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Divided difference operators on polytopes

Valentina Kiritchenko

Abstract.

We define convex-geometric counterparts of divided difference
(or Demazure) operators from the Schubert calculus and representa-
tion theory. These operators are used to construct inductively poly-
topes that capture Demazure characters of representations of reductive
groups. In particular, Gelfand–Zetlin polytopes and twisted cubes of
Grossberg–Karshon are obtained in a uniform way.

§1. Introduction

Polytopes play a prominent role in representation theory and al-
gebraic geometry. In algebraic geometry, there are Okounkov convex
bodies introduced by Kaveh–Khovanskii and Lazarsfeld–Mustata (see
[KKh] for the references). These convex bodies turn out to be polytopes
in many important cases (e.g. for spherical varieties). In representation
theory, there are string polytopes introduced by Berenstein–Zelevinsky
and Littelmann [BZ, L]. String polytopes are associated with the ir-
reducible representations of a reductive group G, namely, the integer
points inside and at the boundary of a string polytope parameterize a
canonical basis in the corresponding representation. A classical example
of a string polytope for G = GLn is a Gelfand–Zetlin polytope.

There is a close relationship between string polytopes and Okounkov
bodies. String polytopes were identified with Okounkov polytopes of flag
varieties for a geometric valuation [K] and were also used in [KKh] to give
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a more explicit description of Okounkov bodies associated with actions
of G on algebraic varieties. Natural generalizations of string polytopes
are Okounkov polytopes of Bott–Samelson resolutions of Schubert vari-
eties for various geometric valuations (an example of such a polytope is
computed in [Anderson]).

In this paper, we introduce an elementary convex-geometric con-
struction that yields polytopes with the same properties as string poly-
topes and Okounkov polytopes of Bott–Samelson resolutions. Namely,
exponential sums over the integer points inside these polytopes coin-
cide with Demazure characters. We start from a single point and apply
a sequence of simple convex-geometric operators that mimic the well-
known divided difference or Demazure operators from the Schubert cal-
culus and representation theory. Convex-geometric Demazure operators
act on convex polytopes and take a polytope to a polytope of dimen-
sion one greater. In particular, classical Gelfand–Zetlin polytopes can
be obtained in this way (see Section 3.2). More generally, these op-
erators act on convex chains. The latter were defined and studied in
[PKh] and used in [PKh2] to prove a convex-geometric variant of the
Riemann–Roch theorem.

When G = GLn, convex-geometric Demazure operators were implic-
itly used in [KST] to calculate Demazure characters of Schubert varieties
in terms of the exponential sums over unions of faces of Gelfand–Zetlin
polytopes and to represent Schubert cycles by unions of faces. A motiva-
tion for the present paper is to create a general framework for extending
results of [KST] on Schubert calculus from type A to arbitrary reductive
groups. In particular, convex-geometric divided difference operators al-
low one to use in all types a geometric version of mitosis (mitosis on
parallelepipeds) developed in [KST, Section 6]. This might help to find
an analog of mitosis of [KnM] in other types.

Another motivation is to give a tool for describing inductively Ok-
ounkov polytopes of Bott–Samelson resolutions. We describe polytopes
that conjecturally coincide with Okounkov polytopes of Bott–Samelson
resolutions for a natural choice of a geometric valuation (see Conjec-
ture 4.1). Another application is an inductive description of Newton–
Okounkov polytopes for line bundles on Bott towers (in particular, on
toric degenerations of Bott–Samelson resolutions) that were first de-
scribed by Grossberg and Karshon [GK] (see Section 4.1 and Remark
4.6).

This paper is organized as follows. In Section 2, we give background
on convex chains and define convex-geometric divided difference opera-
tors. In Section 3, we relate these operators with Demazure characters
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and their generalizations. In Section 4, we outline possible applications
to Okounkov polytopes of Bott towers and Bott–Samelson varieties.

I am grateful to Dave Anderson, Joel Kamnitzer, Kiumars Kaveh
and Askold Khovanskii for useful discussions. I would also like to thank
the referee and Megumi Harada for the careful reading and valuable
comments.

§2. Main construction

2.1. String spaces and parapolytopes

Definition 1. A string space of rank r is a real vector space R
d

together with a direct sum decomposition

R
d = R

d1 ⊕ . . .⊕ R
dr

and a collection of linear functions l1, . . . , lr ∈ (Rd)∗ such that li vanishes
on R

di .

We choose coordinates in Rd such that they are compatible with
the direct sum decomposition. The coordinates will be denoted by
(x1

1, . . . , x
1
d1
; . . . ;xr

1, . . . , x
r
dr
) so that the summand Rdi is given by van-

ishing of all coordinates except for xi
1,. . . , x

i
di
. In what follows, we regard

R
d as an affine space.

Let μ = (μ1, . . . , μdi) and ν = (ν1, . . . , νdi) be two collections of
real numbers such that μj ≤ νj for all j = 1,. . . , di. By the coordinate
parallelepiped Π(μ, ν) ⊂ R

di we mean the parallelepiped

Π(μ, ν) = {(xi
1, . . . , x

i
di
) ∈ R

di | μj ≤ xi
j ≤ νj , j = 1, . . . , di}.

Definition 2. A convex polytope P ⊂ R
d is called a parapolytope if

for i = 1,. . . , r, and any vector c ∈ R
d the intersection of P with the

parallel translate c+Rdi of Rdi is either empty or the parallel translate
of a coordinate parallelepiped, i.e.,

P ∩ (c+ R
di) = c+Π(μc, νc)

for μc and νc that depend on c.

For instance, if d = r (i.e., d1 = . . . = dr = 1) then every polytope
is a parapolytope. Below is a less trivial example of a parapolytope in
a string space.

