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For a K3 surface S, a smooth curve C ⊂ S and a globally generated
linear series A ∈ W r

d (C) with h0(C,A) = r + 1, the Lazarsfeld-Mukai
vector bundle EC,A is defined via the following elementary modification
on S

(1) 0 −→ E∨
C,A −→ H0(C,A)⊗OS −→ A −→ 0.

The bundles EC,A have been introduced more or less simultaneously
in the 80’s by Lazarsfeld [L1] and Mukai [M1] and have acquired quite
some prominence in algebraic geometry. On one hand, they have been
used to show that curves on general K3 surfaces verify the Brill-Noether
theorem [L1], and this is still the only class of smooth curves known to
be general in the sense of Brill-Noether theory in every genus. When
ρ(g, r, d) = 0, the vector bundle EC,A is rigid and plays a key role in
the classification of Fano varieties of coindex 3. For g = 7, 8, 9, the
corresponding Lazarsfeld-Mukai bundle has been used to coordinatize
the moduli space of curves of genus g , thus giving rise to a new and more
concrete model of Mg, see [M2], [M3], [M4]. Furthermore, Lazarsfeld-
Mukai bundles of rank two have led to a characterization of the locus in
Mg of curves lying on K3 surfaces in terms of existence of linear series
with unexpected syzygies [F], [V]. For a recent survey on this circle of
ideas, see [A].

Recently, Lazarsfeld-Mukai bundles have proven to be effective in
shedding some light on an interesting conjecture of Mercat in Brill-
Noether theory, see [FO1], [FO2], [LMN]. Recall that the Clifford index
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of a semistable vector bundle E ∈ UC(n, d) on a smooth curve C of
genus g is defined in [LN1] as

γ(E) := μ(E)− 2

n
h0(C,E) + 2 ≥ 0.

Then the higher Clifford indices of the curve C are defined as the quan-
tities

Cliffn(C) := min
{
γ(E) : E ∈ UC(n, d), d ≤ n(g− 1), h0(C,E) ≥ 2n

}
.

For any line bundle L on C such that hi(C,L) ≥ 2 for i = 0, 1, that is,
contributing to the classical Clifford index Cliff(C), by computing the
invariants of the strictly semistable vector bundle E := L⊕n, one finds
that Cliffn(C) ≤ Cliff(C). Mercat [Me1] predicted that for any smooth
curve C of genus g, the following equality

(Mn) : Cliffn(C) = Cliff(C).

should hold. Counterexamples to (M2) have been found on curves lying
on K3 surfaces that are special in Noether-Lefschetz sense, see [FO1],
[FO2] and [LN2]. However, (M2) is expected to hold for a general curve
of genus g, and in fact even for a curve C lying on a K3 surface S such
that Pic(S) = Z ·C. For instance, it is known that statement (M2) holds
on M11 outside a certain Koszul divisor (which also admits a Noether-
Lefschetz realization), see [FO2] Theorem 1.3. It has also been shown
that (M2) holds generically on Mg for g ≤ 16, see [FO1].

It has been proved in [LMN] that rank three restricted Lazarsfeld-
Mukai bundles invalidate statement (M3) in genus 9 and 11 respectively,
that is, Mercat’s conjecture in rank three fails generically on M9 and
M11 respectively. This was then extended in [FO2] Theorem 1.4, to
show that on a K3 surface S with Pic(S) = Z · C, where C2 = 2g − 2,
if A ∈ W 2

d (C) is a linear system where d := � 2g+8
3 	, the restriction to

C of the Lazarsfeld-Mukai bundle EC,A is stable and has Clifford index

strictly less than � g−1
2 	, in particular, statement (M3) fails for the curve

C. For further background on this problem, we refer to the papers [Me1],
[LN1] and [GMN].

The restricted Lazarsfeld-Mukai bundle E|C := EC,A ⊗ OC sits in
the following exact sequence on the curve C ⊂ S

(2) 0 −→ QA −→ E|C −→ KC ⊗A∨ −→ 0,

where QA = M∨
A is the dual of the kernel bundle defined by the sequence

0 −→ MA −→ H0(C,A)⊗OC −→ A −→ 0.
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One then easily shows [V], [FO2] that the sequence (2) is exact on global
sections, that is,

h0(C,E|C) = h0(C,KC ⊗A∨) + h0(C,QA) = g − d+ 2r + 1.

By choosing the degree d minimal such that W r
d (C) 
= ∅, precisely when

d = r +
⌊ r(g+1)

r+1

⌋
, it becomes clear that, for sufficiently high g, one has

γ(E|C) < Cliff(C),

that is, E|C , when semistable, provides a counterexample to Mercat’s
conjecture (Mr+1). We prove the following result, extending to rank 4
a picture studied in smaller ranks in the papers [M1], [V], respectively
[FO2].

