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Abstract.

In 1990, Lakshmibai and Sandhya published a characterization of
singular Schubert varieties in flag manifolds using the notion of pat-
tern avoidance. This was the first time pattern avoidance was used
to characterize geometrical properties of Schubert varieties. Their re-
sults are very closely related to work of Haiman, Ryan and Wolper,
but Lakshmibai-Sandhya were the first to use that language exactly.
Pattern avoidance in permutations was used historically by Knuth,
Pratt, Tarjan, and others in the 1960’s and 1970’s to characterize sort-
ing algorithms in computer science. Lascoux and Schützenberger also
used pattern avoidance to characterize vexillary permutations in the
1980’s. Now, there are many geometrical properties of Schubert vari-
eties that use pattern avoidance as a method for characterization includ-
ing Gorenstein, factorial, local complete intersections, and properties
of Kazhdan-Lusztig polynomials. These are what we call consequences
of the Lakshmibai-Sandhya theorem. We survey the many beautiful
results, generalizations, and remaining open problems in this area. We
highlight the advantages of using pattern avoidance characterizations
in terms of linear time algorithms and the ease of access to the liter-
ature via Tenner’s Database of Permutation Pattern Avoidance. This
survey is based on lectures by the second author at Osaka, Japan 2012
for the Summer School of the Mathematical Society of Japan based on
the topic of Schubert calculus.
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§1. Introduction

Modern Schubert calculus is the study of effective methods to com-
pute the expansion coefficients for the cup product of cohomology classes
of Schubert varieties:

[Xu] · [Xv] =
∑

cwu,v[Xw].

These coefficients cwu,v are called structure constants with respect to the
Schubert classes [Xw], and it is known that the structure constants are
non-negative integers. In fact, each cwu,v is the intersection number of
three Schubert varieties Xu,Xv and Xw0w; they count the number of
points of the intersection of those three varieties placed in generic po-
sitions. Observe that this is both a combinatorial and a geometrical
statement.

For Schubert varieties in Grassmannians, we already have many
tools for computing the structure constants for the cup products of their
cohomology classes: Littlewood-Richardson tableaux, Yamanouchi words,
Knutson-Tao puzzles, Vakil’s toric degenerations. In general, we have
not found analogs of all these beautiful tools for other types of Schubert
varieties. We need to understand both the combinatorics and geometry
of Schubert varieties in order to do Schubert calculus for all types of
Schubert varieties.

In this article, we will focus on the combinatorics and geometry re-
lated to the tangent spaces of Schubert varieties and characterizations
of smoothness and rational smoothness. The mathematical tools we
will use also arise in Schubert calculus, but we will not make the con-
nections explicit. For the record, the most explicit connection between
characterizations of smoothness and Schubert calculus come from Ku-
mar’s criterion and the Kostant polynomials. See [8, 63, 93] for more
details.

We begin with a review of Schubert varieties in flag manifolds. Then
we will present the celebrated Lakshmibai-Sandhya Theorem characteriz-
ing smooth Schubert varieties using permutation pattern avoidance. We
will give a total of 10 properties of Schubert varieties in flag manifolds
that are completely characterized by pattern avoidance or a variation on
that theme. We describe a method for extending permutation pattern
avoidance to all Coxeter groups and discuss some geometrical properties
characterized by Coxeter pattern avoidance more generally. We give
pointers to some useful computational tools for studying Schubert ge-
ometry and beyond. Finally, we present many open problems in this
area.
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We want to highlight the fact that there are computational advan-
tages of using permutation patterns to characterize interesting properties
such as smoothness of Schubert varieties. Naively, avoiding a finite set
of patterns of length at most k leads to a polynomial time algorithm of
O(nk) by brute force testing of all k-subsets. As k and n get large, such
algorithm is intractable. In fact, deciding if one permutation is contained
in another is an NP-complete problem [18]. Remarkably, Guillemot and
Marx [51] recently showed that for every permutation v ∈ Sk there ex-
ists an algorithm to test if w ∈ Sn contains v which runs in linear time,
O(n)! This is a major improvement over brute force verification. It is
often far from obvious that an O(n) time algorithm exists for the geo-
metric or algebraic properties characterized by pattern avoidance in this
paper.

Another major advantage of permutation pattern characterizations
is that they provide efficient fingerprints for theorems [15]. Tenner’s
Database of Permutation Pattern Avoidance (DPPA) provides a growing
collection of known properties characterized by patterns with references
to the literature [92]. This allows researchers to connect new theorems
and conjectures with known results in a format free of language or nota-
tional differences.

§2. Preliminaries

2.1. The Flag Manifold

Definition 2.1. A complete flag F• = (F1, . . . , Fn) in C
n is a nested

sequence of vector spaces such that dim(Fi) = i for 1 ≤ i ≤ n. A
flag F• is determined by an ordered basis 〈f1, f2, . . . , fn〉 where Fi =
span〈f1, . . . , fi〉.

Let e1, e2, . . . , en be the standard basis for C
n. The base flag is

E• = (E1, E2, . . . , En) where Ei = 〈e1, e2, . . . , ei〉. Let F• be any flag
given by the ordered basis 〈f1, f2, . . . , fn〉. Writing each basis element
fi as a column vector in terms of the ei’s, we obtain an n × n-non-
singular matrix whose column vectors are the basis f1, · · · , fn. In this
presentation, we can multiply the matrix by a non-zero scalar or we
can add the i-th column to the j-th column where i < j and it still
represents the same flag. So, a flag can always be presented by a matrix
in canonical form; the lowest non-zero entry of each column is 1, and
the entries to its right are all zeros.
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Example 2.2. The following two matrices represent the same flag
F• = 〈2e1 + e2, 2e1 + e3, 7e1 + e4, e1〉:⎡

⎢⎢⎣
6 4 9 0
3 0 0 1
0 2 1 0
0 0 1 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

2 2 7 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .

The right hand side is the canonical form.

It also follows that two non-singular matrices represent the same
flag if and only if one is the other multiplied by an upper triangular
matrix. That is, we have an identification F ln(C) = GLn(C)/B̃ where

B̃ ⊂ GLn(C) is the set of invertible upper triangular matrices. Similarly,
we can rescale any invertible matrix by the inverse of its determinant
and get another matrix representing the same flag. Hence, letting B be
the set of upper triangular matrices in SLn(C), we see that

F ln(C) = GLn(C)/B̃ = SLn(C)/B.

2.2. Flags and Permutations

If a flag is written in canonical form, the leading 1’s form a per-
mutation matrix. This matrix is called the position of the flag F• with
respect to the base flag E•, and is denoted by position(E•, F•).

Example 2.3.

F• = 〈2e1 + e2, 2e1 + e3, 7e1 + e4, e1〉 ≈

⎡
⎢⎢⎣

2 2 7 �1
�1 0 0 0
0 �1 0 0
0 0 �1 0

⎤
⎥⎥⎦

Note that there are many ways to represent a permutation; as a
bijection from [n] := {1, 2, . . . , n} to itself, matrix notation, two-line
notation, one-line notation, rank table, diagram, string diagram, reduced
word etc. Each of these representations is useful in some way or another
for the study of Schubert varieties so we advise the reader to become
comfortable with all of them simultaneously and choose the right one for
the proof at hand. Note, we have not found much use for cycle notation
for permutations in this context so we will not ever use that notation
here.

To be precise, we use the following notation: for a permutation
w : [n] → [n] in the symmetric group Sn, we denote by the same symbol
w = w1w2 . . . wn the permutation matrix which has 1’s in the (wj , j)-th
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entries for 1 ≤ j ≤ n and 0’s elsewhere. Permutation multiplication is
consistent with matrix multiplication using this notation. In particular,
if tij is the transposition interchanging i and j, then the one-line notation
for wtij agrees with w in all positions except i and j where the entries
are switched. The permutation tijw has the values i and j switched.

The rank table rk(w) is obtained from the matrix w by setting

rk(w)[i, j] = #{h ∈ [j] : w(h) ∈ [i]},
i.e. the rank of the submatrix of w with lower right corner [i, j] and
upper left corner [1, 1].

A string diagram of a permutation for w is a braid with the strings
proceeding from the initial ordering to the permuted order given by
w = w1w2 . . . wn in such a way that no three strings cross at any point.
A wiring diagram is a string diagram with exactly one crossing on each
row. A wiring diagram in which no two strings cross twice is said to be
reduced. Starting at the top of a reduced wiring diagram, one can read
off the index of the first string in each crossing to obtain a corresponding
reduced word. All reduced words for w have the same length, denoted
�(w). Furthermore, the length of w is the number of inversions for w,
�(w) = #{w(i) > w(j) : i < j}.

The diagram of a permutation w is obtained from the matrix of w−1

by removing all cells in an n× n array which are weakly to the right or
below a 1 in w−1. The remaining cells form the diagram D(w). The
cells of D(w) are in bijection with the inversions of w. One can recover
w either from its diagram or its inversion set. It is unfortunate that
the diagram is defined in terms of w−1, but that is the most common
convention in the literature [70].
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Example 2.4.⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ =

[
1 2 3 4
2 3 4 1

]
= 2341 =

⎡
⎢⎢⎣

0 0 0 1
1 1 1 2
1 2 2 3
1 2 3 4

⎤
⎥⎥⎦

matrix
notation

two-line
notation

one-line
notation

rank
table

∗ . . .
∗ . . .
∗ . . .
. . . .

= = (1, 2, 3)

1 2 3 4

2 3 4 1

diagram of a
permutation

string diagram
reduced
word

2.3. Schubert Cells and Schubert Varieties in F ln(C)

For a permutation w ∈ Sn, the Schubert cell Cw(E•) ⊂ F ln(C) is
the set of all flags F• with position(E•, F•) = w. Equivalently, we can
write Cw(E•) as

Cw(E•) = {F• ∈ F ln(C) | dim(Ei ∩ Fj) = rk(w)[i, j] for all 1 ≤ i, j ≤ n}.
Note, the flag w• represented by the permutation matrix for w is in Cw

by the rank conditions.

Example 2.5.

F• =

⎡
⎢⎢⎣

2 2 7 �1
�1 0 0 0
0 �1 0 0
0 0 �1 0

⎤
⎥⎥⎦ ∈ C2341 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

x y z 1
1 . . .
. 1 . .
. . 1 .

⎤
⎥⎥⎦ : x, y, z ∈ C

⎫⎪⎪⎬
⎪⎪⎭

It is easy to observe the following properties for each permutation
w.

(i) The dimension of a Schubert cell is dimC(Cw) = �(w).
(ii) The indeterminates for the canonical matrices in Cw all lie in

the entries of the diagram D(w−1).

(iii) Cw = B̃ ·w• is a B̃-orbit using the left B̃ action on flags given
by multiplication of matrices. See Example 2.6.
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Example 2.6. For arbitrary bi,j ’s with b1,1, b2,2, b3,3, b4,4 non-zero,
we have⎡
⎢⎢⎢⎢⎣

b1,1 b1,2 b1,3 b1,4

0 b2,2 b2,3 b2,4

0 0 b3,3 b3,4

0 0 0 b4,4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1,2 b1,3 b1,4 b1,1

b2,2 b2,3 b2,4 0

0 b3,3 b3,4 0

0 0 b4,4 0

⎤
⎥⎥⎥⎥⎦ ,

and this is an element of C2341.