Example 2.1. Consider the string space

R
d = R

n−1 ⊕ R
n−2 ⊕ . . .⊕ R

1
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of rank r = (n− 1) and dimension d = n(n−1)
2 .

Let λ = (λ1, . . . , λn) be a non-increasing collection of integers. For
each λ, define the Gelfand–Zetlin polytope Qλ by the inequalities

λ1 λ2 λ3 . . . λn

x1
1 x1

2 . . . x1
n−1

x2
1 . . . x2

n−2

. . .
. . .

xn−2
1 xn−2

2

xn−1
1

where the notation
a b

c

means a ≥ c ≥ b. It is easy to check that Qλ is a parapoly-
tope. Indeed, consider the parallel translate of Rn−i by a vector
c = (c11, . . . , c

1
n−1; . . . ; c

n−1
1 ). Put c0i = λi for i = 1,. . . , n. The in-

tersection of Qλ with c+Rn−i is given by the the following inequalities:

ci−1
1 ci−1

2 ci−1
3 . . . ci−1

n−i+1

xi
1 xi

2 . . . xi
n−i

ci+1
1 . . . ci+1

n−i−1

.

Therefore, the intersection can be identified with the coordinate par-
allelepiped c + Π(μ, ν) ⊂ c + R

n−i, where μj = max(ci−1
j , ci+1

j−1) and

νj = min(ci−1
j+1, c

i+1
j ) (put ci+1

0 = −∞ and ci+1
n−i = +∞).

2.2. Polytopes and convex chains

Consider the set of all convex polytopes in Rd. This set can be en-
dowed with the structure of a commutative semigroup using Minkowski
sum

P1 + P2 = {x1 + x2 ∈ R
d | x1 ∈ P1, x2 ∈ P2}

It is not hard to check that this semigroup has cancelation property. We
can also multiply polytopes by positive real numbers using dilation:

λP = {λx | x ∈ P}, λ ≥ 0.

Hence, we can embed the semigroup S of convex polytopes into its
Grothendieck group V , which is a real (infinite-dimensional) vector
space. The elements of V are called virtual polytopes.

It is easy to check that the set of parapolytopes in R
d is closed under

Minkowski sum and under dilations. Hence, we can define the subspace
V� ⊂ V of virtual parapolytopes in the string space R

d.



Divided difference operators on polytopes 165

Example 2.2. If Rd is a string space of rank 1, i.e. d1 = d, then
parapolytopes are coordinate parallelepipeds Π(μ, ν). Clearly,

Π(μ, ν) + Π(μ′, ν′) = Π(μ+ μ′, ν + ν′).

Hence, virtual parapolytopes can be identified with the pairs of vectors
μ, ν ∈ R

d. This yields an isomorphism V� 	 Rd ⊕ Rd. Under this
isomorphism, the semigroup of (true) coordinate parallelepipeds gets
mapped to the convex cone in Rd ⊕Rd given by the inequalities μi ≤ νi
for i = 1,. . . , d.

We now define the space Ṽ of convex chains following [PKh]. A
convex chain is a function on Rd that can be represented as a finite
linear combination ∑

P

cP IP ,

where cP ∈ R, and IP is the characteristic function of a convex polytope
P ⊂ R

d, that is,

IP (x) =

{
1, x ∈ P
0, x /∈ P

.

The semigroup S of convex polytopes can be naturally embedded into
Ṽ :

ι : S ↪→ Ṽ ; ι : P �→ IP

In what follows, we will work in the space of convex chains and freely
identify a polytope P with the corresponding convex chain IP . However,
note that the embedding ι is not a homomorphism, that is, IP+Q �= IP +
IQ (the sum of convex chains is defined as the usual sum of functions).

Remark 2.3. The embedding ι : S ↪→ Ṽ can be extended to the
space V of all virtual polytopes. Namely, there exists a commutative
operation ∗ on Ṽ (called product of convex chains) such that

IP+Q = IP ∗ IQ (M)

for any two convex polytopes P and Q (see [PKh, Section 2, Proposition-
Definition 3]). Virtual polytopes can be identified with the convex chains
that are invertible with respect to ∗.

Similarly to the space of convex chains, define the subspace Ṽ� ⊂ Ṽ
of convex parachains using only parapolytopes instead of all polytopes.
We will use repeatedly the following example of a parachain.
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Example 2.4. Consider the simplest case d = 1. Let [μ, ν] ⊂ R

be a segment (i.e., μ < ν), and [ν, μ] — a virtual segment. Using the
existence of the operation ∗ satisfying (M), it is easy to check that

ι([ν, μ]) = −I[−ν,−μ] + I{−ν} + I{−μ}

(note that the right hand side is the characteristic function of the open
interval (−ν,−μ)). Indeed,

I[μ,ν] ∗
(−I[−ν,−μ] + I{−ν} + I{−μ}

)
= −I[μ,ν] ∗ I[−ν,−μ] + I[μ,ν] ∗ I{−ν} + I[μ,ν] ∗ I{−μ}
= −I[μ−ν,ν−μ] + I[μ−ν,0] + I[0,ν−μ] = I{0}.

More generally, if P ⊂ Rd is a convex polytope then

(−1)dimP
IP ∗ Iint(P∨) = I{0},

where P∨ = {−x | x ∈ P}, and int(P∨) denotes the interior of P∨ (see
[PKh, Section 2, Theorem 2]).

2.3. Divided difference operators on parachains

For each i = 1,. . . , r, we now define a divided difference (or De-

mazure) operator Di on the space of convex parachains Ṽ�. Let P be a
parapolytope. Choose the smallest j = 1,. . . , di such that P lies in the
hyperplane {xi

j = const}. If no such j exists, then Di(IP ) is not defined.

Otherwise, we expand P in the direction of xi
j as follows.

