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Abstract.

We survey classical and recent developments in the theory of mod-
uli spaces of sheaves on projective varieties.
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§1. Introduction

The study of moduli is one of the fundamental aims of algebraic
geometry. There are two basic kinds of moduli problems: absolute and
relative ones. An absolute moduli problem speaks of parametrizing ob-
jects such as varieties themselves, standing alone and not in relation to
any fixed choices. The moduli space of curves Mg is a basic example.
On the other hand, a relative moduli problem starts with some initial
choice and then speaks of parametrizing objects relative to that choice.
The moduli of vector bundles is the prime example: we fix a variety X
and look at the moduli space MX(ξ) of vector bundles over X with given
topological invariants indicated by the Mukai vector ξ. Absolute moduli
problems have the advantage of describing primary spaces which don’t
depend on anything else and play a fundamental role. However, there
are not so many of them, and after Mg the program of understanding
the moduli spaces of higher-dimensional varieties is arduous. Relative
moduli problems, on the other hand, can give us a wide range of new
spaces to study, on which a lot can be said with a multitude of available
techniques. It is in this way that the study of the moduli of vector bun-
dles, and later more generally sheaves, has been one of the main strands
of research in algebraic geometry over the past half-century.

The basic constructions of moduli spaces of vector bundles were es-
tablished beginning with the works of Weil, then Mumford, Narasimhan,
Seshadri, Ramanan, and Tyurin for curves, and continuing with the work
of Maruyama and Gieseker for higher-dimensional varieties. Starting
from this period, there were on the one hand many investigations into the
algebraic geometry of these moduli spaces, and on the other hand, the
famous interaction with Yang-Mills theory through Donaldson’s polyno-
mial invariants of smooth manifolds. As a result, throughout the 1980’s
and 1990’s, an enormous amount of progress has been made.
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Our goal in the present paper is to give a survey, to discuss even if
only very briefly some of the many themes of past and current research,
and to formulate when possible open directions for future research.

It is a great pleasure to dedicate this paper to Shigeru Mukai. In
surveying the multifold research on the moduli of vector bundles and
sheaves on projective varieties, we touch upon a vast realm of progress
in many different directions inspired by Mukai’s fundamental contribu-
tions. His work on the Fourier-Mukai transform, on moduli of sheaves in
particular over symplectic varieties, his point of view encompassing the
globality of moduli spaces indexed by what is now known as the “Mukai
vector”, his studies relating geometry of objects over surfaces and three-
folds with their position in the Kodaira classification, and many other
works have inspired generations of young mathematicians. It was very
impressive to do a Google Scholar search on Mukai “stable bundles”,
which led to pages and pages of references, all highly relevant and re-
ally interesting papers. The widely different subjects we survey here all
share Mukai’s work as inspiration. This great diversity reflects Mukai’s
playful, but also forward-looking mathematical style.

We give a general overview of many areas which have been the sub-
ject of a fantastic amount of research, including rationality of mod-
uli spaces, strange duality, jumping curves, Betti numbers, existence of
universal families, as well as a discussion of the many moduli problems
which are closely related to moduli of sheaves. For our discussion of
wall-crossing, which is necessarily just as incomplete as the other parts,
we provide a small illustration of a recent new subject stemming from
work of Kontsevich and Soibelman, relating wall-crossing for Donaldson-
Thomas invariants of moduli problems for sheaves, with wall-crossing in
the Hitchin system. Our illustration is an explicit calculation showing
what kinds of walls this theory is talking about on the base of an ex-
tremely simple Hitchin system. This is related to the second author’s
talk for the present conference.

The size of this subject means that many important directions will
be left out. These include the relationship with gauge theory and
Donaldson polynomials; Reider’s new Hodge-type structures; all sorts
of questions about moduli problems in positive characteristic; moduli of
Higgs bundles, connections and the like; and only a brief mention will
be made of things like moduli of principal bundles, parabolic structures,
moduli of complexes and perverse coherent sheaves, twisted sheaves, . . . .

Our survey is based in part on the first author’s talk at the Kobe
workshop on the geometry of moduli spaces in 2009. As well as giving
an extended survey, we would also like to concentrate on some particular



80 N. Mestrano and C. Simpson

aspects surrounding our subsequent work on moduli of vector bundles
on quintic hypersurfaces, as was the subject of the workshop lectures by
the second author in the first week of the present conference.

In the course of our work about hypersurfaces, we met at least two
distinct ways—classically well-known—in which the theory of linear sys-
tems on curves leads to constructions of vector bundles on surfaces.
These are two techniques which enter in an essential way: Serre’s con-
struction using the Cayley-Bacharach property, and O’Grady’s method.
We will look at them in some detail. They provide important links be-
tween the study of moduli of vector bundles on surfaces, and the study
of Brill-Noether theory for curves in P3 which has been one of Mukai’s
favorite topics.

To introduce the Cayley-Bacharach condition, we discuss Reider’s
theorem giving precise bounds for linear series by applying the Bogo-
molov-Gieseker inequality. To illustrate O’Grady’s method, discussed
at first in the middle of the paper, we give at the end a proof of Nijsse’s
connectedness theorem, that the moduli spaces of bundles with c2 ≥ 10
on a very general quintic surface are connected. This is used in our
recent proof of irreducibility, so it seemed useful to give an exposition
of the proof. These techniques will be emphasized, because we feel
that they should lead to fascinating topics for future research relating
Mukai’s beautiful works on linear systems on curves [211], [210], . . . , and
many directions in the study of moduli of sheaves on higher dimensional
varieties.

The study of moduli spaces of vector bundles has evoked the in-
terest of many mathematicians studying many aspects in great depth.
While our knowledge has gone very far in some directions, there are
other directions in which many questions remain open. These include
the geography of moduli spaces for small values of c̃2, the existence
of universal families, and the generalization of many results from rank
r = 2 to arbitrary rank or other structure groups. And, even in the
subjects which have been most extensively covered, there is much room
for further progress. We hope that our indications will inspire the reader
to dig more deeply into some of these subjects.

Unless otherwise stated, our discussion will take place over the field
C of complex numbers.

§2. Moduli of sheaves

The study of moduli of vector bundles on a curve got started with
the work of André Weil, parametrizing vector bundles using adèles over
the curve. This inspired the first wave of geometrical studies of the
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question, with Narasimhan and Seshadri [221] relating stable bundles to
unitary representations, and the constructions and study of the moduli
spaces by Mumford [215], Tyurin [275], Seshadri [259], Ramanan [245]
and many others since then.

Let X be a smooth projective variety of dimension n, and let H ∈
H2(X,Q) denote the first Chern class of an ample line bundle. If V is
a vector bundle over X, its degree is by definition

deg(V ) :=

∫
X

c1(V ).Hn−1

the integral sign meaning evaluation on the fundamental class [X]. The
slope is the quotient of the degree by the rank

μ(V ) :=
deg(V )

rk(V )
.

This definition extends to coherent sheaves of positive rank, and we
say that V is Mumford-Takemoto, or “slope” stable if for any subsheaf
F ⊂ V with 0 < rk(F ) < rk(V ) we have

μ(F ) < μ(V ).

We say that V is Mumford-Takemoto, or “slope” semistable if for any
nontrivial subsheaf F ⊂ V we have

μ(F ) ≤ μ(V ).

These definitions extend immediately to the case where V is itself a
torsion-free sheaf. The first main indication that stability is a useful
notion comes from the strictness properties which follow.

Lemma 2.1. The category of slope-semistable torsion-free sheaves
of a given slope μ0, is abelian. A slope-stable torsion-free sheaf is simple,
that is to say its endomorphism algebra is reduced to the scalars. A
semistable sheaf of slope μ0 admits a Jordan-Hölder filtration in the
category, such that the subquotients are polystable i.e. direct sums of
stable sheaves of slope μ0. This filtration may be chosen canonically
by induction, using the socle, the maximal polystable subsheaf, in each
successive quotient.

Other well-known instances of strictness in algebraic geometry are
closely related. For example, Penacchio applies Klyachko’s description
[144] to say that we can interpret mixed Hodge structures as torus-
equivariant semistable sheaves on P2. Deligne’s strictness properties for
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mixed Hodge structures become immediate consequences of the previous
lemma [238].

The Harder-Narasimhan filtration of any torsion-free sheaf V is a
canonical decreasing filtration by saturated subsheaves (i.e. subsheaves
such that the quotient is also torsion-free) V≥a ⊂ V such that

GrHN
a (V ) := V≥a/V≥a+ε is semistable of slope a.

This measures the degree of instability: V is semistable of slope μ if and
only if V≥μ = V and V≥μ+ε = 0. The slope of the highest nonzero piece
in the associated-graded, is the maximum slope of any subsheaf of V .

Bridgeland has introduced a vast generalization of this circle of ideas.
He observes that one might consider an analogous situation within any
triangulated category. His definition will be recalled in more detail in
Section 13 on wallcrossing.

The basic idea of the construction of the moduli space of vector
bundles is that the stability condition is related to Geometric Invariant
Theory stability of points in a natural parameter scheme under the group
action which comes from the choices that needed to be made. This
works perfectly well if X is a curve, yielding the moduli space MX(r, d)
of vector bundles of rank r and degree d (hence slope μ = d/r).

For higher-dimensional varieties, the construction most naturally
incorporates a refined notion of stability. This is because the natural
quantities which occur in the GIT stability of parameter points are the
Hilbert polynomials of subsheaves. This is the motivation for the intro-
duction of Gieseker (semi)stability. Let PH(F , n) := χ(F (nH)) denote
the Hilbert polynomial of a sheaf with respect to the hyperplane class
H. Then we say that a torsion-free sheaf V is Gieseker semistable if, for
any nonzero subsheaf F ⊂ V we have

PH(F , n)

rk(F )
≤ PH(V, n)

rk(V )
for n � 0.

Say that V is Gieseker stable if a strict inequality holds for any nonzero
subsheaf F ⊂ V different from V . Notice here that it is safe to include
even subsheaves of the same rank as V ; in that case, as long as the
subsheaf isn’t V itself then its Hilbert polynomial will be smaller.

Recall that the rank gives the first term of PH , and the degree gives
the next term. It follows that the Gieseker notions are related to slope
(semi)stability by the implications

slope stable ⇒ Gieseker stable

⇒ Gieseker semistable ⇒ slope semistable .
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After the construction of moduli spaces of vector bundles over curves
by Mumford [215], Tyurin [275] and Seshadri [259], the next main step
was to construct the moduli spaces of vector bundles over surfaces and
then higher-dimensional varieties. This was accomplished by Gieseker
[84] and Maruyama [186, 188, 189]. Maruyama had first constructed the
moduli space of bundles of rank r = 2 on a surface, but was missing
a key Lemma [186, 4.1] for the case of r > 2. This was provided by
Gieseker; with that addition Maruyama went on very quickly to con-
struct the moduli space of stable sheaves of any rank over varieties of
any dimension, and obtained many basic properties.

The next major development was the work of Donaldson, Uhlen-
beck and Yau on Yang-Mills equations, gauge theory, and Donaldson’s
polynomial invariants. The scope of this theory extended well beyond
holomorphic vector bundles, however the holomorphic case was a fun-
damental part of the theory. The gauge-theoretical motivations inspired
people working on the algebraic geometrical side of things, and led to
a lot of progress which we will touch upon briefly in the “geography”
section below.

A very useful reference, combining a discussion of the moduli theory
with a discussion of the gauge-theoretical aspects, is the book [160] about
Atiyah-Bott theory for the moduli space of vector bundles on a curve.

Further developments included the beginnings of the moduli theory
in characteristic p, with Maruyama’s boundedness paper [190]. This
problem has now been solved extensively by Langer [154, 156, 157],
Gómez, Langer, Schmitt, Sols [89], and Zuo’s group [153, 178].

Mukai considered the family of moduli spaces of vector bundles
with different topological types, as a combinatorial structure enclos-
ing interesting information in the way they vary as a function of the
Chern invariants. We introduce what is now known as the Mukai vector
ξ = (r, c1, c2, . . .), and let MX(ξ) denote the moduli stack of sheaves
with Mukai vector ξ. The exact meaning of this notation depends on
whether we think of the Chern classes as elements of a cohomology group
or a Chow group. For example, in the case of surfaces, it is usual to let
c1 denote the determinant line bundle of V which shall be fixed. Mukai
also introduced a twisting by the square root of the Todd class, making
the Riemann-Roch formula more transparent, but we will not need that
for our present level of discussion so we mostly keep to the notation
(r, c1, c2, . . .).

For Gieseker stable sheaves, the moduli problem becomes separated:
there cannot be two distinct stable sheaves which are limits of the same
family. For semistable sheaves the moduli problem is non-separated, but
in a somewhat mild way. Given two different semistable sheaves which
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are limits of the same family, then they must lie in the same S-equivalence
class, meaning that the associated-graded sheaves of their Jordan-Hölder
filtrations are isomorphic. From this non-separatedness, it follows that
for any map from the moduli functor to a separated scheme, all sheaves
in the same S-equivalence class must map to the same point.

The geometric invariant theory construction gives a moduli space
MX,H(ξ) whose closed points parametrize S-equivalence classes of Gie-
ker semistable (with respect to the hyperplane class H) torsion-free
sheaves with Mukai vector ξ. It contains the open set

MX,H(ξ) ⊂ MX,H(ξ)

corresponding to locally free sheaves i.e. vector bundles.
Partly because of the S-equivalence relation, but also because of

more subtle questions about global obstructions to the existence of uni-
versal families, the moduli spaceMX,H(ξ) is not fine, it doesn’t represent
a functor. It is, however, uniquely characterized by the property that
it universally co-represents the moduli functor. Co-representing means
that any map MX,H(ξ) → Z to a separated scheme of finite type factors

through a unique map MX,H(ξ) → Z. Universally co-representing is a
technically useful strenghening of this condition by saying that it also
applies to any pullback along Y → MX,H(ξ).

The classical approach to moduli problems of this kind concentrated
on vector bundles or sheaves which are closely related, such as torsion-
free or reflexive sheaves. In these cases, the sheaf is a global object over
the whole variety X, in particular its rank is positive.

Mukai was the first to consider the moduli of sheaves supported on
strict subvarieties, in his 1984 paper [209]. He was motivated by the
idea of transfering the symplectic structure from the underlying variety
such as a K3 surface, to the moduli space of sheaves. Mukai constructed
the moduli space of simple sheaves using stack-theoretic ideas. This fit
in very naturally with his consideration of the whole family of moduli
spaces parametrized by their Mukai vectors, since there was not a natural
numerical reason to avoid sheaves of rank 0.

The moduli space of Higgs bundles, first introduced by Hitchin with
an analytic construction for rank 2 and odd degree [110], and constructed
in general for the case of curves by Nitsure [227], may be viewed by
the BNR correspondence [20] as a moduli space of sheaves supported
on proper subvarieties in the cotangent bundle of X. This was the
motivation for the introduction of a notion of Gieseker semistability and
the GIT construction of the moduli spaces of sheaves of arbitrary pure
dimension in [261] and [123].
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The moduli of sheaves supported in positive codimension entered
into Le Potier’s theory of coherent systems and his consideration of
jumping curves [162, 163]. Le Potier investigated extensively many of
the general questions we shall formulate here, for the case of pure dimen-
sion 1 sheaves on P2 in [163]. He showed local factoriality, irreducibility,
determined the Picard group, and showed under appropriate hypotheses
rationality and existence of a universal family. In recent times, a closer
look at the detailed geometric structure of these moduli spaces contin-
ues with Maican’s work [180, 181], his work with Drézet [68], Iena [127],
Yuan [285] and others. Freiermuth and Trautmann [78, 79] considered
dimension 1 sheaves on P3, prefiguring current interest in them over CY
threefolds.

§3. The Bogomolov-Gieseker inequality

The Bogomolov-Gieseker inequality is one of the main facts deter-
mining the behavior of the moduli spaces of stable bundles on a surface.
Basically, it bounds c2 to be positive. It is convenient to introduce the
quantity (defined in the rational Chow ring)

Δ(E) := c2(E ⊗ c1(E)⊗− 1
r ) = c2(E)− r − 1

2r
c1(E)2

which is independent of tensoring by a line bundle.

Theorem 3.1 (Bogomolov, Gieseker, Donaldson, Uhlenbeck, Yau).
Suppose E is an H-stable vector bundle on a projective surface X, then
Δ(E) ≥ 0. If equality holds, then E is a unitary projectively flat bundle.

Donaldson and Uhlenbeck-Yau give proofs using Yang-Mills theory,
which is how one gets the last part of the statement. This combines
with the restriction theorem of Mehta-Ramanathan:

Theorem 3.2 (Mehta-Ramanathan). Suppose E is an H-stable re-
flexive sheaf on a smooth projective variety X. Then for appropriately
chosen complete intersections Y ⊂ X of dimension ≥ 1, obtained by in-
tersecting divisors in multiples of the hyperplane class H, E|Y is again
stable.

We get the Bogomolov-Gieseker inequality on varieties of any di-
mension.

Corollary 3.3. Suppose E is an H-semistable torsion-free sheaf on
a smooth projective variety X of dimension n. Then

Δ(E).Hn−2 ≥ 0.
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If equality holds then E is a projectively flat bundle coming from an
extension of unitary projectively flat bundles.

Langer has given several far-reaching treatments of these statements
in characteristic p starting with [154], and he also improves the bounds
for the restriction theorem. See also the discussion in [157] and [123] of
various other restrictions such as the Grauert-Mülich restriction theorem
and its generalizations, and Flenner’s theorem.

In his recent paper [158], Langer proves the Bogomolov-Gieseker
inequality in characteristic p assuming that there exists a lifting to the
Witt vectors W2 of order two. This provides a sharp delimitation of
counterexamples such as [213]. Along the way, he has also solved a
longstanding problem posed by Narasimhan, how to give an algebraic
proof of the Bogomolov-Gieseker inequality for Higgs bundles, and again
it includes varieties in characteristic p with a lifting to W2.

The Bogomolov-Gieseker inequality has a fundamental consequence
for the study of moduli spaces: the only range where MH(X; r, c1, c2)
can possibly be nonempty is when Δ ≥ 0. And, for Δ = 0 we get the
moduli space of projectively flat unitary bundles on X which tends to
be small—for example it contains only the trivial bundle if X is simply
connected.

This situation suggests that the behavior of the moduli theory will
strongly depend on Δ, which is to say on c2 once c1 is fixed, and that
turns out to be the case at least for bundles on surfaces.

For Δ � 0, the moduli space is irreducible, and is a local complete
intersection of the expected dimension, with a good control on the high
codimension of the singular locus.

On the other hand, for c2 in the “intermediate range”, with Δ ≥ 0
but not very big with respect to the numerical invariants of X, very
little is known. This will be the subject of further discussion later in the
paper.

As we shall see starting in Section 7, the Serre construction al-
lows us to present vector bundles on a smooth surface, particularly in
rank 2, by means of zero-dimensional subschemes satisfying the “Cayley-
Bacharach” condition—see there for the definition. The Bogomolov-
Gieseker inequality gives an inequality on the length of the subscheme,
but requires some hypotheses corresponding to stability and to the sit-
uation of our subscheme in a surface.

Question 3.4. Can one obtain inequalities of Bogomolov-Gieseker
type (cf Corollary 7.5 below), just from algebraic considerations of pos-
tulation for a zero-dimensional subscheme Z ⊂ P3 satisfying the Cayley-
Bacharach condition?
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One can ask, in fact, for a small improvement of the inequality.
This kind of question will come into play in our discussion surrounding
Question 17.2 later on.

For bundles on varieties X of dimension ≥ 3, the situation is more
complicated. On the one hand, we would expect to have something sim-
ilar to the Bogomolov-Gieseker inequality for the higher Chern classes
c3, . . ., but almost nothing is known here—see however Bayer, Macr̀ı
and Toda [19]. Furthermore, there is a nontrivial interaction with the
Hartshorne conjecture saying that there should be very few smooth sub-
varieties of a higher dimensional variety, of small codimension. This con-
strains the existence of vector bundles of rank rk(E) ≤ dim(X)/3, indeed
given such a bundle we could take a section of E(n) for some n � 0, and
that would be a smooth subvariety of small codimension. The problems
seem to occur earlier, already for bundles of rank rk(E) < dim(X). In
the remainder of the paper we shall mostly concentrate on bundles over
surfaces.

§4. Symplectic structures

Classical deformation theory says that the tangent space to the mod-
uli stack of bundles at a point E, is given by

TEM = Ext1(E,E) = H1(E∗ ⊗ E).

Mukai’s paper on symplectic structures [209] starts from the fundamen-
tal observation that if X is a surface, then Serre duality says

H1(E∗ ⊗ E)∗ = H1(E ⊗ E∗ ⊗KX).

Thus, if KX
∼= OX is trivial, which is the case when X is abelian or a

K3, then the tangent space is autodual. Furthermore, it turns out that
the resulting form

TM ⊗ TM → OX

is antisymmetric and closed, so it gives a symplectic structure.
Mukai furthermore observed that this may be extended quite nat-

urally to the moduli stack of sheaves, indeed the Ext-version of Serre
duality says

Ext1(E,E)∗ ∼= Ext1(E,E ⊗KX)

and we still get a symplectic form. With this motivation, and also
following [2], Mukai introduced the moduli space of simple sheaves [209].
A sheaf is simple if Hom(E,E) = C, and the moduli stack of simple
sheaves is actually an Artin algebraic space. This was the first time that
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anyone had considered a moduli problem for sheaves supported on strict
subvarieties.

An additional benefit of the symplectic situation is that the obstruc-
tions vanish. Indeed, the obstruction classes for deformations of E lie
in the trace-free part Ext20(E,E), and by Serre duality this is the same
as Hom0(E,E ⊗ KX). When KX = OX , we just get Hom0(E,E). If
E is simple, there are no trace-free endomorphisms, so the obstructions
always vanish and the moduli space is smooth.

