4.1.5) is a directed oy-path from [s;2,41] to |52y ].

Now, we assume that ¢(x,+1, ,) = n, and suppose, for a contra-
diction, that there exists a directed path

(4.1.6) |00 =20 & 21 & 208 - & 2 = 82001

from [s;xy41] to |sjz,| whose length [ is less than n. Let us show that

LsjTus1] &L Tyy1 for some v € Af\ A}r. Assume first that j € Ij.
Since (zu41A, of) > 0, we have v := 951:41-1%‘ € A \ AT, and hence
Usjxys1) = l(zys1) + 1. Also, by Lemma 4.1.3, s;xy41 € Wy Since
8jTus1 = Tup1T~, We obtain |82y 1] = 8;Tyr1 ¢ Tur1. Assume next
that j = 0. Since (z,11A, 6¥) = —(z,11A, o) < 0 by the assumption,

it follows that x;}rﬁ € Ay \ Aj. Therefore, if we set v := fx;}rlﬂ €

Aa' \ A}r, then soTyt1 = 79Tyt1 = Tyut17~, and we obtain |[Soxqy41] na
Zy+1 by Lemma 4.1.2. By concatenating the directed path (4.1.6) and
[sjTut1] e Zy+1, we obtain a directed path from x,41 to |s;z, | whose
length is [+1. Since (v,414, ) > 0and (s;z,A, af) = —(z,A, ) <
0, we deduce from Lemma 4.1.8 (1) that there exists a directed path from
Zut1 to |s;]8;@u]] = x, whose length is (I + 1) — 1 = [. However, this
contradicts the fact that n = €(xy41, 2,,) since | < n. This proves the
lemma. Q.E.D.
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4.2. Explicit description of the image of a quantum LS

path under the action of root operators.

In the course of the proof of the following proposition, we obtain
an explicit description of the image of a quantum LS path as a rational
path under the action of root operators; this description is similar to the
one given in [L1].

Proposition 4.2.1. Both of the sets B(A\)U{0} and B(\)U{0} are
stable under the action of the root operators f; for all j € I.

Proof. Fix j € I. Let n = (x1, 22, ..., Ts; 00, 01, ..., O5) €
I@()\)d, and assume that f;n # 0. It follows that the point to = max{t €
0,1] | H](t) = m[} is equal to o, for some 0 < u < s. Let u <m < s
be such that 0, < t; < oy41; recall that t; = min{t € [to, 1] | H;](t) =
m +1}. Note that the function H](t) is strictly increasing on [to, t1],
which implies that (z,A, af) >0 forallu +1 <p <m+1.

Case 1. Assume that x,, # |sjzu41] or u =0, and that o, <t <
Om+1. Then we deduce from the definition of the root operator f; (for
the case j = 0, see also Remark 2.2.2; cf. [L2, Proposition 4.7 a)]) that

fjn:(3717$27 vy Loy szxu+lj7 ey
I_Sjl'mJ7 lejxm+1J7 -rm+17 xm+27 ey Tsy
005 015 -+ Ouy -5 Oms tla Om41y ++-» US);

note that |s;x,| # |sjTp41] for any u+1 < p < m, and that [s;2,,41] #
T4 since (T, 1A, a}/> > (0 as mentioned above. In order to prove that
fin e B(\)el, we need to verify that
(i) there exists a directed o,-path from [s;z,11]| to z, (when
u > 0);
(ii) there exists a directed o,-path from |s;z,41] to |sjz,] for each
ut+1<p<m

(iii) there exists a directed ti-path from 41 to |sjTm41].

Also, we will show that if n € ]/B(/\)Cl, then the directed paths in (i)
(iii) above can be chosen from the shortest ones, which implies that
fj?? S B(/\)cl-

(i) We deduce from the definition of ty = oy, that (z,A, o)) <0 and
(Typ1 A, oz}/> > 0. Since n € I@(A)Cl, there exists a directed o,-path from
Zy+1 10 x,. Hence it follows from Lemma 4.1.9 (1), (3) that there exists
a directed o,-path from [s;2,41] to z,. Furthermore, we see from the
definition of B(\)q and Lemma 4.1.9 (2) that if n € B()\)q, then there
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exists a directed o,-path from |s;z,1] to z, whose length is equal to
U([sjTut1], Tu).