First, suppose that a parapolytope P lies in (c+R
di) for some c ∈ R

d,
i.e., P = c + Π(μ, ν) is a coordinate parallelepiped. We always fix the
choice of c by requiring that c lies in the direct complement to R

di with
respect to the decomposition Rd = Rd1 ⊕ . . .⊕Rdi ⊕ . . .⊕Rdr . Consider
ν′ = (ν′1, . . . , ν

′
di
), where ν′k = νk for all k �= j, and ν′j is defined by the

equality
di∑

k=1

(μk + ν′k) = li(c).

If ν′j ≥ νj , thenD+
i (P ) := c+Π(μ, ν′) is a true coordinate parallelepiped.

Note that P is a facet of D+
i (P ) unless ν′ = ν.

If ν′j < νj , define μ′ = (μ′
1, . . . , μ

′
di
) by setting μ′

k = μk for all

k �= j, and μ′
j = ν′j . Then D−

i (P ) := c + Π(μ′, ν) is a true coordinate

parallelepiped, and P is a facet of D−
i (P ). Let P ′ be the facet of D−

i (P )
parallel to P .
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We now define Di(IP ) as follows:

Di(IP ) =

{
ID+

i (P ) if νj ≤ ν′j ,
−ID−

i (P ) + IP + IP ′ if νj > ν′j .

Remark 2.5. This definition is motivated by the following observa-
tion. Let μ and ν be integers such that μ < ν. Define the function
f(μ, ν, t) of a complex variable t by the formula

f(μ, ν, t) = tμ + tμ+1 + . . .+ tν ,

that is, f is the exponential sum over all integer points in the segment
[μ, ν] ⊂ R. Computing the sum of the geometric progression, we get
that

f(μ, ν, t) =
tμ − tν+1

1− t
.

This formula gives a meromorphic continuation of f(μ, ν, t) to all real μ
and ν. In particular, for integer μ and ν such that μ > ν we obtain

f(μ, ν, t) =
tμ − tν+1

1− t
= −(tν+1 + . . .+ tμ−1),

that is, f is minus the exponential sum over all integer points in the
open interval (ν, μ) ⊂ R (cf. Example 2.4).

Definition 3. Let P ⊂ Rd be a parapolytope such that P lies in the
hyperplane {xi

j = const} for some j but does not lie in any hyperplane

{xi
k = const} for k < j. Define Di(IP ) by setting

Di(IP )
∣∣
c+Rdi = D

(j)
i (IP∩(c+Rdi ))

for all c in the complement to Rdi . The superscript (j) on the right hand
side means that we always expand P ∩ (c+R

di) in the direction of xi
j as

explained above (even when P ∩ (c+Rdi) for some c lies in a hyperplane
{xi

k = const} for k < j).

It is not hard to check that this definition yields a convex chain.
In many cases (see examples in Section 3), Di(IP ) is the characteristic
function of a polytope (and P is a facet of this polytope unless Di(IP ) =
IP ). This polytope will be denoted by Di(P ). The definition of Di can
be extended by linearity to the other parachains, however, Di(δ) for a
convex chain δ in general depends on a representation δ =

∑
P cP IP .

The definition immediately implies that similarly to the classical
Demazure operators the convex-geometric ones satisfy the identity D2

i =
Di. It would be interesting to find an analog of braid relations for these
operators.
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2.4. Examples

Dimension 2. The simplest meaningful example is R
2 = R ⊕ R.

Label coordinates in R2 by x := x1
1 and y := x2

1. Assume that l1 = y
and l2 = x. If P = {(μ1, μ2)} is a point, and μ2 ≥ 2μ1, then D1(P ) is a
segment:

D1(P ) = [(μ1, μ2), (μ2 − μ1, μ2)].

If μ2 < 2μ1, then D1(IP ) is a virtual segment, that is,

D1(IP ) = −I[(μ2−μ1,μ2),(μ1,μ2)] + IP + I(μ2−μ1,μ2).

If P = AB is a horizontal segment, where A = (μ1, μ2) and B =
(ν1, μ2), then D2(P ) is the trapezoid ABCD given by the inequalities

μ1 ≤ x ≤ ν1, μ2 ≤ y ≤ x− μ2.

See Figure 1 for D2(P ) in the case μ1 = −1, ν1 = 2, μ2 = −1 (left) and
μ1 = −1, ν1 = 2, μ2 = 0 (right). In the latter case, the convex chain
D2(IP ) is equal to

IOBC − IADO + IOA + IDO − IO.

Dimension 3. A more interesting example is R3 = R
2 ⊕ R. Label

coordinates in R3 by x := x1
1, y := x1

2 and z := x2
1. Assume that l1 = z

and l2 = x+ y. If P = (μ1, μ2, μ3) is a point, then D1(P ) is a segment:

D1(P ) = [(μ1, μ2, μ3), (μ3 − μ1 − 2μ2, μ2, μ3)].

Similarly, if P = [(μ1, μ2, μ3), (ν1, μ2, μ3)] is a segment in R
2, thenD1(P )

is the rectangle given by the equation z = μ3 and the inequalities

μ1 ≤ x ≤ ν1, μ2 ≤ y ≤ μ3 − μ1 − ν1 − μ2.

Using the previous calculations, it is easy to show that if P =
(λ2, λ3, λ3) is a point and λ3 < λ2 < −λ2 − λ3, then D1D2D1(P ) is
the 3-dimensional Gelfand–Zetlin polytope Qλ (as defined in Example
2.1) for λ = (λ1, λ2, λ3), where λ1 = −λ2 − λ3. Indeed, D2D1(P ) is the
trapezoid (see Figure 2) given by the equation y = λ3 and the inequali-
ties

λ2 ≤ x ≤ λ1, λ3 ≤ z ≤ x.