As mentioned before, one may draw a connection between Mukai’s
moduli spaces of sheaves on symplectic surfaces [209], and the moduli
spaces of Higgs bundles on a curve introduced in [109, 110] [227]. The
cotangent bundle of a curve is a symplectic surface, which however is
noncompact. Sheaves of pure dimension 1 over the cotangent bundle,
having compact support, are the same as Higgs bundles by the BNR
correspondence [20] and comparison of stability conditions allows one to
use this to construct the moduli space [261]. Mukai’s calculation of the
symplectic structure is purely local, so it holds equally well on an open
surface, yielding the symplectic structure on the moduli space of Higgs
bundles.

Because of the algebraic symplectic structure, the moduli spaces of
sheaves on abelian and K3 surfaces have a very rich geometry, which has
subsequently been studied by many authors.

One of the main features is the dependence of the moduli space
on its Mukai vector. This phenomenon enters also into the notion of
“strange duality” which we shall talk about later.

Several people including Yoshioka [287, 289, 291] and Gomez [88]
prove irreducibility results for the moduli space of stable torsion-free
sheaves on an abelian or K3 surface. For the most straightforward case,
they assume that the Mukai vector is irreducible, that is to say it isn’t a
multiple. This includes, for example, the case of bundles whose rank and
degree are coprime. Then all semistable sheaves are stable, in particular
simple, and the moduli space is smooth and symplectic.

In cases where there can be non-simple sheaves, these correspond
in general to singularities in the moduli space. Still, following Mukai’s
basic intuition, the singularities may be resolved in a natural way, as was
shown by O’Grady in [233], using techniques of Kirwan [142]. Kaledin,
Lehn and Sorger [133, 165] classify the singularities which can arise
and show that O’Grady’s resolution is symplectic. Yoshioka applied
the Fourier-Mukai transform to prove irreducibility in [292]. See also
Choy and Kiem [46, 47]. The study of singularities comes up again for
Enriques surfaces in Yamada’s work [283].
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Tyurin [276, 277, 278] was also a pioneer in the study of the sym-
plectic structures on moduli of vector bundles on surfaces. He provided
a direct correspondence between a two form or pre-Poisson structure on
the surface, and the same structure on the moduli space. Inspired by
Beauville, Bottacin later took up this direction, showing that the Jacobi
identity for a Poisson structure on the surface transfers to the corre-
sponding identity on the moduli space [26]. At the same time he gets a
direct proof for the closedness property of the two-form on the moduli
space, in the symplectic case.

This subject has recently been generalized to shifted symplectic
structures on higher derived stacks by Pantev, Toën, Vaquié and Vezzosi
[236]. They provide an explanation coming from the world of derived
stacks, for the phenomenon of transfer of symplectic (or in their more re-
cent work Poisson) structures from the underlying variety to the moduli
space.

4.1. Enriques surfaces

We have seen that the moduli spaces of vector bundles on a K3
surface have a rich structure as was forseen in Mukai’s seminal works.
There is another class of surfaces very close by in Kodaira’s classification:
the Enriques surfaces. These are quotients of K3 surfaces by fixed-point
free involutions. In particular, the moduli of vector bundles on the
Enriques surface is approximately the same thing as the fixed point set of
the involution on the moduli of bundles over the K3. A natural question
is, what becomes of the symplectic structure? It turns out that the
moduli of bundles over the Enriques surface is a lagrangian subvariety
of the symplectic moduli space for the K3. This has been studied by
a number of people; we would like to thank I. Dolgachev and G. Saccà
for some useful discussions on this topic. The first author to treat this
question was H. Kim, starting with his 1994 paper [137] then continuing
with [138] and [139] where he set out the basic parameters of the theory
stemming in large part from Mukai’s work on moduli over K3’s. Bundles
over Enriques surfaces have been further studied by several people since
then, including Hauzer [101], Yoshioka [292], Zowislok [296], Saccà [253,
254], and Yamada [283].

A lot is known about the moduli of the Enriques surfaces them-
selves, rationality for example [147]. The interaction between the mod-
uli of Enriques surfaces and the moduli of vector bundles over each one
of them, could provide a good source of problems. For example, the
question of the existence of a Poincaré bundle or universal family over
the total family of moduli spaces would be quite natural to consider.
Drezet’s techniques [66] should be useful.



90 N. Mestrano and C. Simpson

§5. Geography

It would go way beyond our present scope to talk in depth about
Donaldson’s polynomial invariants. However, beyond the realm of cal-
culations proper to that theory, the consideration of these invariants has
led to some important abstract advances in our understanding of what
the moduli spaces look like.

The Donaldson invariants were motivated originally by gauge theory,
but nearly simultaneously Donaldson proved that stable bundles lead to
solutions of the Hermitian Yang-Mills equations on a surface, and he and
Uhlenbeck-Yau proved the same thing for higher dimensional varieties.

This almost makes the moduli space of bundles into a space on
which the polynomial invariants can be calculated. However, there is a
genericity assumption on the base metric, which in more modern terms
means that we would like to use the virtual fundamental class of the
moduli space. The possibility of using the moduli spaces of holomorphic
bundles would allow one to do calculations using algebraic geometry. It
therefore became a crucial question to understand when the fundamental
class of the moduli space was the same as its virtual fundamental class.

The Bogomolov-Gieseker inequality now comes in: for small values
of c2, the moduli space would be empty. For somewhat larger values, it
parametrizes first flat bundles, then bundles with very small numbers of
instantons, and the equations in this case can be highly overdetermined.

In terms of gauge theory, when the instanton number gets big, then
the instantons themselves can tend to look more and more like things
concentrated in small zones of the surface. This gives an intuitive pic-
ture in which it was expected that for high values of c2, the moduli
space should become equivalent to its generic deformation. This would
mean several things: first of all, that it should be generically smooth of
dimension equal to the expected dimension which is calculated by us-
ing the Euler characteristic (appropriately taking into account the fact
that the trace of an obstruction is automatically zero). Second, that
the codimension of the singular locus becomes high; and third, that the
moduli space becomes irreducible.

These things have now all been proven, by the work of several people
including Friedman, Gieseker, Li, and specially O’Grady who developed
a general method capable of giving the expected results in full generality.
Friedman’s book [76] gives an approach to the geography of these mod-
uli spaces, informed by the gauge-theoretical and differential-geometric
considerations originating from Donaldson’s theory, but also represent-
ing the algebraic geometer’s point of view. One can pose many questions
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about the moduli spaces, and ask how they depend on the numerical in-
variants at hand.

One of the first aspects is the deformation theory and dimension of
the moduli space. Suppose Z = MX,H(ξ)i is an irreducible component
of the moduli space of H-Gieseker semistable torsion-free sheaves on a
surfaceX, with Mukai vector ξ. We may distinguish two cases depending
on how c1 is designated within ξ: it is either
(a) the rational Chern class c1 ∈ H2(X,Q), or
(b) the isomorphism class of det(E) ∈ Pic(X). These are different if
X is irregular. For surfaces of irregularity zero (for example, simply
connected ones), cases (a) and (b) are identical.

For E ∈ Z, we have a decomposition

Exti(E,E) = Hi(OX)⊕ Exti0(E,E)

with the projection Exti(E,E) → Hi(OX) given by the trace. The
obstruction to deforming E always takes values in the “trace-free” part
which we denote by

Obs(E) := Ext20(E,E) ∼= Ext00(E,E ⊗KX)∗.

Assuming that E is simple (for example if it is stable), then we have
Ext00(E,E) = 0. The space of infinitesimal deformations of E is either
Def(E) := Ext1(E,E) (in case (a)) or Def(E) := Ext10(E,E) (in case
(b)). The Kuranishi deformation space of E is the analytic germ at the
origin of an analytic germ of map

Φ : Def(E) → Obs(E).

Under the hypothesis that E is simple, the moduli space is locally ana-
lytically isomorphic to the Kuranishi space.

Corollary 5.1. Define the expected dimension of the moduli space
at E to be

e.d.E
(
MX,H(ξ)i

)
:= dim (Def(E))− dim (Obs(E)) .

If E is simple, then Kuranishi theory tells us that

dimE

(
MX,H(ξ)i

) ≥ e.d.E
(
MX,H(ξ)i

)
,

and if equality holds then the moduli space is a local complete intersec-
tion.



92 N. Mestrano and C. Simpson

The expected dimension is a topological invariant. In case (b) it is
the Euler characteristic

e.d.E
(
MX,H(ξ)i

)
= χ0(E,E) :=

2∑
i=0

(−1)idimExti0(E,E)

which is a topological invariant depending only on ξ. In case (a), we
just have to include the irregularity of X:

e.d.E
(
MX,H(ξ)i

)
= χ0(E,E) + h1(OX).

Definition 5.2. We say that an irreducible component of the moduli
space MX,H(ξ) is good, if it is generically reduced of dimension equal
to the expected dimension.

By Kuranishi theory, the moduli space is smooth of dimension equal
to the expected dimension at E, if and only if the space of obstructions
vanishes, that is to say Ext20(E,E) = 0. Thus, our irreducible compo-
nent MX,H(ξ)i is good if and only if the space of obstructions vanishes
for a general point E. Notice that this condition is independent of
whether we choose option (a) or (b) for fixing c1(E).

We can now state O’Grady’s precise result, generalizing theorems
due to Donaldson, Friedman, Zuo, Gieseker, Li and others [63, 86, 297].

Theorem 5.3 (O’Grady [230] Corollary B’, Theorem D). Suppose
H is an ample divisor on a smooth surface X. There exist constants Δ1

and Δ2 depending only on the rank and the numerical invariants of X
such that if Δ(ξ) ≥ Δ1 then every irreducible component of the moduli
space is good, and if Δ(ξ) ≥ Δ2 then the moduli space is irreducible with
a dense open set consisting of slope-stable bundles.

For bundles of rank r = 2, for example, O’Grady can conclude,
assuming K2

X > 100 and h2(OX) > 0, the moduli space is good if

c̃2 ≥ 42K2
X + 15χ(OX),

and with a similar bound it is also irreducible.
These bounds are the best we can say for general surfaces.
For surfaces of smaller Kodaira dimension, the situation becomes

much better. As we have pointed out above, Mukai’s observation gives
vanishing of the obstructions, independently of the value of c2, when the
surface is symplectic, i.e. for K3 or abelian surfaces. This led to many
works for example by O’Grady, Gomez, Yoshioka, Qin and others giving
precise details about the moduli spaces in these cases. Huybrechts shows



Moduli of sheaves 93

that the moduli spaces of sheaves on K3 surfaces are deformation equiv-
alent to Hilbert schemes, which among other things yields a calculation
of their Hodge numbers [120, 121].

For certain rational surfaces the effect goes in the same direction.
For bundles on P2, Maruyama showed that the moduli space is irre-
ducible and smooth for any value of c̃2. O’Grady [231], Gómez [88],
Yoshioka [290] extend this for rank 2 bundles on del Pezzo surfaces.
Kapustka and Ranestad [134] look at vector bundles on genus 10 Fano
varieties.

The question of the behavior of irreducible components, whether
they are good and how many there are, seems to be open for general
rational surfaces or, for example, for blow-ups of any kind of surfaces.
Walter has a fairly general result on birationally ruled surfaces, together
with some examples where irreducibility and goodness don’t hold [281].
Several studies have been made of what can happen under blowing up,
see [38], [219], [286], [218], [171], [182] and many others.

For surfaces of general type, in the intermediate range 0 < Δ(ξ) ≤
const(X,H) the behavior of M can be wild, and indeed little is known
about what happens. For example, Gieseker originally constructed com-
ponents whose dimension is bigger than the expected one [85].

O’Grady, the first author and others show that there can be several
different irreducible components to the moduli space.

Consider for example a hypersurface X ⊂ P3 of degree d. In [196],
starting by restriction of certain special vector bundles from P3 and then
applying the stabilization construction c2 �→ c2+1, obtained by deform-
ing torsion-free sheaves to locally free ones, gives a good irreducible
component of MH(X; 2, 0, c2) for

c2 ≥ d3/4− d2/4.

On the other hand O’Grady constructs an irreducible component which
is not good, whenever c2 < d3/3− 3d2 + 26d/3− 1. Between these two
bounds there are at least two irreducible components, and this happens
whenever d ≥ 27.

Question 5.4. What is the smallest value of d for which, for a very
general hypersurface X ⊂ P3 of degree d and for some c2, there are two
or more components of the moduli space of vector bundles on X?

For d ≤ 4 we fall into the situations envisioned previously, of K3 or
del Pezzo surfaces.

In our work [198, 199, 200] on the quintic case d = 5, we show that
the moduli space of bundles of odd degree is irreducible for all values of
c2. So, the first case could occur either for bundles of even degree on a
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quintic, or perhaps on a surface of degree 6, 7, . . .. We feel that it should
be possible to find the first cases of multiple irreducible components,
and that these will undoubtedly come from interesting geometrical phe-
nomena.

The middle part of the paper will be devoted to an overview of sev-
eral kinds of natural questions which may be asked: rationality, strange
duality, jumping curves, Betti numbers, obstructions to the existence
of universal families, and wallcrossing particularly under change of po-
larization. Many mathematicians have contributed results in these di-
rections, for vector bundles on varieties occupying various places in the
classification. For example, in a whole series of articles, Zhenbo Qin
studies many aspects of moduli of bundles on surfaces which will be
a part of our discussion, including rationality questions [239], Picard
groups [241], wallcrossing [240, 244], symplectic structures and other
special properties of the moduli spaces of vector bundles on surfaces of
Kodaira dimension zero [240, 243], and the role of the stability condition
[242]. Yoshioka develops a wide range of results on K3, abelian surfaces,
twisted sheaves, and on Fourier-Mukai transforms bringing in perverse
coherent sheaves. Beyond the question of rationality, Li gives a general
result on the Kodaira dimension of the moduli space [167].

A novel aspect which appears when the moduli spaces are consid-
ered from a global point of view is the relationship between spaces corre-
sponding to different numerical invariants. This was pioneered by Mukai,
with his introduction of the Fourier-Mukai transform and its noncom-
mutative variants. In his paper on the noncommutative nature of the
Brill-Noether problem [210], he uses the operation of taking a K3 sur-
face and getting another one which is the moduli space of vector bundles
with appropriate Mukai vector on the original one. This allows him to
characterize in certain cases the K3 surfaces containing a given curve as
nonabelian Brill-Noether loci, that is to say the analogue for vector bun-
dles. The possibility of doing that kind of operation has led to current
research in the direction of derived categories with Bridgeland’s stabil-
ity conditions, Mirror symmetry, twisted sheaves and perverse coherent
sheaves, and wallcrossing.

In our discussion touching upon these topics, we shall try to mention
a diverse collection of references. But, in writing this survey we have
become aware of the vastness of the literature on this subject and it is
impossible to include everything, so we would like to apologize in ad-
vance for the numerous references which are unfortunately left out. The
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things we are able to mention should be considered as first indications—
a brief look on the web will allow the reader to follow up by finding
many more references in any direction.

After the theory of moduli of vector bundles on curves, the moduli
of sheaves on surfaces has received by and large the most attention.
Moduli of bundles and sheaves on varieties of dimension ≥ 3 varieties
is considerably more difficult and the literature is correspondingly more
sparse. Nonetheless, we are unable to adequately touch upon it in more
than a scattered way, due to our own lack of competence in these matters
(the reader will kindly consult the references of the few papers we cite
below for many more on these topics).

One part of the theory concentrates on specific kinds of bundles.
Aprodu, Farkas and Ortega [6] and others study Ulrich bundles, admit-
ting fully linear resolutions, which are closely related to minimal resolu-
tion conjectures. See Arrondo [10], Ancona, Ottaviani, [4] Vallès [279]
on the theory of Schwarzenberger and Steiner bundles. These classes
of bundles are related to EPW sextics introduced by O’Grady, again in
relation to minimal resolutions. Hirschowitz [107] considers rank two
reflexive sheaves with good cohomology.

§6. Reider’s theorem

The Bogomolov-Gieseker inequality is one of the most powerful
statements in the moduli theory of vector bundles. Its reach is very
nicely illustrated by Reider’s theorem, giving an application to the the-
ory of linear systems. Reider’s proof introduces many useful techniques,
so it is worthwile to review it here. See Lazarsfeld’s notes [159], Bel-
trametti et al [22], as well as Reider’s paper [247]. His hypothesis, as
follows, will be in effect throughout this section.

Hypothesis 6.1. Let X be a smooth projective surface with a line
bundle L which is nef, meaning that it is a limit of ample points in
NS(X)Q. The divisor of L will be denoted L. Assume that L2 ≥ 5,
and that the linear system |KX + L| has a basepoint x.

The idea is to consider vector bundles fitting into an exact sequence
of the form

0 → OX → E → JP/X ⊗ L → 0.

Here P = {x} is a subscheme of X consisting of a single point x, and
JP/X denotes its ideal sheaf.

The exact sequence corresponds to an extension class

e ∈ Ext1(JP/X ⊗ L ,OX)
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∼= Ext1(OX , JP/X ⊗ L ⊗KX)∗ = H1(JP/X ⊗ L ⊗KX)∗.

The isomorphism is Serre duality. The Ext group on the right is an ex-
tension of a locally free sheaf OX so it is just the same as its cohomology
group as we have written. In turn, this cohomology group fits into an
exact sequence

H0(JP/X ⊗ L ⊗KX) → H0(L ⊗KX) → H0((L ⊗KX)P ) →
→ H1(JP/X ⊗ L ⊗KX) → H1(L ⊗KX) = H1(L ∗)∗.

Since P is a single point, H0((L ⊗ KX)P ) = C. We can rewrite our
exact sequence as

H0(JP/X⊗L ⊗KX) → H0(L⊗KX) → C → H1(JP/X⊗L ⊗KX) → . . .

The morphism in the middle is evaluation of sections in H0(L ⊗KX)
at the point x.

We come to one of the main elements of Hypothesis 6.1, that x
is a basepoint of the linear system |L ⊗ KX |, which is equivalent to
saying that this evaluation map is zero. It follows that C injects into
H1(JP/X ⊗ L ⊗KX), in particular there exists a nontrivial extension.

The next step is to note that this extension is locally free. This is a
special case of a more general principle, applicable to any subscheme P ⊂
X on which we get a similar exact sequence. See [159, Proposition 3.9].
Our extension class will be a linear function onH1(JP/X⊗L ⊗KX), and
the condition that it correspond to a locally free extension is the same as
saying that it restricts to a nonzero element on any submodule of length 1
in OP ⊗L ⊗KX . In general the existence of an extension satisfying that
nonvanishing, is the famous Cayley-Bacharach property to be discussed
in the next section. Back to our first case, under our hypothesis 6.1 that
x is a basepoint, the space of extensions has dimension ≥ 1 and a general
element restricts to a nonzero element on the only point of P , that is to
say on the image of C by the injective connecting map considered above.
The basepoint hypothesis therefore insures exactly that there exists a
nontrivial locally free extension, and we get a vector bundle E.

The Bogomolov-Gieseker inequality now gives some information.

Lemma 6.2. In the situation of Hypothesis 6.1, for any ample line
bundle H, the vector bundle E is not H-semistable.

Proof. Suppose E were H-semistable. Then, by the Bogomolov-
Gieseker inequality we would have Δ(E) ≥ 0. But from the exact se-
quence, we have

c1(E) = L, c2(E) = 1, ⇒ Δ(E) = 1− L2

4
.
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By hypothesis, L2 ≥ 5 so this gives Δ(E) < 0, a contradiction. We
conclude that E is not H-semistable. Q.E.D.

Corollary 6.3. There is a nonzero effective divisor D such that
(L− 2D).H > 0 for any ample divisor H. Hence (L− 2D).L ≥ 0.

Proof. Choose an ample H ′ and let M ⊂ E be the H ′-destabilizing
subbundle, so (M − L/2).H ′ > 0. Suppose first that there is another
ample H such that (M − L/2).H ≤ 0. Then, for some ample H ′′ on
the segment joining H to H ′ in the rational Neron-Severi group, we
would have (M − L/2).H ′′ = 0. Let N := (E/M)∗∗, then we get (N −
L/2).H ′′ = 0 too. It now follows that E isH ′′-semistable, indeedM.H =
N.H = L.H/2 and if U ⊂ E is another line bundle, it has a nonzero
map either to N or to M , either way we get U.H ≤ L.H/2 showing
semistability. But this contradicts Lemma 6.2. We conclude that (M −
L/2).H > 0 for all ample divisors H.

Note in particular that M.H > 0, so M cannot be contained in
OX ⊂ E. Thus, there is a nonzero map M → L and we can write
M = L −D for an effective divisor D. Notice that D is nonzero, since
the exact sequence defining E cannot split. As before let N := (E/M)∗∗,
but calculating we find that N ∼= OX(D). We get (L − 2D).H > 0 for
any ample H, and for a nef divisor such as L which is a limit of ample
ones, we get (L− 2D).L ≥ 0. Q.E.D.

Lemma 6.4. In the situation of the previous corollary,

L.D − 1 ≤ D2 < L.D/2.

Proof. For N as in the proof above, we have an exact sequence

0 → M → E → JQ/X ⊗N → 0

where Q ⊂ X is a subscheme of finite length. We get c2(E) = M.N +
|Q| ≥ (L −D).D. But from the original exact sequence, c2(E) = 1, so
we get

(L−D).D ≤ 1.

This gives the first inequality.
For the second one, suppose to the contrary that D2 ≥ L.D/2, that

is to say (L − 2D).D ≤ 0. Notice that L.D ≥ 0 since L is a limit of
ample divisors and D effective, so D2 ≥ 0. Now both D and L are in
the positive part of the cone of divisors whose square is positive, so D
may be joined to L by a segment contained inside this cone. For an
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ample H we have D.H > 0 and L.H > 0 so any element of the segment
is nonzero. By the conditions

(L− 2D).L ≥ 0, (L− 2D).D ≤ 0

it follows that somewhere on that segment we will get a nonzero divisor
B such that B2 ≥ 0 and (L − 2D).B = 0. The Hodge index theorem
then says (L− 2D)2 ≤ 0 (indeed, if (L− 2D)2 > 0 then as (L− 2D) is
again a divisor on the positive side of this cone, it could be used in the
Hodge index theorem and since B is orthogonal to it and nonzero, we
would get B2 < 0 a contradiction). Write out

L2 − 4L.D + 4D2 ≤ 0 ⇒ 1 <
L2

4
≤ (L−D).D

contradicting the first statement proven above. This contradiction shows
the second claimed inequality. Q.E.D.