Definition 2.7. The Schubert variety Xw(E•) of a permutation
w is defined to be the closure of Cw(E•) under the Zariski topology.
As in the case for Schubert cells, Xw(E•) can be written by the rank
conditions:

Xw(E•) = {F• ∈ F ln | dim(Ei ∩ Fj) ≥ rk(w)[i, j] for all 1 ≤ i, j ≤ n}.
Example 2.8.⎡

⎢⎢⎣
�1 0 0 0
0 ∗ ∗ �1
0 �1 0 0
0 0 �1 0

⎤
⎥⎥⎦ ∈ X2341(E•) =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

∗ ∗ ∗ 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

2.4. Combinatorics and Geometry

Since Schubert cells are B̃-orbits, Schubert varieties are B̃-invariant
by their definition. So each Schubert variety is equal to a disjoint union
of Schubert cells

Xw =
⋃
v≤w

Cv.(1)

Thus, the containment relation on Schubert varieties Xv ⊂ Xw defines
a partial order on permutations v ≤ w. This partial order has a nice
description: for a permutation w and integers 1 ≤ i < j ≤ n, we say
w < wtij if w(i) < w(j). Bruhat order (discovered by Ehresmann 1934
[39], see also Chevalley 1958 [29]) is defined to be the transitive closure
of this relation.

Example 2.9. The following is the Hasse diagram of the Bruhat
order on permutations in S3.

132

231

123

321

213

312

�
�
�
����

�� ��

�
�
�
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The Hasse diagram of Sn is self dual, rank symmetric and rank unimodal.

Example 2.10. The Hasse diagram of S4 is drawn in Figure 1.

Fig. 1. The Hasse diagram of S4

One of the benefits of Bruhat order is a description of the Poincaré
polynomials of Schubert varieties. More precisely, the Poincaré polyno-
mial for H∗(Xw) is given by

Pw(t) =
∑
v≤w

t2l(v).



Consequences of the Lakshmibai-Sandhya Theorem 9

Because only even exponents appear in the Poincaré polynomials above,
we often abuse notation and define

Pw(t) =
∑
v≤w

tl(v).

Example 2.11. For w = 3412, the following permutations are in
the interval below 3412 in Bruhat order.

4 : (3412)

3 : (3142)(3214)(1432)(2413)

2 : (3124)(1342)(2143)(2314)(1423)

1 : (2134)(1243)(1324)

0 : (1234)

So P3412(t) = 1+ 3t+5t2 +4t3 + t4. One can see that the Schubert
variety X3412 is not smooth since its Poincaré polynomial is not sym-
metric (palindromic) which implies that Poincaré duality does not hold
for H∗(X3412).

There are several interesting things about Bruhat order. We will
encounter some of them in the rest of the paper. We will focus on
the relationship between singularities of Schubert varieties and pattern
avoidance of permutations. We leave to the reader the following exer-
cises.

(1) The boundary of Xw has irreducible components given by the
Schubert varieties Xv such that v < w and �(v) = �(w)− 1.

(2) Cw is a dense open set in Xw.
(3) Xw embeds into a product of projective spaces via Plücker

coordinates. A matrix is mapped under this embedding to the
list of all its lower left minors in a given order.

(4) If w0 = [n, n− 1, . . . , 1], then GLn/B̃ = Xw0 .
(5) The point w0 has an affine neighborhood Cw0 of dimension

(
n
2

)
and a local coordinate system. A generic point g has an affine
neighborhood gw0Cw0 in F ln.

(6) GLn acts transitively on the points in the flag manifold so it
is a manifold and a projective variety.

(7) The flag manifold is smooth (i.e. non-singular at every point).
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§3. Smooth Schubert varieties

Say we wish to determine which Schubert varieties are smooth and
which are not. There are several combinatorial and geometrical obser-
vations which makes this determination easier to characterize than a
typical variety.

First, an affine variety is smooth at a point if the dimension of its
tangent space equals the dimension of the variety near that point. If the
variety is given in terms of the vanishing of certain polynomials, then one
can check the dimension of the tangent space by computing the rank of
the Jacobian matrix for those polynomials evaluated at the point. The
rank is smaller than expected if and only if all minors of a certain size
vanish. Thus, the set of points where the variety is not smooth is itself
a variety called the singular locus.

A priori, to determine if a variety is smooth at every point, one
must check the dimension of the tangent space at every point. For
Schubert varieties, we make an easy observation. A point p ∈ Cv ⊂ Xw

is singular in Xw if and only if every point in Cv is singular in Xw since
the Schubert cell Cv is a B̃-orbit. Recalling that the singular locus of a
variety is a closed set, the equality (1) implies that each Schubert variety
Xw is smooth if and only if Xw is smooth at the identity matrix I. One
can check the singularity at the identity by writing down the defining
equations of Xw around an affine neighborhood of Xw around I (for
example, Xw∩w0Cw0) and check the rank of the Jacobian matrix of the
defining polynomials. However, there is another way which provides a
more unified tool for the study of the singularity of Schubert varieties
using Lie algebras.

3.1. Lie algebras and tangent spaces of Schubert varieties

Recall from Section 2.1 that the flag variety can be identified with
the quotient of a semisimple algebraic group:

F ln = GLn(C)/B̃ = SLn(C)/B

where B̃ is the set of upper triangular matrices in GLn(C) and B =

B̃ ∩ SLn(C). The tangent space of SLn is isomorphic as a vector space
to its Lie algebra, which is known to be the n×n trace zero matrices over
C. The Lie algebra of B is the subalgebra of upper triangular matrices
with trace zero. Let G = SLn(C), g = Lie(SLn) and b = Lie(B). Then
the tangent space of G/B at the identity matrix is isomorphic to g/b.
Denoting by Ei,j the matrix with 1 in the (i, j)-entry and 0’s elsewhere,
we obtain a basis for g/b by

g/b = span{Ej,i : 1 ≤ i < j ≤ n}.
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Observe that there is a natural bijection between the basis elements
{Ej,i : i < j} and R := {ti,j : i < j} the set of reflections.

More generally, for any v ∈ Sn, the tangent space to G/B at v is
given by

Tv(G/B) = v (g/b) v−1 = span{Ev(j),v(i) : i < j}.(2)

Why? Because, G/vBv−1, is an isomorphic copy of the flag manifold
G/B but with respect to the base flag v•. Here the flag v• = vB is fixed
by the left action of vBv−1.

It is an easy exercise to check

v Eij v−1 = Ev(i),v(j),

tv(i),v(j) v = v tij

for any 1 ≤ i < j ≤ n. The next theorem gives us an explicit description
of a basis of the tangent space of each Schubert variety.

Theorem 3.1. (Lakshmibai-Seshadri [65]) For v ≤ w ∈ Sn, the
tangent space of Xw at v is given by

Tv(Xw) ∼= span{Ev(j),v(i) : i < j, vtij ≤ w},
and hence we obtain

dim Tv(Xw) = #{(i < j) : vtij ≤ w}.
Proof. Recall from the definition of a Lie algebra that Ev(j),v(i) ∈

Tv(Xw) is equivalent to (I + εEv(j),v(i))v ∈ Xw for infinitesimal ε > 0

where we can assume ε2 = 0. Think of (I + εEv(j),v(i)) as a matrix in
G acting on the left of the flag v• by moving the flag a little bit in the
direction of Ev(j),v(i). In particular, (I+εEv(j),v(i))v = v+εEv(j),v(i)v =
v+εEv(j),i ∈ Xv if and only if v(i) > v(j) which is equivalent to vtij ≤ v.
Since v ≤ w implies Tv(Xv) ⊂ Tv(Xw) we see that Ev(j),v(i) is in Tv(Xw)
whenever v(i) > v(j).

On the other hand, if v(i) < v(j) then v + εEv(j),i ∈ Cvtij and
so Ev(j),v(i) ∈ Tv(Xw) if and only if vtij ≤ w. Thus, in either case
Ev(j),v(i) ∈ Tv(Xw) if and only if vtij ≤ w. Thus, dim Tv(Xw) ≥ #{(i <
j) : vtij ≤ w}.

To prove dim Tv(Xw) ≤ #{(i < j) : vtij ≤ w}, assume there exists
coefficients ai,j for 1 ≤ i < j ≤ n such that v + ε

∑
ai,jEv(j),i ∈ Xw.

Say v + ε
∑

ai,jEv(j),i ∈ Cv′ for some v′ ≤ w. Since ε << 1, none of
the minors in v which are nonzero will vanish in v + ε

∑
ai,jEv(j),i, so

the rank table for v + ε
∑

ai,jEv(j),i dominates the rank table for v in
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every position. Hence, v ≤ v′ ≤ w. Thus, for each ai,j = 0, we have
v + εEv(j),i ∈ Xw so

∑
ai,jEv(j),v(i) is in the span of the independent

set of Ev(j),v(i) already known to be in Tv(Xw). Q.E.D.

Corollary 3.2. Xw is smooth at v ∈ Sn if and only if

dim Tv(Xw) := #{(i < j) : vtij ≤ w} = l(w)

or equivalently if and only if

#{(i < j) : v < vtij ≤ w} = l(w)− l(v).

Example 3.3. Consider the case n = 4. The Schubert varietyX4231

is not smooth at the point v = 2143. For all 6 transpositions, vtij ≤ w,
but �(w) = 5. Also, 6 = #{tij ≤ 4231} = dim Tid(X4231) > �(4231) = 5.
See Figure 2 to verify these statements. Similarly, one can check X3412

is not smooth at v = 1324 and is smooth at all v′ ≤ w such that v′ ≤ v.
It follows that

Sing(X4231) = X2143

Sing(X3412) = X1324.

Note that 3412 is the reverse of 2143 and 4231 is the reverse of 1324.
All other Schubert varieties Xw for w in S4 are smooth.

3.2. Bruhat graphs

Definition 3.4. For a permutation w, the Bruhat graph for w is a
graph whose vertex set is {v ∈ Sn : v ≤ w} = [id, w] and there is an edge
between v and vtij if and only if both v, vtij ≤ w.

For example, the Bruhat graph of w = 4321 is drawn in Figure 3.
Observe that the degree of v (i.e. the number of edges connected to v)
in the Bruhat graph for w is dim Tv(Xw).

The Bruhat graph for w has a geometric interpretation: it is the
moment graph of the Schubert variety Xw. Let T ⊂ GLn be the set of
invertible diagonal matrices, then the permutation matrices in GLn/B̃
are exactly the T -fixed points.

(i) The permutations in [id, w] are in bijection with the T -fixed
points of Xw.

(ii) If v, vtij ≤ w, then the edge between v and vtij in the Bruhat
graph for w, is realized as the corresponding curve passing
through the flags corresponding to v and vtij

Lv = {v + zEv(j),i : z ∈ C} ∪ {vtij} ≈ P
1.
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Fig. 2. The interval [id, 4231]

This curve is T -invariant, and pointwise fixed by a torus T ′ ⊂ T
of codimension 1.

Schubert varieties are examples of GKM-spaces studied by Goresky-
Kottwitz-MacPherson [48] and others. It turns out that much of the
T -equivariant topology or geometry of GKM spaces can be described in
terms of their moment graph.

3.3. Lakshmibai-Sandhya Theorem

There exists a simple criterion for characterizing smooth Schubert
varieties using permutation pattern avoidance. Pattern avoidance first
appeared in work by Knuth [62], Pratt [81] and Tarjan [90] related to
computer sorting algorithms in the 1960’s and 1970’s. Today, many
families of permutations are characterized by pattern avoidance or vari-
ations on that idea. We discuss one of the key results that brought this
technique into the study of Schubert varieties.
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Fig. 3. The Bruhat graph of w = 4321

Lakshmibai-Sandhya proved the following criterion for the singular-
ity of Schubert varieties in 1990. See also the mutually independent
work by Haiman (unpublished), Ryan [86], and Wolper [98].

Theorem 3.5. (Lakshmibai-Sandhya [64]) Xw is singular if and
only if w has a subsequence with the same relative order as 3412 or
4231.