Theorem 0.1. Let S be a K3 surface with Pic(S) = Z · L, where
L2 = 2g − 2 and write

g = 4i− 4 + ρ and d = 3i+ ρ,

with ρ ≥ 0 and i ≥ 6. Then for a general curve C ∈ |L| and a globally
generated linear series A ∈ W 3

d (C) with h0(C,A) = 4, the restriction to
C of the Lazarsfeld-Mukai bundle EC,A is stable.

Note that in Theorem 0.1, dim W 3
d (C) = ρ. The rank 3 version of

this result was proved in [FO2]. We record the following consequence of
Theorem 0.1:

Corollary 0.2. For C ⊂ S with g ≥ 20 and Pic(S) = Z ·C, we set
d :=

⌊
4g+14

3

⌋
and A ∈ W 3

d (C) with h0(C,A) = 4. Then E|C is a stable

rank 4 bundle with γ(E|C) < � g−1
2 	. It follows that the statement (M4)

fails for C.

The curves C appearing in Corollary 0.2 are Brill-Noether general,
that is, they satisfy Cliff(C) = � g−1

2 	, see [L1].
Theorem 0.1 and Corollary 0.2 fit into a more general set of results

that are independent from the structure of Pic(S). For example, we
show that under mild restrictions, on a very general K3 surface, the
extension (2) is non-trivial and the restricted Lazarsfeld-Mukai bundle
E|C is simple (see Theorem 1.3). We expect that the bundle E|C remains
stable also for higher rank r+1 = h0(C,A), at least when Pic(S) = Z·C.
However, our method of proof based on the Bogomolov inequality, seems
not to extend easily for r ≥ 4.

The second topic we discuss in this paper concerns a connection be-
tween normal bundles of canonical curves and Mercat’s conjecture. The
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question we pose is however fundamental and interesting irrespective of
Mercat’s conjecture.

For a smooth non-hyperelliptic canonical curve C ⊂ Pg−1 of genus
g, we consider the normal bundle NC := NC/Pg−1 ; we then define the

twist of the conormal bundle E := N∨
C ⊗K⊗2

C . By direct calculation

det(E) = K
⊗(g−5)
C and rk(E) = g − 2.

In particular, the vector bundle E contributes to Cliffg−2(C) if and only
if g ≤ 8. Since MKC (−1) = ΩPg−1|C , the bundle E sits in the following
exact sequence

(3) 0 −→ E −→ MKC ⊗KC

γKC−→ K⊗3
C −→ 0,

where γKC : H0(C,MKC ⊗ KC) → H0(C,K⊗3
C ) is the Gaussian map

of C, see [W]. The map γKC vanishes on symmetric tensors, hence
Ker(γKC ) = I2(KC)⊕Ker(ψKC ), where

ψKC := γKC |∧2H0(C,KC )
:

2∧
H0(C,KC) → H0(C,K⊗3

C ),

and I2(KC) = K1,1(C,KC) is the space of quadrics containing the canon-
ical curve C. The map ψKC has been studied intensely in the context of
deformations in Pg of the cone over the canonical curve C ⊂ Pg−1, see
[W]. It is in particular known [CHM], [V] that ψKC is surjective for a
general curve C of genus g ≥ 12.

We now specialize to the case g = 7, when E contributes to Cliff5(C).
Then

rk(E) = 5 and det(E) = K⊗2
C ,

therefore μ(E) = 24
5 . It is easy to show that the Gaussian map ψKC is

injective for every smooth curve C of genus 7 having maximal Clifford
index Cliff(C) = 3. In particular, the space

H0(C,E) = I2(KC)

is 10-dimensional and γ(E) = 2+ 4
5 < Cliff(C). We establish the follow-

ing result:

Theorem 0.3. The normal bundle NC/P6 of every canonical curve
C of genus 7 with maximal Clifford index is stable. In particular, the
Mercat conjecture (M5) fails for a general curve of genus 7.

The proof of Theorem 0.3 uses in an essential way Mukai’s realisa-
tion [M3] of a canonical curve C of genus 7 with Cliff(C) = 3 as a linear
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section of the 10-dimensional spinorial variety OG(5, 10) ⊂ P15. In par-
ticular, the vector bundle E is the restriction to C of the rank 5 spinorial
bundle on OG(5, 10), which endows E with an extra structure that only
exists in genus 7. Note that the normal bundle of every canonical curve
of genus at most 6 is unstable, and more generally, the normal bundle of
a tetragonal canonical curve of any genus is unstable (see also Section
3). In particular, we have the following identification of cycles on M7

(4)
{
[C] ∈ M7 : NC is unstable

}
= M1

7,4,

where the right hand side denotes the divisor of tetragonal curves of
genus 7. We make the following conjecture:

Conjecture 0.4. The normal bundle NC/Pg−1 of a general canon-
ical curve C of genus g ≥ 7 is stable.