Then D1D2D1(P ) is the union of all rectangles D2(Ia) for a ∈
[λ3, λ1], where Ia is the segment D2D1(P ) ∩ {z = a}, that is, Ia =
[(max{z, λ2}, λ3, a), (λ1, λ2, a)]. Hence,

λ3 ≤ y ≤ min{λ2, z}.
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Fig. 1. Trapezoids D2(P ) for different segments P = AB.

Similarly to the last example, we construct Gelfand–Zetlin polytopes
for arbitrary n using the string space from Example 2.1 (see Theorem
3.4).



170 V. Kiritchenko

Fig. 2. Trapezoid D2D1(P ) and polytope D1D2D1(P ) for a
point P = (0,−3,−3)
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§3. Polytopes and Demazure characters

3.1. Characters of polytopes

For a string space Rd = Rd1 ⊕ . . . ⊕ Rdr , denote by σi(x) the sum
of the coordinates of x ∈ R

d that correspond to the subspace R
di , i.e.,

σi(x) =
∑di

k=1 x
i
k. With each integer point x ∈ R

d in the string space,
we associate the weight p(x) ∈ Rr defined as (σ1(x), . . . , σr(x)). For
the rest of the paper, we will always assume that li(x) depends only
on p(x), that is, li comes from a linear function on Rr (the latter will
also be denoted by li). In addition, we assume that li is integral, i.e.,
li(x) ∈ Z for all x ∈ Zd.

Denote the basis vectors in R
r by α1, . . . , αr, and denote the coor-

dinates with respect to this basis by (y1, . . . , yr). For each i = 1, . . . r,
define the affine reflection si : R

r → R
r by the formula

si(y1, . . . , yi, . . . , yr) = (y1, . . . , li(y)− yi, . . . , yr).

Example 3.1. For the string space Rd = Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ R1

from Example 2.1, define the functions li by the formula

li(x) = σi−1(x) + σi+1(x),

where we put σ0 = σn = 0. Identify Rn−1 with the weight lattice of
SLn so that αi is identified with the i-th simple root. In this case,
the reflection si coincides with the simple reflection in the hyperplane
perpendicular to the root αi.

We now consider the ring R of Laurent polynomials in the formal
exponentials t1 := eα1 , . . . , tr := eαr (that is, R is the group algebra
of the lattice Z

r ⊂ R
r). Let P ⊂ R

d be a lattice polytope in the string
space, i.e., the vertices of P belong to Zr. Define the character of P as
the sum of formal exponentials ep(x) over all integer points x inside and
at the boundary of P :

χ(P ) :=
∑

x∈P∩Zd

ep(x).

In particular, if d = r, then χ(P ) is exactly the integer point transform
of P . The R-valued function χ can be extended by linearity to all lattice
convex chains, that is, to the chains

∑
P cP IP such that P is a lattice

polytope and cP ∈ Z.
Define the Demazure operator Ti on R as follows:

Tif =
f − ti · sif

1− ti
,
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where the action of si on R is defined by sie
λ := esi(λ) for λ ∈ Zr. For

the string space of Example 3.1, these operators reduce to the classical
Demazure operators on the group algebra of the weight lattice of SLn.

The following result motivates the definition of divided difference
operators Di on convex chains (Definition 3).

Theorem 3.2. Let P ⊂ R
d be a lattice parapolytope. Then

χ(Di(IP )) = Tiχ(P ).

Proof. By definition of Di(IP ), it suffices to prove this identity
when P = c + Γ, where c lies in the complement to R

di and Γ :=
Π(μ, ν) ⊂ Rdi is a coordinate parallelepiped. Then

χ(P ) = ep(c)
∑

z∈Γ∩Zdi

t
σ(z)
i .

Hence,

Ti(χ(P )) = ep(c)Ti

⎛
⎝ ∑

z∈Γ∩Zdi

t
σ(z)
i

⎞
⎠ .

Recall that by definition of ν′ we have

di∑
k=1

(μk + ν′k) = li(c).

Assume that ν′j ≥ νj . Let Π denote Π(μ, ν′). Then Γ, Π and Ti satisfy
the hypothesis of [KST, Proposition 6.3]. Applying this proposition we
get that

Ti

⎛
⎝ ∑

z∈Γ∩Zdi

t
σ(z)
i

⎞
⎠ =

∑
z∈Π∩Zdi

t
σ(z)
i .

Hence, Ti(χ(P )) = χ(Di(P )).
The case ν′j < νj is completely analogous. Q.E.D.

Note that Theorem 3.2 for di = 1 follows directly from the definitions
of Ti and Di (see Remark 2.5).

Example 3.3. Figure 3 illustrates Theorem 3.2 when di = 2 and
P = c + Γ where Γ ⊂ R

di is the segment [(−1,−1), (2,−1)]. Namely,

Ti(t
xi
1+xi

2
i ) is equal to the character of the segment [(xi

1, x
i
2), (x

i
1, li(c)−

2xi
1 − xi

2)] for every (xi
1, x

i
2) ∈ Γ ∩ Z

2 by definition of Ti. Hence,∑
(xi

1,x
i
2)∈Γ∩Z2

Ti(t
xi
1+xi

2
i )
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Fig. 3. Rectangle and trapezoid yield the same character

for li(c) = 3 coincides with the character of the trapezoid shown on
Figure 3 (left). It is easy to construct a bijective correspondence between
the integer points in the trapezoid and those in the rectangle Di(P ) in
such a way that the sum of coordinates is preserved. The former are
marked by black dots, and the latter by empty circles.