More generally, given any sequence of distinct real numbers r1 . . . rm
define fl(r1 . . . rm) to be the permutation v ∈ Sm such that ri < rj if
and only if vi < vj . Recall that a permutation is uniquely defined by
its inversion set, so this condition uniquely defines v. The fl operator
flattens the sequence. Then, a permutation w = w1w2 . . . wn ∈ Sn

contains a pattern v = v1v2 . . . vm ∈ Sm for m < n if there exists
i1 < i2 < . . . < im such that fl(wi1wi2 . . . wim) = v. Otherwise, w
avoids v.
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Example 3.6. The permutation w = 625431 contains the subse-
quence 6241 which flattens into a 4231-pattern. Hence, X625431 is singu-
lar. Also, w = 612543 avoids the patterns 4231 and 3412 which implies
that X612543 is non-singular.

Let us sketch one approach to proving Theorem 3.5 by applying The-
orem 3.1. Say w contains a 3412 or 4231 pattern in positions i1 < i2 <
i3 < i4. Let v be the permutation obtained from w by rearranging the
numbers wi1wi2wi3wi4 according to the pattern for the corresponding
singular locus in S4. Specifically, if wi1wi2wi3wi4 is a 4231 then replace
wi1wi2wi3wi4 by the 2143 pattern wi2wi4wi1wi3 in the same positions.
If wi1wi2wi3wi4 is a 3412 then replace wi1wi2wi3wi4 by the 1324 pattern
wi3wi1wi4wi2 in the same positions. For example, if w = 625431 and
we use the 6241 instance of the pattern 4231, then v = 215634 which
contains a 2143 pattern among the values 1, 2, 4, 6.

We claim that Xw is singular at the point v by construction. The
proof proceeds by comparing �(w) − �(v) with the number of tij such
that v < vtij ≤ w. For i, j ∈ {i1, i2, i3, i4}, we know there will be strictly
more such transpositions than the length difference in these positions. A
key lemma now states that if two permutations v and w agree in position
i, then v ≤ w if and only if fl(v1 . . . v̂i . . . vn) ≤ fl(w1 . . . ŵi . . . wn)
[6, Lemma 2.1]. This follows from looking at the rank tables of two
permutations differing by a transposition. Next, note that vtij and
w differ in at most 6 positions. Thus, by a computer verification on
permutations of length 6 one can show that

#{tij : v < vtij ≤ w} > �(w)− �(v).

In the other direction, assume that w avoids the patterns 4231 and
3412. Lakshmibai and Sandhya show that avoiding these patterns is
equivalent to an equidimensionality property of certain projections which
implies smoothness.

Haiman’s proof also contained the following enumerative formula as
a corollary. Since his paper was never published, it wasn’t until 2007
that this result had a proof in the literature due to Bousquet-Mélou and
Butler.

Corollary 3.7. [19] There is a closed form for the generating func-
tion for the sequence vn counting the number of smooth Schubert varieties
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for w ∈ Sn :

V (t) =
1− 5t+ 3t2 + t2

√
1− 4t

1− 6t+ 8t2 − 4t3
(3)

= 1 + t+ 2t2 + 6t3 + 22t4 + 88t5

+ 366t6 + 1552t7 + 6652t8 +O(t9).

Note that by the Lakshmibai-Sandhya theorem, testing for smooth-
ness of Schubert varieties can be done naively in polynomial time, O(n4),
based on the characterization of avoiding 3412 and 4231. As we pointed
out in the introduction, the Guillemot-Marx [51] construction leads to
a linear time algorithm in n for testing if a permutation in Sn contains
either a 3412 or 4231 pattern.

Historically, there were some incremental results leading up to the
linear time algorithm to detect pattern avoidance by Guillemot and
Marx. These other algorithms might still have useful applications, so
we mention a couple of them here. In [71], Madras and Liu study the
4231-avoiding permutations. They point out that using Knuth’s origi-
nal characterization of stack-sortable permutations in linear time, one
can find a 4231 pattern in O(n2) time. In fact, Albert-Aldred-Atkinson-
Holton show that every length 4 pattern can be detected in O(nlogn)
time [3].

§4. 10 Pattern Avoidance Properties

In this section, we exhibit the ubiquity of pattern avoidance as a
tool to characterize important properties in Schubert geometry and re-
lated areas. We give 10 distinct properties which are characterized by
pattern avoidance. Each property will have a description in terms of
avoiding certain patterns. Often these permutation families have other
distinguishing features as well.

The first family of permutations defined by pattern avoidance is
the 3412- and 4231-avoiding permutations appearing in the Lakshmibai-
Sandhya Theorem. It is a family rich in structure. For the record, we
state all the properties equivalently characterized by these two patterns.
The history, citations, and some definitions follow the statement.

Pattern Avoidance Property 1. The following are equivalent for
w ∈ Sn.

(1) The one-line notation for w avoids 3412 and 4231.
(2) Xw is smooth.
(3) �(w) = #{tij ≤ w}.
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(4) The Bruhat graph for w is regular and every vertex has degree
�(w).

(5) The Poincaré polynomial for w, Pw(t) =
∑

v≤w tl(v) is palin-
dromic.

(6) The Poincaré polynomial for w factors as

Pw(t) =
k∏

i=1

(1 + t+ t2 + · · ·+ tei)

for some positive integers {e1, e2, ..., ek} such that �(w) =
∑

ei.
(7) The Poincaré polynomial Pw(t) is equal to the generating func-

tion Rw(t) for the number of regions r in the complement of
the inversion hyperplane arrangement weighted by the distance
of each region to the fundamental region. In symbols,

Rw(t) =
∑
r

td(r) =
∑
v≤w

tl(v) = Pw(t).

Here, d(r) is the number of hyperplanes crossed in a walk start-
ing at the fundamental region and going to the region r.

(8) The inversion arrangement for w is free and the number of
chambers of the arrangement is equal to the size of the Bruhat
interval [id, w].

(9) The Kazhdan-Lusztig polynomial Px,w(t) = 1 for all x ≤ w.
(10) The Kazhdan-Lusztig polynomial Pid,w(t) = 1.

We have already discussed the equivalence of the first three items.
Items (4), (5), and (10) are due to Carrell and Peterson [27]. Note,
Carrell is the sole author on the paper cited, but he always acknowledges
Peterson as a collaborator on this work so we give them both credit. The
term palindromic refers to the sequence of coefficients of the polynomial,
so the coefficient of ti equals the coefficient of t�(w)−i in a palindromic
Poincaré polynomial.

Item (6) about factoring Poincaré polynomials is due to Gasharov
[44]. This factorization implies that the geometry of smooth Schubert
varieties has particularly nice structure in terms of iterated fiber bundles
over Grassmannians [46, 84, 84, 86, 98].

Example 4.1. The permutation w = 4321 avoids the patterns 3412
and 4231. It has a palindromic Poincaré polynomial that also factors
nicely,

P4321(t) = (1 + t)(1 + t+ t2)(1 + t+ t2 + t3)

= 1 + 3t+ 5t2 + 6t3 + 5t4 + 3t5 + t6.
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Example 4.2. The permutation 3412 is one of the two cases in S4

where the Poincaré polynomial does not have the nice factorization, nor
the palindromic property. Here

P3412(t) = 1 + 3t+ 5t2 + 4t3 + t4.

Item (7) about the inversion hyperplane arrangement is due to Oh-
Postnikov-Yoo [78]. This arrangement is given by the collection of hy-
perplanes defined by xi − xj = 0 for all i < j such that w(i) > w(j).
This generalizes the notion of the Coxeter arrangement of type An−1

given by all the hyperplanes xi − xj = 0 for all i < j, so it is the in-
version arrangement for w0. The Coxeter arrangement has n! regions
corresponding to all the permutations. In this case, the statistic d(w)
equals �(w). Note no explicit bijective proof of Item (7) is known. The
inversion arrangement comes up again in Property 5 below.

Item (8) is due to Slofstra [87]. Here a central hyperplane arrange-
ment in a Euclidean space V is said to be free if the module of derivations
of the complexified arrangement is free as a module over the polynomial
ring C[VC]. We refer the reader to this paper for more background.
Note it also gives an algebraic interpretation for the generalized expo-
nents e1, e2, . . . , ek in terms of degrees of a homogeneous basis for the
module of derivations.

Items (9) and (10) concern the Kazhdan-Lusztig polynomials [59].
These polynomials play an important role in the study of the singular-
ities of Schubert varieties and in representation theory. We recall the
definitions here, highlight some important developments, and refer the
reader to the textbooks by Humphreys [54] and Björner-Brenti [17] for
more details.

The Hecke algebra H associated with Sn is an algebra over Z[q
1
2 , q

−1
2 ]

generated by {Ti : 1 ≤ i ≤ n− 1} with the relations

(1) (Ti)
2 = (q − 1)Ti + q,

(2) TiTj = TjTi if |i− j| > 1,
(3) TiTi+1Ti = Ti+1TiTi+1 for all 1 ≤ i < n.

This definition is patterned after the definition of the symmetric group
Sn written in terms of its generating set of adjacent transpositions and
their relations. In fact, if we take the specialization q = 1, then the
resulting algebra is the group algebra of Sn. The relations (2) and (3)
are called the braid relations. The braid relations imply that Tw =
Ti1Ti2 · · ·Tip is well defined for any reduced expression w = si1si2 . . . sip .
We will use the notation Tid = 1 ∈ H for the empty product of genera-
tors.
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An easy observation is that {Tw : w ∈ Sn} is a linear basis for H
over Z[q

1
2 , q

−1
2 ] . One can also observe that the Tw’s are invertible

over Z[q, q−1] which can be see as follows. First check that (Ti)
−1

=
q−1Ti −

(
1− q−1

)
by multiplying by Ti and using the stated relations.

Then, we have (Tw)
−1 = (Tip)

−1 · · · (Ti1)
−1 for a reduced expression

w = si1si2 . . . sip .
Next, let us review the Kazhdan-Lusztig involution. Consider the

Z-linear transformation i : H → H sending Tw to (Tw−1)−1 and q to q−1,
respectively.

Theorem 4.3. (Kazhdan-Lusztig [59]) There exists a unique basis

{C ′
w : w ∈ Sn} for the Hecke algebra H over Z[q

1
2 , q

−1
2 ] such that

(i) i(C ′
w) = C ′

w.
(ii) The change of basis matrix from {C ′

w} to {Tw} is upper tri-
angular when the elements of Sn are listed in a total order
respecting Bruhat order, and the expansion coefficients Px,w(q)
in

C ′
w = q−

1
2 �(w)

∑
x≤w

Px,w(q) Tx

have the properties Pw,w = 1 and for all x < w, Px,w(q) ∈ Z[q]
with degree at most

�(w)− �(x)− 1

2
.

The basis {C ′
w : w ∈ Sn} is called the Kazhdan-Lusztig basis for

H, and Px,w(q) is the Kazhdan-Lusztig polynomial for x,w ∈ Sn. This
theorem easily generalizes to all Coxeter groups for the reader familiar
with that topic.

Example 4.4. We exhibit some computations with the Kazhdan-
Lusztig basis indexed by permutations with the aid of Theorem 4.3.
First, it is easy to see

C ′
si = q−

1
2 (1 + Ti) = q

1
2 (1 + T−1

i ).