Note that the stability of the normal bundle NC/Pr of a curve of
genus g is not known even in the case of a non-special embedding C ↪→
Pr given by a line bundle L ∈ Pic(C) of large degree. This is in stark
contrast with the case the kernel bundle ML = ΩPr|C(1), whose stability
easily follows by a filtration argument due to Lazarsfeld [L2]. For some
very partial results in this direction, see [EL]. In general, one can show
by degenerating a canonical curve C ⊂ Pg−1 to the transversal union
of two rational normal curves in Pg−1 meeting transversally in g + 1
points, that NC/Pg−1 is not too unstable. Due to the fact that the slope
μ(NC/Pg−1) is not an integer, this simple minded technique does not
seem to lead to a full solution, because one cannot expect to find a
specialization in which the corresponding limit of the normal bundle is a
direct sum of line bundles of the same degree. It is of course, natural to
ask whether a generalization of the equality (4) exists for higher genus.
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§1. Simplicity of restricted Lazarsfeld-Mukai bundles

We fix a K3 surface S, a smooth curve C ⊂ S of genus g and a
globally generated linear series A ∈ W r

d (C), with h0(C,A) = r + 1.
Using the evaluation sequence (1), we form the vector bundle F = FC,A;
by dualizing, we obtain an exact sequence for the dual vector bundle
E = EC,A := F∨

C,A:

(5) 0 −→ H0(C,A)∨ ⊗OS −→ EC,A −→ KC ⊗A∨ −→ 0.

It is well-known [M1], [L1] that c1(E) = [C] and c2(E) = d; moreover
h0(S, F ) = 0 and h1(S,E) = h1(S, F ) = 0. Finally, one also has that

χ(S,E ⊗ F ) = 2− 2ρ(g, r, d);

in particular, if E is a simple bundle, then ρ(g, r, d) ≥ 0. Assuming
furthermore that Pic(S) = Z · C, it is also well-known that both E and
F are C-stable bundles on S.

1.1. The rank 2 case

We begin by showing that in rank 2, irrespective of the structure
of Pic(S), a splitting of the restriction E|C can only be induced by an
elliptic pencil on the K3 surface.

Theorem 1.1. Let C ⊂ S be as above and A ∈ W 1
d (C) a base point

free pencil of degree 2 < d < g−1 with KC ⊗A∨ globally generated. The
following conditions are equivalent:

(i) E|C ∼= A⊕ (KC ⊗A∨);
(ii) There exists an elliptic pencil N ∈ Pic(S) such that N |C = A.
(iii) h0(S,E ⊗ F ) < h0(C,E ⊗ F |C).
Corollary 1.2. With notation as above, if g ≤ 2d− 2 and A is not

induced by an elliptic pencil on S, then E|C is simple if and only if E
is simple.

Note that it is easy to see that if E|C is simple, then E is also simple.
It is also known that if E is simple, then automatically g ≤ 2d− 2.

Proof. (of Theorem 1.1) (ii)⇒(i). Let N be an elliptic pencil with
N |C = A. Consider the exact sequence

0 −→ N∨ −→ F −→ N(−C) −→ 0.

Its restriction to C gives a splitting of the dual of the sequence (2)
characterizing E|C . Observe that since d < g − 1, there is no morphism
from A∨ to K∨

C ⊗A.
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(i)⇒(ii). Conversely, suppose that E|C = A ⊕ (KC ⊗ A∨). Applying
Hom(KC ⊗A∨, − ) to the sequence (1), we obtain an exact sequence

0 −→ Ext1(KC ⊗A∨, F ) −→ Ext1(KC ⊗A∨,H0(C,A)⊗OS)

−→ Ext1(KC ⊗A∨, A).

Since the extension class [E] ∈ Ext1(KC ⊗A∨,H0(C,A)⊗OS) maps to
the trivial extension in Ext1(KC ⊗A∨, A), it follows that there exists a
rank 2 bundle G on S which fits into a commutative diagram:

(6) 0

��

0

��
0 �� F ��

��

H0(A)⊗OS

��

�� A �� 0

0 �� G

��

�� E

��

�� A �� 0

KC ⊗A∨

��

KC ⊗A∨

��
0 0

Using that H0(S, F ) = H1(S, F ) = 0, we obtain H0(S,G) ∼=
H0(C,KC ⊗ A∨). Since h0(S,E) = h0(C,A) + h1(C,A) = h0(C,A) +
h0(S,G), and h1(S,E) = 0, it follows that H1(S,G) = 0. From the
second row of (6), we find that H0(S,G(−C)) = 0.