(ii) Recall that H "( ) is strictly increasing on [to, t1], and that H(to)
mj and H}(t1) = m] + 1. Hence it follows that H}(o,) ¢ Z for any
u+1 < p < m. Therefore, we deduce from Lemma 4.1.13 that there ex-
ists a directed o,-path from |s;z,+1] to |sjz,] for each u+1 <p < m.
Furthermore, we see from the definition of I@()\)Cl and Lemma 4.1.13 that
ifn e ]@(A)Cl, then for each u+1 < p < m, there exists a directed o,-path
from [s;xp41] to |sjz,] whose length is equal to £(|sjzp41], [sj2p]).

(i) Since (zm11A, o) > 0, by the same argument as in the second
paragraph of the proof of Lemma 4.1.13, we obtain [$;%,+1] & s,
with

{x;;laj if j € Io,
Ty e
Tpppr (=0) if j =05

note that the directed path |s;zm,41] < ZTma1 1S obviously shortest
since its length is equal to 1. Let us show that t;(A, vV) € Z. Tt is
easily checked that (A, vY) = (z,m1A, o). Also, we have n(t;) =
t1Zmi1 A+ Y peq ok (2 A — 2p41A), and hence

Zom!+1=H(t)) =t (@muA, o))+ (on(ziA — 201 A), o).
k=1

Since o (zpA — xp41A) € Qo for each 1 < k < m by Lemma 4.1.6,
it follows from the equation above that ¢1(zm 1A, o) € Z, and hence
t1{A, vV) € Z. Thus, we have verified that there ex1sts a directed t;-path
from 2,41 to |8j&m41] whose length is equal to £(2m 41, [SjZmy1]) = 1.

Combining these, we conclude that f;n is an element of IE(A)Cl, and
that if n € B(\), then fine B(A)a.

Case 2. Assume that x,, # |sjzu41] or u =0, and that t1 = gy, 11.
Then we deduce from the definition of the root operator f; (for the case
J = 0, see also Remark 2.2.2; cf. [L2, Proposition 4.7 a) and Remark 4.8])
that

fin=(x1, x2, ..., Ty, [SjTus1], -,
I_ijmjv I_ijm—i-lja Tm+2, -y Ts;
00, 015 -+ -5 Ou, --~70mat1:0m+17 "'703)'

First, we observe that (z,,12A, a]V> > 0. Indeed, suppose, contrary to
our claim, that (z,,19A, o) < 0. Since H}(0/n11) = HJ (t1) = mj +1,
it follows immediately that i} (0,41 +¢€) < m] +1 for sufficiently small
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€ > 0, and hence that the minimum M of the function H}'(¢) on [t, 1] is
(strictly) less than m + 1. Here we recall from Proposition 4.1.12 that
all local minima of the function H}'(t) are integers. Hence we deduce
that M = m?, which contradicts the definition of t5. Thus, we obtain
(my2A, af) > 0. Since (2,114, o)) >0, and hence (sjzm 14, af) <
0, it follows that |s;Zm+1] # Tmto.
Now, in order to prove that f;n € B(A)a, we need to verify that
(i) there exists a directed o,-path from [s;z,11]| to z, (when
u > 0);
(ii) there exists a directed o,-path from |s;z,41] to |sjz,] for each
u+1<p<m

(iv) there exists a directed 0,y 1-path from ', 42 to | 5241 ] (when

m+1<s).
We can verify (i) and (ii) by the same argument as for (i) and (ii) in
Case 1, respectively. Hence it remains to show (iv). Also, in order to
prove that n € @()\)q implies f;n € I/B\%(/\)d, it suffices to check that the
directed paths in (i), (ii), and (iv) above can be chosen from the shortest
ones. We can show this claim for (i) and (ii) in the same way as for (i)
and (ii) in Case 1, respectively. So, it remains to show it for (iv).