Then, for i = j, the computation

C ′
siC

′
sj = q−1(1 + Ti)(1 + Tj) = q−1(1 + Ti + Tj + TiTj)
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shows that C ′
sisj = C ′

siC
′
sj for i = j. Also, in the computation

C ′
s1C

′
s2C

′
s1 = q−

3
2 (1 + T1)(1 + T2)(1 + T1)

= q−
3
2 (1 + 2T1 + T2 + T1T2 + T2T1 + T 2

1 + T1T2T1)

= q−
3
2 (1 + 2T1 + T2 + T1T2 + T2T1

+ ((q − 1)T1 + q) + T1T2T1),

one notices that qT1 + q which comes from T 2
1 should not appear for

C ′
s1s2s1 because the degree of the polynomial coefficient of T1 and Tid

are too large. We need a correction term. Since C ′
si = q−

1
2 (1 + Ti) one

can check that C ′
s1s2s1 = C ′

s1C
′
s2C

′
s1 − C ′

s1 by Theorem 4.3.

Example 4.5. If i1, · · · , ik ∈ [n−1] are distinct, then one can check
that

C ′
si1 ···sik = C ′

si1
· · ·C ′

sik
.

More generally, a permutation w ∈ Sn is called Deodhar if C ′
w =

C ′
si1

C ′
si2

· · ·C ′
sip

for some reduced expression w = si1si2 · · · sip . We will

return to the Deodhar permutations in Property 6.

Example 4.6. The Kazhdan-Lusztig polynomials Pid,w for w ∈ S5

are completely determined from the following table and the fact that
Pid,w = 1 if and only if w is 3412 and 4231 avoiding.

w Pid,w

(14523) (15342) (24513)
(25341) (34125) (34152)
(35124) (35142) (35241)
(35412) (41523) (42315)
(42351) (42513) (42531)
(43512) (45132) (45213)
(51342) (52314) (52413)
(52431) (53142) (53241)
(53421) (54231)

q + 1

(34512) (45123)
(45231) (53412)

2q + 1

(52341) q2 + 2q + 1
(45312) q2 + 1

The reader might notice that all coefficients of Kazhdan-Lusztig
polynomials shown so far are non-negative integers. In their 1979 paper,
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this property was stated as a conjecture for all Kazhdan-Lusztig poly-
nomials. In 1980, Kazhdan and Lusztig proved their own conjecture
using intersection homology as introduced by Goresky and MacPherson
in 1974, see [49] as a good starting point for that theory.

Theorem 4.7. (Kazhdan-Lusztig [60]) If W is a Weyl group or
affine Weyl group then

Px,w(q) =
∑

dimIHi
x(Xw) q

i.

Corollary 4.8. The coefficients of Px,w(q) are non-negative inte-
gers with constant term 1.

The big news in Kazhdan-Lusztig theory is the recent proof that all
Kazhdan-Lusztig polynomials for all Coxeter groups have non-negative
integer coefficients. This proof is due to Elias and Williamson [40]. They
give an algebraic structure (Soergel bimodules) which plays the same role
as intersection homology of Schubert varieties in the original proof.

As stated in Property 1, Kazhdan-Lusztig polynomials can be used
to determine smoothness of Schubert varieties (in type A). There are
several other interesting properties of Kazhdan-Lusztig polynomials that
have emerged since they were defined in 1979. We cover some of them
here and recommend the Wikipedia page [97] for a very nice survey.

(1) In 1981, Beilinson–Bernstein, and independently Brylinski–
Kashiwara, proved another important conjecture due to Kazh-
dan and Lusztig. They showed that the multiplicities which ap-
pear when expressing the formal character of a Verma module
in terms of the formal character for the corresponding simple
highest weight module are determined by evaluating Kazhdan-
Lusztig polynomials at q = 1 ([5, 25]).

(2) The coefficients of Kazhdan-Lusztig polynomials are increasing
as one goes down in Bruhat order, while keeping the second
index fixed. Specifically, if x ≤ y ≤ w, then coefqkPx,w(q) ≥
coefqkPy,w(q). This monotonicity property was first published
in 1988 by Ron Irving [56]. Irving’s proof is based on the socle
filtration of a Verma module. In 2001, Braden and MacPherson
gave a different proof using intersection homology [20, Cor.
3.7].

(3) Every polynomial with constant term 1 and nonnegative in-
teger coefficients is the Kazhdan-Lusztig polynomial of some
pair of permutations. This is due to Patrick Polo, published
in 1999 [80]. He gives an explicit construction of the pair of
permutations for a given polynomial. This was a surprising
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result because from the small data that we can compute, say
for n ≤ 8, the polynomials seem quite special. They must get
increasingly complex as n grows.

(4) Let μ(x,w) be the coefficient of q
�(w)−�(x)−1

2 in Px,w. Note,
μ(x,w) can be 0. For x,w ∈ S9, μ(x,w) ∈ {0, 1}. MacLarnen
and Warrington found an example in S10 where μ(x,w) = 5
[75]. Prior to their publication in 2003, this was referred to as
the “0-1 Conjecture for Kazhdan-Lusztig polynomials.” This
again demonstrates the increasing complexity as n grows. The
reader might be wondering how anyone could have believed the
0-1 Conjecture after seeing Polo’s theorem in (3). However,
Polo’s theorem does not contradict the 0-1 Conjecture because
in his construction the length difference between w and x is
large enough that the leading term in Px,w(q) is typically not
the μ-coefficient.

(5) There exists a formula for Px,w(q) which only depends on
the abstract interval [id, w] in Bruhat order. See the work
of du Cloux (2003) [35], Brenti (2004) [21] and Brenti-Caselli-
Marietti (2006) [22].

There are two interesting but difficult open problems in Kazhdan-
Lusztig theory. There are many partial answers to these questions in the
literature, but we don’t know of a complete source at this time. Perhaps
there is a need for someone to start a wiki page.

Question 1. (Lusztig) Can one compute Px,w(q) using only the
abstract poset given by the interval [x,w] in Bruhat order? In other
words, Pu,v(q) = Px,y whenever [u, v] and [x, y] are isomorphic as posets.

Question 2. Can one compute the coefficients of Px,w(q) by count-
ing combinatorially defined objects?

The next pattern property connects the 3412 and 4231 patterns to
the determination of the singular locus of a Schubert variety. Recall
from Section 3, the singular locus of a Schubert variety Xw is a union
of Schubert varieties Xv with v < w. Thus to determine the irreducible
components of the singular locus, we just need to give the maximal
permutations v < w such that v determines a singular point in Xw.

Pattern Avoidance Property 2. (Billey-Warrington, Manivel,
Kassel-Lascoux-Reutenauer, and Cortez [16, 72, 58, 32]) Xv is an irre-
ducible component of the singular locus of Xw if and only if

v = w · (1-cycle permutation)
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corresponding to a 4231 or 3412 or 45312 pattern from Figure 4 such
that the shaded region contains no additional 1’s except in the 45312 case
where they must appear in the central region in decreasing order. Here
◦’s denote 1’s in w, •’s denote 1’s in v.

(1) (2) (3)

α1
β1
β2

β3

α2

α3

α4

β1
β2
β3
α1

β4
α2
α3

β1

α1

β2

α2

Fig. 4. Patterns for the singular locus of Xw in the 4231,
3412, and 45312 cases respectively.

This result was found around 2000 by 7 authors in 4 papers, plus
Gasharov proved on direction of the conjecture [45] around the same
time. It must have been ripe for discovery. It refined and proved a
conjecture due to Lakshmibai and Sandhya [64]. For the sake of history,
we note that the authors of [16] were the first to report this result to
Lakshmibai.

Corollary 4.9. The codimension of the singular locus of a Schubert
variety Xw is at least 3 for any w ∈ Sn.

The corollary is in fact true for all simply laced types. However,
it is not true in type Bn. The codimension of the singular locus of a
Schubert variety in that case can be 2.

Inspired by the Lakshmibai-Sandhya Theorem and the construction
of the singular locus of a Schubert variety in Property 2, Woo and Yong
[102] defined the notion of interval pattern avoidance. Given permuta-
tions u < v ∈ Sm and x < y ∈ Sn for m < m, say [u, v] interval pattern
embeds into [x, y] provided

(1) There exist indices 1 ≤ i1 < i2 < . . . < im ≤ n such that
fl(xi1 , . . . , xim) = u and fl(yi1 , . . . , yim) = v respectively.

(2) The permutations x, y agree in all positions other than 1 ≤
i1 < i2 < . . . < im ≤ n.

(3) The Bruhat intervals [u, v] and [x, y] are isomorphic as posets.
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In fact, if x, y agree everywhere outside of the indices 1 ≤ i1 < i2 < . . . <
im ≤ n and u = fl(xi1 , . . . , xim), v = fl(yi1 , . . . , yim) then [u, v] interval
embeds in [x, y] if and only if �(v) − �(u) = �(y) − �(x) [102, Lemma
2.1]. Furthermore, for all w ∈ Sn such that x < w < y, then w agrees
everywhere with y outside of the sequence and [fl(wi1 , . . . , wim), v] also
interval embeds in [x, y] [102, Lemma 2.4].

Observe that the condition from Figure 4 that the shaded region
have no additional 1’s in the permutation matrices implies that the
length l(w) − l(v) is equal to the corresponding length drop in each
of the 4231, 3412 or 45312 cases. Thus, the maximal singular locus of a
Schubert variety is determined by interval pattern conditions.

Another example of the power of interval pattern embeddings is the
following result supporting Question 1. More examples will follow, but
the reader is encouraged to see [102] for more details.

Theorem 4.10. [102, Cor. 6.3] Suppose [u, v] ⊂ Sm interval pattern
embeds into [x, y] ∈ Sn, then the Kazhdan-Lusztig polynomials Pu,v(q)
and Px,y(q) are equal.

A reader more familiar with symplectic geometry might notice that
a similar result to Theorem 4.10 could be obtained using the tools for
intersection homology as explained by Braden-MacPherson [20]. Thanks
to the referee for pointing this out to us.

Next, recall by a theorem due to Zariski that a varietyX is smooth if
and only if the local ring at every point is regular. A varietyX is factorial
at a point if the local ring at that point is a unique factorization domain.
Note that a smooth variety is factorial at every point since any regular
local ring is a unique factorization domain. The following property was
conjectured by Woo-Yong and proved by Bousquet-Mélou and Butler in
2007.

Pattern Avoidance Property 3. (Bousquet-Mélou-Butler [19])
Let w ∈ Sn, then the following are equivalent.

(1) The Schubert variety Xw is factorial at every point.
(2) The permutation w avoids 4231 and 3412 where 3412 means

that the 4 and 1 must be adjacent in the one-line notation for
w.

(3) The permutation w avoids 4231, and for every v < w differing
in exactly 4 positions, the interval [v, w] is not isomorphic to
[3142, 3412]. Thus, one says w interval avoids [3142, 3412].

Compare the generating function below with Corollary 3.7 which is
the generating function for the number of smooth Schubert varieties in
F ln.
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Theorem 4.11. [19] There is a closed form for the generating func-
tion for the sequence fn counting the factorial Schubert varieties for
w ∈ Sn:

F (t) =
(1− t)(1− 4t− 2t2)− (1− 5t)

√
(1− 4t)

2(1− 5t+ 2t2 − t3)
(4)

= t+ 2t2 + 6t3 + 22t4 + 89t5

+ 379t6 + 1661t7 + 7405t8 + . . . .

Note, the term
√
1− 4t appears in both (3) and (4). This term is

familiar in combinatorics because it also appears in the generating func-
tion for the Catalan numbers, cn = 1

n+1

(
2n
n

)
. In particular, as a power

series
√
1− 4t = 1+

∑
n≥1

−2
n

(
2n−2
n−1

)
tn by Newton’s generalized binomial

theorem. Thus, the generating function for the Catalan numbers is

∑
n≥1

cnt
n =

1−√
1− 4t

2t
.