Furthermore, we compute c1(G) = 0 and c2(G) = 2d − 2g + 2. So
c2(G) < 0 = c21(G), that is, G violates Bogomolov’s inequality, and then
it sits in an extension

(7) 0 −→ M −→ G −→ M∨ ⊗ IΓ/S −→ 0,

where Γ is a zero-dimensional subscheme of S, and M ∈ Pic(S) is
such that M2 > 0 and M · H > 0 for any ample line bundle H on
S. In particular, H0(S,M∨) = 0, and hence H0(S,M) ∼= H0(S,G) ∼=
H0(C,KC ⊗A∨) 
= 0. Moreover, since

h0(S,M∨ ⊗ IΓ/S) = h1(S,G) = 0,

it also follows that H1(S,M) = 0.
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On the other hand H0(S, F ) = 0, which implies that the composed
map

M −→ G −→ KC ⊗ A∨

is non-zero; in fact, we claim it is surjective, hence M |C = KC ⊗ A∨.
Suppose that M |C = KC⊗A∨(−D′), with D′ 
= 0 an effective divisor on
C. Since h0(S,G(−C)) = 0, we have h0(S,M(−C)) = 0, which implies
h0(S,M) ≤ h0(C,M |C). Since we assumed KC ⊗ A∨ to be globally
generated, we have that

h0(S,M) ≤ h0(C,KC ⊗A∨(−D′)) < h0(C,KC ⊗A∨) = h0(S,M),

a contradiction.
Setting N := M∨(C), we have shown that N |C = A and there is an

exact sequence
0 −→ M∨ −→ N −→ A −→ 0.

Since h0(S,M∨) = h1(S,M∨) = 0, it follows that h0(S,N) = h0(C,A) =
2 and hence N defines an elliptic pencil.

(iii)⇒(i). From the sequence (1) twisted by E(−C) ∼= F , we obtain
that

H0(S,E ⊗ F (−C)) ⊂ H0(C,A)⊗H0(S,E(−C)),

and, since F has no sections, it follows that H0(S,E⊗F (−C)) = 0. We
have an exact sequence

0 −→ H0(S,E ⊗ F ) −→ H0(S,E ⊗ F |C) −→ H1(S,E ⊗ F (−C)).

The hypothesis implies that H1(S,E ⊗ F (−C)) 
= 0. From (1) twisted
by E(−C) ∼= F , we obtain the exact sequence in cohomology

0 −→ H0(C,E|C ⊗K∨
C ⊗ A) −→ H1(S,E ⊗ F (−C))

−→ H0(C,A)⊗H1(S,E(−C)) = 0,

therefore h0(C,E|C ⊗K∨
C ⊗A) 
= 0. The sequence (2) yields to an exact

sequence

0 = H0(C,K∨
C ⊗A⊗2) −→ H0(C,E|C ⊗K∨

C ⊗A)

−→ H0(C,OC) → H1(C,K∨
C ⊗A⊗2).

Then H0(C,E|C⊗K∨
C⊗A) → H0(C,OC) is an isomorphism and, under

the coboundary map

H0(C,OC) � 1 �→ 0 ∈ H1(C,K∨
C ⊗A⊗2),
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that is, the sequence (2) is split.

Note that we also have h1(S,E⊗F (−C)) = 1 and h0(C,E⊗F |C) =
h0(S,E ⊗ F ) + 1.

(i)⇒(iii). From the hypothesis and from the sequence (2), we find

h0(C,E|C ⊗A∨) = h0(C,KC ⊗A⊗(−2)) + 1.

Furthermore, h0(S,E ⊗ F ) = h0(C,E|C ⊗ A∨); twist (5) by F and use
the vanishing of h0(F ) and that of h1(F ).

On the other hand, since E|C ∼= A⊕KC ⊗A∨, we have

h0(C,E ⊗ F |C) = 2 + h0(C,KC ⊗A⊗(−2)),

hence h0(C,E ⊗ F |C) = h0(S,E ⊗ F ) + 1. Q.E.D.

1.2. Lazarsfeld-Mukai bundles of higher rank

We study when the restriction E|C is a simple vector bundle. Our
main tool is a variant of the Bogomolov instability theorem.

Theorem 1.3. Let S be a K3 surface and C ⊂ S a smooth curve
of genus g ≥ 4 such that Pic(S) = Z · C. We fix positive integers r and
d such that

ρ(g, r, d) ≥ 0, g ≥ 2r + 4 and d ≤ 3r(g − 1)

2r + 2
.

Then for any linear series A ∈ W r
d (C) such that h0(C,A) = r + 1 and

KC ⊗ A∨ is globally generated, the restricted Lazarsfeld-Mukai bundle
E|C is simple.

Note that in the special case ρ(g, r, d) = 0, the constraints from the
previous statement give rise to the bound g > 2r + 5.