Theorem 3.2 allows one to construct various polytopes (possibly vir-
tual) and convex chains whose characters yield the Demazure characters
(in particular, the Weyl character) of irreducible representations of re-
ductive groups (see Section 3.3). The same character can be captured
using string spaces for different partitions d = d1 + d2 + . . . + dn (see
Section 4.3). The case d1 = . . . = dn = 1 produces polytopes with very
simple combinatorics, namely, multidimensional versions of trapezoids
that are combinatorially equivalent to cubes (they are called twisted
cubes in [GK]). However, twisted cubes that represent the Weyl char-
acters are virtual. Considering string spaces with di > 1 allows one to
represent the Weyl character by a true though more intricate polytope
(see Example 3.4 for SL3 and Section 4.3). The reason is illustrated by
Figure 3 (right) that depicts a virtual trapezoid and a (true) rectangle
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with the same character. Note that the point (2, 1) (marked by −1)
contributes a negative summand to the character of the trapezoid.

3.2. Gelfand–Zetlin polytopes for SLn

Let Rd = Rn−1⊕Rn−2⊕ . . .⊕R1 be the string space of rank (n−1)
from Example 3.1. The theorem below shows how to construct the
classical Gelfand–Zetlin polytopes (see Example 2.1) via the convex-
geometric Demazure operators D1,. . . , Dn−1.

Theorem 3.4. For every strictly dominant weight λ = (λ1, . . . , λn)
(that is, λ1 > . . . > λn) of GLn such that λ1 + . . . + λn = 0, the
Gelfand–Zetlin polytope Qλ coincides with the polytope

[(D1)(D2D1)(D3D2D1) . . . (Dn−1 . . . D1)] (aλ),

where aλ ∈ Rd is the point (λ2, . . . , λn;λ3, . . . , λn; . . . ;λn).

Proof. Let us define the polytope

Pλ(i, j) :=
[
(D̂n−j . . . D̂iDi−1 . . . D1) . . . (Dn−1 . . . D1)

]
(aλ)

for every pair (i, j) such that 1 ≤ i ≤ (n − j) ≤ (n − 1). Put x0
l = λi

for l = 1,. . . , n. We will show by induction on dimension that Pλ(i, j)
is the face of the Gelfand–Zetlin polytope Qλ given by the equations
xk
l = xk−1

l+1 for all pairs (k, l) such that either l > j, or l = j and k ≥ i.
The induction base is Pλ(1, 1) = aλ, which is clearly a vertex of Qλ

by our assumption. The induction step follows from Lemma 3.5 below.
Hence, Pλ(1, n− 1) is the facet of Qλ given by the equation x1

n−1 = λn.
Applying Lemma 3.5 again, we get that D1(Pλ(1, n−1)) = Qλ. Q.E.D.

Note that any Gelfand–Zetlin polytope Qλ can be obtained by a
parallel translation from one with λ1 + . . .+ λn = 0.

The lemma below can be easily deduced directly from the definition
ofDi using Example 2.1 together with an evident observation that a+b =
min{a, b}+max{a, b} for any a, b ∈ R.

Lemma 3.5. Let Γ be a face of the Gelfand–Zetlin polytope Qλ

given by the following equations

xi−1
1 xi−1

2 xi−1
3 . . . xi−1

j xi−1
j+1 xi−1

j+2 . . . xi−1
n−i+1

‖ ‖ ‖
xi
1 xi

2 . . . xi
j−1 xi

j xi
j+1 . . . xi

n−i

‖ ‖
xi+1
1 . . . xi+1

j−2 xi+1
j−1 xi+1

j . . . xi+1
n−i−1

.
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as well as by (possibly) other equations that do not involve variables
xi
1,. . . , x

i
n−i. Then the defining equations of Di(Γ) are obtained from

those of Γ by removing the equation xi
j = xi−1

j+1.

Recall that integer points inside and at the boundary of the Gelfand–
Zetlin polytope Qλ by definition of this polytope parameterize a nat-
ural basis (Gelfand–Zetlin basis) in the irreducible representation of
GLn with the highest weight λ. Under this correspondence, the map
p : Rd → Rn−1 assigns to every integer point the weight of the corre-
sponding basis vector. Combining Theorem 3.4 with Theorem 3.2 one
gets a combinatorial proof of the Demazure character formula for the de-
composition w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1sn−2 . . . s1) of the longest
word in Sn (in this case, the Demazure character coincides with the
Weyl character of Vλ). Here si denotes the elementary transposition
(i, i+ 1) ∈ Sn.

3.3. Applications to arbitrary reductive groups

We now generalize Gelfand–Zetlin polytopes to other reductive
groups using Theorem 3.2. Let G be a connected reductive group of
semisimple rank r. Let α1,. . . , αr denote simple roots of G, and s1,. . . ,
sr the corresponding simple reflections. Fix a reduced decomposition
w0 = si1si2 · · · sid where w0 is the longest element of the Weyl group
of G. Note that d is the length of w0, which is equal to the number of
positive roots as well as to the dimension of the complete flag variety of
G. Let di be the number of sij in this decomposition such that ij = i.
Consider the string space

R
d = R

d1 ⊕ . . .⊕ R
dr ,

where the functions li are given by the formula:

li(x) =
∑
k �=i

(αk, αi)σk(x)

(recall that σi(x) =
∑di

j=1 x
i
j). Here (αk, αi) is determined by the simple

reflection si as follows:

si(αk) = αk + (αk, αi)αi,

(that is, the function (·, αi) is minus the coroot corresponding to αi).
In particular, if G = SLn and w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1 . . . s1),
then we get the string space from Example 3.1.

Define the projection p of the string space to the real span Rr of the
weight lattice of G by the formula p(x) = σ1(x)α1+ . . .+σr(x)αr. Note
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that after identifying the root lattice of G with Zr ⊂ Rr the map p is
the same as the map p defined earlier in Section 3.1.

Theorem 3.6. For every dominant weight λ in the root lattice of
G, and every point aλ ∈ Z

d such that p(aλ) = w0λ the convex chain

Pλ := Di1Di2 . . . Did(aλ)

yields the Weyl character χ(Vλ) of the irreducible G-module Vλ, that is,

χ(Vλ) = χ(Pλ).