There exists a simple criterion for characterizing Gorenstein Schubert
varieties using modified pattern avoidance. Recall that a variety X is
Gorenstein if it is Cohen-Macaulay and its canonical sheaf is a line bun-
dle. Woo and Yong characterized the Gorenstein condition by using
pattern avoidance.

Pattern Avoidance Property 4. (Woo-Yong [101]) A Schubert
variety Xw is Gorenstein if and only if the following two conditions are
satisfied :

(i) w avoids 35142 and 42513 with Bruhat restrictions {t15, t23}
and {t15, t34}, and

(ii) for each descent d in w, the associated partition λd(w) has all
of its inner corners on the same antidiagonal.

Later, Woo-Yong [102, Thm. 6.6] also gave a characterization of
Gorenstein Schubert varieties in terms of an interval pattern avoidance
using an infinite number of intervals.

We note that in the paper [101], the theorem states that w should
avoid 31542 and 24153 which is twisted by w0 from the permutations
written above. The difference is that they are labeling Schubert varieties
in such a way that the codimension of Xw is �(w) which works better
for computing products of Schubert classes.

The proof of this result due to Woo and Yong relates the Gorenstein
property to Schubert classes for the flag manifold and Monk’s formula.
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Since the topic of the conference in Osaka is “Schubert Calculus”, we
outline this proof to show the logical relationship. The steps are due to
Woo and Yong unless otherwise mentioned.

Sketch of proof.

Step 1: Schubert varieties are all Cohen-Macaulay. (Ramanathan, 1985)
Step 2: Testing if Xw is Gorenstein reduces to a comparison using the

Weil divisor class group and the Cartier class group for Xw.
(Brion, Knutson, Kumar)

Step 3: The Weil divisor class group is generated by the set of all [Xv] ∈
H∗(G/B) such that v < w and �(v) = �(w)−1. In this case we
say w covers v in Bruhat order, denoted v � w. If v � w, then
w = vtij but ti,j does not need to be an adjacent transposition.

Step 4: The Cartier class group is generated by [Xw0si ][Xw] and

[Xw0si ][Xw] =
∑

[Xv]

summed over all v = wtab : a ≤ i < b, �(v) = �(w) − 1 by
Monk’s formula.

Step 5: The Schubert variety Xw is Gorenstein if and only if there
exists an integral solution (α1, . . . , αn−1) to

n−1∑
i=1

αi[Xw0si ][Xw] =
∑
v�w

[Xv].

For the details of the proof, see [101]. Q.E.D.

A Schubert variety Xw(E•) is defined by inclusions if it can be de-
scribed as the set of all flags F• where Fi ⊂ Ej or Ei ⊂ Fj for some
collection of pairs i, j.

Pattern Avoidance Property 5. (Gasharov-Reiner [46]) A Schubert
variety Xw is defined by inclusions if and only if w avoids 4231, 35142,
42513, 351624.

The four patterns appearing in this property have two other inter-
esting and unexpected connections found using Tenner’s Database of
Permutation Pattern Avoidance.

Theorem 4.12. (Hultman-Linusson-Shareshian-Sjöstrand [53]) The
number of regions in the inversion arrangement for w is at most the num-
ber of elements below w in Bruhat order. The two quantities are equal
if and only if w avoids 4231, 35142, 42513, 351624.
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Given a subset S of [n]× [n], let matq(n, S, r) be the number of n×n
matrices over Fq with rank r, none of whose nonzero entries lie in S. For
example, if S = ∅, then

matq(n, ∅, n) = q(
n
2)(q− 1)n

n∏
i=1

(1 + q+ . . .+ qi−1) = q(
n
2)(q− 1)nPw0(q)

where w0 is the longest element of Sn and Pw0(q) is the Poincaré poly-
nomial for Xw0 .

Theorem 4.13. (Lewis-Morales [68]) Fix a permutation w in Sn,
and let D(w) be its permutation diagram. We have that

matq(n,D(w), n)/(q − 1)n = qn(n−1)−inv(w)Pww0(q
−1)

if and only if w avoids 1324, 24153, 31524, and 426153 (the reverses of
the patterns in Property 5).

The theorem above was originally part of a more general conjecture
by Klein-Lewis-Morales. We state the part that is still open.

Conjecture 4.14. (Klein-Lewis-Morales [61]) Using the notation
above, matq(n,D(w), n)/(q − 1)n is a polynomial function of q which is

coefficient-wise less than or equal to q(
n
2)−inv(w)Pw(q).

Recently, Albert and Brignall have shown that the enumeration of
Schubert varieties defined by inclusions has a nice generating function
and recurrence relation. Once again, it is interesting to compare this
formula with (3) and (4).

Theorem 4.15. (Albert-Brignall [4]) Let f(n) be the number of
permutations in Sn which avoid 4231, 35142, 42513, and 351624. Then,
we have the generating function

∑
f(n)tn =

1− 3t− 2t2 − (1− t− 2t2)
√
1− 4t

1− 3t− (1− t+ 2t2)
√
1− 4t

.

Gasharov-Reiner give a nice description of the cohomology rings of
Schubert varieties defined by inclusions. This result has been extended
by Reiner-Woo-Yong in a beautiful way which relates to Fulton’s essen-
tial set which is a subset of the diagram of a permutation. In order to
describe it here, let us first recall Carrell’s result on the cohomology of
Schubert varieties.

Theorem 4.16. (Carrell [26]) H∗(Xw) ≈ H∗(G/B)/Iw where Iw
is generated by all [Xv] such that v ≤ w.
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A permutation x is called Grassmannian if x has at most 1 descent.
Also, x is bigrassmannian if both x and x−1 are Grassmannian. We
denote by Des(x) the set of descents in x. In 1992, Akyildiz-Lascoux-
Pragacz gave a description of the ideal Iw which was then further refined
by Reiner-Woo-Yong.

Theorem 4.17. (Akyildiz-Lascoux-Pragacz [2]) Iw is generated by
the set of all [Xv] such that v ≤ w and v is Grassmannian.

Following [83], for a permutation w, let E(w) be the set of permuta-
tions which are minimal elements in Bruhat order in the complement of
the interval [id, w]. The set E(w) is called the essential set of w. Clearly,
this notion of essential set generalizes to all Coxeter groups.

Theorem 4.18. (Lascoux-Schützenberger and Geck-Kim [47]) The
elements in E(w) are bigrassmannian.

Theorem 4.19. (Reiner-Woo-Yong [83]) There exists a bijection
between E(w) and Fulton’s essential set which is defined as the cells in
the diagram of the permutation D(w) which have no cell directly to their
right or below.

Theorem 4.20. (Reiner-Woo-Yong [83]) Iw is generated by the set
of all [Xv] such that v ≤ w, v is Grassmannian and there exists some
bigrassmannian x ∈ E(w) such x ≤ v and Des(x) = Des(v).

Reiner-Woo-Yong point out that this generating set for Iw is still
not minimal in general. This leads to some interesting open questions.

Question 3. Find a minimal set of generators for Iw for all w ∈ Sn.
(See [83]).

Question 4. What is the relationship between E(w) and the defin-
ing equations for Schubert varieties in other types?

The next property relates the Bott-Samelson resolution for a singu-
lar Schubert variety and the Kazhdan-Lusztig basis elements to pattern
avoidance. A resolution of a singular variety is called a small resolution
if for every r > 0, the space of points of X where the fiber over the point
in the resolution has dimension r is of codimension greater than 2r. In
words, the singular points where the resolution has to blow up the di-
mension a lot are rare in a small resolution. One reason that people care
about small resolutions is that the intersection homology of a variety is
just the homology of a small resolution of the variety.

Pattern Avoidance Property 6. (Deodhar [34], Billey-Warrington
[12]) The following are equivalent.
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(1) C ′
w = C ′

si1
C ′

si2
· · ·C ′

sip
for some (or any) reduced expression

w = si1si2 · · · sip .
(2) The Bott-Samelson resolution of Xw is small.

(3)
∑
v≤w

tl(v)Pv,w(t) = (1 + t)l(w).

(4) For each v ≤ w, the Kazhdan-Lusztig polynomial can be written
as

Pv,w(t) =
∑

σ∈E(v,w)

tdefect(σ).

(5) w is 321-hexagon avoiding, that is, w avoids

321, 56781234, 56718234, 46781235, 46718235.

The equivalence of the first four properties was given by Deodhar
[34]. Showing these properties have a pattern avoidance characterization
is due to Billey-Warrington [12]. Deodhar’s theorem extends to all Weyl
groups and in each case there is again a pattern avoidance characteriza-
tion due to Billey-Jones [14].

We should explain Deodhar’s terminology defect(σ) and E(v, w) be-
cause we believe that they might have important implications for answer-
ing Question 2. First, fix a reduced expression for w. This corresponds
with a string diagram S for w. Think of each crossing in the string dia-
gram as optional. Then E(v, w) is the set of all string diagrams σ for v
obtained from S by choosing some subset of the crossings. The defect of
σ is the number of times two strings come together that have previously
crossed an odd number of times in the string diagram, as one progresses
vertically. Thus,

Pv,w(t) =
∑

σ∈E(v,w)

tdefect(σ)

is precisely the sort of combinatorial formula for the Kazhdan-Lusztig
polynomials we would like to have. Deodhar has shown that for every
pair v, w ∈ Sn there exists a set of string diagrams E(v, w) for which the
same formula holds. The only drawback is that in order to find E(v, w)
one must basically compute Pv,w using another method first.

The next pattern property due to Tenner concerns a subset of the
321-hexagon avoiding permutations.

Pattern Avoidance Property 7. (Tenner [91]) The principal
order ideal below w in Bruhat order is isomorphic to a Boolean lattice if
and only if w is 321 and 3412 avoiding. Equivalently, the Bott-Samelson
resolution of Xw is isomorphic to Xw.
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Thus, a permutation is called Boolean if it is 321 and 3412 avoiding.
These permutations give rise to a familiar enumerative sequence.

Theorem 4.21. (Fan [42], West [96]) The number of Boolean per-
mutations in Sn is the Fibonacci number F2n−1, e.g. F1 = 1, F3 =
2, F5 = 5.

The next property relates Kazhdan-Lusztig polynomials to a filtra-
tion on permutations. It was conjectured by Billey-Braden [13] and
proved by Woo [99].

Pattern Avoidance Property 8. (Woo-Billey-Weed [99]) The
Kazhdan-Lusztig polynomial Pid,w(1) = 2 if and only if w avoids 653421,
632541, 463152, 526413, 546213, and 465132 and the singular locus of
Xw has exactly 1 component.

To define a filtration on permutations in a similar way, let’s make
the following definition.

Definition 4.22. Let KLm = {w ∈ S∞ | Pid,w(1) ≤ m}.
For example, we know from Property 1 that KL1 is the set of per-

mutations avoiding 3412 and 4231. Similarly Billey-Weed used Woo’s
theorem to show that KL2 is characterized by the 66 permutation pat-
terns of length ≤ 8 below. This result is in an appendix to [99].