Proof. Step 1. We first establish that the natural extension (2),
that is,

0 −→ QA −→ E|C −→ KC ⊗A∨ −→ 0

is non-trivial. Assume that (2) is trivial. Then there is an injective
morphism from KC ⊗A∨ to E|C and hence a surjective map F (C) → A.
Then

G := Ker{F (C) → A}
is a vector bundle of rank r + 1 with Chern classes c1(G) = (r − 1)[C]
and

c2(G) = c2(F (C))− c1(F (C)) · C + deg(A) = 2d+ r(r − 3)(g − 1).
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We compute the discriminant of G

Δ(G) = 2rk(G)c2(G)− (rk(G)− 1)c21(G) = 4d(r + 1)− 8r(g − 1) < 0,

hence G is unstable. Applying [HL] Theorem 7.3.4, there exists a sub-
sheaf M ⊂ G with

ξ2M,G ≥ − Δ(G)

r(r + 1)2
,

where ξM,G = c1(M)/rk(M)− c1(G)/rk(G). Setting c1(M) = k · [C] and
s := rk(M), the previous inequality becomes

(
k

s
− r − 1

r + 1

)2

(2g − 2) ≥ 8r(g − 1)− 4d(r + 1)

r(r + 1)2
.

Note that M destabilizes G, which coupled with the stability of
F (C) yields

r − 1

r + 1
≤ k

s
<

r

r + 1
,

implying after manipulations 2d(r + 1) > 3(g − 1)r, thus contradicting
the hypothesis.

Step 2. Assuming that E|C is non-simple, we deduce that the ex-
tension (2) splits. We consider the exact sequence

H0(S,E ⊗ F ) −→ H0(C,E ⊗ F |C) −→ H1(S,E ⊗ F (−C)).

and it suffices to show that H1(S,E ⊗ F (−C)) = 0. Assuming this not
to be the case, twisting (1) by E(−C) induces the exact sequence

H0(C,A⊗ E|C ⊗K∨
C) −→ H1(S,E ⊗ F (−C))

−→ H0(C,A)⊗H1(S,E(−C)).

Since H1(S,E(−C)) = 0, we obtain that H0(C,A⊗E|C ⊗K∨
C) 
= 0.

Furthermore, QA is a stable bundle and since μ(QA ⊗A⊗K∨
C) < 0, we

find that
H0(C,QA ⊗A⊗K∨

C) = 0,

hence we also have the sequence induced from (2) after twisting with
A⊗K∨

C

0 −→ H0(C,E|C ⊗K∨
C ⊗A) −→ H0(C,OC) −→ H1(C,K∨

C ⊗A⊗QA).

We conclude that the coboundary map

H0(C,OC) → H1(C,QA ⊗A⊗K∨
C)

is trivial, that is, E|C ∼= QA ⊕ (KC ⊗ A∨), which completes the proof.
Q.E.D.
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§2. Stability of restricted Lazarsfeld-Mukai bundles

2.1. The rank 2 case

If C ⊂ S is an ample curve, then with one exception (g = 10 and
C a smooth plane sextic), Cliff(C) is computed by a pencil, see [CP]
Proposition 3.3. We show that in rank 2 the semistability of the LM
bundle is preserved under restriction.

Theorem 2.1. Let S be a K3 surface, C ⊂ S an ample curve of
genus g ≥ 4 and A ∈ W 1

d (C) a pencil computing Cliff(C). If EC,A is
C-semistable on S, then E|C is also semistable on C. Moreover, if EC,A

is C-stable on S, then E|C is stable on C.

Proof. The proof of the stability is similar, and hence we discuss the
semistability part only. We write A = OC(D), where D is an effective
divisor on C. Suppose E|C is unstable and consider an exact sequence

0 −→ L1 −→ E|C −→ KC ⊗ L∨
1 −→ 0,

with deg(L1) ≥ g. Since L1 � A, the composed map L1 → E|C →
KC ⊗ A∨ must be non-zero, that is, L1 = KC(−D −D1), where D1 is
an effective divisor on C. Set d1 := deg(D1). Consider the elementary
modification

(8) 0 −→ V −→ E −→ A(D1) −→ 0

induced by the composition E → E|C → A(D1). Then

c1(V ) = 0 and c2(V ) = 2d+ d1 − 2g + 2 < 0,

hence V is unstable with respect to any polarization and fits in an exact
sequence

(9) 0 −→ M −→ V −→ M∨ ⊗ IΓ/S −→ 0,

where Γ ⊂ S is a 0-dimensional subscheme and M is a divisor class that
intersects positively any ample class on S and with M2 > 0. From (8)
and (9) we find that H0(S,M) ∼= H0(S, V ) and H0(S,M(−C)) = 0.
Dualizing (8), we obtain the sequence

0 −→ F −→ V ∨ −→ KC(−D −D1) −→ 0,

from which, using that V ∼= V ∨, we obtain

H0(S, V ) = H0(C,KC(−D −D1)).
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We claim that Cliff(A(D1)) = Cliff(C). Recall that h0(S,E) =
h0(C,A) + h1(C,A), and, from the sequence (8) we write

h0(S,E) ≤ h0(C,A(D1)) + h1(C,A(D1)).

By assumption, the pencil A computes Cliff(C), which implies

Cliff(C) = g + 1− h0(A)− h1(A)

≥ g + 1− h0(A(D1))− h1(A(D1)) = Cliff(A(D1)).