Theorem 6.5 (Reider [247]). Suppose L is a nef divisor with L2 ≥
5. If the linear system |KX + L| has a basepoint x, then there exists an
effective divisor D through x such that either L.D = 0 and D2 = −1, or
L.D = 1 and D2 = 0.

Proof. From the above arguments, we have integers a := L.D ≥ 0
and b := D2 with a − 1 ≤ b < a/2. The only possibilities are a =
0, b = −1 or a = 1, b = 0. Notice also that the inclusion of line bundles
M → L takes image in JP/X ⊗ L , which says that our basepoint x is
contained in D. These give the conclusion. Q.E.D.

There is a similar statement for separation of points, with hypothesis
L2 ≥ 10. See [247, 159].

The reader is pointed towards Reider’s recent work, going from the
Serre construction in its very general setting, to a new Hodge-type struc-
ture for the moduli spaces of vector bundles which he calls the nonabelian
Jacobian [248, 249, 250].

§7. Relation with linear systems on curves, I: the Cayley-
Bacharach condition

In the previous section, we have seen a first example of the Serre
construction, which builds up a rank 2 bundle as an extension of an
ideal sheaf twisted by a line bundle, with another line bundle. One of
the key points is to understand when such an extension will be locally
free. For the ideal sheaf of a single point {x}, the condition was that x
should be a basepoint of the linear series |KX + L|. This is, in fact, the
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first case of the Cayley-Bacharach condition. In this section we discuss
further, with the goal of gaining an understanding of how this condition
provides one relationship between vector bundles on hypersurfaces in P3

and Brill-Noether on curves.
Let X be a smooth projective surface. The Serre construction

presents a rank 2 vector bundle E as an extension of the form

(7.1) 0 → U → E → JP/X ⊗ L → 0

where U and L are line bundles, and JP/X ⊂ OX is the ideal sheaf of a
0-dimensional subscheme P ⊂ X.

We obtain such an extension for any rank one saturated subsheaf of
E; saturated means that the quotient is a torsion-free sheaf. Notice that
any saturated subsheaf of a locally free sheaf on a surface is itself locally
free so the subsheaf U will be a line bundle. We have L = (E/U)∗∗.

The subscheme P is the scheme of zeros of the section of U∗ ⊗
E. As such, it is locally defined by two equations, so it is locally a
complete intersection subscheme in particular it is Gorenstein. One can
say for example, at any point x ∈ Supp(P ) with maximal ideal mx, that
the numbers dim(mk

xOP /m
k+1
x ) present a symmetry as a function of k,

stepping up by 1 at successive values of k for a certain time, staying
constant, and then stepping back down by 1 until vanishing. The last
step is a 1-dimensional piece of the form SP,x := ma

xOP ⊂ OP called
the socle. It is the only ideal sheaf of length 1 in the local piece Px of
P supported at x, defining a unique colength 1 subscheme P ′

x ⊂ P with
JP ′

x/P
= SP,x. So, because of the Gorenstein property we have a good

control over the colength 1 subschemes P ′ ⊂ P and this will be helpful
for what follows.

The extension (7.1) is defined by an extension class η ∈ Ext1(JP/X⊗
L,U). We would like to know for which extension classes the correspond-
ing sheaf is locally free, in other words what is the property of η that
corresponds to the fact that E was a vector bundle.

Use Serre duality with the canonical sheaf KX , as well as the fact
that an Ext group from a locally free sheaf to anything, is just the same
as the appropriate cohomology group. These say

Ext1(JP/X ⊗ L,U) ∼= Ext1(U, JP/X ⊗ L⊗KX)∗

∼= H1(JP/X ⊗ L⊗ U−1 ⊗KX)∗.

Therefore our extension class η may be viewed as a linear function

η : H1(JP/X ⊗ L⊗ U−1 ⊗KX) → C.
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Consider next the long exact sequence associated to the sequence

0 → JP/X → OX → OP → 0

tensored with the line bundle L⊗U−1⊗KX . The connecting morphism
is

(L⊗ U−1 ⊗KX)P
δ→ H1(JP/X ⊗ L⊗ U−1 ⊗KX).

In particular, our linear function η restricts to a linear function

η ◦ δ : (L⊗ U−1 ⊗KX)P → C.

Note that by choosing local trivializations of the line bundle, we can say
(non-canonically) (L⊗U−1 ⊗KX)P ∼= OP and the Gorenstein property
tells us that linear functions on OP may be identified with elements of
OP . Under this identification, it is easy to say what is the property
of η that corresponds to E being locally free: it just means that when
viewed as an element of OP , η should be invertible. The reduction of
this section modulo a maximal ideal mx just corresponds to the value of
the original linear function on the socle (tensorized with the appropriate
line bundle) SP,x ⊗L⊗U−1 ⊗KX at x. Thus, in more canonical terms
the criterion is as follows:

Proposition 7.1. The extension corresponding to a class η is locally
free at a point x ∈ Supp(P ) if and only if its restriction to the socle
η ◦ δ|SP,x⊗... is nonzero. Hence, E is locally free everywhere if and only
if this condition holds at every point of the support of P . This may
be rephrased as saying that for any colength 1 subscheme P ′ ⊂ P , the
restriction of η ◦ δ to JP ′/P ⊗ L⊗ U−1 ⊗KX is nonzero.

This is classical and we don’t give the proof here. It is discussed for
example in [159] and [69].

In order best to understand the statement, the reader should think
mainly of the case where P consists of a disjoint union of reduced points.
Then, a subscheme P ′ ⊂ P of colength 1 just means a collection of all
the points except for one.

The corollary of this proposition is a condition for the existence of
an extension class defining a locally free sheaf, which is the celebrated
Cayley-Bacharach condition. We treat the proof in detail for the reader’s
convenience.

Corollary 7.2. Suppose X is a smooth surface and P ⊂ X is a local
complete intersection subscheme of dimension 0. Suppose U and L are
line bundles. Then there exists an extension class η ∈ Ext1(JP/X⊗L,U)
defining an extension (7.1) with E locally free, if and only if the following
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“Cayley-Bacharach condition” is satisfied:
—for any colength 1 subscheme P ′ ⊂ P , any section in H0(L ⊗ U−1 ⊗
KX) which vanishes on P ′, also vanishes on P .
We denote this condition by CB(L⊗ U−1 ⊗KX) or just by CB(n) for
a line bundle of the form OX(n).

Proof. Suppose P satisfies CB(L⊗U−1⊗KX). Let Im(eP ) denote
the image of the evaluation map

eP : H0(L⊗ U−1 ⊗KX) → (L⊗ U−1 ⊗KX)P .

The condition may be reinterpreted as saying that for any P ′ ⊂ P of
colength 1, the map

Im(eP ) → (L⊗ U−1 ⊗KX)P ′

is injective. If we let RP ′ ⊂ (L ⊗ U−1 ⊗ KX)P denote the kernel of
the projection to (L ⊗ U−1 ⊗KX)P ′ , that is to say RP ′ := JP ′/P ⊗OP

(L ⊗ U−1 ⊗ KX)P , then RP ′ is a one-dimensional subspace and the
Cayley-Bacharach condition says that RP ′ ∩ Im(eP ) = {0} for all P ′.

Consider the cokernel Q : (L ⊗ U−1 ⊗ KX)P /Im(eP ), then by the
CB condition the image of RP ′ in Q is again a line, in particular note
that Q �= 0.

Now, the connecting map δ provides an injection Q ↪→ H1(JP/X ⊗
L ⊗ U−1 ⊗ KX), so for any linear function on Q we may choose an
extension class η ∈ H1(JP/X ⊗ L⊗ U−1 ⊗KX)∗ which restricts to that
linear function. As the images of all the RP ′ are nontrivial lines in Q,
a general linear function will restrict to a nonzero function on all of the
RP ′ . Hence, for a general choice of extension class η, the restriction
of η ◦ δ to RP ′ will be nonzero. This insures that the extension sheaf
E is locally free, by Proposition 7.1. This completes the proof of one
direction.

Conversely, if there exists an extension class η which restricts to
something nonzero on all RP ′ , it follows that each RP ′ injects into Q,
that is to say it has trivial intersection with Im(eP ), which exactly says
that P satisfies CB(L⊗ U−1 ⊗KX). Q.E.D.

There is a useful property of transfer of the Cayley-Bacharach prop-
erty to residual subschemes.

Lemma 7.3. Suppose a 0-dimensional subscheme Z ⊂ X satisfies
CB(L ⊗ M) for line bundles L and M . Suppose g ∈ H0(L). Let Z ′

be the residual subscheme of Z with respect to the section g. Then Z ′

satisfies CB(M).
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Proof. Locally, view g as a function. The residual subscheme, de-
fined by the annihilator ideal of g|Z , fits into an exact sequence

0 → OZ′
g→ OZ → OZ/(g|Z) → 0.

If J ⊂ OZ′ is an ideal of length 1 defining Z ′′ ⊂ Z ′, then gJ is a
length 1 ideal in OZ defining a colength 1 subscheme P ⊂ Z. Suppose
f ∈ H0(M) vanishes on Z ′′; then g ⊗ f ∈ H0(L ⊗ M) vanishes on P .
By CB(L ⊗M), g ⊗ f vanishes on Z so f vanishes on Z ′. This proves
CB(M) for the residual subscheme Z ′. Q.E.D.

The Cayley-Bacharach condition is a strong numerical property,
which has been studied a great deal by many mathematicians over a
long period, partly because of its above relationship with the Serre con-
struction for vector bundles, but also for a host of other reasons. The
reader should consult the survey article by Eisenbud, Green and Harris
[69].

The following two corollaries extend the technique of Reider’s the-
orem to a general setting, and serve to make somewhat more precise
Question 3.4.

Corollary 7.4. Suppose X is a smooth surface with a fixed hyper-
plane class, suppose L is a line bundle of positive degree and suppose
P ⊂ X is a zero-dimensional local complete intersection subscheme sat-
isfying CB(L⊗KX). Suppose that H0(JP/X(D)) = 0 for any effective

divisor D of degree deg(D) < deg(L)/2. Then the length of P is ≥ L2/4.

Proof. By above, there is a vector bundle extension of JP/X ⊗
L by U := OX . The hypothesis implies that it is semistable, so the
Bogomolov-Gieseker inequality applies. Q.E.D.

Corollary 7.5. Suppose P ⊂ P3 is a local complete intersection
satisfying CB(m), such that H0(JP/X(n)) = 0. If P is contained in a
smooth surface of degree d ≤ m+4, and 2n ≥ m+2−d, then the length
of P is at least d(m+ 4− d)2/4.

Proof. Let X be the smooth surface, so KX = OX(d − 4), and
apply the previous corollary with L := OX(m + 4 − d). The condition
2n ≥ m + 2 − d ensures that the hypothesis of the previous corollary
holds, so the length of P is at least L2/4 = d(m+ 4− d)2/4. Q.E.D.

Question 3.4 may be interpreted as asking, can we obtain a simi-
lar statement without the hypothesis that the surface containing P is
smooth? We refer to Section 17.3 for a further discussion of these issues.
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We would next like to describe how the Cayley-Bacharach property
allows us to draw a relationship between the construction of bundles on
surfaces, and Brill-Noether theory for curves. Adopt the setting of a
smooth hypersurface X ⊂ P3 of degree d. Then, a subscheme P ⊂ X
may also be thought of as a subscheme of P3. If we furthermore assume
that the line bundles U , L and automatically KX = OX(d − 4) are
restrictions of line bundles on P3, then L⊗U−1⊗KX = OX(n) for some
n. We haveH1(P3,OX(n−d)) = 0, which says that sections ofOX(n) on
X are restrictions of sections defined on P3. Therefore, the conditions
imposed by subschemes P or P ′ ⊂ P on sections in H0(OP3(n)) all
factor through conditions imposed on H0(OX(n)) (we don’t need the
restriction map to be an isomorphism for this to be true, its surjectivity
is enough). Hence, the Cayley-Bacharach conditions are the same:

(7.2) CB(OX(n)) ⇔ CB(OP3(n))

for subschemes P ⊂ X. We may forget about X, think of P ⊂ P3, and
ask whether it satisfies Cayley-Bacharach there.

Now, very often our subscheme will sit on some curve C ⊂ P3, most
likely not contained in the original surface. Typically, C is obtained
as a complete intersection (or some component therein) of divisors in
|OX(m)| passing through P , whose existence is obtained using CB(n)
which implies CB(m) for m ≤ n.

We would like to remark, in passing, that the classification of curves
in P3 becomes important for understanding which curves C to consider.
For example, how can a complete intersection of bidegree (d, d′) in P3

break up into irreducible curves of smaller genus?
In the most optimistic case, our curve C will be smooth, and the

subscheme P constitutes a divisor on C. We may give a criterion:

Lemma 7.6. Suppose C ⊂ P3 is a smooth curve and P ⊂ C is a
divisor. Put A := OC(n) ⊗ OC(−P ). Suppose that for any point x in
the support of P , we have

h0(A(x)) = h0(A).

Then P satisfies the condition CB(n) on P3.

Proof. Suppose P ′ ⊂ P is a subscheme of colength 1. Then
OC(−P ′) = OC(−P )⊗OC(x). Thus, our hypothesis says that

H0(C,OC(n)(−P ))
=→ H0(C,OC(n)(−P ′)).

In other words, any section in H0(OC(n)) vanishing on P ′, also vanishes
on P . This implies condition CB(n) on P3. Q.E.D.
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Remark 7.7. In fact, the lemma proves the condition CB(OC(n))
which implies CB(OP3(n)). These two conditions are equivalent if the
restriction map H0(OP3(n)) → H0(OC(n)) is surjective, which would be
the case for example when C is a complete intersection.

If the line bundle A = OC(n)(−P ) is not in the Brill-Noether locus,
that is to say if h0(A) = χ(A), then we have

h0(A(x)) ≥ χ(A(x)) = h0(A) + 1

so the condition of the lemma cannot hold. By the previous remark,
in some cases such as when C is a complete intersection, this would
actually mean that P is not CB(n), but in any case it means that the
method of Lemma 7.6 to get the CB(n) condition doesn’t apply.

So, in order to obtain Cayley-Bacharach, we need to have a line
bundle A = OC(n)(−P ) in the Brill-Noether locus. Notice that P is a
divisor in the linear system |OC(n)⊗A−1|. Some more can be said about
when this will work. Suppose we fix the line bundle A, with h1(A) > 0.
For a point x ∈ C, the exact sequence

0 → H0(A) → H0(A(x)) → C → H1(A) → H1(A(x)) → 0

is Serre dual to

0 → H0(KC ⊗A−1(−x)) → H0(KC ⊗A−1) → C →
→ H0(KC ⊗A−1(−x)) → H0(KC ⊗A−1) → 0.

The hypothesis H0(KC ⊗ A−1) �= 0 implies that for a point x which is
general with respect to A, the evaluation map H0(KC ⊗A−1) → C will
be surjective. Equivalently the connecting map C → H1(A) is injective,
and we obtain the conclusion thatH0(A) → H0(A(x)) is an isomorphism
as required for Lemma 7.6.

Corollary 7.8. Suppose A is a line bundle in the Brill-Noether
locus h1(A) > 0, such that the linear system |OC(n) ⊗ A−1| is effective
and without basepoints. Then, for a general divisor P ∈ |A⊗OC(−n)|,
the hypothesis of Lemma 7.6 is satisfied and P satisfies CB(n) on P3.

Proof. Since there are no basepoints, for a general divisor P in the
linear system any point x ∈ Supp(P ) is general with respect to A. The
previous discussion applies. Q.E.D.

Corollary 7.9. In the situation of the previous corollary, suppose
X is a smooth hypersurface of degree d containing P . Then there exists
a vector bundle E on X fitting into an exact sequence

0 → OX → E → JP/X ⊗OX(m) → 0
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where m = n+ 4− d.

Proof. Setting U = OX and L = OX(m), we have U−1⊗L⊗KX =
OX(m + d − 4) = OX(n). The Cayley-Bacharach condition CB(n) on
P3 deduced from the previous corollary implies the CB(n) condition on
X cf (7.2). Corollary 7.2 gives the vector bundle extension. Q.E.D.

One could refine the hypotheses through a more geometric discussion
of how to apply Lemma 7.6. Notice that h0(A(x)) > h0(A) if and
only if, for any point y ∈ C, the divisor A(x − y) is again in the Brill-
Noether locus. Let (x−C) denote the one-dimensional subset of Jac0(C)
consisting of divisors of the form x− y for y ∈ C. If

BN ⊂ Jacr(C)

is some component of the Brill-Noether locus, such that for any x we
have that BN +(x−C) is not contained in BN , then the hypothesis of
Lemma 7.6 will hold.

These considerations give a first kind of relationship between Brill-
Noether theory and the construction of vector bundles. For the study of
this locus as a moduli space itself, see for example King and Newstead
[140]. Another kind of relation, based on elementary transformations,
will come out of O’Grady’s method which is our next subject.

We feel that the many beautiful things known about Brill-Noether
theory by the work of Mukai and others, will lead to interesting new
aspects of the geography of vector bundles.

§8. The boundary of the moduli space

Let X be a smooth projective surface. The moduli space of stable
vector bundles MX,H(r, c1, c2) is usually not compact, although some
irreducible components can be compact. There are two main kinds of
compactifications: the Gieseker compactification, which adds in torsion-
free sheaves; and the minimal Uhlenbeck compactification which only
keeps track of the locations and multiplicities of the singular points
rather than their finer structure. The Uhlenbeck compactification was
originally viewed in terms of solutions of the Yang-Mills equations, and
indeed it makes sense on any 4-manifold, but it may also be seen as a
quotient of the Gieseker compactification. For our discussion we will
concentrate on the Gieseker compactification denoted MX,H(r, c1, c2),
which is a coarse moduli scheme for H-Gieseker-semistable torsion-free
sheaves.
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Being locally free is an open condition, so the moduli space of vector
bundles is an open subset

MX,H(r, c1, c2) ⊂ MX,H(r, c1, c2).

It is tempting to think of it as being a dense open subset, as will often be
the case; but one should bear in mind that this is not always true—there
exist examples of irreducible components of MX,H(r, c1, c2) not contain-
ing any locally free point. When we speak in general terms about the
“boundary” this usually means the complement of the locally free locus.
However, to be more precise, if Z is a subset of MX,H(r, c1, c2) then

we define ∂Z := Z − Z. In what follows, the closure always means the
closure inside the moduli space MX,H(r, c1, c2) of torsion-free sheaves.
Notice with this definition that ∂MX,H(r, c1, c2) can be smaller than

MX,H(r, c1, c2)−MX,H(r, c1, c2) so the notation ∂( ) might conflict with
our general usage of the term “boundary”.

A first basic and very useful result is O’Grady’s lemma about the
codimension of the boundary [230, Proposition 3.3]:

Lemma 8.1 (O’Grady). Suppose Z ⊂ MX(r, c1, c2) is an irre-
ducible closed subset. Then ∂Z := Z − Z has pure codimension 1, if
it is nonempty.

The main structure of the boundary is provided by what O’Grady
calls the double dual stratification, closely related to the Uhlenbeck strat-
ification from gauge theory. Suppose E is a torsion-free sheaf on X.
Then E∗∗ is locally free since X is regular of dimension 2, and we have
an exact sequence

0 → E → E∗∗ → S → 0

where S is a coherent sheaf of finite length, in particular of 0-dimensional
support. The double dual stratification is defined by looking at the
length of S, denoted d := |S|. Note that c2(E

∗∗) = c2(E)− d.
For brevity suppose thatH, r and c1 are fixed and therefore dropped

from the notation. This is permissible because, in the situation of the
previous paragraph, the rank and c1 of E and E∗∗ are the same.

Let MX(c2, c2 − d) be the moduli space of torsion-free sheaves E
with c2(E) = c2 and c2(E

∗∗) = c2 − d, in other words |S| = d. These
are locally closed subsets of MX(c2), giving a stratification

MX(c2) = MX(c2) �
∐
d>0

MX(c2, c2 − d).

The pieces are provided with fibrations

MX(c2, c2 − d) → MX(c2 − d)
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sending E to E∗∗. One may need to be careful here about preservation
of Gieseker semistability. Restrict for example to the case of bundles
whose degree and rank are coprime, so that MX(c2 − d) is locally a
fine moduli space. The above map becomes a fibration in the analytic
topology, with its fiber over a vector bundle F being the Grothendieck
Quot scheme Quot(F, d) of quotients F → S of length d.

Because of these fibrations on the boundary, several authors studied
very early on the structure of the Quot scheme for rank 2. Li shows in
[166, Proposition 6.4] that Quot(E, d) is irreducible with a dense open
subset U parametrizing quotients which are given by a collection of d
quotients of length 1 supported at distinct points of X. Li’s theorem
was subsequently generalized for bundles of arbitrary rank by Ellingsrud
and Lehn [72].

Theorem 8.2 (Li, Ellingsrud-Lehn). Suppose E is a locally free
sheaf of rank r on a smooth surface X. The quotient scheme parametriz-
ing quotients of a locally free sheaf Or

X of rank r on a smooth surface
X, located at a given point x ∈ X, and of length �, is irreducible of
dimension r�− 1. Thus for any d > 0, the global Quot(E, d) is an irre-
ducible scheme of dimension (r + 1)d. It contains a dense open subset
parametrizing quotients which are direct sums of general rank 1 quotients
over distinct general points of X.

This theorem allows us to provide a fairly precise description of the
possible boundary components. One should beware that a boundary
piece MX(c2, c2 − d) is not always necessarily in the closure of MX(c2),
in which case the description would become more difficult. However, in
many cases dimension considerations allow us to rule out such a thing.

Another useful consideration is as follows. If the moduli space is
good, then it is a local complete intersection. This holds locally in the
analytic topology by the Kuranishi deformation theory, which presents
the moduli space as the zero set of a map from the Zariski tangent space
to the space of obstructions and goodness says that the dimension of the
moduli space is equal to the difference of the two dimensions.

In the situation of a local complete intersection, we have Hart-
shorne’s connectedness theorem [255] [98]:

Theorem 8.3 (Hartshorne). Suppose (Z, z) is a local analytic germ
which is a complete intersection. Then, removing a subvariety of codi-
mension ≥ 2 cannot disconnect Z.