(4 5 1 2 3) (3 4 5 1 2) (5 3 4 1 2) (5 2 3 4 1) (4 5 2 3 1)

(3 5 1 6 2 4) (5 2 3 6 1 4) (5 2 6 3 1 4) (6 2 4 1 5 3) (5 2 4 6 1 3)

(4 6 2 5 1 3) (5 2 6 4 1 3) (5 4 6 2 1 3) (3 6 1 4 5 2) (4 6 1 3 5 2)

(3 6 4 1 5 2) (4 6 3 1 5 2) (5 3 6 1 4 2) (4 6 5 1 3 2) (4 2 6 3 5 1)

(6 3 2 5 4 1) (6 3 5 2 4 1) (6 4 2 5 3 1) (6 5 3 4 2 1)

(3 6 1 2 7 4 5) (6 2 3 1 7 4 5) (6 2 4 1 7 3 5) (3 4 1 6 7 2 5)

(4 2 3 6 7 1 5) (4 2 6 3 7 1 5) (4 2 6 7 3 1 5) (3 7 1 2 5 6 4)

(7 2 3 1 5 6 4) (3 7 1 5 2 6 4) (3 7 5 1 2 6 4) (7 5 2 3 1 6 4)

(6 2 5 1 7 3 4) (7 2 6 1 4 5 3) (3 4 1 7 5 6 2) (3 5 1 7 4 6 2)

(4 5 1 7 3 6 2) (4 2 3 7 5 6 1) (5 3 4 7 2 6 1) (4 2 7 5 6 3 1)

(3 4 1 2 7 8 5 6) (4 2 3 1 7 8 5 6) (3 4 1 7 2 8 5 6)

(4 2 3 7 1 8 5 6) (4 2 7 3 1 8 5 6) (3 5 1 2 7 8 4 6)

(5 2 3 1 7 8 4 6) (5 2 4 1 7 8 3 6) (3 4 1 2 8 6 7 5)

(4 2 3 1 8 6 7 5) (3 4 1 8 2 6 7 5) (4 2 3 8 1 6 7 5)
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(4 2 8 3 1 6 7 5) (3 4 1 8 6 2 7 5) (4 2 3 8 6 1 7 5)

(4 2 8 6 3 1 7 5) (3 5 1 2 8 6 7 4) (5 2 3 1 8 6 7 4)

(3 6 1 2 8 5 7 4) (6 2 3 1 8 5 7 4) (5 2 4 1 8 6 7 3)

(6 2 5 1 8 4 7 3)

A local ring R is a local complete intersection (LCI) if it is the
quotient of some regular local ring by an ideal generated by a regular
sequence. A variety is LCI if every local ring is LCI.

Pattern Avoidance Property 9. (Úlfarsson-Woo [95]) A Schubert
variety Xw is LCI if and only if w avoids 53241, 52341, 52431, 35142,
42513, and 426153.

Since regular local rings are LCI, smooth varieties are automati-
cally LCI. Furthermore, LCI varieties are Gorenstein and hence Cohen-
Macaulay. Thus, being LCI can be viewed as saying that the singularities
are in some sense mild. Compare the above criterion with Property 1
(for smoothness) and Property 4 (for Gorenstein property).

A permutation is vexillary if it avoids 2143, introduced by Lascoux-
Schützenberger in 1982 [67]. The word vexillary is related to flags, hence
the choice. We say w is covexillary if w avoids 3412. There are so many
interesting things to say related to vexillary and covexillary permuta-
tions so the tenth property has 3 parts.

Pattern Avoidance Property 10-1.

(1) (Edelman-Greene [38]) The number of reduced words for a vex-
illary permutation v is equal to the number of standard tableaux
of shape determined by sorting the lengths of the rows of the di-
agram of v.

(2) (Edelman-Greene [38]) The Stanley symmetric function Fv is
a Schur function if and only if v is vexillary. Here

Fv =
∑

a=a1a2...ak∈R(v)

∑
i1≤···≤ik∈C(a)

xi1xi2 · · ·xik

where R(v) are the reduced words for v and C(a) are the weakly
increasing sequences of positive integers such that ij < ij+1 if
aj < aj+1.
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(3) (Tenner [91]) The permutation v is vexillary if and only if for
every permutation w containing v, there exists a reduced de-
composition a ∈ R(w) containing a shift of some b ∈ R(v) as
a factor.

The next is a list of properties of vexillary permutations related to
geometry of Schubert varieties.

Pattern Avoidance Property 10-2.

(1) (Fulton [43]) Recall, Fulton’s essential set for w is the collection
of cells in the diagram of w with no neighbor directly east or
south. If w is vexillary, these cells lie on an increasing piece-
wise linear curve.

(2) (Lascoux [66]) There exists a combinatorial approach to com-
puting the Kazhdan-Lusztig polynomials Pv,w when w is covex-
illary.

(3) (Li-Yong [69]) There exists a combinatorial rule for computing
multiplicities for Xw when w is covexillary.

We say a permutation w is k-vexillary if its Stanley symmetric func-
tion Fw has at most k terms of Schur functions in its expansion. For
example, F2143 = s(2) + s(1,1), so 2143 is 2-vexillary.

Pattern Avoidance Property 10-3. (Billey-Pawlowski [9]) The
k-vexillary permutations are characterized by a finite set of patterns for
all k.

For example, if w is a permutation, then the following hold.

(1) w is 2-vexillary if and only if w avoids 35 patterns in S5, S6, S7, S8.

(2) w is 3-vexillary if and only if w avoids 91 patterns in S5, S6, S7, S8.

The list of 2-vexillary patterns is given as follows:
(3 2 1 5 4) (2 1 5 4 3) (2 1 4 3 6 5) (2 4 1 3 6 5) (3 1 4 2 6 5) (3 1 2 6 4 5) (2 1

4 6 3 5) (2 4 1 6 3 5) (2 3 1 5 6 4) (2 1 5 3 6 4) (3 1 5 2 6 4) (4 2 6 1 5 3) (5 2 7

1 4 3 6) (5 1 7 3 2 6 4) (4 2 6 5 1 7 3) (2 5 4 7 1 6 3) (5 4 7 2 1 6 3) (5 2 7 6 1 4

3) (6 1 8 3 2 5 4 7) (2 6 4 8 1 5 3 7) (6 4 8 2 1 5 3 7) (2 6 5 8 1 4 3 7) (6 5 8 2 1

4 3 7) (5 1 7 3 6 2 8 4) (5 1 7 6 3 2 8 4) (6 1 8 3 7 2 5 4) (6 1 8 7 3 2 5 4) (2 5 4

7 6 1 8 3) (5 4 7 2 6 1 8 3) (5 4 7 6 2 1 8 3) (2 6 4 8 7 1 5 3) (6 4 8 7 2 1 5 3) (2

6 5 8 7 1 4 3) (6 5 8 2 7 1 4 3) (6 5 8 7 2 1 4 3).

We have given 10+ properties of Schubert varieties which are amena-
ble to pattern avoidance in their characterization. This is just the begin-
ning of all the consequences for the Lakshmibai-Sandhya Theorem. In
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the next section, we will discuss how pattern avoidance extends to other
Lie types and Coxeter groups.

There are two further directions/consequences concerning special
families of varieties we should note. First is the GLp×GLq-orbits in the
flag variety forGLp+q with rationally smooth closure. These varieties are
special cases of the symmetric varieties studied by Springer. McGovern
has characterized which symmetric varieties in this case are rationally
smooth by using patterns involving a multiset of numbers and + and −
signs. See [73] for further details. Similar results are given in type C by
McGovern and Trapa [74].

Second, pattern avoidance also comes up in the study of Peterson
varieties. The Peterson variety for Cn is the collection of complete flags
F• such that N · Fi ⊂ Fi+1 for all 1 ≤ i < n where N is a fixed regular
nilpotent matrix. Up to isomorphism, the variety is independent of the
choice of N . Insko and Yong gave a combinatorial description of the
singular locus of the Peterson variety which involves the patterns 123
and 2143 among other conditions [55].

§5. Pattern avoidance for Coxeter groups

In this section, we study pattern avoidance properties for Coxeter
groups. First, we recall the definition of Coxeter groups and their basic
properties. For details, see [17, 54].

5.1. A quick review on Coxeter groups

A Coxeter graph is a simple graph with vertices {1, 2, . . . , n} and
edges labeled by Z≥3 ∪∞. The Coxeter group associated to a Coxeter
graph G is the group generated by S = {s1, s2, . . . , sn} with relations

(1) s2i = 1.
(2) sisj = sjsi if i, j not adjacent in G.
(3) sisjsi · · ·︸ ︷︷ ︸

m(i,j) generators

= sjsisj · · ·︸ ︷︷ ︸
m(i,j) generators

if i, j connected by edge la-

beled m(i, j) < ∞.

Since a Coxeter group is completely determined by its Coxeter graph,
we simply need to draw the graph to refer to the associated Coxeter
group. Conventionally, we drop the label 3 from any edge in pictures for
simplicity.

•1 4 •2 3 •3 3 •4 ≈ •1 4 •2 •3 •4

Example 5.1. The following are examples of Coxeter groups.
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(1) Dihedral groups: Dih10 is •1 5 •2
(2) Symmetric groups: S5 is •1 •2 •3 •4
(3) Hyperoctahedral groups: B4 is •1 4 •2 •3 •4
(4) The exceptional Weyl groups: E8 is

•1 •2 •3 •4 •5 •6 •7

•8

Curiously, the exceptional Weyl group E8 appears in string theory and
in chemistry related to the symmetry group of the C60 molecule and
buckyballs [31].

Fix a Coxeter group W with Coxeter graph G. The set of reflections
R ⊂ W is the set of all conjugates of the generators,

R =
⋃

w∈W

wSw−1.

A reduced expression of an element w ∈ W is an expression w = si1 · · · sik
as a product of generators in which k is the minimum among such ex-
pressions. The length of w ∈ W is the length of a reduced expression
for w, denoted �(w) again. Bruhat order on the Coxeter group W is the
transitive closure of the following relation

x ≤ y if �(x) < �(y) and xy−1 ∈ R.

It was observed by Chevalley that x ≤ y if and only if for any reduced
expression y = si1si2 . . . sip there exists a subexpression which is a re-

duced expression for x, in symbols x = sσ1
i1
sσ2
i2

. . . s
σp

ip
for some mask

σ1 . . . σp ∈ {0, 1}p [30].

There are many expressions for any w ∈ W as a product of gen-
erators, but it is a well known hard problem to tell when two expres-
sions are equal in a group using only generators and relations. Luckily,
there is an algorithm of finding a canonical representative for each ele-
ment of W , called the Mozes numbers game. See Mozes 1990, Eriksson-
Eriksson 1998, Björner-Brenti [17, 41, 77]. Let us briefly explain this
game/algorithm here.

Replace each edge (i, j) of G by two opposing directed edges labeled
fij > 0 (for the edge i → j) and fji > 0 (for the edge j → i) so that

fijfji = 4cos2
(

π
m(i,j)

)
or fijfji = 4 if m(i, j) = ∞. These labels are
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fixed in the game once chosen. The following is a useful choice since the
labels are all integers.

m(i, j) fij fji
3 1 1
4 2 1
6 3 1
∞ 4 1

Assume that we are given an element w = si1si2 . . . sip ∈ W . The
canonical presentation of w is obtained as follows. We first assign value
1 to each vertex G. Next, fire the vertex si1 . Here, firing the vertex si
is an operation done by adding to the value of each neighbor vertex j,
the current value at the vertex i multiplied by fij , and then negating
the sign of the value of the vertex i. We continue to fire the vertices
si2 , si3 , . . . , sip consecutively. The resulting assignment of values for ver-
tices of G, denoted by G(w), provides a canonical presentation of the
given w. In fact, this algorithm satisfies the following properties:

(1) G(w) only depends on the product si1si2 . . . sip and not on the
particular choice of expression.

(2) The vertex i is negative in G(w) if and only f wsi < w.
(3) The vertex i never has value 0.

Note, the map G is injective but not surjective on the set of all
integer assignments to the nodes of the Coxeter graph.