It follows that Cliff(A(D1)) = Cliff(C), in particular KC(−D − D1) is
globally generated.

Clearly, M � F , hence the composition

ϕ : M → V → KC(−D −D1)

is non-zero and one writes Im(ϕ) = KC(−D − D1 − D2), where D2

is an effective divisor on C. If D2 
= 0, then one has the sequence of
inequalities

h0(S,M)≤h0(C,KC(−D−D1−D2))<h0(C,KC(−D−D1))=h0(S,M),

a contradiction. Therefore M |C = KC(−D − D1). Viewing M as a
subsheaf of E, we find μ(M) = M · C = deg(L1) > μ(E), thus bringing
the proof to an end. Q.E.D.

Remark 2.2. If EC,A is stable, then it is simple and hence d =

� g+3
2 	, see [L1]. Conversely, if C ′ ⊂ S is an ample curve of genus g and

gonality � g+3
2 	, then it was shown in [LC] that the LM bundle EC,A

corresponding to a general curve C ∈ |OS(C
′)| and to a pencil A of

degree � g+3
2 	 is C-semistable (even stable when g is odd).

2.2. Stability of Lazarsfeld-Mukai bundles of rank four

We show that restrictions of LM bundles of rank 4 on very general
K3 surfaces of genus g ≥ 20 are stable. Similar results were established
in [V] and [FO2] for rank 2 and 3 respectively. We fix integers i ≥ 6 and
ρ ≥ 0 and write

g := 4i− 4 + ρ and d := 3i+ ρ,

so that ρ(g, 3, d) = ρ. Let S be a K3 surface and C ⊂ S a curve of genus
g such that Pic(S) = Z · C, and pick a globally generated linear series
A ∈ W 3

d (C) with h0(C,A) = 4.
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Proof of Theorem 0.1. Our previous results show that E|C is simple,
hence indecomposable. Suppose E|C is not stable and fix a maximal
destabilizing sequence

0 −→ M −→ E|C −→ N −→ 0.

Put dN := deg(N) and dM := deg(M) = 2g − 2 − dN . Since M is
destabilizing,

(10)
dM

rk(M)
≥ g − 1

2
,

dN
rk(N)

≤ g − 1

2
.

The bundle N , being a quotient of E, is globally generated. Since
H0(C,E|∨C) = 0, clearly N 
= OC , therefore h0(C,N) ≥ 2. From the
inequalities (10) it follows that rk(N) > 1, because C has maximal
gonality.

Step 1. We prove that M is a line bundle. Assume that, on the
contrary,

rk(M) = rk(N) = 2

and consider the elementary modification G := Ker{E → N}. Its Chern
classes are given as follows:

c1(G) = −[C], c2(G) = d+ dN − 2(g − 1),

and its discriminant equals Δ(G) = −64i+110+8dN −14ρ < 0, because
of (10). In particular, there exists a saturated subsheaf F ⊂ G which
verifies the inequalities

(11) μ(G) ≤ μ(F ) < μ(E), and

(12) ξ2F,G ≥ −Δ(G)

48
.

Write c1(F ) = α · [C] and rk(F ) = β ≤ 3. The above inequality (12)
becomes (

α

β
+

1

4

)2

(2g − 2) ≥ −Δ(G)

48
.

We apply (11) for μ(F ) = α(2g − 2)/β and obtain

−1

4
≤ α

β
<

1

4
,

hence α = 0, and the inequality (12) reads in this case dN ≥ 5i− 10+ρ.
Recalling that dN ≤ g − 1 = 4i − 5 + ρ, we obtain a contradiction
whenever i ≥ 6.
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Step 2. We construct an elementary modification, in order to reach
a contradiction.

From (10), we have dM ≥ g−1
2 . The composition M → E|C →

KC ⊗A∨ is not zero, for else M ↪→ QA and since μ(QA ⊗M∨) < 0, one
contradicts the semistability of QA. We set A1 := KC ⊗ A∨ ⊗M∨ and
obtain a surjection F (C)|C → A⊗A1 inducing, as before, an elementary
modification

V := Ker{F (C) → A⊗A1}.
By direct computation we show that Δ(V ) < 0. Indeed, we compute

c1(V ) = 2 · [C], c2(V ) = d+ 2g − 2− dM , hence

Δ(V ) = 8c2(V )− 3c21(V ) = 8(d− dM − g + 1) = 8(5− dM − i) < 0.

We obtain a destabilizing sheaf P ⊂ V , with rk(P ) = b ≤ 3 and
c1(P ) := a · [C], such that the following inequalities are both satisfied

(13)

(
a

b
− 1

2

)2

(2g − 2) ≥ −Δ(V )

48
and μ(V ) ≤ μ(P ) < μ(F (C)).