Corollary 8.4. Suppose that the moduli space M of torsion-free
sheaves has dimension equal to the expected dimension at a point [E].
Then, if two different irreducible components meet, they must intersect
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in a codimension 1 subvariety. In particular, in cases where the singular
locus is known to have codimension ≥ 2, connectedness and irreducibility
are the same thing.

This completes our discussion of what can be said about the bound-
ary in very general terms.

§9. Relation with linear systems on curves, II: O’Grady’s
method

O’Grady introduced a method for studying the irreducibility and
smoothness properties of moduli spaces of sheaves, based on geomet-
ric considerations of restriction to curves. One important piece of his
construction comes from the notion of elementary transformation, intro-
duced by Maruyama very early on [186, 187, 191]. It is the elementary
transformation construction which provides a direct relation to the the-
ory of linear systems on curves, and we start by recalling how it works,
for simplicity in the case of surfaces.

Let X be a smooth surface, and suppose E is a vector bundle. Sup-
pose C ⊂ X is a smooth curve. Suppose we are given an exact sequence
of bundles over C, written

0 → U → E|C → Q → 0.

Let i : C → X denote the inclusion. Then we can consider the map of
coherent sheaves on X

E → i∗(Q).

The kernel of this map is a coherent subsheaf T ⊂ E which, one may
see, is in fact locally free itself. Thus, T is a new vector bundle called
the elementary transform of E along the quotient Q. The salient fact is
that we can restrict T to the curve. What remains of the original exact
sequence becomes a map from T |C to the subbundle U , and fitting into
the exact sequence

0 → Q(−C) → T |C → U → 0.

The kernel is Q⊗OX(−C)|C denoted Q(−C) for short. We could now
do the elementary transform of T along the quotient U , and we get back
to the original bundle twisted by OX(−C), a fact which may be recorded
in the exact sequence

0 → E(−C) → T → i∗(U) → 0.

O’Grady adds a variation on this theme. The sheaf i∗(Q) appearing
above was of pure dimension 1. If we replace that by a more general
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quotient sheaf E → Q′ such that Q′ contains some torsion elements,
then the kernel subsheaf T ′ will be torsion-free but not locally free.
Furthermore, we may consider the whole construction as parametrized
by a point in the Grothendieck Quot-scheme of quotients of E with a
fixed Hilbert polynomial. If we can deform from a pure dimension 1
quotient to a quotient that has torsion, then we get a deformation from
the locally free elementary transform T to a torsion-free but not locally
free one T ′. This is O’Grady’s method for obtaining the deformation
towards the boundary of the moduli space. The boundary point T ′

comes from a moduli space of bundles (i.e. look at the double dual
of T ′) with a smaller value of c2, setting up the possibility to do an
inductive argument.

Before getting to a more detailed illustration, we can describe quickly
how this construction relates to Brill-Noether theory on curves. Let us
consider bundles of rank r = 2. The simplest example of a bundle to
start with is just the trivial bundle E = O2

X . In that case, a quotient

E|C → Q

just consists of a line bundle Q on the curve C, plus a two-dimensional
space of sections C2 → H0(C,Q). Of course, if we take a map factoring
through a one-dimensional subspace then our elementary transform will
just be a direct sum of line bundles, so the construction is interesting
only when we have a subspace C2 ⊂ H0(C,Q). In other words, this
construction will apply any time we have a g1d linear system on the
curve C. We get a family of bundles parametrized by this piece of
the Brill-Noether locus of the curve. To be more precise, the map is
surjective when the two sections generate the line bundle Q. Deforming
the elementary transformation to a boundary point (i.e. torsion-free
but not locally free) corresponds to deforming the g1d to one where the
sections no longer generate the line bundle Q.

One seldom gets to start with a trivial bundle, and the study of line
bundles admitting a morphism from a higher-rank vector bundle was
the subject of Mukai’s “nonabelian Brill-Noether theory” [211]. Cop-
pens [49] also studies irreducible components of the Brill-Noether loci in
relation to restriction of stable bundles.

We now get to a more detailed illustration of O’Grady’s method,
with a view towards applying it in the case of vector bundles on a very
general quintic hypersurface X ⊂ P3. For the general case, see [230].

The goal is to show that any irreducible component of M(c2) “meets
the boundary”, i.e. is a strict open subset of its closure in M(c2). So, for
this part, let us suppose that Z ⊂ M(c2) is a closed irreducible subset
which doesn’t meet the boundary, that is to say Z ⊂ M(c2). The point
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of departure therefore is to have a compact variety parametrizing stable
vector bundles.

Suppose Y ⊂ X is a smooth curve, intersection of X with a hy-
perplane section of class given by our ample divisor H. In the case we
will later be interested in X is a quintic hypersurface in P3 and Y is a
plane quintic curve of genus g = 6. The moduli space MY (2,OY (1)) of
rank two bundles on Y with determinant OY (1) is a smooth projective
variety of dimension 3g(Y )− 3, equal to 15 in the quintic case.

Consider the “theta-divisor” ΘY (2,OY (1)) ⊂ MY (2,OY (1)). It is
the subspace of bundles F on Y such that h0(Y, F ⊗ L) > 1 for an
appropriate line bundle L (cf Section 11). It is known to be ample,
indeed it is the divisor of a natural section of the determinant line bundle
ΘY (2,OY (1)) on MY (2,OY (1)), which is ample [123]. We may write
c1(ΘY (2,OY (1))) = [ΘY (2,OY (1))].

O’Grady’s first main step is to get a curve on which a restricted
bundle becomes unstable, Corollary 9.3 below. The proof is by con-
tradiction. If the restrictions are always stable then ampleness of the
determinant bundle gives a positive intersection number with a dimen-
sion bound, but the contrary bound on the dimension can be included
as a hypothesis.

Proposition 9.1 (O’Grady [230] Proposition 1.18). Suppose Z ⊂
MX,H(r, L, c2) is a compact subvariety, and suppose Y ⊂ X is a smooth
curve in the linear system |OX(H)|. Suppose that for every [E] ∈ Z,
the restriction E|Y is stable. Let p : Z → MY (r, L|Y ) be the resulting
morphism to the moduli of bundles on Y . Then p∗(ΘY (r, L|Y )) is ample
on Z.

Proof. We recall here the outline of the proof. The first step is
to note that there is a smooth curve Yk in the linear system |OX(kH)|
such that all points of Z restrict to stable bundles on Yk too. See [230],
Proposition 1.20. This type of uniform Mehta-Ramanathan restriction
theorem [194] has more recently been vastly extended by Langer and
others, see [157], and one may ask whether those techniques can improve
O’Grady’s bounds.

In any case, let pk : Z → MYk
(r, L|Yk

) be the corresponding mor-
phism.

Next, O’Grady shows in [230, Lemma 1.21] that there is a constant
λk > 0 such that

(9.1) c1(p
∗
kΘYk

(r, L|Yk
)) = λkc1(p

∗ΘY (r, L|Y )).
This is a calculation using Grothendieck-Riemann-Roch.
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The theorem is now proven by noting that for k � 0, the map pk :
Z → MYk

(r, L|Yk
) is an embedding. What we need may be seen easily

as follows. Suppose E and E′ are two bundles on X whose restriction to
Yk are isomorphic. We obtain a section of H0(Yk, (E

∗ ⊗ E′)|Yk
). Look

at the exact sequence

H0(E∗ ⊗ E′(−kH)) → H0(E∗ ⊗ E′) → H0(Yk, (E
∗ ⊗ E′)|Yk

)

→ H1(E∗ ⊗ E′(−kH))

and note that for k � 0,

H1(E∗ ⊗ E′(−kH)) ∼= H1((E′)∗ ⊗ E(KX + kH)) = 0.

Thus, our isomorphism over Yk extends to a morphism over X, easily
seen to be an isomorphism since both bundles are stable. This shows,
at least, that the map pk is quasifinite. That is enough to prove that
the pullback by pk of the ample line bundle ΘYk

(r, L|Yk
) is ample on Z.

By the formula (9.1), the proposition follows. Q.E.D.

Corollary 9.2. Suppose Z ⊂ MX,H(r, L, c2) is a compact sub-
variety, and suppose Y ⊂ X is a smooth curve in the linear system
|OX(H)|. Suppose that for every [E] ∈ Z, the restriction E|Y is sta-
ble. Let p : Z → MY (r, L|Y ) be the resulting morphism to the moduli of
bundles on Y . Then

p∗c1(ΘY (r, L|Y ))dim(Z) > 0.

In particular,
dim(Z) ≤ dim(MY (r, L|Y )).

Proof. The top self intersection of an ample divisor is positive,
showing the first statement. For the second, note that

p∗ (c1(ΘY (r, L|Y )))dim(Z)
= p∗

(
c1(ΘY (r, L|Y ))dim(Z)

)
but if dim(Z) > dim(MY (r, L|Y )) then we would have

c1(ΘY (r, L|Y )dim(Z) = 0

on MY (r, L|Y ), a contradiction. This shows the second one. Q.E.D.

The contrapositive is how this conclusion will be used, see for ex-
ample [225, Theorem 1.2, Step 1].

The present still somewhat general discussion will be continued in
further detail, with the same notations, when we complete the proof of
Nijsse’s connectedness theorem [225] in Section 18 below.
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For convenience in starting towards the discussion of Section 18, we
adopt throughout the rest of the present section the assumption that
X ⊂ P3 is a very general quintic hypersurface and we are looking at the
moduli of rank 2 bundles of degree 1. The class H is c1(OX(1)) and the
curve Y is a plane section of X. It is therefore a smooth plane quintic
curve, having genus 6 so 3gY − 3 = 15.

Corollary 9.3. On our quintic surface X, if Z ⊂ MX(2, 1, c2) is a
compact subvariety, suppose dim(Z) ≥ dim(MY (2, L|Y ))+1 = 16. Then
there exists a point [E] ∈ Z such that E|Y is unstable.

We may now choose a point [E] ∈ Z such that E|Y is unstable,
given by the previous lemma, and look at the destabilizing sequence:

(9.2) 0 → L0 → E|Y → Q0 → 0.

The kernel and cokernel are line bundles on Y with Q0 = L−1
0 (1) since

det(E) = OX(1). The destabilizing condition says dL := deg(L0) >
deg(Q0).

The kernel of the map of sheaves

0 → T → E → i∗(Q0) → 0

where i : Y ↪→ X denotes the inclusion, is the elementary transformation
of E along the exact sequence (9.2). The sheaf T is again locally free on
X, and the elementary transformation yields an exact sequence

0 → Q0(−1) → T |Y f0→ L0 → 0.

Furthermore, from the quotient f0 we can get back E from the exact
sequence

0 → E(−1) → T
i∗(f0)→ i∗(L0) → 0.

Let Quot(T |Y , dL) denote the Grothendieck Quot-scheme parametri-
zing quotients

T |Y f→ L

such that L has Hilbert polynomial p(n) = PY (L0, n) with respect to
OY (1). The quotient (L0, f0) is a particular point of Quot(T |Y , dL).

For any point (L1, f1) of Quot(T |Y , dL), we can form the kernel

0 → E1(−1) → T
i∗(f1)→ i∗(L1) → 0

and twisting back we get a sheaf E1. It is torsion-free, being a subsheaf
of T . Furthermore, E1 has the same Hilbert polynomial as E, and it



Moduli of sheaves 113

has the same determinant sheaf as well. We have the following basic
property:
The new sheaf E1 is locally free if and only if the quotient L1 is locally
free.

This may be applied to give a construction of deformation to the
boundary, under the condition of retaining some control over stability.
We can make the following general statement, under the hypotheses and
notations in vigour above, and denoting M(c2) := MX(2, 1, c2).

Proposition 9.4. Suppose we have a family of quotients (Lu, fu)
parametrized by u ∈ U for an irreducible curve U , containing a point
0 ∈ U which corresponds to the original (L0, f0). This leads to a family
of sheaves Eu. Suppose v ∈ U is a point such that Ev is stable. Then it
is a point in M(c2) which is in the closure of some irreducible component
of M(c2) containing E. In particular, if Lv is not locally free, then the
irreducible component of M(c2) containing E meets the boundary.

Proof. Notice that E is stable, so there is a nonempty open subset
U ′ ⊂ U containing 0 such that Eu is stable for u ∈ U ′. We obtain a
morphism U ′ → M(c2). If Ev is stable, then v ∈ U ′ and the point [Ev]
is joined to [E] by an irreducible curve in M(c2). Hence, [Ev] is in the
closure of some irreducible component of M(c2) containing [E]. If Ev is
not locally free, we get a deformation to a boundary point. Q.E.D.

In order to complete the construction, we need to find a quotient
such that Lv is not locally free, and such that the resulting bundle Ev

is stable. Consider the question of stability first.

Lemma 9.5. In the above situation, suppose H0(E) = 0. Then all
of the Ev are stable.

Proof. Compose the morphisms

Ev(−1) → T → E.

Suppose Ev is unstable. It has determinant OX(1), so by the hypothesis
that X is very general, the destabilizing subsheaf would be a line bundle
of the formOX(k) → Ev with k ≥ 1. We get a nonzero mapOX(k−1) →
Ev(−1), hence an injective map

OX(k − 1) → E.

As H0(OX(k − 1)) �= 0 we get a nonzero element of H0(E). Q.E.D.

In order to apply this to our situation, we need a bundle E such
that E|Y is unstable, and H0(E) = 0.
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Corollary 9.6. Suppose c2 ≥ 16. Then, in any irreducible compo-
nent of M(c2) there exists a bundle E such that E|Y is unstable, and the
deformed bundles Ev resulting from the above construction are stable.

Proof. As Nijsse points out, by [230, Proposition 5.47], the locus
of bundles with E|Y unstable has codimension at most gY = 6 if it is
nonempty. Assuming that 4c2 − 20 ≥ 16 we get that it is nonempty
by above. In that case, it has dimension at least 4c2 − 20, whereas the
locus V (c2) of bundles with H0(E) �= 0 has dimension 3c2 − 11. Thus,
if c2 ≥ 16 hence 4c2 − 26 > 3c2 − 11 so there must be a bundle whose
restriction is unstable, and with H0(E) = 0. Q.E.D.

We now consider the question of getting a quotient Lv which is
not locally free. We simplify somewhat here Nijsse’s discussion, as he
considered an arbitrary subset of M(c2) rather than just an irreducible
component. We start with a lemma which encloses the essential point
of O’Grady’s argument in our simplified situation.

Lemma 9.7. Suppose Y is an irreducible smooth curve, P → Y
is a P1-bundle, and U is a smooth proper surface. Then any map f :
Y ×U → P , compatible with the projection back to Y , factors through a
map from U to a curve.

Proof. Fix y ∈ Y . It gives a map fy : U → Py = P1, which
has positive-dimensional fibers since U is a surface. Consider the Stein
factorization

U
g→ C → P1.

If V is an irreducible component of a fiber of g, then the restriction
fy|V is constant, in particular it has degree 0. Therefore, for any other
point z ∈ Y , the restriction fz|V which is a deformation of fy|V , also
has degree zero so it must be constant too. It follows that the map fz is
constant on fibers of g since these fibers are connected. This shows that
f factors as

Y × U → Y × C → P.

Q.E.D.

We apply this as follows in our situation:

Corollary 9.8 (O’Grady [230] Lemma 1.15). Given a generically
injective map from a smooth projective surface U → Quot(T |Y , dL), then
U contains a point v ∈ U such that Lv is not locally free.

Proof. Consider the map of sheaves on Y × U

p∗1(T |Y ) → LU → 0
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where L is the universal quotient sheaf on Y ×Quot(T |Y , dL) and LU

denotes its restriction to Y × U . If Lu is locally free for all u ∈ U it
means that LU is locally free. Let P → Y be the P1-bundle of quotients
of T |Y . Then our quotient gives a map Y × U → P compatible with
the projection to Y . By the previous lemma, it would have to factor
through a map to a curve U → C, but this contradicts the assumption
that U → Quot(T |Y , dL) is generically injective. Hence, at least one
quotient has to contain a non-locally free point. Q.E.D.

Corollary 9.9. If U ⊂ Quot(T |Y , dL) is an irreducible component
of dimension at least 2, containing (L0, f0), then E may be deformed to
the boundary of the moduli space.

This finishes our first discussion of the essence of O’Grady’s method.
Some further work will be needed to treat the case where the Quot
scheme has dimension 1. This part of the discussion, continuing in the
same vein, will be deferred to Section 18 in order to complete the proof
of Nijsse’s connectedness theorem. The above notations will come back
into effect there.

§10. Rationality

The birational geometric type of the moduli spaces is an interesting
and, in general, difficult question. There are many results about ratio-
nality of the moduli space, considering for example the case when X
itself is rational.

Ballico [15] proved that if X is a rational surface, then for an ap-
propriate choice of ample divisor H, the moduli space MH(r, c1, c2) is
smooth, irreducible and unirational whenever it is nonempty.

For X = P2 itself, Ellingsrud and Strømme [73] and Maruyama [193]
completed the proof, started by Hulek [118] and Barth [16], of (almost)
rationality: for c1 odd, or c1 even and c2 odd, the moduli space is rational
when nonempty; when both are even there is a rational variety which is
a P1-bundle over the moduli space. See also Maeda [179].

Li and Qin consider rank 3 bundles [170], and by showing that a
generic one may be presented as an extension of a rank 2 bundle by a
line bundle, they are able to obtain rationality of the moduli of rank 3
bundles on P2 under certain numerical conditions. Katsylo proves ra-
tionality in a wide range of cases for higher rank [135]. His technique
involves giving a birational equivalence with a quotient of a space of
matrices. Schofield extends the result to whenever the gcd of the co-
efficients of the Mukai vector divides 420 [258], see also King-Schofield
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[141]. They relate the moduli spaces to quiver representation spaces, a
reduction closely related to the existence of a universal family.

Costa and Miro-Roig have a series of papers about rationality. For
Hirzebruch surfaces they show rationality for large values of c2, for bun-
dles of arbitrary rank [50]. They treat rank two bundles on Fano surfaces
[51] and subsequently for arbitrary rational surfaces in [52], showing that
the moduli space is rational for large values of c2. For such large values
this removes, in particular, the need to go to a P1-bundle in the previous
results for X = P2.

Question 10.1. An interesting question is to know whether there
is a converse: if MH(c1, c2) is rational for c2 � 0 then does that imply
that X is rational?

Costa and Miro-Roig have a program to attack this question [53],
see also O’Grady’s review of their paper. We didn’t find a more recent
reference on this question which is therefore apparently still open.

One may note that the condition c2 � 0 is necessary: we will see
some examples for hypersurfaces of high degree with a rational moduli
space for very low values of c2.

Hoppe and Spindler considered the case whenX is ruled over a curve
C of higher genus [112]. They show, under some additional assumptions
such as nonemptiness and existence of a universal family, that the moduli
space is birationally equivalent to a projective space times an abelian
variety (two copies of the Jacobian of C). Qin goes on, in this case, to
give a computation of the Picard group of the moduli space [241].

Altogether we have a nice amount of information for the Fano case.
By Yoshioka and others we also have a good amount of information for
Calabi-Yau surfaces. Recent works are going towards an understanding
for Enriques surfaces too. In the case of surfaces of general type, there
can exist rational moduli spaces, for example MX(2, 1, 5) is an open
subset of P3 whenX is a very general quintic hypersurface [198, 200], but
of course we expect that they are usually not rational. The delimitation
between these situations doesn’t seem very clear.

These topics come together with the moduli of parabolic bundles in
Mukai’s paper [212].

One crucial question is to understand what happens to the moduli
space of bundles when we blow up a point. This has been discussed by
Nakajima-Yoshioka [218], Nakashima [219], Yoshioka [286] and Brussee
[38] among many others. Li and Qin relate this question to the S-
duality conjecture [171]. Miró-Roig [202] shows irreducibility for rank 2
bundles on blow-ups of P2, under a numerical condition that was used by
Maruyama to obtain smoothness. Ballico [15] proves irreducibility and
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smoothness for a rational surface, for a particular choice of polarization.
It would be interesting to understand wallcrossing phenomena for the
walls of Ballico’s good chamber.

Going beyond these cases, the structure of a general rational surface
can be very complicated, and it doesn’t seem easy to fully understand
the moduli spaces of sheaves over such surfaces. This should provide
combinatorially rich environment for further study in relation with the
other topics considered here.

§11. Strange duality

Strange duality relates moduli spaces with different Mukai vectors,
so it provides some global structure to the family of all moduli spaces.
On a moduli space associated to ξ, there is a determinant line bundle
which depends on the choice of another “orthogonal” Mukai vector ζ.
The strange duality pairing relates the space of sections of this determi-
nant line bundle, with the space of sections over the ζ moduli space of
the determinant line associated to ξ.

In the case of curves, it was also known as rank-level duality. This
is because an SLr moduli space depends only on the rank r, and the
determinant line is uniquely determined up to a tensor power called the
level. Strange duality relates sections of level k on the moduli space of
bundles of rank r, with sections of level r on the moduli space of bundles
of rank k.

Over curves, the strange duality phenomenon was extensively inves-
tigated and treated by many authors, and it is now proven by Belkale
[21] and Marian and Oprea [183].

On a surface, we get a different moduli space for each Mukai vector
ξ = (r, c1, c2), and there are more parameters to play with. Strange
duality is a conjectural statement relating sections of line bundles on
MX,H(r, c1, c2) and MX,H(r′, c′1, c

′
2), by analogy with the case of curves.

The surface case is instructive because we see a little more clearly the
role played by the choice of Mukai vectors.

The Mukai lattice has a product, corresponding to tensor product
of bundles:

(r, c1, c2)⊗ (r′, c′1, c
′
2) :=(

rr′, rc′1 + r′c1, rc′2 + r′c2 + (rr′ − 1)c1c
′
1 +

r(r−1)
2 (c′1)

2 + r′(r′−1)
2 c21

)
and applying the Euler characteristic operation, which depends only on
the numerical data, we obtain a bilinear pairing

(ξ, ξ′) �→ χ(ξ ⊗ ξ′).
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Strange duality concerns an orthogonal pair of Mukai vectors for this
product, say ζ and ξ with χ(ζ ⊗ ξ) = 0. On the moduli space MX(ξ),
the orthogonal Mukai vector ζ allows us to define a determinant line bun-
dle, or Θ-line bundle, denoted Θζ(ξ). This is a higher-rank and higher-
dimensional generalization of the classical theta line bundle, whose sec-
tions are “theta-functions”, on an abelian variety.