(iv) As in the proof of (iii) in Case 1, it can be shown that there
exists a directed ¢1-path (and hence directed o, 1-path since t1 = 0,41
by the assumption) from x,,41 to |s;Z,,+1] whose length is equal to 1.
Also, it follows from the definition that there exists a directed o,,41-
path from x,,,2 to x,,+1. Concatenating these directed o,,,1-paths, we
obtain a directed o,,+1-path from z,,,2 to I_ijm+1J. Thus, we have
proved that f;n € B(\)a.

Assume now that n € @(A)Cl, and set n := {(xyt2, Tmy1). We
see from the argument above that there exists a directed o,,11-path
from 2,42 to |sjTmy1] whose length is equal to n 4+ 1. Suppose,
for a contradiction, that there exists a directed path from x,,12 to
|8j%m+1] whose length [ is less than n+1. Since (s;jz, 1A, o) < 0 and
(Tmy2A, o)) > 0 as seen above, we deduce from Lemma 4.1.8 that there
exists a directed path from 2,12 to [Sj|SjZmy1]] = [Tmt1] = Tmi1
whose length is equal to I —1 < n, which contradicts n = {(Z,,12, Tmi1)-
Thus, we have proved that if € ]@(A)Cl, then fjn € ]@(A)Cl.

Case 3. Assume that z, = |sjz,41] and o, < t1 < 0pg1. Then
we deduce from the definition of the root operator f; (for the case j = 0,
see also Remark 2.2.2; cf. [L2, Proposition 4.7a) and Remark 4.8]) that

fin=(x1, x2, ..., Ty = |5;Tug1], [8jTus2l, -+
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szwmj, L8j$m+1J, Tm+1y Tm+25 -+ -5 Ts;

O-Oa 017 crt Uu—17 Uu+17 MR Oma tl? Um-‘rl? MR 08)7

note that |[sj&m41] # Tm+1 since (41 A, onV> > 0. In order to prove
that f;n € B(\)a, we need to verify that

(ii) there exists a directed o,-path from |s;zp41] to |sjz,] for each

u+1<p<m

(ili) there exists a directed t;-path from @, 1 to |sjm41].
We can verify (ii) and (iii) by the same argument as for (ii) and (iii) in
Case 1, respectively. Also, in the same way as in the proofs of (ii) and
(iii) in Case 1, respectively, we can check that if € @(/\)Cl, then the
directed paths in (ii) and (iii) above can be chosen from the shortest
ones. Thus we have proved that f;n € B(\)a, and that 7 € B(A)q
implies f;n € I@()\)Cl.

Case 4. Assume that z, = Liju+1J and t; = o,,+1. Then we

deduce from the definition of the root operator f; (for the case j = 0,
see also Remark 2.2.2; cf. [L2, Proposition 4.7 a) and Remark 4.8]) that

fin=(x1, x2, ..., Ty = |5;Tug1], [8jTut2], -+
Ls$jZm], [SiTma1], Tma2, - -, Ts;
00y Oy vy Ou—1y Outls vy Omy 61 = g1y oo vy Og);

note that | $;j&m41]| # Tmyo since (8,414, a}/> < 0and (2,424, a]V> >
0 (see Case 2 above). In order to prove that f;n € B(\)a, we need to
verify that
(ii) there exists a directed o,-path from |s;z,41] to |sjz,] for each
u+1<p<m
(iv) there exists a directed o,,41-path from 42 to | 52,41 ] (when
m+1<s).
We can verify (ii) and (iv) by the same argument as for (ii) in Case 1
and (iv) in Case 2, respectively. Also, as in the proofs of (ii) in Case 1
and (iv) in Case 2, respectively, we can check that if n € I@(/\)Cl, then
the directed paths in (ii) and (iv) above can be chosen from the shortest
ones. Thus we have proved that f;n € IE(A)Cl, and that n € I/B\%()\)Cl
implies fj?? S ]E()\)Cl
This completes the proof of Proposition 4.2.1. Q.E.D.

Combining Theorem 2.4.1 with Propositions 4.1.12 and 4.2.1, we
obtain Theorem 4.1.1.
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