The second inequality gives 1
2 ≤ a

b < 3
4 , which leaves two possibili-

ties: either a = 1 and b = 2, when via (13) one finds that Δ(V ) ≥ 0, a
contradiction, or else a = 2 and b = 3, when inequalities (13) and (10)
clash. �

§3. Normal bundle of canonical curves of genus 7

The aim of this section is to prove Theorem 0.3 and we begin by
recalling Mukai’s results [M3] on canonical curves of genus 7. We choose
a vector space U := C10 and a non-degenerate quadratic form q : U → C,
defining a smooth 8-dimensional quadric Q ⊂ P(U) = P9.

The algebraic group Spin(U) corresponding to the Dynkin diagram
D5 admits two 16-dimensional half-spin representations S+ and S−,
which correspond to maximal weights α+ and α− respectively. The ho-
mogeneous spaces V ± := Spin(U)/P (α±) are both 10-dimensional and
can be realized as the two irreducible components of the Grassmann-
ian Gq(5, U) of projective 4-planes inside P(U) which are isotropic with
respect to the quadratic form q. From now on, we set

V := V + ⊂ P(S+) = P15.

Note that Aut(V ) = SO(10). If E is the restriction to V of the tauto-
logical bundle on G(5, 10), one has an exact sequence of vector bundles
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on V :

(14) 0 −→ E∨ −→ U ⊗OV −→ E −→ 0.

By the adjunction formula, smooth curvilinear sections of V are canoni-
cal curves of genus 7 and Mukai [M3] showed that each curve [C] ∈ M7

with Cliff(C) = 3 appears in this way. Precisely, there is a birational
map

α : G(7, 16)//SO(10) ��� M7, α(Λ) := [Λ ∩ V ],

where Λ ∼= P6. Given a curve [C] ∈ M7, the inverse α−1([C]) is con-
structed precisely via the twist of the conormal bundle on C mentioned
in the introduction.

Let C ⊂ P6 be a smooth canonical curve with Cliff(C) = 3, and set
E := N∨

C/P6(2). One has an identification H0(C,E) = I2(KC) and E is

a globally generated bundle. The tautological map

φE : C → G(5,H0(C,E))

is easily shown to be injective and its image lies on V . In particular, the
vector bundle E is the restricted spinorial bundle, that is, E = E|C and
one has an exact sequence:

(15) 0 −→ E∨ −→ H0(C,E)⊗ C −→ E −→ 0.

Note that W 1
4 (C) = ∅, while W 1

5 (C) is a curve. We are going to make
essential use of the following fact:

Lemma 3.1. Let C as above and A ∈ W 1
5 (C). Then there are no

surjections E � A.

Proof. We proceed by contradiction. Assume that there is such a
pencil A ∈ W 1

5 (C), then use the base point free pencil trick to write the
following diagram:

(16) 0 �� E∨ ��

��

H0(C,E)⊗OC

��

�� E

��

�� 0

0 �� A∨ �� H0(C,A)⊗OC
�� A

��

�� 0

0
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In particular, H0(C,E ⊗ A∨) 
= 0. Via the canonical identification
H0(C,E) = I2(KC), this implies that if L := KC ⊗ A∨ ∈ W 2

7 (C),
then the multiplication map

Sym2H0(C,L) → H0(C,L⊗2)

is not injective. This is possible only if L is not birationally very ample,
in particular, C must be trigonal, which is not the case. Q.E.D.

We are now in a position to prove that the twist E of the conormal
bundle of a canonical curve of genus 7 is stable.

Proof of Theorem 0.3. Suppose that 0 → F → E → M → 0 is a
destabilizing sequence for the vector bundle E, that is, with μ(F ) ≥
μ(E) = 24

5 . Since E is globally generated, so is any of its quotient, in
particular M too. We distinguish several possibilities, depending on the
ranks that appear:

(i) rk(F ) = 4 and M is line bundle. Then deg(F ) ≥ 20, hence deg(M) ≤
4. Since C is not tetragonal, h0(C,M) ≤ 1. Note that M 
= OC ,
for H0(C,E∨) = 0. It follows that M is not globally generated, a
contradiction.

(ii) rk(F ) = 1 and we may assume that deg(F ) = 5. Suppose first that
h0(C,F ) = 0, therefore h0(C,KC ⊗ F∨) = 1, and hence KC ⊗ F∨ is
not globally generated. Since one has a surjection E∨(1) � KC ⊗ F∨,
we reach a contradiction by observing that E∨(1) is globally generated.
Indeed, via Serre duality, this last statement is equivalent to the equality
h0(C,E(p)) = h0(C,E) = 10, for every point p ∈ C. From the exact
sequence

0 −→ E(p) −→ MKC ⊗KC(p) −→ K⊗3
C (p) −→ 0,

we obtain that

H0(C,E(p)) = Ker
{
H0(C,MKC ⊗KC(p)) → H0(C,K⊗3

C (p))
}
.