Proof. By the Demazure character formula [Andersen] we have

χ(Vλ) = Ti1 . . . Tide
w0λ.

This formula together with Theorem 3.2 implies by induction the desired
statement. Q.E.D.

As a corollary, we get that p∗(Pλ) is the weight polytope of Vλ

in Rr. Here p∗ denotes the push-forward of convex chains (see [PKh,
Proposition-Definition 2]).

Remark 3.7. A slight modification of Theorem 3.2 makes it appli-
cable to all dominant weights (not only those inside the root lattice).
Namely, instead of the lattices Z

d ⊂ R
d and Z

r ⊂ R
r one should con-

sider the shifted lattices aλ + Zd ⊂ Rd and λ + Zr ⊂ Rr, and define
characters of polytopes with respect to these new lattices. The convex
chain Pλ will be lattice with respect to the lattice aλ + Zd.

In the same way, we can construct convex chains that capture the
characters of Demazure submodules of Vλ for any element w in the Weyl
group and a reduced decomposition w = sj1 . . . sj� (see Corollary 4.5).
In particular, if sj1 . . . sj� is a terminal subword of si1si2 · · · sid (that is,
j� = id, j�−1 = id−1, etc.) then the corresponding convex chain is a
face of Pλ. It is interesting to check whether this convex chain is always
a true polytope. One way to do this would be to identify it with an
Okounkov polytope of the Bott–Samelson resolution corresponding to
the word sj1 . . . sj� (see Conjecture 4.1).

3.4. Examples

Sp(4). Take G = Sp(4) and w0 = s2s1s2s1 (here α1 denotes the
shorter root and α2 denotes the longer one). The corresponding string
space of rank 2 is R

4 = R
2 ⊕ R

2 together with l1 = 2(x2
1 + x2

2) and
l2 = x1

1+x1
2. Let λ = −p1α1−p2α2 be a dominant weight, that is, λ1 :=

(p2 − p1) ≥ 0 and λ2 := (p1 − 2p2) ≥ 0. Choose a point aλ = (a, b, c, d)
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such that (a + b) = p1 and (c + d) = p2 (that is, p(aλ) = w0λ = −λ).
Label coordinates in R

4 by x := x1
1, y := x1

2, z := x2
1 and t := x2

2. Then
the polytope D2D1D2D1(aλ) is given by inequalities

0 ≤ x− a ≤ 2λ1, z − c ≤ x− a+ λ2, y − b ≤ 2(z − c),

y − b ≤ z − c+ λ2, 0 ≤ t− d ≤ λ2, t− d ≤ y − b

2
.

It is not hard to show that the polytopes D1D2D1D2(aλ) and
D2D1D2D1(aλ) are the same up to a linear transformation of R4. Each
polytope has 11 vertices, hence, they are not combinatorially equivalent
to string polytopes for s1s2s1s2 or s2s1s2s1 defined in [L].

SL(3). Take G = SL(3) and w0 = s1s2s1. The corresponding string
space of rank 2 coincides with the one from Section 2.4, namely, R3 =
R

2 ⊕R, and l1 = x2
1, l2 = x1

1 +x1
2. If aλ = (b, c, c) where −b− c ≥ b ≥ c,

then the polytope D1D2D1(aλ) is the Gelfand–Zetlin polytope Qλ for
λ = (−b − c, b, c). Label coordinates in R

3 by x := x1
1, y := x1

2 and
z := x2

1. We now introduce a different structure of a string space in R3 by
splitting R

2, namely, R3 = R
1⊕R

1⊕R
1 with coordinates x̃1

1, x̃
2
1, x̃

3
1 such

that x̃1
1 = x, x̃2

1 = z, x̃3
1 = y. Put l̃1 = l1−2y, l̃2 = l2 and l̃3 = l1−2x. It

is easy to check that D̃2D̃1(aλ) = D2D1(aλ) and deduce by arguments

of Example 3.3 that the virtual polytope D̃3D̃2D̃1(aλ) (see Figure 4)
has the same character as the polytope D1D2D1(aλ). In particular,

the image of D̃3D̃2D̃1(aλ) under the projection (x, y, z) �→ (x + y, z)
coincides with the weight polytope of the irreducible representation of
SL3 with the highest weight −cα1 − (a+ b)α2 (provided that the latter
is dominant, that is, a + b − 2c ≥ 0 and c − 2(a + b) ≥ 0). The virtual

polytope D̃3D̃2D̃1(aλ) is a twisted cube of Grossberg–Karshon (cf. [GK,
Figure 2]) given by the inequalities

a ≤ x ≤ c− 2b− a, c ≤ z ≤ x+ b− c, b ≤ y ≤ −2x+ z − b. (GK)

Note that the last pair of inequalities is inconsistent when b > −2x +
z − b, and should be interpreted in the sense of convex chains. More
precisely, D̃3D̃2D̃1(aλ)=IP − IQ, where P is the convex polytope given
by inequalities (GK) and Q is the set given by the inequalities

a ≤ x ≤ c− 2b− a, c ≤ z ≤ x+ b− c, b > y > −2x+ z − b.

(cf. [GK, Formula (2.21)]). A generalization of this example will be
given in Section 4.3.
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Fig. 4. Virtual polytope D̃3D̃2D̃1(aλ) for aλ = (0,−3,−3)

§4. Bott towers and Bott–Samelson resolutions

In this section, we outline possible algebro-geometric applications of
the convex-geometric Demazure operators.