It is defined by setting

Θζ(ξ)(V ) := det(H∗(X,V ⊗G))

where G is any sheaf with Mukai vector ζ. The fact that χ(ζ ⊗ ξ) = 0
means that we are taking the determinant of a complex with Euler char-
acteristic zero, so multiplication by scalars on either of the factors acts
trivially. This makes it so that the above definition descends to a well-
defined line bundle on the moduli space. Some technical considerations
are of course necessary, depending on the particular variety X which is
considered, see the references.

Suppose now that we have an orthogonal pair ζ and ξ with χ(ζ ⊗
ξ) = 0. Then, ζ determines a determinant line bundle on MX(ξ) and
ξ determines a determinant line bundle on MX(ζ). We can form their
exterior tensor product:

Θζ(ξ)�Θξ(ζ) → MX(ξ)×MX(ζ).

Lemma 11.1. Under some technical hypotheses, there is a canon-
ical section σξ,ζ of the exterior tensor product line bundle defined over
MX(ξ)×MX(ζ), nonzero if the cohomology H∗(X,V ⊗G) is vanishing
for generic V ∈ MX(ξ) and G ∈ MX(ζ).

Proof. Consider the line bundle over MX(ξ) × MX(ζ) which to
(V,G) associates det(H∗(X,V ⊗G)). The technical hypotheses in ques-
tion are needed to insure that this line bundle, which by definition re-
stricts to the two determinant line bundles Θζ(ξ) and Θξ(ζ) on the copies
MX(ξ)×{G} and {V }×MX(ζ), is indeed the same as the exterior tensor
product. Let us say that this is done.

Recall that the Euler characteristic is zero, so we can expect that
the cohomology vanish for generic choices. Over the open set where
it vanishes, the determinant line det(H∗(X,V ⊗ G)) is by definition
trivialized. This gives a nonvanishing section of the bundle over the
open set. One may see that it extends to a section, which vanishes
on the locus where the cohomology is nonzero. If the cohomology is
generically nonzero then the section is by definition zero. Q.E.D.
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Suppose λ ∈ H0(MX(ξ),Θζ(ξ))
∗. For each G ∈ MX(ζ) we have the

section

σξ,ζ |MX(ξ)×{G} ∈ Θξ(ζ)(G)⊗H0(MX(ξ),Θζ(ξ)).

Applying λ we obtain an element of Θξ(ζ)(G). Considered as a function
of G this gives a section of H0(MX(ζ),Θξ(ζ)). This constructs a map

H0(MX(ξ),Θζ(ξ))
∗ → H0(MX(ζ),Θξ(ζ))

which is called the strange duality map.
The strange duality conjecture says that this map should be an iso-

morphism, giving in particular equality between the dimensions of the
spaces of sections of determinant line bundles over two different moduli
spaces. This is not always expected to be true, indeed there are some
cases where the section σ and hence the strange duality morphism itself
could vanish. However, the statement or some variant is expected to be
true in a surprisingly wide range of cases, many of which are now known
thanks to the work of Le Potier, Beauville, Belkale, Marian, Oprea,
Danila, O’Grady, and others.

See Marian and Oprea [184] for a complete overview. We just men-
tion some cases here. A first case is Hilbert schemes of points. They give
numerical calculations supporting the conjecture, i.e. identifying the di-
mensions of the spaces of sections, for abelian and K3 surfaces. They
prove the strange duality isomorphism for abelian surfaces. A classical
K3 case is the intersection of three quadrics in P5, due to Mukai and gen-
eralized by O’Grady. Sawon applies Fourier-Mukai in cases where there
doesn’t exist a universal family, getting a strange duality relationship
with moduli spaces of twisted sheaves [256]. O’Grady treats extensively
the case of elliptic K3 surfaces [234, Statement 5.15].

Le Potier formulated a strange duality conjecture for pure dimension
1 sheaves on P2, that is for M(P2, 0, c1, c2), some cases of which have
been proven by G. Danila [56] and Abe [1]. The strange dual moduli
space is of the form M(P2, 2, 0, c′2). A strong numerical condition is
required, which is shown to hold for certain values of c2 and c′2.

§12. Jumping curves

Consider a vector bundle E over P2. For any line L ⊂ P2, the restric-
tion E|L decomposes into a direct sum of line bundles by Grothendieck’s
theorem. For general values of L, the integer degrees of these line bun-
dles stay constant. However, for special values of L, the degrees in the
Grothendieck decomposition will jump. We get a subvariety in the dual
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projective space DE ⊂ P̂2, consisting of those points L where the de-
composition jumps. For r = 2 and c1 = 0 it is a divisor.

The map E �→ DE is called the Barth morphism because it was first
considered by Barth in [17].

The singularities of this curve of jumping lines for a vector bundle
of rank 2 on P2 were studied by Maruyama in [192]. He uses the ra-
tionality of the base variety in order to obtain a rich supply of curves
on which to look at elementary transformations, and gives a formula for
the multiplicity of the jumping curve at a point, based on the numerical
invariants of a sequence of transformations.

In Le Potier’s point of view, the jumping curve construction was
closely related to the strange duality conjecture for sheaves on P2. In
his famous paper, he introduces the notion of coherent systems [162]. A
jumping curve gives rise to a coherent system which is a pure dimension
1 sheaf supported on the jumping curve, provided with a subspace of
sections coming from sections of the original bundle. King and Newstead
also introduced coherent systems on curves—see [30] for an overview. A
coherent system may be viewed as a special case of a bundle with extra
structure: in this case, the extra structure consists of a linear subspace
of the space of sections (with or without a framing). These are related to
the vast subject of Seiberg-Witten invariants, vortex equations and the
like. There is a whole family of stability conditions depending on a real
parameter, and this gave one of the first explicit and useable examples
of wallcrossing, discussed in [30].

Several authors provide statements of various strengths on the in-
jectivity or finiteness of the Barth morphism. Le Potier and Tikhomirov
use coherent systems to prove that the Barth morphism is generically
injective [164], and this result has been improved by others. Once we
know that it is injective, it may be used to measure moduli. Tyurin, Le
Potier, Tikhomirov, Ellingsrud and Strømme worked on the program of
giving an algebraic calculation of the Donaldson invariants of surfaces,
starting with P2. In [71] an account is given, relating the theory to the
Serre construction as we have considered in Section 7. G. Hein uses the
Barth morphism to provide a construction [102] of the moduli space that
doesn’t use GIT, following Faltings’ construction for moduli of bundles
on a curve.

Looking at hypersurfaces X ⊂ P3 of degree d, after X = P2 which
may be seen as the case d = 1, the next case to consider is d = 2 where
X is a smooth quadric surface. Thus, X ∼= P1 × P1 and again, X is
covered by two families of projective lines. More interestingly, a general
plane in P3 cuts out a plane conic C ⊂ X, which is itself a P1 and we
can still study the variation of the Grothendieck decomposition of E|C .
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In this case, Huh [117] shows that the set of planes in P3 which cut out
conics on which the decomposition jumps, is a hypersurface of degree
c2(V ) − 1. Using a precise description of the singularities, he shows
a sort of “Torelli” result that the jumping hypersurface determines the
bundle, generically. With this method he can describe the moduli spaces
MX(OX(1), c2).

The general question of jumping in the stability properties of re-
strictions of bundles to subvarieties, is still undoubtedly most completely
open. There have been a few forays in various related directions. We
have seen an example of how these considerations enter in a general way
in O’Grady’s method, where he looks for a curve such that the restric-
tion is unstable. Langer and others prove strong restriction theorems
which are sharp in some sense. Bruzzo formulates a conjectural state-
ment about the relationship between stability of restrictions of Higgs
bundles, and the case of equality in the Bogomolov-Gieseker inequality,
which would generalize the theorem of Demailly, Peternell and Schneider
for stable vector bundles [58]. Berlinger formulates a generic strong sta-
bility property for generic isomonodromic deformations of flat bundles
[105]. Beyond these beginnings, there would seem to be a lot of room for
studying the precise nature of the locus where the stability properties of
restrictions jump.

§13. Wall-crossing

The moduli spaceMH(X; r, c1, c2) depends on the choice ofH within
the ample cone. It is independent of scaling by a positive multiple,
so we can view H ∈ NS(X) ⊗ Q. The ample cone is divided into
chambers; on the interior of each chamber the moduli space is constant
as a function of H, but as H crosses a wall between two chambers it
undergoes a birational transformation. Donaldson, Friedman, Morgan,
Qin, Thaddeus, Hu, Li and many others since then have studied this
chamber decomposition, and particularly the formula for the change of
Donaldson’s invariants when moving between chambers. In general there
are infinitely many chambers.

Thaddeus showed the way to use a precise analysis of the formulas
giving the change in numerical invariants of the moduli space of Bradlow
stable pairs, upon crossing walls of the real parameter governing stabil-
ity, to obtain results on a moduli space of interest, in his proof of the
Verlinde formula [270].

Hu, Dolgachev, Keel and others [61] [116] have developped a theory
of variation of GIT quotients under change of the G-linearized polariza-
tion. In this case there are finitely many chambers, and it can be related
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to the Mori chamber structure for different birational models of Fano va-
rieties. Recent developments include the work of Halpern-Leistner [96]
and Ballard et al [14].

The reason for the difference between the VGIT theory and the
decomposition into chambers for MH(X; r, c1, c2) (which can have in-
finitely many pieces), is that the Hilbert scheme used to parametrize
bundles in the GIT construction of the moduli space, itself depends on
the choice of polarization H. It is an interesting question to try to relate
these two theories.

One of the seminal works on wallcrossing was the paper of Hu and Li
about the variation of Gieseker and Uhlenbeck compactifications when
we vary the polarization [115] [114]. Subsequent work in this direction
includes Sharpe’s discussion of the location of the walls [260], Friedman
and Qin [77], Yamada [282] and many others calculating the variation
of Donaldson invariants, as well as a gauge-theoretic approach to that
question by Hyun and Park [125], Göttsche on the change in Hodge
numbers [90], Mochizuki on wall-crossing formulae for stacks [203], . . . .

Wallcrossing phenomena have received particular attention in the
case of moduli of bundles over rational surfaces, since one has usually a
fairly large Picard group to play with. This includes works by Göttsche
[90] and Qin [239, 240, 244]. A similar motivation applies for ruled
surfaces, studied for example by Yoshioka [286].

The Nekrasov conjecture, prescribing a relationship between gen-
erating series for Donaldson invariants and periods of certain Seiberg-
Witten hyperelliptic curves, also leads by consideration of higher cor-
rection terms and similarly to Witten’s conjecture, to the prediction
of an identity between counting invariants for vector bundles (instan-
tons), and for certain coherent systems (Seiberg-Witten). After the
original case by Nekrasov-Okounkov [222] and Nakajima-Yoshioka [218],
it has been the subject of further work by Göttsche, Nakajima and Yosh-
ioka [93, 94], Gasparim-Liu [83], Braverman, Etingof [31], and others.
Göttsche, Nakajima and Yoshioka explain in [93] how the Nekrasov par-
tition function enters into the wallcrossing formulae for Donaldson in-
variants, and they apply Mochizuki’s wallcrossing formula [203, 204] to
prove Witten’s conjecture in [94].

Klyachko shows that reflexive sheaves on a toric variety, which are
equivariant for the torus action, may be completely described in terms
of systems of filtrations [144]. This has a number of applications. Penac-
chio’s viewpoint on mixed Hodge structures as being semistable torus-
equivariant sheaves on P2 [238] raises the interesting question of calcu-
lating the jumping subvarieties for the second Chern class of the bundle,
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which he calls the R-splitting level. Klyachko’s result has been applied
in heterotic string compactifications by Knutson and Sharpe [145, 146].

Diaconescu and Moore [60] relate wallcrossing with the theory of
branes (boundary terms for gauge field theories) in physics. Chuang,
Diaconescu, Donagi and Pantev [48] propose a program to derive the
Hausel-Letellier conjectures on generating functions for the cohomology
of character varieties, from BPS state counting and comparison with
counting problems for parabolic Higgs sheaves.

13.1. Parabolic structures

A closely related direction is wall-crossing for moduli of parabolic
bundles, started by Boden, Yokogawa, and Hu. In this case, changing
the parabolic weights changes the notion of stability and again there is
a chamber structure.

Recall that Seshadri introduced the notions of quasi-parabolic struc-
ture and parabolic structure, in order to parametrize equivariant vector
bundles over ramified Galois coverings of a curve. The parabolic weights
reflect the arguments of unitary monodromy eigenvalues in U(1) ⊂ C∗.
Parabolic bundles can therefore be put into the Narasimhan-Seshadri
correspondence, extending it to quasiprojective curves. Thanks to work
of Maruyama and Yokogawa, parabolic structures are extended to the
higher-dimensional case, and to Higgs bundles and bundles with connec-
tion by numerous works culminating in Mochizuki’s [205]. By Seshadri,
Boalch and Balaji, the notion of parabolic structures may be extended
in a not completely obvious way to other structure groups as parahoric
structures [13], [24].

Parabolic structures enter into Kostov’s Deligne-Simpson problem
[151] through the work of Crawley-Boevey [55] using quivers, and this
may be related to Gromov-Witten theory as pointed out for example
by Teleman and Woodward [269] and others. Recently Soibelman [262]
gives a different approach using ideas from geometric Langlands theory.
Parabolic structures with rational weights are closely related to vector
bundles over root stacks [25], [131], [267]. Szabo’s work gives a Fourier-
Nahm transform for parabolic Higgs sheaves [265].

This is a vast subject and to give a complete discussion would go be-
yond our present scope. Its close relation to the subject of wallcrossing
comes about because the parabolic stability condition depends on the
choice of parabolic weights. We get a chamber structure and birational
modifications of the moduli spaces as we cross from one chamber to the
next. These have been used by many authors to study the variation
of counting invariants, cohomological invariants, and geometrical struc-
tures. The combinatorial structure of the system of walls has already
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been the subject of many works, but it remains an important and largely
open question for further study.

13.2. Bridgeland stability conditions

The notion of wallcrossing has recently taken on quite a new flavor,
when combined with Bridgeland’s stability conditions. The foundational
work of Kontsevich and Soibelman brings this into relation with BPS
states in physics, asymptotics of differential equations, and mirror sym-
metry.

Bridgeland’s notion of stability condition on a triangulated cate-
gory [34] gives rise to a space of stability conditions which has been
studied a lot. One of the main motivations for the introduction of sta-
bility conditions on derived categories was the existence of Fourier-Mukai
correspondences [208] between derived categories of different varieties.
These correspondences do not, in general, preserve the original basic t-
structures corresponding to the abelian categories of coherent sheaves.
Therefore, it became quite natural to look for a notion of stability condi-
tion on a derived category, rather than an abelian category as had been
considered by Rudakov [251].

Definition 13.1 (Bridgeland). A stability condition on a triangu-
lated category D consists of a central charge function Z : K(D) → C,
and a collection of subcategories Dφ of objects whose central charge lies
on the ray of angle πφ, thought of as the “semistable objects of slope φ”.
These are required to satisfy some conditions, that Dφ+1 is the shift of
Dφ, that there are no extensions from objects of Dφ to objects of Dψ for
ψ < φ, and there should exist “Harder-Narasimhan filtrations”.

Beyond going towards the idea of working with the derived category,
one of the new ideas here is the introduction of the “central charge”
function, that is to say including the real number |Z(E)| rather than just
the phase or “slope” as data for an object E. Bridgeland’s motivation for
this came from string theory and mirror symmetry, through the work of
Douglas [64]. In this way the central charge function becomes a complex
parameter, and the space of stability conditions gains (in many cases) a
natural structure of complex manifold [34].

Here is a heuristic and somewhat vague way of thinking about the
complexification of the central charge. Soibelman suggested that one
should think that there is a relationship between the walls for parabolic
stability conditions, and the walls in the Bridgeland space. We can in-
terpret the central charge in this light. Recall that one of the original
ways of thinking about vector bundles of nonzero degree on a curve,
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was via the notion of a somewhat trivial parabolic structure at a sin-
gle point, involving only one parabolic weight. This appeared already
in Narasimhan-Seshadri [221]. The slope of the bundle is the parabolic
weight which should be attached to a point in order to get a flat bundle.
Locally, such a parabolic weight corresponds on the side of unitary flat
bundles, to the angle of the scalar unitary monodromy transformation.
Think of relaxing the condition that the monodromy be unitary; it then
becomes a complex number, whose angle corresponds to the parabolic
weight. In a heuristic way at least, we may think of the central charge
as being a complex scalar monodromy transformation, whose angle cor-
responds to the slope of the bundle.

The study of the moduli space of Bridgeland stability conditions has
recently become a major field of interest. In his thesis, Lowrey studies
the action of autoequivalences on spaces of stability conditions [177]. Ar-
cara, Bertram, Coskun and Huizenga study moduli spaces of Bridgeland
stable objects over P2 [7], and Yoshioka looks at abelian surfaces [294].
Bayer and Macr̀ı [18] use wallcrossing for Bridgeland stability conditions
to study the geometric structures appearing in the minimal model pro-
gram, particularly the nef, movable and effective cones. The link with
BPS state counting and Donaldson-Thomas invariants leads to a whole
subject with vast relationships to many of the other topics we have been
considering.

13.3. Wallcrossing for Donaldson-Thomas invariants

Recent work by Kontsevich and Soibelman, as well as by Joyce and
several other groups, gives a formula for wall-crossing for Donaldson-
Thomas invariants. The Donaldson-Thomas invariants are a new ver-
sion of Donaldson’s classical invariants, involving counting virtual num-
bers for the moduli space of sheaves. Donaldson-Thomas [271] consider
sheaves of rank 1, degree 0 and fixed classes c2 and c3 on a Calabi-Yau
3-fold. In this case, very analogously to Mukai’s original observation for
sheaves on K3 surfaces, the obstruction can be modified so that the vir-
tual dimension of the moduli space is zero. On a CY 3-fold, Exti(E,E)
is dual to Ext3−i(E,E), so for a simple sheaf we have Ext3(E,E) ∼= C

so the trace-free part vanishes. Then Ext1(E,E) is dual to Ext2(E,E)
so the expected dimension is zero.

Therefore, we can define a 0-dimensional virtual fundamental class
of the moduli space, an Euler class of the obstruction theory which is
an integer, the DT-invariant. The analogy with 3-dimensional topology
is why Thomas originally viewed this as a generalization of Casson’s
invariant.
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Since their introduction, these invariants have been studied by many
authors, and they provide a fertile ground for the study of wall-crossing
phenomena. Pandharipande and Thomas generalize the DT-invariants
in the direction of Le Potier’s “coherent systems” [235], see also Stoppa
and Thomas [264], and Szendrői generalizes to a noncommutative set-
ting [266]. In keeping with the analogy with 3-dimensional topology,
Nagao and Nakajima [217] extend from sheaves to certain complexes,
the perverse coherent sheaves of [9].

Kontsevich and Soibelman extend the DT-invariants to a motivic
DT-invariant, then go on to propose a wall-crossing formula explain-
ing how the invariant changes when we change the stability condition.
Here, the notion of “stability condition” needs to be interpreted in
Bridgeland’s sense, as a stability condition on a triangulated category.
Kontsevich-Soibelman extend the notion of DT invariants to this cat-
egorical context, which among other things gives an extension of the
theory to noncommutative CY 3-folds. See [132], [148, 149, 150], and
Stoppa and Thomas [264] who give an introduction to the theory explain-
ing how it works in a single wall-crossing relating DT and PT invariants.

13.4. Walls in the Hitchin base

The Kontsevich-Soibelman wallcrossing is conjecturally related, by
mirror symmetry, to wallcrossing in the base of the Hitchin fibration on
the moduli space of Higgs bundles [150].

This should fit into a theory of stability Hodge structures proposed by
Kontsevich-Soibelman, Katzarkov and others, in which the moduli space
of stability conditions gains a collection of structures very analogous to
the moduli space of Higgs bundles, and which we could think of as a
generalized type of “nonabelian Hodge structure”.

While it would go beyond our scope to delve into these matters here,
we can do a very simple calculation which shows, in a very first case,
the kinds of walls that we are talking about in the Hitchin base. Some
people have asked the second author about that in recent conferences,
and we hope that the following discussion can provide an indication to
enter into this theory.

Consider the Hitchin fibration for the moduli space MH of rank 2
Higgs bundles on P1−{t1, t2, t3, t4} with parabolic structure at the four
points. The simplest possible case is when the parabolic weights are
0, 1/2, and the corresponding monodromy representation has conjugacy
classes

Ci ∼
(

1 0
0 −1

)
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at each of the singularities. Denote by MB the character variety of
representations whose monodromies lie in these conjugacy classes.

This case, while formally similar to the general Painlevé VI situation,
is actually a much easier special case. Indeed, let p : Y → P1 be the
elliptic curve branched over t1, t2, t3, t4. If E ∈ MH then the pullback
decomposes into a direct sum of two Higgs line bundles

p∗(E) ∼= (L1, ϕ1)⊕ (L2, ϕ2)

on Y with trivial parabolic structure. They are interchanged by the
elliptic involution of Y . Similarly, if V ∈ MB is a local system with
monodromy in the conjugacy classes Ci, then its pullback decomposes
into a direct sum of two rank 1 local systems

p∗(V ) ∼= U1 ⊕ U2

which extend over the compact elliptic curve Y because the conjugacy
classes Ci are of order two. Again U1 and U2 are interchanged by the
elliptic involution of Y .

The determinant of any such local system V is always the rank 1
local system on P1−{t1, t2, t3, t4} with monodromies −1 at the singular-
ities. It pulls back to the trivial local system on Y . Therefore, we have
U2

∼= U∗
1 , and the space of possible pullbacks may be identified as the

rank 1 character variety of Y . The choice of ordering of the two rank 1
local systems is not canonical, so MB is the quotient by interchanging
the factors Ui, which is the same as the action of the elliptic involution.