The conclusion follows, sinceH0(C,MKC⊗KC) = H0(C,MKC⊗KC(p)).

Suppose now that h0(C,F ) ≥ 1. The case h0(C,F ) ≥ 2 having been
discarded in the course of proving Lemma 3, we assume that h0(C,F ) =
1, hence h0(C,KC ⊗ F∨) = 2. We obtain that the multiplication map

Sym2H0(C,KC ⊗ F∨) → H0(C,K⊗2
C ⊗ F⊗(−2))

is not injective, which contradicts the base point free pencil trick.
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(iii) rk(F ) = 3, and then deg(F ) ≥ 15, hence deg(M) ≤ 9. This time
we may assume that F is stable. If M is not stable, we choose a line
subbundle A ⊂ M of maximal degree, which we pull-back under the
surjection E � M , to obtain the exact sequence

0 −→ G −→ E −→ M/A −→ 0.

We obtain that deg(M/A) ≤ deg(M)/2 ≤ 9/2, that is, deg(M/A) ≤ 4.
In particular, M/A is not globally generated, which is again a contra-
diction, so we can assume that both F and M are stable vector bundles.
Since h0(C,M) + h0(C,F ) ≥ h0(C,E) = 10, the strategy is to use the
fact that the Mercat statements (M2) and (M3) have been established
for curves C of genus 7 with maximal Clifford index, that is,

Cliff2(C) = Cliff3(C) = 3,

see [LN3] Theorem 4.5. In particular, if both F and M contribute to
their respective Clifford indices, that is, h0(C,F ) ≥ 6 and h0(C,M) ≥ 4
respectively, then we write

9

2
+3 ≤ 3

2
γ(F )+γ(M) =

1

2

(
deg(F )+deg(M)

)
−h0(C,F )−h0(C,M)+5,

that is, h0(C,F ) + h0(C,M) ≤ 19
2 , a contradiction.

Assume now that one of the bundles F or M does not contribute to
its Clifford index. Since M is globally generated, h0(C,M) ≥ 2. We can
have h0(C,M) = 2, only when M = O⊕2

C , which is impossible, for O⊕2
C

is not a direct summand of E. If h0(C,M) = 3, then deg(M) ≥ 7, and
one has equality if and only if M = QL, where L ∈ W 2

7 (C). Assuming
this to be the case, we choose two points p, q ∈ C that correspond to a
node in the plane model φL : C → P2, that is, A := L(−p−q) ∈ W 1

5 (C).
Then there is a surjection QL � A, which by composition gives rise to
a surjective morphism E � A. This contradicts Lemma 3.

Thus we may assume that deg(M) ≥ 8, and accordingly, deg(F ) ≤
16. Then we compute

γ(F ) = μ(F )− 2

3
h0(C,F ) + 2 ≤ 16

3
− 14

3
+ 2 < Cliff(C),

which again contradicts the equality Cliff3(C) = 3.

(iv) rk(F ) = 2, and then deg(F ) ≥ 10 and deg(M) ≤ 14. We may
assume this time that M is stable. If F is not stable, then it has a line
subbundle A ↪→ F with deg(A) ≥ 5, and we are back to case (ii). Thus
both M and F are stable bundles, and we proceed precisely like in case
(iii).



320 M. Aprodu, G. Farkas and A. Ortega

�
It is instructive to remark that the normal bundle of a canonical

curve of genus g < 7 is never stable. More generally we have the follow-
ing:

Proposition 3.2. The normal bundle of a tetragonal canonical
curve of genus g is unstable.

Proof. More generally, we begin with a k : 1 covering f : C → P1,
and consider the rank (k − 1)-vector bundle F∨ := f∗OC/OP1 on the
projective line. Then π : X = P(F) → P1 is a scroll of dimension k− 1,
which contains the canonical curve C and which can be embedded by
the tautological bundle OX(1) in Pg−1 as a variety of degree g − k + 1.
Denoting by H,R ∈ Pic(X) the class of the hyperplane section and that
of the ruling respectively, we have

KX ≡ −(k − 1)H + (g − k − 1)R,

whereas obviously C ·H = 2g−2 and C ·R = k. We compute the degree
of the normal bundle NC/X and find:

deg(NC/X) = deg(TX|C) + deg(KC) = k(g + k − 1).

We write the usual exact sequence relating normal bundles

0 −→ NC/X −→ NC/Pg−1 −→ NX/Pg−1 ⊗OC −→ 0,

and compare the slopes

μ(NC/X) =
k(g + k − 1)

k − 2
and μ(NC/Pg−1) =

2(g − 1)(g + 1)

g − 2
.

We conclude that for k = 4 and g ≥ 6, the normal bundle NC/X is a
destabilizing subbundle of NC/Pg−1 . For g at most 5, every canonical
curve of genus g is a complete intersection which obviously produces a
destabilizing line subbundle. Q.E.D.
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