Remark 5.2. For I ⊂ S, it is possible to modify the game to get
representatives for W/WI by starting with initial value 0 on vertices in
I and 1’s elsewhere. Then wsi = w if and only if the vertex i has value
0 in W/WI . This is useful for Schubert geometry of Grassmannians and
affine Grassmannians.

For a Coxeter group W , we can associate to it its root system Φ ⊂
V = R

|S| where {αs : s ∈ S} forms a basis of V [54, Section 5.4]. W acts
linearly on V and Φ is W -invariant. We denote by Φ+ and Φ− the set
of positive roots and the set of negative roots, respectively:

Φ+ = {α ∈ Φ: α =
∑

csαs, cs ≥ 0,∀s ∈ S},
Φ− = {α ∈ Φ: α =

∑
csαs, cs ≤ 0∀s ∈ S}.

It follows that Φ = Φ+∪Φ− (disjoint union). There is a natural bijection
between R and Φ+ which we will denote by r → αr. Then, for r ∈ R,w ∈
W , we have

wr > w if and only if wαr ∈ Φ+.
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Example 5.3. Let e1, . . . , en be the standard orthonormal basis
of Rn. Then the root system of the Weyl groups of classical types are
determined by the following description of Φ+.

An−1 : Φ+ = {ei − ej : 1 ≤ i < j ≤ n}

Bn : Φ+ = {ei − ej : 1 ≤ i < j ≤ n} ∪ {ei + ej : 1 ≤ i < j ≤ n}
∪ {ei : 1 ≤ i ≤ n}

Cn : Φ+ = {ei − ej : 1 ≤ i < j ≤ n} ∪ {ei + ej : 1 ≤ i < j ≤ n}
∪ {2ei : 1 ≤ i ≤ n}

Dn : Φ+ = {ei − ej : 1 ≤ i < j ≤ n} ∪ {ei + ej : 1 ≤ i < j ≤ n}
The inversion set of w ∈ W is defined to be wΦ+ ∩ Φ−. In type

An−1, these roots are in bijection with the inversion set of w defined
originally. For a linear function H : V −→ R, we let

ΠH = {α ∈ Φ: H(α) > 0}.
This is an intersection of the set of roots with a half space. We say H is
generic if H(α) = 0 for all α ∈ Φ.

Example 5.4. If H1 : V −→ R is defined by H1(αs) = 1 for all
s ∈ S, then ΠH1 = Φ+.

Definition 5.5. For each w ∈ W , set Hw = H1 ◦ w−1. Then, we
have ΠHw = wΦ+.

A key fact is that, if H is generic, then ΠH = wΦ+ for some unique
w ∈ W . That is, every generic half space determines a unique w ∈ W
whose inversion set is exactly the negative roots in the given half space.
Below are the positive roots for two types of Coxeter groups drawn
projectively in 2 dimensions. We denote by βij = ei − ej for A3.

β1 β2

β1 + β2 β1 + 2β2

β1 and β1 + 2β2 are long roots.

β1 + β2 and β2 are short roots.

B2 : A3 = S4 :

β12 = β1, β23 = β2, β34 = β3,

β13 = β1 + β2, β24 = β2 + β3,

β14 = β1 + β2 + β3.

β12 β34

β13

β14

β24

β23
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For example, if a given half space ΠH contains all the positive roots
βij ’s except for β23 and β24, then ΠH = ΠHw for w = 2431.

5.2. Coxeter patterns

Each subset I ⊂ S generates a subgroup WI . A subgroup W ′ ⊂ W
which is conjugate to WI for some I is called a parabolic subgroup. The
WI ’s themselves are known as standard parabolic subgroups.

A parabolic subgroup W ′ = xWIx
−1 of W is again a Coxeter group,

with simple reflections S′ = xIx−1 and reflections R′ = R ∩W ′. Note
that S′ ⊂ S unless W ′ is standard.

We denote the length function and the Bruhat-Chevalley order for
(W ′, S′) by l′ and ≤′, respectively. If W ′ = WI then

l′ = l|W ′ and ≤′ = ≤|W ′×W ′ ,

but in general we only have l′(w) ≤ l(w) and x ≤′ y =⇒ x ≤ y. For
instance, if W ′ ⊂ S4 is generated by the reflections r23 = 1324 and
r14 = 4231, then r23 ≤ r14 although they are not comparable for ≤′.

The following theorem/definition generalizes the flattening function
for permutations to all Coxeter groups. The following theorem is closely
related to a theorem due to Dyer on reflection subgroups [36, Thm. 1.4].

Theorem 5.6. [13] Let W ′ ⊂ W be a parabolic subgroup. There is
a unique function fl: W → W ′, the pattern map for W ′, satisfying the
following two properties.

(a) The map fl is W ′-equivariant: fl(wx) = w fl(x) for all w ∈ W ′,
x ∈ W .

(b) If fl(x) ≤′ fl(wx) for some w ∈ W ′, then x ≤ wx.

In particular, fl restricts to the identity map on W ′.

If W ′ = WI is a standard parabolic, then (b) can be strengthened
to “if and only if”. In this case the result is well-known.

To show uniqueness, note that (a) implies that fl is determined by
the set fl−1(1), and (b) implies that fl−1(1)∩W ′x is the unique minimal
element in W ′x. Existence is more subtle; it is not immediately obvious
that the function so defined satisfies (b). We give a construction of a
function fl that satisfies (a) and (b).

Recall V is the real vector space spanned by the roots in the root
system Φ associated to the Coxeter group W . If U ⊂ V is a linear
subspace, then we use the following notations:

ΦU := Φ ∩ U , a root subsystem of Φ,
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WU is the group generated by reflections rα for α ∈ ΦU ,
RU := R ∩WU .

One can show that WU is a parabolic subgroup of W assuming W
is finite, see [54, §1.12]. Note that not all subgroups of W generated
by reflections are parabolic subgroups. For example, for B3, the group
generated by reflections over the ei’s is not parabolic.

By the uniqueness statement in Theorem 5.6, we can use the sets
ΠH defined earlier to realize fl: W −→ WU . In fact, fl(w) is the unique
element x ∈ WU such that

wΦ+ ∩ U = {α ∈ U ∩ Φ: Hw(α) > 0}
= {α ∈ ΦU : H ′(α) > 0} where H ′ = Hw|U
= xΦU

+.

This realization of the flattening map for Weyl groups was first given by
Billey-Postnikov [10] even though it was published later than [13]. The
delay is explained below.

Example 5.7. Let U = span〈β23, β34〉. Then flU (2431) = 243. See
the picture in the previous example.

5.3. Applications of Coxeter Patterns

Let us denote

G : a semisimple simply-connected complex Lie group,
B ⊂ G : a Borel subgroup,
T ⊂ B : a maximal torus,
W = N(T )/T : the Weyl group (a finite Coxeter group),
Φ ⊂ V : the associated root system

where N(T ) is the normalizer of T in G. The finite Weyl groups (or root
systems) that arise this way have been completely classified into types
An, Bn, Cn, Dn, E6, E7, E8, F4, G2. The Bruhat decomposition enables
us to partition G using the Borel subgroup and the Weyl group:

G =
⋃

w∈W

BwB.

The quotient G/B is called the (generalized) flag manifold, and Schubert
cells and Schubert varieties of G/B are

Cw = B · w, Xw = B · w
for each w ∈ W , respectively.



Consequences of the Lakshmibai-Sandhya Theorem 39

The next theorem characterizes all smooth Schubert varieties for
any semisimple simply-connected complex Lie group G. To state the
theorem, we need a few more definitions.

Definition 5.8. A Coxeter group W is stellar if its Coxeter graph
has one central vertex and all other vertices are only adjacent to it.

The stellar Coxeter groups corresponding to the Weyl groups of
types A,B,C,D,E, F and G (except for A2) are drawn below where a
double edge and a triple edges mean that the label of the corresponding
edge is 4 and 6, respectively. Note, that the Weyl groups of types Bn

and Cn are isomorphic, but the pattern map works slightly differently
on each so we list their Dynkin diagram instead of their Coxeter graph.

B2 = A3 =

G2 = B3 = C3 =

D4 =

Dynkin diagrams of stellar root systems

Theorem 5.9. (Billey-Postnikov [10]) A Schubert variety Xw is
smooth if and only if for every stellar parabolic subgroup WU , the Schubert
variety Xv for v = flU (w) is smooth in GU/BU .

Here GU is a semisimple Lie group with Weyl group WU and BU is
one of its Borel subgroups. We remark that WU might not be the same
type as W . For example, for Weyl groups of type C and D there will
appear WU of type A. In fact, the type A singular patterns are most
common. If the Coxeter graph of W has only edges labeled by 3’s, we
say W is simply laced. If W is simply laced, then all of its parabolic
subgroups are also simply laced.

It turns out that there are very few patterns for which the cor-
responding Schubert varieties are singular among stellar reduced, irre-
ducible Weyl groups; 2 patterns in A3, 1 pattern in B2, 6 patterns in
B3 and C3, 1 pattern in D4, 5 patterns in G2. Note that all Schubert
varieties of type A2 are smooth.

Example 5.10. In type Bn using the classical pattern avoidance
on signed permutations, the smooth Schubert varieties are classified by
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avoiding the following 17 patterns

(−2,−1),

(1, 2,−3), (1,−2,−3), (−1, 2,−3), (2,−1,−3), (−2, 1,−3), (3,−2, 1)

(2,−4, 3, 1), (−2,−4, 3, 1), (3, 4, 1, 2), (3, 4,−1, 2), (−3, 4, 1, 2)

(4, 1, 3,−2), (4,−1, 3,−2), (4, 2, 3, 1), (4, 2, 3,−1), (−4, 2, 3, 1).

All length 4 patterns come from A3 root subsystems.

Example 5.11. In type D4, there are 49 singular Schubert varieties,
and the only element which does not comes from A3 root subsystems is
w = s2 · s1s3s4 · s2 = 1̄43̄2. Thus, for all simply laced types, there are
only 3 bad patterns to consider: 3412, 4231, and 1̄43̄2. It is instructive
to look at the singular locus of the Schubert varieties for each of these
3 patterns:

Sing Xs2s1s3s2 = Xs2 (3412 case),

Sing Xs3s1s2s1s3 = Xs1s3 (4231 case),

Sing Xs2s1s3s4s2 = Xs2 (1̄43̄2 case).

As we mentioned in Section 4, the definition of a Kazhdan-Lusztig
polynomial Pv,w(t) easily generalizes to all Coxeter groups. We use these
polynomials to define the notion of a rationally smooth Schubert variety.
This avoids the more general definition in terms of étale cohomology.

Definition 5.12. A point v ∈ Xw is rationally smooth if and only
if Pv,w(t) = 1. A Schubert variety Xw is rationally smooth if every point
of Xw is rationally smooth.

The following theorem as stated is due to Carrell and Peterson. Re-
lated results also appear in Jantzen’s book [57, Ch.5] in slightly different
language.

Theorem 5.13. [27] The following are equivalent.

(1) Xw is rationally smooth at v.
(2) Pv,w(t) = 1
(3) The Bruhat graph on [v, w] is regular of degree l(w)− l(v).

In the next theorem, the third condition is due to Carrell-Peterson
[27]. The fourth condition combines work of Garsharov [44] in type A,
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[6] for types B and C, then it was conjectured to hold for all Weyl groups
by McGovern and proved by Akyildiz-Carrell [1] for types D and E. It
can be checked by computer for F4 and G2 can be done easily. The next
condition is due to Oh-Yoo [79]. The last condition is due to Slofstra
[87].

Theorem 5.14. The following are equivalent for all Weyl groups.

(1) Xw is rationally smooth.
(2) Pid,w(t) = 1

(3) Pw(t) =
∑

v≤w t�(v) is palindromic.