If we choose a basis {γ, ν} for H1(Y,Z) then we can write the rank
1 character variety of Y as MB(Y, 1) ∼= G2

m with coordinates a, b ∈ Gm

where a is the monodromy around γ and b the monodromy around ν.
The elliptic involution acts on MB(Y, 1) by sending U to U∗, in other
words by (a, b) �→ (a−1, b−1), and MB is the quotient of MB(Y, 1) by this
involution. Notice that it has four double points. Its classical Fricke-
Klein equation is

(13.1) xyz − x2 − y2 − z2 + 4 = 0

where
x := a+ a−1

y := b+ b−1

z := (ab) + (ab)−1

The coordinates x, y, z are traces of monodromies around certain paths
in P1 − {t1, t2, t3, t4} chosen in relation to the choice of basis γ1, γ2. It
is easy check directly (13.1).
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For more general choices of conjugacy classes Ci, one still has an
equation of the form (13.1) but with a general linear term, not as easy
to check (a shortcut method was discussed in the conference talk). Such
an affine equation defines a cubic surface minus a triangle of projective
lines, and Goldman and Toledo show that all such configurations arise
as Painlevé VI character varieties as the 4-tuples of conjugacy classes
range over all possibilities [87].

The triangle of lines is given by the homogeneous degree 3 equation
xyz = 0 in the P2 at infinity of our affine 3-space. It basically says that
x, y, z cannot all three become large at the same time. The lines are the
places where one of the coordinates is small, and the intersection points
are the places where two of the coordinates are small with respect to the
third one.

Direct calculation allows one to identify these regions in terms of
the Hitchin fibration on the moduli space MH . The same discussion as
above holds for MH , in particular the two Higgs line bundles (Lj , ϕj) are
dual to each other and interchanged by the involution. Thus ϕ2 = −ϕ1.
The invariant determining the spectral curve of (E, φ) is the quadratic
differential α := (ϕ1)

2 = (ϕ2)
2. The Hitchin base is the space of such

quadratic differentials, which one sees to have simple poles at the four
points. Thus, the Hitchin base is C. In terms of the elliptic curve, it is
the quotient of H1(Y,Ω1

Y ) by the involution (−1).
In the rank 1 case, one can write explicit formulas for the corre-

spondence between Higgs bundles and local systems. The line bundles
Lj contribute unitary local systems, whose monodromies will be denoted
generically by eiθ with each occurence of θ designating a different angle.
Now, if U is the local system corresponding to (L1, ϕ1), its monodromy
transformations are

a = eiθe
∫
γ
Reϕ1

and similarly for b with ν and (ab) with γ + ν. The monodromy trans-
formations for (L2, ϕ2) are, since ϕ2 = −ϕ1,

a = eiθe−
∫
γ
Reϕ1

and similarly for b and (ab). Thus, the monodromy for p∗(V ) is

x = a+ a−1 = eiθe
∫
γ
Reϕ1 + e−iθe−

∫
γ
Reϕ1

idem for y and z. Choose an initial quadratic differential α0, choose
a square root ϕ0 and let A :=

∫
γ
ϕ0 and B :=

∫
ν
ϕ0 be the complex

periods (one could normalize so that A = 1 and B = τ). The period for
γ + ν is just A+B. Now, another quadratic differential is α = tα0, and
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the above formula reads

x = eiθ+�(A
√
t) + e−iθ−�(A

√
t),

similarly for y with B and z with (A + B). Asymptotically as t → ∞
along a real ray, we have

|x| ∼ e|�(A
√
t)|, |y| ∼ e|�(B

√
t)|, |z| ∼ e|�((A+B)

√
t)|.

We may now look at the zones where one of the coordinates is bigger
than the other two: for example, |x| � |y|, |z| whenever

|�(A√t)| > |�(B√
t)|, |�((A+B)

√
t)|.

and similarly for the others. These conditions may be seen to divide
the complex t plane up into three triangular sectors near t = ∞; the
angles of the lines separating the sectors depend on the periods A,B
of the elliptic curve, hence on the cross-ratio of t1, t2, t3, t4 via the j-
function. The complex t-plane is the Hitchin base, and the lines are the
walls. A given sector between two walls, will be sent by the nonabelian
Hodge correspondence to points very near to the corresponding one of
the three double points of the three lines in the compactification of MB .
A very small neighborhood of the line separating two sectors will go to
the points on the full P1 in between the two double points. Thus, we
see a phenomenon whereby large sectors near the boundary of MH go
to small regions near the boundary of MB, and small regions near the
boundary in MH go to large regions near the boundary in MB.

This was a very simple explicit calculation, but it resumes the be-
havior which is described in much greater generality by Kontsevich
and Soibelman in their wall-crossing theory 1 of [150]. In recent work
with Katzarkov, Noll and Pandit [136], we discuss some ideas relating
the spectral networks of Gaiotto-Moore-Neitzke [80] with limiting har-
monic maps to buildings of Parreau [237] and Kleiner-Leeb [143], which
should, in principle, lead to an analytic description of the walls in the
Hitchin base in general. The relationship between wallcrossing in the
Hitchin base and the space of stability conditions on categories, following
Kontsevich-Soibelman’s program, is being studied by many people—we
can cite for example Bridgeland-Smith [37] but to give a full treatment,
even just of the references, would go beyond our scope.

1We cannot, however, pretend to have given a full description of their theory
as it pertains to the very simple Hitchin system discussed here—this would be
a very nice and useful contribution if somebody could do it.



130 N. Mestrano and C. Simpson

§14. Betti numbers

One very natural question about the moduli spaces of vector bundles
is to ask for the calculation of their Betti numbers. For the moduli
space of curves, the answer is given by a classical result of Harder and
Narasimhan [97], using Tamagawa numbers to count points then apply
Deligne’s Weil conjectures; Desale (Bhosle) and Ramanan [59] who give
a geometrization of this approach; and Atiyah and Bott [12] who give a
gauge-theoretical argument.

For vector bundles on higher-dimensional varieties, the question re-
mains quite open in the large majority of cases. Some results have
nonetheless been obtained.

In 1992 in Toulouse, Maruyama presented Yoshioka’s calculations of
the Betti numbers of MH(P2, 2,−1, n), and from the table it is clear that
for each i, bi(M) stabilizes as n � 0. In fact, this is the Atiyah-Jones
conjecture which says that the map

MH(X; r, c1, c2) → {connections}
gauge equivalence

should induce an isomorphism on Hi for i ≤ k and c̃2 �k 0. On the
right side the Betti numbers stabilize, and the inclusion of the Uhlenbeck
boundary provides canonical maps

Hi(M(r, c1, c2),Z) → Hi(M(r, c1, c2 + 1),Z).

The Atiyah-Jones conjecture says that these become isomorphisms for
large c̃2.

The original Atiyah-Jones conjecture was for spaces of instantons
on S4; however, over a complex Kähler surface these are the same as the
moduli spaces of stable bundles, by the Kobayashi-Hitchin correspon-
dence.

Hurtubise and Milgram proved the Atiyah-Jones conjecture for ruled
surfaces [119], and Gasparim [82] has shown that it is stable under blow-
ups, so the AJC holds for all rational surfaces. These results are for
bundles of rank 2.

The case of b1 and b2 for bundles of rank r = 2 on an arbitrary
surface is treated by Li [169], see also O’Grady [232] for a discussion of
the Hodge structure. More details in the special cases of P2, K3 surfaces,
elliptic surfaces, abelian surfaces, ... have been treated by many authors.
Bridgeland relates these moduli spaces using Fourier-Mukai transform
[33], leading to relations on the Hodge numbers as was pointed out for
example in [36, 271]. Choi-Maican obtain the Betti and Hodge numbers
for some moduli spaces of sheaves of dimension 1 on P2 [45].
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A similar problem is to calculate the Picard group (we haven’t in-
cluded here the many references there). In some cases, bundles of rank
r > 2 have also been treated. Kamiyama-Tezuka (2007) calculate the
Chow ring of M(P2, G, 0, 1) for classical groups G.

Göttsche and Huybrechts consider the Hodge numbers of the moduli
spaces of stable bundles on a K3 surface [92]. They show that for a
suitable polarization, and when the dimension of the moduli space is at
least 9, then the Hodge numbers of the moduli space coincide with the
Hodge numbers of an associated Hilbert scheme of points (this may also
be seen as a consequence of the deformation equivalence of these spaces
[120, 291]) . Göttsche and Huybrechts use Le Potier’s method with
coherent systems, which is basically a wall-crossing formula. Göttsche
expanded the method and applied it to rational surfaces in [91], and
there are many related works in this direction on understanding the
change of invariants under wallcrossing. One may note the proof in [92]
of irreducibility of the moduli spaces when the dimension is at least 9,
a statement they attribute originally to Mukai, for which we now have
a general proof as has been mentioned above.

Calculation of the Betti numbers of moduli spaces of Higgs bundles,
parabolic Higgs bundles, or equivalently character varieties for Riemann
surfaces, constitutes an important open question. After Hitchin [110]
originally introduced this question and provided the answer for rank 2,
the case of rank 3 has been solved by Garćıa-Prada, Gothen and Muñoz
[81]. Beyond these, we don’t have a general theorem, but Heinloth and
Garćıa-Prada have recently proposed a technique [104], and Chuang, Di-
aconescu, Donagi and Pantev propose a wall-crossing approach related to
geometric Langlands [48]. Perhaps the most important recent progress
is the conjectural answer formulated by Hausel, Rodŕıguez-Villegas and
Letellier [99, 100]. They propose in fact a more precise answer for the
mixed Hodge numbers, in a circle of ideas related to the P = W conjec-
ture [57] relating the weight filtration on the cohomology of the character
varieties to the perverse Leray filtration for the Hitchin fibration.

§15. Poincaré bundles and universal families

Starting with an etale-locally fine moduli space, in what sense does
the universal family exist globally?

Fix X, a hyperplane class H, and (r, c·). The moduli functor F =
FH(X; r, c·) assigns to any scheme S the set of isomorphism classes
of torsion-free sheaves E of rank r on X × S, flat over S, such that
for any closed point s ∈ S the fiber Es is H-semistable with Chern
classes ci(E) = ci. The moduli space M = MH(X; r, c·) corepresents
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the functor: there is a map of functors F → M universal for maps from
F to schemes.

A universal family is a torsion-free sheaf E on X × M , giving an
element of F (M), such that the resulting map M → M is the identity.
If U ⊂ M is an open set, then a universal family over U is an element
of F (U) whose projection to M(U) is the inclusion U ⊂ M . Similarly
for etale open sets.

The question of whether or not there exists a universal family, is
important and interesting. However, not much is known about it.

An intermediate question is whether M is a Zariski-fine moduli
space, meaning that M is covered by Zariski open sets on which there
exist universal families. If M is Zariski-fine, and parametrizes simple
sheaves then there exists a global universal family.

In a quite general relative situation X/S, Maruyama gave a suf-
ficient criterion for existence of a universal family in his paper “Sta-
ble sheaves II”: let ai denote the normalized integer coefficients of the
Hilbert polynomial P (n) =

∑
aiC

n+i
n , then if gcd{ai} = 1 there exists

a universal family on the moduli space of e-stable sheaves on X/S with
the given Hilbert polynomial. He refers to the technique used for curves
by Mumford and Newstead [216].

After results of Ramanan [245], Newstead [223] and others con-
cerning curves, in a series of papers by Le Potier [161], Hirschowitz-
Narasimhan [108], the first author [195], Drézet [66], Yoshioka [288],
. . . , it was shown that an appropriate variant of Maruyama’s sufficient
condition is also necessary, in the case of vector bundles of rank 2 over
a surface, provided that c̃2 is sufficiently large.

We recall here the geometric method of [195]. Suppose c1 = 2D, in
which case 1

4c
2
1 and 1

2 (c
2
1 + c1K) have the same parity since D2 +KD is

even. If c2 − 1
4c

2
1 is even, then by looking at elementary transformations

one can show that there is no universal bundle.
Let f : X̃ → P1 be a Lefschetz pencil. If {x, y} ⊂ P1 is a pair of

distinct points, let C = Cx,y := f−1(x) ∪ f−1(y), and consider vector
bundles in an exact sequence

0 → O2
X̃

→ E → FC → 0

where FC is a line bundle on C with the same negative degree on each
component. Projecting back down to X we get a family of vector bun-
dles which cannot admit a Poincaré family. If we fix C and FC , let
C ′ and C ′′ be the two components and fix two-dimensional subspaces
V ′ ⊂ H0(C ′,F ′) and V ′′ ⊂ H0(C ′′,F ′′). Then to give an elementary
transformation vector bundle E as above essentially amounts to giving
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an identification V ′ ∼= V ′′ up to scalars, and this two-dimensional vec-
tor space would be H0(E). However, as we move around in the moduli
space, the order of the two points x, y is in general changed; and the
space of lines parametrized by such identifications on a pair of inter-
changeable projective lines, is a non-banal conic bundle, as can be seen
by a geometric argument involving conic bundles degenerating to two
lines of Hirschowitz-Narasimhan [108] and Newstead [224]. Thus, there
can’t be a Poincaré bundle. This geometric argument actually shows
that the obstruction is topological, see Nitsure [226].

This method didn’t allow to treat the case where c1 is numerically
even i.e. ∀D, c1.D ∈ 2Z but not two times a divisor.

Yoshioka’s method [288] was to let α denote the Mukai vector; and
Q(α)s the stable points of the Hilbert scheme whose quotient by G =
GL(N) is MH(α). By GIT considerations, there is a universal family
if and only if there is an element of the equivariant Neron-Severi group
NSG(Q(α)s), whose restriction to the fiber over a point in MH(α)s

has degree 1. Using results of Jun Li [168], Yoshioka calculates the G-
equivariant Picard group of Q(α)s: in the case of irregularity 0 it is just
the group of cycles modulo homological equivalence denoted K(X)alg,
and the map taking an element to its degree on a fiber, is x �→ χ(α⊗x).
Thus the condition:

Theorem 15.1 (Yoshioka [288]). For bundles of rank 2 and Mukai
vector α ∈ K(X)alg, there is a universal family if and only if there exists
x ∈ K(X)alg such that χ(α⊗ x) = 1.

Problem 15.2. Give a geometric demonstration of the necessary
condition, in the case c1 numerically even but not even. Is the obstruc-
tion topological in that case?

The question of existence of a universal family is also closely related
to the geography of moduli spaces: in the intermediate range 0 ≤ c̃2 ≤
const(X,H), there may be several different irreducible components of
the moduli space, and we expect in general that some of them might
have universal families while others not.

In the cases of K3 and abelian surfaces where the moduli spaces are
irreducible for all c̃2 it would make sense to expect to have a simple
numerical criterion for existence of a universal family; we don’t know if
this is known.

Drézet looks at “exotic fine moduli spaces”, i.e. moduli spaces for
which there exist universal families over Zariski open sets, but which
don’t correspond to stable sheaves [67]. For example, he constructs fine
moduli spaces for wide extensions, extensions of line bundles with very
different degrees.
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As for many of the items discussed above, the generalization to rank
r ≥ 3 hasn’t been done in the literature (although Drézet’s partial result
[66], concerns any r for rational surfaces). For existence of the universal
family, since Maruyama’s condition depends closely on the rank, it is an
important open problem and gap in the literature.

We can also refine the question to become a question about the
obstruction class in the Brauer group. Assume that there is a universal
family etale-locally (eg for moduli of stable sheaves), then there is by
definition a universal family on the moduli stack M , and the map M →
M is a Gm-gerb. This is classified by an element η of the Brauer group
H2(M ét,Gm). The analytification morphism

H2(M ét,Gm) → H2(Man,O∗)

induces an isomorphism between the Brauer group and the group of
torsion elements of H2(Man,O∗). On the other hand the exponential
exact sequence gives

H2(M,Z) → H2(M,O) → H2(Man,O∗) → H3(M,Z) → H3(M,O),

so we get

0 →
(
H2(M,O)

H2(M,Z)

)
tors

→ H2(M ét),Gm) → H3(M,Z)tors → 0.

Question 15.3. If we can calculate the group H2(M ét,Gm) explic-
itly using the above exact sequence, what is the class η in the case where
there doesn’t exist a universal family? For example what is its projection
to the topological obstruction group H3(M,Z)tors?

Problem 15.4. Study the relationship between the obstruction class
for existence of a universal family, and the stabilization maps on homol-
ogy between MH(X; r, c1, c2) and MH(X; r, c1, c2 + 1). This might give
an approach to studying the universal family question for smaller values
of c2.

The above questions can also be phrased when we have a family of
varieties X/S. In this case we get a family of moduli spaces of vector
bundles M(X/S) → S.

Problem 15.5. Determine when there exists a universal family on
the full family of moduli spaces M(X/S)×S X.

This is already an interesting question for families of curves ([197]
. . . ), but is also reasonable to ask in the case of families of rational
surfaces or K3 surfaces, the universal hypersurface, . . . .
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§16. Related moduli problems

In our discussion up until now, we have mostly concentrated on
moduli spaces of vector bundles or maybe coherent sheaves. There are
a number of related moduli questions which, while looking like general-
izations of the vector bundle case, actually introduce new phenomena of
their own. The following light overview will be far from exhaustive.

16.1. Other structure groups

The theory of moduli of principal G-bundles brings with it several
specific difficulties. For example, the classical Uhlenbeck and Gieseker
compactifications of the moduli spaces of stable vector bundles are ob-
tained by including all torsion-free sheaves into the moduli problem.
This is very specific to the structure group GL(r), and it is not at all
obvious how to extend it to bundles with other, say reductive structure
groups. This question has been a subject of recent research, by Langer,
Gomez, Schmitt, Sols, Balaji, and others, see [257].

Somewhat similarly, the notion of “parabolic structure” needs a ma-
jor modification, towards the notion of “parahoric structure”, in the case
of most other structure groups [13] [24].

Another interesting question is how to define moduli problems com-
bining the notion of sheaves supported on strict subvarieties, with the
idea of principal bundles for structure groups other than GLr. As a
general matter, we don’t even know what that should mean.

Nonetheless, Sorger made important progress in this direction, inves-
tigating the moduli problem for sheaves with certain kinds of quadratic
structures [263]. His idea was that a bilinear form on a vector bundle,
used to define the notion of orthogonal vector bundle for example, should
be replaced by a cohomological form defined using Ext sheaves. Thus,
an orthogonal structure for a sheaf F could be something like a map

F → Ext1(F, ωX).

An interesting problem for future research is to extend these ideas to
many of the newer moduli problems discussed elsewhere in the present
paper.

Even after the techniques which pose major new difficulties in going
from vector bundles to principal bundles, most of the questions concern-
ing moduli spaces that we have discussed above should also naturally be
posed for moduli spaces of G-bundles. These have been considered in
some cases (for example Tian considers the Atiyah-Jones conjecture for
classical groups [272]), but not all that many, and most questions are
pretty much open in this regard.
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16.2. Bundles with extra structure

One of the first examples of moduli of bundles with extra structure
were the stable pairs introduced by Hitchin [109] [110]. These consist of
a vector bundle E together with a Higgs field E ∈ H0(End(E) ⊗ Ω1

X).
The terminology “Higgs bundle” was used by the second author.

It was originally envisioned in Higgs’ paper [106], that a field of extra
structure in gauge theory could take values in any associated tensor field.
In geometrical terms, it means that for a principal G-bundle, we could
look at extra structure with values in any bundle obtained from the
tensor algebra of representations of V together with the tangent bundle
of the base manifold.

Perhaps the simplest case is that of a bundle with a section. This
intervened in an important way in gauge theory with Seiberg-Witten
invariants. In algebraic geometry, moduli problems for bundles with a
section, or perhaps several sections providing a framing, have long played
an important role, starting with Bradlow’s stability condition related to
the vortex equations [27], Le Potier’s work on coherent systems [162,
163], and continuing work of Bradlow, Daskalopoulous, Garćıa-Prada,
Gómez, Muñoz, Newstead and others on Bradlow pairs [28, 29, 30], with
related considerations for objects such as holomorphic chains [3, 104].
In recent times, we can cite for example the work of Bruzzo, Sala and
others on symplectic moduli spaces of framed sheaves [252] [39]. These
appeared in the Nekrasov conjecture as discussed previously.

We should also mention moduli spaces of connections and logarith-
mic connections [228, 129, 130], which it would go beyond our scope
to treat here. In positive characteristic, these have entered into the
works of Ogus, Vologodsky, Langer, Zuo and others. Tortella provides
a general framework in which to consider connections, or Higgs fields,
along foliations and other Lie algebroids [274]. A vast subject way be-
yond our scope concerns the combinatorics and geometry surrounding
isomonodromic deformations, see Boalch [23].

In the spirit of “noncommutativizability ”, recent work of Hitchin
and Schaposnik [111] points to an interesting new phenomenon. The
classical fibers of the Hitchin map for complex groups are generically
abelian varieties, being moduli spaces of rank 1 sheaves over spectral
curves. Hitchin and Schaposnik show that for certain real groups closely
related to the quaternions: SL(m,H), SO(2m,H) and SP (m,m), the
generic fiber of the Hitchin map is a moduli space of rank 2 bundles over
a spectral curve. In these cases, the geometry of the Hitchin fibration
will be related to noncommutative Brill-Noether.
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For curves, one of Hitchin’s original viewpoints was that the moduli
space of Higgs bundles contained as a large open set, the cotangent
bundle of the moduli space of stable vector bundles [109]. As we move
to moduli spaces of vector bundles on surfaces, the analogous statement
is to say that the space of pairs consisting of a bundle together with
an endomorphism twisted by taking values in the dualizing line bundle,
naturally appears as the space of obstructed bundles or more precisely,
bundles together with a vector dual to the space of obstructions. This
was first exploited by Donaldson [63] and then Zuo in his proof of generic
smoothness [297], see also Langer [156] and [198].