4.1. Bott towers

Let us recall the definition of a Bott tower (see [GK] for more de-
tails). It is a toric variety obtained from a point by iterating the following
step. Let X be a toric variety, and L a line bundle on X. Define a new
toric variety Y := P(L ⊕ OX) as the projectivization of the split rank
two vector bundle L⊕OX on X. Consider a sequence of toric varieties

Y0 ← Y1 ← . . . ← Yd,

where Y0 is a point, and Yi = P(Li−1 ⊕OYi−1) for a line bundle Li−1 on
Yi−1. In particular, Y1 = P1 and Y2 = P(OP1 ⊕OP1(k)) is a Hirzebruch
surface. We call Yd the Bott tower corresponding to the collection of line
bundles (L1, . . . , Ld−1). Note that the collection (L1, . . . , Ld−1) depends

on d(d−1)
2 integer parameters since Pic(Yi) = Zi. Recall that the Picard

group of a toric variety of dimension d can be identified with a group
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of virtual lattice polytopes in Rd in such a way that very ample line
bundles get identified with their Newton polytopes. One can describe
the (possibly virtual) polytope P (L) of a given line bundle L on Yd using
a suitable string space.

Consider a string space with d = r, that is, d1 = . . . = dr = 1. We
have the decomposition

R
d = R⊕ . . .⊕ R︸ ︷︷ ︸

d

.

Label coordinates in Rd as follows: xi
1 := yi for i = 1,. . . , d. Since

we will be interested in the polytope P := D1 . . . Dd(a), we can assume
that the linear function li for i < d does not depend on y1, . . . , yi,
and ld = y1. Hence, the collection (l1, . . . , ld−1) of linear functions also

depends on d(d−1)
2 parameters.

The projective bundle formula gives a natural basis (η1, . . . , ηd) in
the Picard group of Yd. Namely, for d = 1, the basis in Pic(P1) consists
of the class of a point in P

1. We now proceed by induction. Let (η1,
. . . , ηi−1) be the basis in Pic(Yi−1) (we identify Pic(Yi−1) with its pull-
back to Pic(Yd)). Put ηi = c1(OYi(1)) where c1(OYi(1)) denotes the
first Chern class of the tautological quotient line bundle OYi(1) on Yi.
Decompose L1,. . . , Ld−1 in the basis (η1, . . . , ηd):

L1 = a1,1η1, . . . , Ld−1 = ad−1,1η1 + . . .+ ad−1,d−1ηd−1. (∗)
Similarly, decompose l1,. . . , ld−1 in the basis of coordinate functions
(y1, . . . , yd):

l1 = b1,1y2 + . . .+ b1,d−1yd, . . . , ld−1 = bd−1,d−1yd. (∗∗).
Let Yd be the Bott tower corresponding to the collection (∗) of line

bundles, and Rd the string space corresponding to the collection (∗∗) of
linear functions. One can show (cf. [GK, Theorem 3]) that if ai,j = bj,i,
then there exists aL ∈ Rd such that

P (L) = D1D2 . . . Dd(aL).

In particular, when L is very ample the polytope D1D2 . . . Dd(aL)
coincides with the Newton polytope of the pair (Yd,L). Note that the
intermediate polytopes {aL} ⊂ Dd(aL) ⊂ Dd−1Dd(aL) ⊂ . . . correspond
to the flag of toric subvarieties Z0 = {pt} ⊂ Z1 ⊂ . . . ⊂ Zd = Yd, where
Zi = p−1

d−i(Z0) and pi is the projection pi : Yd → Yi.
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Fig. 5. Polytope D1EuD2D1(a) for a = (0,−1,−1) and u =
(0,−1/2, 0)

4.2. Bott–Samelson varieties.

Similarly to Bott towers, Bott–Samelson varieties can be obtained
by successive projectivizations of rank two vector bundles. In general,
these bundles are no longer split, so the resulting varieties are not toric.
In [GK], Bott–Samelson varieties were degenerated to Bott towers by
changing complex structure (in particular, Bott–Samelson varieties are
diffeomorphic to Bott towers when regarded as real manifolds). Below
we define these varieties using notation of Section 3.3.

Fix a Borel subgroup B ⊂ G. With every collection of simple roots
(αi1 , . . . , αi�), one can associate a Bott–Samelson variety R(i1,...,i�) and
a map R(i1,...,i�) → G/B by the following inductive procedure. Put

R∅ = pt. For every �-tuple I = (i1, . . . , i�) denote by Ij the (� − 1)-

tuple (i1, . . . , îj , . . . , i�). Define RI as the fiber product RI� ×G/P�
G/B,

where Pi� is the minimal parabolic subgroup corresponding to the root
αi� . The map rI : RI → G/B is defined as the projection to the second
factor. There is a natural embedding

RI� ↪→ RI ; x �→ (x, rI(x)).

In particular, any subsequence J ⊂ I yields the embedding RJ ↪→ RI .
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It follows from the projective bundle formula that the Picard group
of RI is freely generated by the divisors RI1 ,. . . , RI� . Denote by v
the geometric valuation on C(RI) defined by the flag R∅ ⊂ R(i�) ⊂
R(i�−1,i�) ⊂ . . . ⊂ RI1 ⊂ RI . Let L be a line bundle on RI , and Pv(L)
its Okounkov body with respect to the valuation v. Conjecturally, Pv(L)
can be described using string spaces as follows.

Replace a reduced decomposition of w0 in the definition of the string
space from Section 3.3 by a sequence (αi1 , . . . , αi�) that defines RI (we
no longer require that si1 . . . si� be reduced). More precisely, let di the
number of αij in this sequence such that ij = i. We get the following
string space SI of rank ≤ r and dimension �:

R
� = R

d1 ⊕ . . .⊕ R
dr ,

where the functions li are given by the formula:

li(x) =
∑
k �=i

(αk, αi)σk(x). (BS)

In particular, if � = d and si1 · · · si� is reduced then RI is a Bott–
Samelson resolution of the flag variety G/B, and R� is exactly the string
space from Section 3.3. Denote by Eu the parallel translation in the
string space by a vector u ∈ R�.