(4) Pw(t) =
∏
(1 + t+ t2 + · · ·+ tei)

(5) The Poincaré polynomial Pw(t) is equal to the generating func-
tion Rw(t) for the number of regions r in the complement of
the inversion hyperplane arrangement for w weighted by the
distance of each region to the fundamental region.

(6) The inversion arrangement for w is free and the number of
chambers of the arrangement is equal to the size of the Bruhat
interval [id, w].

For all finite Weyl groups, rational smoothness can be characterized
by pattern avoidance.

Theorem 5.15. (Billey-Postnikov [10]) Xw is rationally smooth if
and only for every stellar parabolic subgroup WU , Xv for v = flU (w) is
rationally smooth in GU/BU .

Note that there are only 2 patterns in A3, 6 patterns of type B3 and
C3, 1 pattern of type D4 which should be avoided by w in order for Xw

to be rationally smooth. The Coxeter pattern map made a very large
reduction in the number of patterns one needs to remember for both
smoothness and rational smoothness.

Remark 5.16. Smoothness implies rational smoothness. In terms
of the patterns characterization, the difference between smoothness and
rational smoothness for all Weyl group types is just 6 additional patterns,
1 pattern in B2 and 5 patterns of type G2.

Outline of proof of Theorems 5.9 and 5.15

• Step 1: For classical types B,C,D, use Lakshmibai’s character-
ization of the tangent space basis to get the general smoothness
results.
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• Step 2: Use an analog of Gasharov’s theorem to the factor of
Poincaré polynomial for any signed permutation not containing
a singular pattern to get the rational smoothness of B,C,D
which extends to all finite types.

• Step 3: Use Kumar’s criterion for (rational) smoothness in the
nil-Hecke ring to test G2 and F4 by computer.

• Step 4: Run a massive parallel computation on the 696,729,600
elements w ∈ E8.

– If w has a pattern from type A or D, calculate the co-
efficient of t1 and t�(w)−1 and compare, if different, w is
done. If not, calculate the coefficient of t2 and t�(w)−2, etc.
Eventually one pair differed in every case.

– If w avoids all patterns from type A or D, use analog of
Gasharov’s algorithm for factoring Pw(t).

Q.E.D.

Note that smoothness of Xw automatically implies rational smooth-
ness. Deodhar proved the following property for type A, and later Peter-
son proved that it also holds for type D and E (unpublished). See [28]
for a proof. A proof for all finite Weyl group types except E6, E7, E8

follows easily from Theorem 5.9 and Theorem 5.15. For E6, E7, E8, the
Peterson theorem is used in the proof of these two theorems.

Theorem 5.17. (Deodhar, Peterson, Carrell-Kuttler) For Lie types
A,D,E, a Schubert variety Xw is smooth if and only if it is rationally
smooth.

A new proof of Theorem 5.17 has recently been announced by Rich-
mond and Slofstra [85]. In fact, they show that every rationally smooth
Schubert variety in any finite Lie type is an iterated fibre bundle of Grass-
mannians. This generalizes the work in type A by Ryan [86], Wolper
[98], and Gasharov-Reiner [46] mentioned in Pattern Property 1.

Note that smoothness and rational smoothness are not equivalent

for affine type Ãn by Mitchell [76] and Billey-Crites [7].

The definition of the Coxeter pattern map also has applications to
the geometry of Schubert varieties for Weyl groups and affine Weyl
groups. Once again, let U ⊂ V be a linear subspace. We denote by
M(x,w;U) the set of maximal elements in [id, w] ∩ WUx with respect
to a new partial order ≤x defined by

wx ≤x w′x if fl(wx) ≤U fl(w′x).
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Theorem 5.18. (Billey-Braden [13]) If x,w ∈ W , then

Px,w(1) ≥
∑

y∈M(x,w;U)

Py,w(1)P
U
fl(x),fl(y)(1).

Corollary 5.19. [13] For all x < w, Px,w(1) ≥ PU
fl(x),fl(w)(1).

Historically, Theorem 5.18 and Corollary 5.19 were the first applica-
tion of simultaneous pattern embedding/flattening on two Coxeter group
elements. For u, v ∈ Sm and x, y ∈ Sn, if [u, v] interval pattern embeds
into [x, y] using indices 1 ≤ i1 < . . . < im ≤ n then one can construct a
subspace U such that u = flU (x), v = flU (y) by considering all the roots
indexed by values in the set {xi1 , . . . , xim}. Thus, Corollary 5.19 implies
one direction of the stronger type A result in Theorem 4.10. From this
point of view, Theorem 5.18 and Corollary 5.19 were precursors to the
notion of interval pattern avoidance introduced in [102].

Woo [100] extended the notion of interval pattern avoidance to other
Weyl groups and proved that many of the nice properties in [102] con-
tinue to hold. In particular, the analog of Theorem 4.10 holds for all
Weyl groups [100, Cor. 3.3]. Furthermore, Woo relates interval pattern
embeddings with isomorphism of Richardson varieties which are inter-
sections of two Schubert varieties with respect to two generic flags.

Theorem 5.20. [100, Thm. 3.1] Let W ′,W be Weyl groups. Sup-
pose there is some root subsystem embedding which embeds [u, v] ⊂ W ′ in
[x,w] ⊂ W . Then the Richardson varieties Xu

v and Xx
w are isomorphic.

Corollary 5.19 also gives rise to filtrations on permutations.

Corollary 5.21. For each m, KLm = {w ∈ S∞ | Pid,w(1) ≤ m} is
closed under taking patterns.

It is interesting to ask for a geometrical explanation for why (ratio-
nal) smoothness of Schubert varieties can be characterized by Coxeter
patterns. The following theorem proves one direction of this. The other
direction is still open: namely, why are patterns from stellar Coxeter
graphs enough.

Theorem 5.22. (Billey-Braden [13]) If XU
fl(w) is singular, then Xw

is singular.

Outline of proof.

• Realize GU/BU as the fixed points of a certain torus action.
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• Use a theorem of Fogarty-Norman saying that for all smooth
algebraic T -schemes X the fixed point scheme XT is smooth.

Q.E.D.

Several other nice pattern avoidance properties in Coxeter groups
are also known:

(1) (Stembridge [89]) The fully commutative elements in types B
and D are characterized with signed patterns.

(2) (R.Green [50]) The fully commutative elements in the affine
Weyl group of type A are exactly the 321-avoiding elements.

(3) (Reading [82]) Coxeter-sortable elements are characterized and
it is shown that they are equinumerous with clusters and with
noncrossing partitions.

(4) (Billey-Jones [14]) Deodhar elements for all Weyl groups are
characterized.

(5) (Billey-Crites [7]) The rationally smooth Schubert varieties in
the affine type A flag manifold are characterized as 3412, 4231
avoiding plus one extra family of twisted spiral varieties. Crites
also studied the enumeration of affine permutations indexing
rationally smooth Schubert varieties in [33].

(6) (Chen-Crites-Kuttler, manuscript) A Schubert variety Xw of

affine type A is smooth if and only if w ∈ S̃n avoids 3412 and
4231. Furthermore, the tangent space to Xw at the identity
can be described in terms of reflection over real and imaginary
roots.

(7) (Matthew Dyer, manuscript) Smooth and rationally smooth
Schubert varieties can be detected using rank 2 subvarieties
[37].

(8) (Matthew Samuel, manuscript) Affine Schubert varieties for
all types can be characterized by patterns using a new version
of pattern avoidance for Coxeter groups based on reflection
groups.

§6. Computer tools for Schubert geometry

In the lecture series that gave rise to this article, we discussed some
computer tools for the study of geometry of Schubert varieties and for
more general topics in mathematics. The video file of the lecture devoted
to the contents of this section is available at the following website.

http://mathsoc.jp/en/videos/2012msj-si.html
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The main ideas presented are pertaining to computer proofs, the Online
Encyclopedia of Integer Sequences, the Database of Permutation Pattern
Avoidance and Sage. The demos in the lecture are best seen online so
we will not include that discussion here.

We do want to highlight one of the Sage demos discussed, because it
is related to some recent developments on marked mesh patterns which
unify the descriptions of several pattern avoidance properties for permu-
tations using the language of marked mesh patterns.

Definition 6.1. (Bränden and Claesson [24]) A mesh pattern is a
permutation matrix with shaded regions between certain entries.

The dots represents 1’s in the permutation matrix.

Definition 6.2. (Úlfarsson [94]) A marked mesh pattern is a mesh
pattern with numbers in the shaded regions.

The next theorem states that we can also use marked mesh patterns
for characterizing Schubert varieties. See [94] for details.

Theorem 6.3. (Úlfarsson [94]) The smooth, Gorenstein, factorial,
defined by inclusions, and 321-hexagon avoiding permutations can be
described by marked mesh patterns.

§7. Open Problems

In addition to the open problems we have mentioned in the text,
there are some more open problems concerning pattern avoidance prop-
erties. We hope that computer experiments will help the reader to study
those problems.

Question 5. (Woo-Yong) Characterize the Gorenstein, LCI and
factorial locus of Xw using patterns.

Question 6. (From Úlfarsson) Is there a nice generating function to
count the number of Gorenstein/LCI permutations or Schubert varieties
defined by inclusions, etc.

Question 7. Find a geometric explanation why a finite number of
patterns suffice in all cases above.
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Question 8. What nice properties does the inversion arrangement
have for other pattern avoiding families?

Question 9. KLm is closed under taking patterns by [13]. Can it
always be described by a finite set of patterns? Conjectured to be yes
by Billey-Weed-Woo.

Question 10. Conjecture (Woo): The Schubert varieties with mul-
tiplicity ≤ 2 can be characterized by pattern avoidance. Can this be ex-
tended to a pattern avoidance characterization of Schubert varieties with
multiplicity ≤ k? Note, Woo-Yong showed that multx(Xy) = multu(Xv)
if [u, v] interval pattern embeds into [x, y] [102, Cor. 6.15].

Question 11. What other filtrations on the set of all permutations
can be characterized by (generalized) patterns?

Question 12. Describe the maximal singular locus of a Schubert
variety for other semisimple Lie groups using Coxeter patterns.

Question 13. Give a pattern based algorithm to produce the fac-
torial and/or Gorenstein locus of a Schubert variety in other types.

Question 14. Is there a nice generating function to count the num-
ber of smooth, factorial and/or Gorenstein permutations in other types?

Question 15. What is the right notion of patterns for GKM spaces?

Question 16. Say a Schubert variety Xw is combinatorially smooth
if �(w) = #{tij : tij ≤ w}. In Sn, combinatorially smooth is equivalent to
smooth by the Lakshmibai-Seshadri Theorem. However, for other Weyl
groups this is a weaker notion than rational smoothness. Characterize
the combinatorially smooth Schubert varieties by generalized pattern
avoidance.

Question 17. Can Lakshmibai’s characterization of the tangent
space basis for B, C and D be translated into signed patterns or a
signed variation on marked mesh patterns.

Question 18. What is the analog of marked mesh patterns for other
types?

Question 19. What is the Möbius function for the poset of pattern
containment on S∞? See the excellent survey by Einar Steingrimmson
[88, Sect. 5] for more details on this and other pattern related problems.

Question 20. Which of the many pattern avoidance related the-
orems on Schubert varieties have analogs for other interesting families
of varieties such as the GLp × GLq-orbit closures of the flag manifold
or the Peterson varieties as mentioned at the end of Section 4? See
[23, 52, 55, 73, 74] for further details.
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Question 21. More generally, what other types of theorems have
canonical representations which might lead to more computer database
tools? For example, how about hypergeometric series, integer sequences,
patterns? See [11] for more discussion on this topic.
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