16.3. Twisted sheaves

Inspired once again by the idea of looking at the relationships be-
tween moduli spaces for different numerical invariants, a very natural
extension is to look at twisted sheaves. In the most concrete terms,
twisted bundles may be viewed as defined by a modified or “twisted”
version of the usual cocycle relation. A more abstract and usually tech-
nically more useful version is to view twisted bundles as being vector
bundles provided with an action of a sheaf of Azumaya algebras repre-
senting an element of the Brauer group. An alternate point of view is to
look at vector bundles over gerbs. The extension to a notion of twisted
coherent sheaf becomes automatic.

The moduli theory of twisted sheaves, and its applications to the
period-index problem, has been extensively investigated by Lieblich in a
whole series of papers [172, 173]. See [176] for a survey. They have also
been considered by several other authors, [293] . . . . It becomes natural
to do a twisted version of the Fourier-Mukai transform, see Huybrechts-
Stellari [124], Canonaco-Stellari [42], and Minamide-Yanagida-Yoshioka
[201] for example. Căldăraru studied such derived equivalences in his
thesis [40]. Very recently, Antieau classified completely the derived
equivalences between affine schemes with twisting classes [5].

Following Lieblich’s work, Reede looks at moduli spaces for modules
over a sheaf of division rings in his thesis [246].

Connecting with various recent works on the Tate conjecture for K3
surfaces, Lieblich, Maulik and Snowden use twisted sheaves, and a close
analysis of the action of twisted Fourier-Mukai transform on the Mukai
lattice, to prove that the Tate conjecture for K3 surfaces is equivalent
to the finiteness of the number of K3’s over a given finite field [175].
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16.4. Moduli of complexes

Several authors have started to investigate moduli spaces for com-
plexes, rather than just sheaves. This is the most natural setting in
which to consider Fourier-Mukai transforms [122].

Passing from sheaves to complexes of sheaves means we go from an
abelian category to its derived triangulated category. Thus, the theory
of moduli of complexes is closely related to the ideas of Bridgeland about
stability conditions on triangulated categories, see Definition 13.1 above.

Bridgeland [35], and then Arinkin and Bezrukavnikov [9] introduced
a notion of perverse coherent sheaf which is a perfect complex enjoying
support properties analogous to those of usual perverse constructible
sheaves. These behave sufficiently like coherent sheaves—for example
one can decompose to simple objects which have trivial endomorphism
algebras—that their moduli theory is very similar, in particular we can
envision a moduli space.

Inaba [128] and Lieblich [174] consider moduli of perfect complexes.
Arcara, Bertram and Lieblich apply this to Bridgeland stability [8].

Toën and Vaquié construct a higher derived moduli stack for all
perfect complexes [273]. Here, the more complicated structure of the
complexes is reflected in the more complicated kind of object that plays
the role of moduli space: a higher derived stack that has both derived
and stacky directions making it so the cotangent complex is nontrivial
in both positive and negative degrees.

Hein and Ploog give a canonical stability-type condition for com-
plexes on a curve, using Postnikov truncation and the question of exis-
tence of an orthogonal sheaf [103]. One main feature is that their notion
of stability is preserved under Fourier-Mukai transform. They go on to
use their stable complexes to compactify the moduli of rank two bundles
on a ruled surface.

Yoshioka uses perverse coherent sheaves to extend the Fourier-Mukai
type duality between K3 surfaces and their moduli spaces of sheaves,
over certain singularities [295].

16.5. Non-projective surfaces

We have been discussing a lot about the geography of moduli spaces
of vector bundles on surfaces, depending on the location of the surface
in the Kodaira classification. Andrei Teleman and others have initi-
ated a very interesting direction of research about vector bundles on
non-algebraic surfaces, in particular on surfaces of Kodaira class VII.
Teleman uses vector-bundle techniques to make progress in the still-
open classification question for these surfaces. It would go beyond our
scope to discuss this in detail here, the reader is refered to [268].
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Voisin considers hypothetical vector bundles on non-projective Käh-
ler varieties, showing that in some cases they cannot exist. Therefore,
certain versions of the Hodge conjecture cannot be true in the Kähler
case [280].

§17. Vector bundles on hypersurfaces

One way to concretize the question of geography is to look at vector
bundles on a smooth hypersurface X ⊂ P3 of degree d. We pass from the
rational case when d = 3, through the K3 case d = 4, into the range of
surfaces of general type for d ≥ 5. These particular cases have therefore
attracted a certain amount of attention. The first general-type case,
when d = 5, will be the subject of further discussion in the next two
sections.

For hypersurfaces of higher degree, it is not easy to envision a full
classification. Recall our Question 5.4, at which degree do we start to see
several different irreducible components showing up? When the surface
is rational, abelian or K3 then the moduli spaces are basically irreducible,
and for quintic hypersurfaces we show that the phenomenon persists, as
will be discussed in Section 19 below. By [196], non-irreducibility has
to show up sometime before d = 27; we feel, based on the complicated
nature of the discussion of [198, 199, 200] for d = 5, that the moduli
space will probably start having several irreducible components around
d = 6 or 7, but we have no firm evidence.

As the degree gets bigger, it will probably be difficult to understand
the moduli space for the full range of intermediate values of c2. However,
we should still expect to be able to say a lot about bundles whose c2 are
very small with respect to the degree of the hypersurface. Later in this
section we formulate a question 17.2 concerning the case when c2 ≤ d.
Before getting there, we mention a couple of other areas of investigation.

17.1. Arithmetically Cohen-Macaulay bundles

A vector bundle V over X is said to be arithmetically Cohen-Macau-
lay (ACM) if Hi(V (m)) = 0 for all m and any 0 < i < dim(X). Faenzi
completes the classification of these bundles over smooth cubic surfaces
[74], after an initial construction by Arrondo and Costa [11].

Chiantini and Faenzi study ACM bundles on a general quintic sur-
face [44]. They show that, up to a twist, there are only finitely many
possibilities for the Mukai vector and they give the complete classifica-
tion of the combinatorial possibilities. In our own work on the moduli
spaces of stable bundles on a very general quintic hypersurface, looking
at the component of moduli for c2 = 10 corresponding to bundles with
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seminatural cohomology plays an important role of junction between
two ranges where differing techniques are needed [199].

17.2. Dimension 3 and more

We may also consider vector bundles on hypersurfaces of higher di-
mension, starting with dimension 3. This is a subtle and complicated
subject, since it is related to Hartshorne’s conjecture which should con-
strain low-codimensional cycles. Still, there have been a diverse collec-
tion of works. The paper of Arrondo and Costa [11] considered ACM
bundles on Fano 3-folds. Chang studies bundles with small values of c2
[43].

Going to even higher dimension, for general 4-dimensional hyper-
surfaces of degree at least 3 in P5, Mohan Kumar, Rao and Ravindra
prove that an ACM bundle must split [207].

In arbitrary dimension they introduce, generalizing Faltings, the
number of generators of a bundle in the following sense: we say that
V has r generators if it admits a surjection from a direct sum of r line
bundles. They prove that if a bundle on an m-dimensional variety has
r generators, then if r < m or certain cases with r = m, the bundle had
to be a direct sum of line bundles [206].

17.3. Bundles of very low c2 on hypersurfaces

It is interesting to study stable vector bundles with very low values of
c2. Drézet [65] considers the extremal components for the lowest values
of c2 such that the moduli space has positive dimension, for sheaves
over P2. Chang considers the question for sheaves on P3, which has a
somewhat different character [43].

Suppose X is a very general hypersurface of degree d in P3. We have
KX = OX(d − 4). Assuming d ≥ 4, then Pic(X) ∼= Z with generator
OX(1), in particular for any divisor D ⊂ X, we have D ∼ kH for some
k ∈ Z, where H denotes a hyperplane section of X.

Suppose E is a stable rank 2 bundle with det(E) ∼= OX(1). Recall
that E∗ = E(−1). We would like to consider the case when c2(E) is
very low.

For X a very general hypersurface of degree d = 5 in P3, the value
c2 = 4 is the lowest possible value and we obtained a simple and precise
description of the bundles with c2 = 4, 5 in [198, 200], as follows.

Consider a bundle E ∈ MX(2, 1, c) with c = 4, 5. An Euler char-
acteristic argument gives h0(E) > 0. Choosing an element s ∈ H0(E)
gives an exact sequence

(17.1) 0 → OX → E → JP/X(1) → 0.
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We showed in [198] that P is a subscheme of length c = 4 or c = 5 in
the intersection X ∩ � with a line � ⊂ P3.

For a point p ∈ P3, let G ∼= C3 be the space of linear generators of
the ideal of p, that is to say G := H0(Jp/P3(1)), and consider the natural

exact sequence of sheaves on P3

0 → OP3(−1) → OP3 ⊗G∗ → Rp → 0.

Here the cokernel sheaf Rp is a reflexive sheaf of degree 1, and c2(Rp) is
the class of a line. The restriction Rp|X therefore has c2 = 5. If p ∈ X,
it is torsion-free but not locally free, giving a point in the boundary
stratum M(5, 4). It turns out that these sheaves account for all of M(4)
and M(5).

Proposition 17.1 ([200] Theorem 6.2). For E ∈ MX(2, 1, 4), there
is associated a point p ∈ X such that E is generated by global sections
outside of p, and Rp|X is isomorphic to the subsheaf of E generated by
global sections. This fits into an exact sequence

0 → Rp|X → E → S → 0

where S has length 1, in particular E ∼= (Rp|X)∗∗. The correspondence
E ↔ p establishes an isomorphism M(4) ∼= X.

For E′ ∈ MX(2, 1, 5) there exists a unique point p ∈ P3 − X such

that E′ ∼= Rp|X . We get in this way an isomorphism M(5) ∼= P3. The

boundary component M(5, 4) ∩M(5) is exactly X ⊂ P3, but M(5, 4) is
bigger and is a separate irreducible component of MX(2, 1, 5).

For hypersurfaces of arbitrary degree, we formulate a question:

Question 17.2. Suppose X ⊂ P3 is a very general smooth hyper-
surface of degree d ≥ 6. Suppose E is a stable vector bundle of rank 2
with det(E) ∼= OX(1). Is it true that:
(i) we have c2(E) ≥ d− 1; and
(ii) for c2(E) = d− 1 or d, we have h0(E) > 0?

We note that the case h0(E) > 0 may be understood as before.

Proposition 17.3. In the situation of Question 17.2, suppose we
have c2(E) ≤ d and H0(E) �= 0. Then c2(E) = d − 1 or d, and the
subscheme of zeros Z of a section s ∈ H0(E) is contained in a line.
Conversely, for any line L ⊂ P3, any subscheme Z ⊂ L ∩ X of length
d−1 or d satisfies CB(d−3) and we obtain a bundle E as an extension
of JZ/X(1) by OX .
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Unfortunately, the argument of [198] when d = 5, doesn’t transpose
directly. The Euler characteristic argument used to get h0(E) > 0, only
gives h0(E(a)) > 0 for a ≥ (d − 4)/2 in general. We haven’t found a
proof or a counterexample. In Corollary 17.10 below, we will be able to
partially answer the question for hypersurfaces of degree d ≤ 10.

Suppose a ≥ 0 is an integer such that there exists an element s ∈
H0(E(a)) not vanishing on a divisor. Let Z ⊂ X be the 0-dimensional
scheme zeros of s, and consider the exact sequence

(17.2) 0 → OX(−a) → E → JZ/X(a+ 1) → 0.

Recall that Z is a local complete intersection satisfying CB(KX⊗L−1⊗
M) where L = OX(−a) and M = OX(a + 1), that is to say Z satisfies
CB(d+ 2a− 3).

Let |Z| denote the length of the zero-dimensional subscheme Z. We
have

c2(E) = −a(a+ 1)H2 + |Z|
so |Z| = d(a2 + a) + c2(E).

The Cayley-Bacharach condition on a subscheme Z ⊂ P3 implies
some important numerical properties of the postulation. This kind of
thing is discussed in the wide survey of Eisenbud, Green and Harris [69].
We discuss in detail some aspects leading to Question 17.2 for d ≤ 10,
based on Lemma 7.3 transfering the CB property to residual subschemes.

Denote by rZ(n) the rank of the evaluation map

H0(OP3(n)) → H0(OZ(n)) ∼= C|Z|.

We have the formulas

rZ(n) = h0(OP3(n))− h0(JZ/P3(n))

and
rZ(n) = |Z| − h1(JZ/P3(n)).

Proposition 17.4. Suppose Z ⊂ P3 is a reduced zero-dimensional
subscheme which satisfies CB(n). Then, for any m ≤ n, either there
exists a section s ∈ H0(OP3(n −m)) vanishing on Z, or else rZ(m) ≤
|Z| − h0(OP3(n−m)).

Proof. Suppose that no sections of OP3(n−m) vanish on Z. That
means that rZ(n−m) = h0(OP3(n−m)). Since Z is reduced, that is to
say just a collection of distinct points, we can choose a subset of points
Z ′ ⊂ Z such that |Z ′| = h0(OP3(n − m)) and the points of Z ′ impose
independent conditions on sections of OP3(n −m). Let Z ′′ ⊂ Z be the
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complement. We have |Z ′′| = |Z|−h0(OP3(n−m)). Thus, Z ′′ imposes no
more than the number of conditions that we want. It therefore suffices
to show that any section of OP3(m) vanishing on Z ′′, vanishes on Z.
Suppose f ∈ H0(OP3(m)) and f vanishes on Z ′′ but not on Z. Let V
be the residual subscheme of Z along f , which in the case Z reduced,
just means the subset of points of Z where f doesn’t vanish. Then, V
is in the complement of Z ′′ since by assumption f vanishes on Z ′′, so
V ⊂ Z ′. But we now have a contradiction: on the one hand, V imposes
independent conditions on sections of OP3(n−m) because V ⊂ Z ′ and
Z ′ did so; on the other hand, by Lemma 7.3, V satisfies CB(n − m).
This is impossible, showing that our section f had to vanish on all of Z.
This completes the proof. Q.E.D.

It would be very useful to have the same statement for arbitrariy
subschemes, not just reduced ones. We can obtain a replacement result,
with a weaker bound, as follows.

Lemma 17.5. Suppose X ⊂ P3 is a smooth hypersurface of degree
d and Z ⊂ X satisfies CB(n). Then for any m ≤ n we have

rZ(m) + rZ(n−m) ≤ |Z|+ h0(OX(d− 4−m)).

Proof. For brevity set k := d−4 so KX = OX(k). By CB(n) there
exists an extension of the form

0 → OX → F → JZ/X(n− k) → 0

with F a vector bundle. Twisting gives

0 → OX(k +m− n) → F (k +m− n) → JZ/X(m) → 0.

Hence,

H1(JZ/X(m)) → H2(OX(k +m− n)) → H2(F (k +m− n))

so h1(JZ/X(m)) ≥ h0(OX(n−m))− h2(F (k +m− n)). Recall that

H0(OX(m)) → H0(OZ(m)) ∼= C|Z| → H1(JZ/X(m)) → 0.

By duality, H2(F (k+m−n)) ∼= H0(F ∗(n−m))∗ and we have an exact
sequence

0 → OX(k − n) → F ∗ → JZ/X → 0

from which,

0 → OX(k −m) → F ∗(n−m) → JZ/X(n−m) → 0.
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We get

h2(F (k+m−n)) = h0(F ∗(n−m)) ≤ h0(OX(k−m))+h0(JZ/X(n−m)),

and putting this into the inequality of the previous sequence gives

h1(JZ/X(m)) ≥ h0(OX(n−m))− h2(F (k +m− n))

≥ h0(OX(n−m))− h0(OX(k −m))− h0(JZ/X(n−m)).

Recall that rZ(n−m) = h0(OX(n−m))−h0(JZ/X(n−m)) and rZ(m) =

|Z| − h1(JZ/X(m)), so the above may be rewritten as

|Z| − rZ(m) ≥ rZ(n−m)− h0(OX(k −m)).

After rearranging this gives the desired statement. Q.E.D.

Question 17.6. How can we weaken the hypothesis that X is smooth
in the previous lemma?

The lemma allows us, in principle, to reduce a to about 3d/8, and
even a little better for low values. For d ≤ 10 it gives a ≤ 1.

Corollary 17.7. Suppose X is a very general hypersurface of degree
d ≤ 10 in P3, and suppose E is a stable bundle of rank 2 and degree 1,
with c2(E) ≤ d− 1. Then h0(E(1)) > 0.

Proof. Let a be the smallest integer such that h0(E(a)) > 0. By an
Euler characteristic argument we get a < d, indeed even a < (d− 4)/2.
We have an exact sequence (17.2), with a subscheme Z which is CB(n)
for n = d + 2a − 3 with |Z| ≤ d(a2 + a + 1) − 1. The assumption
h0(E(a− 1)) = 0 says that h0(JZ/X(2a)) = 0, so rZ(2a) = h0(OP3(2a)).
Put these into the conclusion of Lemma 17.5 with n − m = 2a, i.e.
m = d− 3, to get

rZ(d− 3) ≤ d(a2 + a+ 1)− 2− (2a+ 3)(2a+ 2)(2a+ 1)

6
.

Using just rZ(d− 3) ≥ rZ(2a) we get

(2a+ 3)(2a+ 2)(2a+ 1)

3
≤ d(a2 + a+ 1)− 1,

from which it follows when d ≤ 10 that a ≤ 1. For a = 2, say, the
inequality would be 70 ≤ 7d− 1 which doesn’t work if d ≤ 10. Q.E.D.
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We now discuss the situation h0(E(1)) > 0 and c2(E) ≤ d − 2.
Looking at the exact sequence (17.2) with a = 1, in order to reduce to
the case h0(E) > 0, the idea is to try to show that Z is contained in
a quadric hypersurface. The condition CB(d + 2a − 3) = CB(d − 1)
on Z of length 3d − 2 almost allows us to conclude even more, that Z
is contained in a plane. However, there are some other cases which are
contained in a quadric. The general statement is as follows.

Proposition 17.8. Suppose Z ⊂ P3 satisfies CB(n). We have
|Z| ≥ n+2. If |Z| ≤ 2n+1 then Z is colinear (i.e. contained in a single
line). If |Z| ≤ 3n+1 then Z is either coplanar, or contained in a union
of two skew lines �1 ∪ �2, or in a double line i.e. the subscheme defined
by the square of the ideal of a line �1. In the non coplanar cases, we
have |Z ∩ �i| ≥ n+ 1 and |Z| ≥ 2n+ 3.

Proof. The proof is by induction on n, it is easy to see for n = 1.
Suppose n ≥ 2 and it is known for CB(n−1) subschemes. If |Z| ≤ n+1
then since Z is CB(n− 1) and |Z| ≤ 2(n− 1)+1 = n+1+ (n− 2), Z is
colinear by the inductive hypothesis. It is easy to see that a subscheme
of a line of length ≤ n + 1 cannot be CB(n). This proves the first
statement.

Suppose |Z| ≤ 2n + 1. Choose a plane meeting Z in a subscheme
of length at least 2, and assume it doesn’t contain Z. The residual
subscheme Z ′ is CB(n − 1) and has length ≤ 2(n − 1) + 1. Thus, Z ′

is colinear, and |Z ′| ≥ n + 1. Choose a plane containing Z ′. Then, the
residual subscheme of this plane is CB(n − 1) but it has length ≤ n,
so it must be empty. This shows that every plane containing Z ′ also
contains Z. It follows that Z is in the same line as Z ′. This proves the
second part.

Suppose 2n+2 ≤ |Z| ≤ 3n+1. If Z is contained in a plane then the
proposition is proven, so suppose Z is not contained in a plane. Choose
a plane H such that k := |H ∩ Z| is maximal, in particular k ≥ 3.
Let Z ′′ be the residual subscheme. It is CB(n − 1) and has length
|Z| − k ≤ 3(n − 1) + 1. Therefore the inductive hypothesis applies:
either Z ′′ is coplanar, or it is contained in two lines or a double line.

Inductively, if Z ′′ is not coplanar, then |Z ′′| ≥ 2(n−1)+3 = 2n+1,
giving k = |Z| − |Z ′′| ≤ n. But, at the same time, Z ′′ contains at
least (n − 1) + 1 = n points on a line. A plane through that line and
contacting Z in another piece, would have order of contact at least n+1
contradicting k ≤ n. This rules out the possibility that the non-coplanar
cases apply to Z ′′.

We may now assume that Z ′′ is coplanar. Then by definition of k we
have |Z ′′| ≤ k which implies k ≥ |Z|/2 and |Z ′′| ≤ |Z|/2. One calculates
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(separating the cases n = 2 and n ≥ 3) that |Z ′′| ≤ 2n− 1. Recall that
Z ′′ is CB(n− 1) so the previous case of the proposition applies, that is
to say Z ′′ is contained in a line and has length at least n+ 1.

We now choose a line �1 whose order of contact l := |�1 ∩ Z| is
maximal. According to the previous arguments, l ≥ n+ 1.

Assume first that l ≥ n + 2. If A is any plane containing �1, then
the residual V of Z with respect to A is CB(n − 1) and has length
at least n + 1 and at most 2n − 1, so V ⊂ �2. Note in passing that
|Z| = |Z ∩A|+ |V | ≥ (n+ 2) + (n+ 1) = 2n+ 3.

We now show, partly to be used later, that if �1 and �2 are two
distinct lines each meeting Z at least n+ 1 times, then the proposition
holds.
—If �2 doesn’t intersect �1, then it is easy to see by the same style of
argument that Z ⊂ �1 ∪ �2, and the CB(n) condition requires Z to have
at least n + 2 points on each line. This gives the skew lines conclusion
of the proposition.
—Suppose �1 and �2 are distinct but meet in a point. They define a
plane B, and Z ∩B has length at least 2n+ 1. But then the residual of
Z with respect to B is CB(n−1) with at most n points, a contradiction,
so Z is contained in B, contradicting the assumption that we weren’t in
the coplanar conclusion of the proposition.

This treats the case of two distinct lines each meeting Z at least
n+ 1 times.

Getting back to our hypothesis l ≥ n+ 2, we have treated the case
�1 �= �2 above. It follows that �1 = �2, but in particular Z ⊂ 2A is
contained in the double of the plane A. This holds for all choices of A
passing through �, which yields the conclusion that Z is contained in
the double D defined by the square of the ideal of �. Therefore, the
proposition holds whenever we know l ≥ n+ 2.