Conjecture 4.1. For every line bundle L on RI , there exists a
point μ ∈ Rr and vectors u1, . . . , u� ∈ R� such that we have

Pv(L) = Eu1Di1Eu2Di2 . . . Eu�
Di�(aμ)

for any point aμ ∈ R
� that satisfies p(a) = μ.

In particular, if L = r∗IL(λ), where L(λ) is the line bundle on G/B
corresponding to the dominant weight λ, then one can take u2 = . . . =
u� = 0 and μ = λ. This conjecture agrees with the example computed
in [Anderson, Section 6.4] for SL3 and the Bott–Samelson resolution
R(1,2,1) (cf. Figure 5 and Figure 3(b) in loc.cit.). Figure 5 shows the
polytope D1EuD2D1(a) for the string space (BS) when G = SL3 and
I = (1, 2, 1).

4.3. Degenerations of string spaces

While twisted cubes of Grossberg–Karshon for GLn and Gelfand–
Zetlin polytopes have different combinatorics they produce the same
Demazure characters. We now reproduce this phenomenon for general
string spaces. In particular, we transform the string space (BS) from
Section 4.2 into a string space from Section 4.1.
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Let S be a string space Rd = Rd1 ⊕ . . .⊕ Rdr with functions l1,. . . ,
lr. Suppose that di > 1.

Definition 4. The i-th degeneration of the string space S is the string
space

R
d = R

d1 ⊕ . . .⊕ R
di−1 ⊕ R

1︸ ︷︷ ︸
Rdi

⊕ . . .⊕ R
dr

of rank (r + 1) with functions l1,. . . , l
′
i, l

′′
i ,. . . , lr, where

l′i(x) = li(x)− 2xi
di
; l′′i (x) = li(x)− 2

di−1∑
k=1

xi
k.

Example 4.2. The string space R⊕ R⊕ R from Example 3.4 is the
1-st degeneration of the space R

2 ⊕ R with l1 = x1
1 + x1

2, l2 = x2
1.

Define the projection pi : Rr+1 → Rr by sending
(y1, . . . , y

′
i, y

′′
i , . . . , yr) to (y1, . . . , y

′
i + y′′i , . . . , yr). This projection in-

duces a homomorphism of group algebras of the lattices Zr+1 and Zr,
which we will also denote by pi. It is easy to check that

Ti ◦ pi = pi ◦ T ′
i = pi ◦ T ′′

i .

Combining this observation with Theorem 3.2, we get the following
proposition.

Proposition 4.3. For a lattice polytope P ⊂ R
d, we have

χ(Di(P )) = pi(χ(D
′
i(P ))) = pi(χ(D

′′
i (P ))).

We now degenerate successively the string spaces from Section 4.2.
Let I = (αi1 , . . . , αi�) be a sequence of simple roots, and

R
� = R

d1 ⊕ . . .⊕ R
dr

is the corresponding string space SI with the functions l1,. . . , lr given
by (BS).

Let S̃I be the string space of rank � obtained from SI by (d1 − 1)
first degenerations, (d2 − 1) second degenerations etc., that is,

S̃I = R
(1)
1 ⊕ . . .⊕ R

(1)
d1︸ ︷︷ ︸

Rd1

⊕ . . .⊕ R
(�)
1 ⊕ . . .⊕ R

(�)
d�︸ ︷︷ ︸

R
d�

,

where the functions l
(i)
j are given by the formula:

l
(i)
j (x) = li(x)− 2

∑
k �=j

xi
k.
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Denote the Demazure operators associated with S̃I by D̃
(i)
j .

For a point a ∈ R�, consider the convex chain PI = Di1 . . . Di�(a).
For every k = 1,. . . , r, we now replace the rightmostDk in the expression

Di1 . . . Di� by D
(k)
1 , the next one by D

(k)
2 ,. . . , the leftmost by D

(k)
ik

.

Denote the resulting convex chain by P̃I .

Example 4.4. If r = 3, � = 6 and I = (α1, α2, α1, α3, α2, α1), then

PI = D1D2D1D3D2D1, P̃I = D̃
(1)
3 D̃

(2)
2 D̃

(1)
2 D̃

(3)
1 D̃

(2)
1 D̃

(1)
1 (a).

Proposition 4.3 implies that PI and P̃I have the same character
(with respect to the map p : x �→ σ1(x)α1 + . . .+ σr(x)αr).

Corollary 4.5. If p(a) is dominant and si1 · · · si� is reduced, then

the corresponding Demazure character coincides with χ(PI) = χ(P̃I).

The proof is completely analogous to the proof of Theorem 3.6.

Remark 4.6. Note that the convex chain P̃I coincides with the
twisted cube constructed in [GK] for the corresponding Bott–Samelson
resolution. Indeed, (αi, αi) = −2 according to our definition of the
function (·, αi) (see Section 3.3), hence, we can write

l
(i)
j (x) =

∑
(p,q) �=(i,j)

(αp, αi)x
p
q .

It is now easy to check that the defining inequalities for P̃I coincide with
the inequalities given by [GK, Formula (2.21)] together with computa-
tions of [GK, Section 3.7].

The string space SI and its complete degeneration S̃I are two ex-
treme cases that yield convex chains for given Demazure characters. By
taking partial degenerations of SI one can construct intermediate con-
vex chains with the same character. However, only SI might produce
true polytopes (such as Gelfand–Zetlin polytopes for G = SLn or poly-
tope of Example 3.4 for G = Sp4) that represent the Weyl characters.
Indeed, such a polytope must have a face D2

i (a) (in the case of SI) or a
face D′

iD
′′
i (a) (in the case of the i-th degeneration of SI). The former

is a true segment since D2
i = Di, while the latter is necessarily a virtual

trapezoid with the same character due to cancelations (cf. Figure 3).
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