We are reduced to the case where the maximal order of contact with
a line is l = n+ 1, and �1 is a line having this order of contact with Z.

Choose a plane A containing �1 and meeting Z in a subscheme of
length at least n+ 2. Recall that Z is assumed non coplanar, so it isn’t
contained in A.

Let V be the residual of Z with respect to A. It is CB(n−1) and has
length at most 2n− 1, so again by the previous case of the proposition,
V ⊂ �2 and |V | ≥ n+ 1. Notice again as before that |Z| ≥ 2n+ 3.

The proof done above shows that if �2 is distinct from �1 then the
proposition holds, so we may assume that �1 = �2 =: �, and indeed there
is no other line meeting Z in a subscheme of length ≥ n+ 1.

Let A′ be a general plane through �. Let V ′ be the residual of
Z with respect to A′, which is CB(n − 1) with |V ′| ≤ 2n. Applying
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inductively the proposition, we conclude that V ′ must be coplanar (since
2n < 2(n− 1) + 3), so V ′ is contained in a plane B′.

If V ′ is colinear, then from the discussion above, V ′ may be assumed
to be contained in �. Therefore V ′ ⊂ A′ so Z ⊂ 2A′ and as A′ runs
through all general choices, we obtain that Z is contained in the double
line D defined by the square of the ideal of �, completing the proof in
this case. This applies notably whenever |V ′| ≤ 2n− 1 inductively from
the second statement of the proposition for n− 1.

It remains to treat the case when |V ′| = 2n and V ′ is not colinear,
so it is contained in a unique plane B′. We claim that � ⊂ B′. Suppose
not. Then, choose a different general plane A′′ through �, leading to V ′′

and B′′ as above again with B′′ meeting � at a single point. We have

Z ⊂ (A′ ∪B′) ∩ (A′′ ∪B′′).

But this intersection defines the line � outside of at most two points. It
becomes impossible for Z to have a residual subscheme V with respect
to the original plane A, of length n+ 1 inside �. Thus, � ⊂ B′.

Now, Z∩B′ contains the subscheme Z∩� of length n+1 in �. Suppose
that this subscheme were not contained in V ′. Then Z ∩ B′ is bigger
than V ′ so |Z∩B′| ≥ 2n+1. The residual of Z with respect to B′ would
have length ≤ n, impossible since it satisfies CB(n−1), so we would get
Z ⊂ B′ contradicting our original non coplanar supposition. This shows
that V ′ contains the subscheme of length n+ 1 inside �. But also, V ′ is
CB(n− 1) as a subscheme of the plane B′. Let W be the residual of V ′

with respect to the line � inside B′. Thus |W | ≤ 2n − (n + 1) = n − 1.
But W is CB(n− 2), and we get a contradiction.

This completes, at last, the proof of the proposition. Q.E.D.

This proposition leads to a partial answer to Question 17.2 in the
case where there is an exact sequence of the form (17.2) with a = 1, i.e.
when E(1) admits a section.

Corollary 17.9. Suppose X is a very general surface of degree d ≥
4 in P3, and suppose E is a stable bundle of rank 2 and determinant
OX(1). Suppose h0(E(1)) > 0. Then c2(E) ≥ d− 1.

Proof. Suppose c2(E) ≤ d − 2. Let x ∈ H0(E(1)) leading to an
exact sequence (17.2) with a = 1. The subscheme Z has length |Z| =
2d+ c2(E) ≤ 3d− 2. It satisfies CB(d+2a− 3) = CB(n) for n = d− 1,
and we have |Z| ≤ 3n + 1. By the proposition, Z is either coplanar or
contained in two skew lines or in a double line. In all of these cases,
Z is contained in a hypersurface of degree 2 (not containing X), that
is to say h0(JZ/X(2)) > 0. From the long exact sequence associated to
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(17.2), we get h0(E) > 0 and the discussion of Proposition 17.3 applies
to give a contradiction to the hypothesis that c2(E) ≤ d− 2. Q.E.D.

Corollary 17.10. Suppose X is a very general surface of degree d
with 4 ≤ d ≤ 10 in P3, and suppose E is a stable bundle of rank 2 and
determinant OX(1). Then c2(E) ≥ d− 1.

Proof. By Corollary 17.7, we have h0(E(1)) > 0. Therefore, Corol-
lary 17.9 applies, giving the conclusion. Q.E.D.

Exercise 17.11. It is left to the reader to complete these informa-
tions to a more precise description of the moduli space along the lines of
Propositions 17.1 and 17.3, in the cases d ≤ 10 or under the hypothesis
h0(E(1)) > 0.

We haven’t been able to obtain techniques which would give the
conclusion c2(E) ≥ d− 1 in general. It isn’t clear whether it means that
further more difficult or powerful techniques are needed, or whether some
cases with c2(E) ≤ d− 2 could intervene for higher values of the degree
d. Thus, Question 17.2 is left as an open problem.

§18. Vector bundles on quintic surfaces: Nijsse’s connected-
ness theorem

In the last two sections we specialize to the case when X ⊂ P3 is
a very general quintic hypersurface defined by a general homogeneus
polynomial of degree d = 5. The very general property means that its
moduli point is not contained in some countable union of subvarieties,
the subvarieties in question being determined by the needs of the argu-
ment. In particular, we may assume that Pic(X) = Z with generator
OX(1). The canonical class is KX = OX(1); it is this smallness prop-
erty of the canonical class which makes possible many of the arguments
specific to this case.

Consider rank 2 bundles of odd degree, which we normalize by∧2
E ∼= OX(1). Let M(c2) denote the moduli space of stable rank

2 bundles with determinant OX(1), with second Chern class c2. This
moduli space is empty for c2 ≤ 3, and Proposition 17.1 gives an explicit
description for c2 = 4, 5. In [198] we have given a rough description for
all c2 = 4, . . . , 9, in particular seeing that it is irreducible. In [199] and
[200], we complete the proof of irreducibility. Our argument makes use
of the much anterior results of Nijsse in 1995 [225].
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Nijsse’s paper doesn’t seem to have been published, so we will try to
provide a fairly complete picture. This will constitute a very nice illus-
tration of O’Grady’s method which is fundamental to [225], continuing
our discussion from Section 9.

Let M(c2) denote the projective moduli space of rank 2 torsion-
free sheaves of degree 1 with second Chern class c2. The moduli space
of bundles is an open subset M(c2) ⊂ M(c2). For higher values of c2
this tends to be a dense open subset, however it is possible that M(c2)
might contain irreducible components consisting entirely of non-locally
free sheaves. This is the case, in fact, for all values c2 = 5, . . . , 10 on our
quintic surface, as may be seen from the dimensions in Table 2 in Section
19 below, but we don’t yet have a full understanding of the phenomenon.

Recall the discussion leading up to Corollary 9.9, in Section 9 about
O’Grady’s method. We continue the discussion here, in particular we
take up the same notations.

Recall that the first step was to obtain a bundle E such that E|Y is
unstable where i : Y ↪→ X is the intersection with a plane. Then Q0 is
the quotient and L0 the subbundle of the destabilizing sequence, and T is
the kernel of the map E → i∗(Q0). We are looking at quotients T |Y → L
which are deformations of the one T |Y → L0 given by the elementary
transformation defining T . Each time we have such a quotient we get
a new sheaf E1; the goal is to obtain E1 non-locally free by getting a
quotient L which is not locally free on the curve.

Deforming to a bundle withH0(E) �= 0 will be one of the conclusions
of Proposition 18.5 below, so in our deformation arguments we shall
assume H0(E) = 0. This implies that the deformed sheaf E1 is stable.

Corollary 9.9 said that the deformation procedure would be possible
whenever the Quot scheme has dimension ≥ 2. So, in order to complete
the proof of deformation to the boundary, we need to treat the case
where Quot(T |Y , dL) has dimension 1. We were not able to understand
a part of Nijsse’s argument, in particular whether the sections appearing
in [225, Lemma 1.4] were supposed to be nonzero; but this might well be
our own failing. Our discussion of this case will be a little more involved.

The idea is to globalize things over the moduli space of bundles
deforming T . Notice first that T is stable, because of the hypothesis
H0(E) = 0.

Lemma 18.1. In the situation of the destabilizing sequence (9.2),
the dimension of Quot(T |Y , dL) at the point T |Y → L0 is greater than
or equal to its expected dimension which is deg(L0)− deg(Q0).

Proof. The dimension of the Hilbert scheme at the point

0 → Q0(−1) → TY → L0 → 0
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is at least

h0(Y,Hom(Q0(−1), L0))− h1(Y,Hom(Q0(−1), L0))

= deg(Q0(−1)∗ ⊗ L0) + 1− gY = deg(L0)− deg(Q0).

Q.E.D.

Lemma 18.2. Suppose that dim(Quot(T |Y , dL)) = 1, in the situa-
tion of (9.2). Suppose also that Hom(T |Y , L) has dimension 1 (otherwise

see Remark 18.3 below). Then the subset of Jacdeg(L0)(Y ) consisting of
bundles L such that Hom(T |Y , L) �= 0, has dimension 1 and this is equal
to its expected dimension. Therefore, this subset persists under defor-
mations of the bundle T and the curve Y .

Proof. The quantity in the previous lemma is ≥ 1 since L0 is desta-
bilizing. From the bound of the previous lemma and our present hypoth-
esis, we therefore get deg(L0)−deg(Q0) = 1, that is deg(L0) = 3. Recall
that deg(T |Y ) = 0, so χ(T ∗⊗L) = 2deg(L)−10 = −4. At a point where
h0(T ∗ ⊗L) = 1 we have h1(T ∗ ⊗L) = 5 so the expected codimension of
this part of the Brill-Noether locus is 1 ·5 = 5. As Jac(Y ) has dimension
6, the expected dimension of this locus is 1, and by the hypotheses, the
locus has its expected dimension. It follows that it is preserved under
deformations of T and Y . Q.E.D.

Remark 18.3. If dimHom(T |Y , L) ≥ 2 then our map T |Y → L can
be deformed to a map which vanishes at a point, and we immediately get
a deformation in Quot(T |Y , dL) to a non-locally free quotient.

If we are in the situation dim(Quot(T |Y , dL)) = 1, we may think of
the family of these Quot schemes as a fiber space

V → M(OX , c2(T ))

over the moduli space of semistable bundles with determinant OX and
second Chern class c2(T ). We obtain a family of elementary transfor-
mations Ev parametrized by this fiber space.

Corollary 18.4. In the above situation, suppose that T may be
deformed, within M(OX , c2(T )), to a non-locally free sheaf. Then E
may be deformed to a stable non-locally free sheaf, or to a stable sheaf
with H0(E′) �= 0.

Proof. We are free to move the curve Y as well as the bundle T .
Therefore, we may choose a deformation of T to a non-locally free sheaf
and choose a deformation of Y to miss the singular locus of the limiting
sheaf T ′. By the above construction we obtain a family of elementary
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transformations, whose limit will be an elementary transformation of T ′,
hence not locally free. We need to ask if the limiting Ev is stable. We
have Ev(−1) ⊂ T ′, so if Ev had a subsheaf of positive degree it would
give OX ⊂ (T ′)∗∗. Thus, if H0((T ′)∗∗) = 0 then the limiting Ev is stable
and non-locally free.

Suppose H0((T ′)∗∗) �= 0. Let E′ be the limiting stable sheaf for the
family of sheaves Eu approaching Ev. There is a nonzero map E′(−1) →
T ′. The subsheaf OX ⊂ (T ′)∗∗ corresponds to a saturated subsheaf
F ⊂ T ′ with F ∗∗ = OX , and an exact sequence

0 → F → T ′ → G → 0

with G∗∗ = OX also. Either the map E′(−1) → G ⊂ OX is nonzero, or
else there is a map E′(−1) → F ⊂ OX and either way we get a nonzero
map E′(−1) → OX . If E′ is non-locally free we are done, so we may
assume it is locally free. Thus E′(−1) = (E′)∗, and the transpose of
E′(−1) → OX gives a nonzero element of H0(E′), so we get the second
case of the statement. Q.E.D.

Note that if T,L can be deformed to a bundle T ′ together with a
quotient L′ where dim(Quot(T ′|Y , dL)) ≥ 2, then the same discussion
can be applied starting from T ′. The corresponding bundle E′ given
by the elementary transformation can then be deformed to a non-locally
free sheaf. This process might in theory require us to move to a different
irreducible component, but E will be connected to the new sheaf.

We have now transformed the problem of degenerating E to the
boundary, to a problem of degenerating T to the boundary. Apply again
the same strategy. LetW ⊂ M(OX , c2(T )) be an irreducible component.
If it contains a point T ′ which is not locally free, then the previous
corollary applies. If it contains a point T ′ with H0(T ′) �= 0 then as
in the previous proof we would obtain a degeneration of E to a stable
bundle E′ with H0(E′) �= 0. So, let us suppose that H0(T ′) = 0 for all
points of W (i.e. the semistable bundles are stable).

One calculates c2(T ) = c2(E)− 3 and the expected dimension of W
is 4c2(T ) − 15. For c2(E) ≥ 11 this gives c2(T ) ≥ 8 and the expected
dimension is ≥ 17. O’Grady’s method applies, see Corollary 9.3 giving
existence of a point T ′ ∈ W such that T ′|Y is not semistable. Look at
the destabilizing sequence

0 → L′
0 → T ′|Y → Q′

0 → 0

which now has deg(L′
0) ≥ 1 and deg(Q′

0) ≤ −1. As before, letting F be
the kernel of T ′ → i∗(Q′

0), we have a map F |Y → L′
0. We can again
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consider the Hilbert scheme of quotients F |Y → L′. If there is a non-
locally free quotient, this gives a deformation of T ′ to a boundary point
(as H0(T ′) �= 0, the new boundary point would also be semistable).
So we may assume that all of the quotients are locally free. As in
Corollary 9.8, this implies that the dimension of the Quot-scheme is
≤ 1. However, as in Lemma 18.1, the dimension of the Quot-scheme
is ≥ deg(L′

0) − deg(Q′
0) ≥ 2. Here, we are helped by the fact that T

has even degree. We get a contradiction, so it follows that T ′ may be
deformed to a non-locally free sheaf.

For c2(E) = 10, some further work is needed. In this case c2(T ) = 7
and the expected dimension of its moduli space is 13, less than the di-
mension of the moduli space of bundles on Y so Corollary 9.3 doesn’t
apply. This case may be treated more directly. From the Euler charac-
teristic, h0(T (1)) ≥ 3 so we can choose a section and express T as an
extension

0 → OX(−1) → T → JP/X(1) → 0.

where P has length 12 and satisfies CB(3). Arguing under the as-
sumption that the situations covered by the previous discussions don’t
already apply (in particular by the previous paragraphs we may assume
that the restrictions T ′|Y are semistable), and using the techniques of
[198, 199, 200], we find that for a general T in its component, the sub-
scheme P is a dodecad: twelve points which form the complete intersec-
tion of two quadrics and a cubic. It is very similar to the case c2(E) = 8
where E is a Cayley octad. In our situation, the dodecad P can be
degenerated on X to a configuration of 11 points on a rational normal
cubic, plus a twelfth point in general position. This is seen by showing
that the configuration of 11 + 1 points generizes in P3, then applying
the monodromy argument on the incidence variety that Hirschowitz sug-
gested to us in [198]. The 11 points satisfy CB(3) but the twelfth point
imposes an independent condition. We get in this way a degeneration of
T to a boundary point T ′ which is a torsion free sheaf with one singu-
larity at the twelfth point, whose double dual with c2 = 6 corresponds
to the 11 points. By Corollary 18.4, this treats the case c2(E) = 10.

We may sum up with the following proposition.

Proposition 18.5. Suppose that c2 ≥ 10. Then any point in M(c2)
is connected either to a boundary point (i.e. a stable non-locally free
sheaf), or to a point E with H0(E) �= 0, by a sequence of families of
deformations parametrized by irreducible curves.

Proof. It has been described above. Q.E.D.
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Lemma 18.6. For c2 ≥ 10, the space V (c2) consisting of stable
bundles E with H0(E) �= 0, is irreducible of dimension 3c2 − 11.

Proof. See Nijsse [225, Lemma 3.1], and also our discussion in [198].
Q.E.D.

We have now arrived at Nijsse’s connectedness theorem. We give
first the statement which can be seen easily from the preceding argu-
ments.

Proposition 18.7. For c2 ≥ 11, any irreducible component of
M(c2) meets the boundary (the moduli subset of non-locally free sheaves).
For c2 = 10, any irreducible component meets either the boundary or the
subset V (10) considered above.

Proof. We use here the fact that M(c2) is good for c2 ≥ 10,
proven in [198]. Furthermore, the singular locus consists of V (c2) plus
things of strictly smaller dimension. Goodness implies that the mod-
uli space is a local complete intersection, and this in turn tells us by
Hartshorne’s connectedness theorem, that if two different irreducible
components meet, they must meet along a subset of codimension 1. Re-
call that dim(V (c2)) = 3c2 − 11 for c2 ≥ 10. This has codimension 1
when c2 = 10, and codimension ≥ 2 for c2 ≥ 11. Therefore, if two
different irreducible components of M(c2) meet, either they must meet
along a boundary point (one or both could in fact be contained in the
boundary), or else c2 = 10 and they meet along points of V (10).

Consider a point [E] ∈ M(c2). It is connected by a sequence of
deformations, either to a boundary point or to a point of V (c2). How-
ever, we can only change irreducible components along points of these
two kinds. Thus, we may say that any irreducible component of M(c2)
contains either a boundary point, or a point of V (c2) in its closure.
When c2 ≥ 11 it is also easy to see that V (c2) contains boundary points
in its closure; thus, for c2 ≥ 11 any irreducible component meets the
boundary. Q.E.D.

Theorem 18.8 (Nijsse [225] Proposition 3.2). The moduli space of
stable torsion-free sheaves M(c2) is connected for c2 ≥ 10.

Proof. We follow fairly closely Nijsse’s proof. By Lemma 18.6,
V (c2) is connected for c2 ≥ 10. So, it defines a unique connected com-
ponent of M(c2). In order to prove the connectedness theorem, it suf-
fices to show that there is not a different connected component. So,
suppose Z ⊂ M(c2) is an irreducible component which is in a connected
component different from the one containing V (c2). By the previous
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proposition, Z contains a boundary point [F ] with F not locally free.
Let E := F ∗∗. We have an exact sequence

0 → F → E → S → 0

where S is a skyscraper sheaf of length d, and c2(E) = c2 − d. By the
theorem of Li-Ellingsrud-Lehn, Theorem 8.2, F may be deformed to a
sheaf F ′ which is a kernel as above, but with quotient S′ a direct sum
of length 1 sheaves at distinct points of X.

If c2 ≥ 11 then, removing a single one of these points gives a sheaf
G ⊂ E with c2(G) = c2− 1. We may work by induction on c2 ≥ 10, and
assume that M(c2 − 1) is connected. It leads to a connected piece of
the boundary of M(c2), and we have connected F to something in here.
This completes the proof of connectedness for c2 ≥ 11 by induction,
assuming it is known for c2 = 10.

To treat the case c2 = 10, we obtain F in our connected component,
and E as above. As c2(E) ≤ 9, an Euler characteristic argument tells
us that H0(E) �= 0. If we deform the quotient S to a quotient S′ which
respects this section, we obtain a deformation of F to a sheaf F ′ with
H0(F ′) �= 0.

The section gives an exact sequence

0 → OX → F ′ → JP/X(1) → 0.

The subscheme P ⊂ X of length 10 is the union of the corresponding
one for E, denoted Q, and the collection of points W in the support
of S′. The existence of a nonzero extension corresponds to having an
element e ∈ H0(JP/X(2)). We may fix this quadric containing P , then
deform P to a general collection of 10 points on that quadric (which is to
say, on the curve of intersection of our quintic X with the corresponding
quadric in P3). This general collection now satisfies Cayley-Bacharach,
so the extension is locally free. This gives a generization from F ′ to a
point of V (10), showing that F ′ is in the closure of V (10). But F ′ was
connected to our original point, contradicting the hypothesis that we
had a different component than that containing V (10). This completes
the proof of the connectedness theorem. Q.E.D.

§19. Classification of vector bundles on a very general quintic
surface

We finish with a brief description of our proof that the moduli space
is irreducible [200]. In [198] we have closely investigated the moduli
spaces M(4), . . . ,M(9), in particular they are all irreducible, which fills
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in the rows up to c2 = 9 in the following table. We thank I. Dolgachev
for pointing out the terminology Cayley octad for a set of 8 points which
is the complete intersection of three quadrics.

Table 1. Stable bundles on a quintic

c2 dim e.d. properties CB subscheme
≤ 3 empty none
4 2 −4 irred., ∼= X Z ⊂ line ∩X
5 3 0 irred., ∼= P3 −X Z = line ∩X
6 7 4 irred., gen. smooth Z ⊂ planar conic ∩X
7 9 8 irred., nonreduced general Z ⊂ plane ∩X
8 13 12 irred., gen. smooth Cayley octad
9 16 16 irred., nonreduced Z ⊂ ell. curve ∩X
10 20 20 irred., good,

gen. seminat. coh.
CB(4)

≥11 4c2−20 4c2−20 irred., good . . .

In [199], we showed that for c2 = 10 the subset of the moduli space
consisting of bundles with seminatural cohomology (meaning that for
each n, at most one of the hi(E(n)) is nonzero), is nonempty and irre-
ducible.

Boundary points in M(c2) come from stable bundles in M(c2 − d)
for d ≥ 1. It follows by Li-Ellingsrud-Lehn, see Theorem 8.2, that an
irreducible component of M(c2−d) leads to an irreducible subvariety of
the boundary of M(c2), denoted M(c2, c2−d), whose dimension is what
we would expect:

dimM(c2, c2 − d) = dimM(c2 − d) + 3d.

This allows us to fill in the following table with the dimensions of all the
strata, see [200, Table 2]. The column labeled c2−d gives the dimension
of the stratum M(c2, c2 − d).
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Table 2. Dimensions of boundary strata

c2 dim(M) c2−1 c2−2 c2−3 c2−4 c2−5 c2−6 c2−7

4 2 − − − − − − −
5 3 5 − − − − − −
6 7 6 8 − − − − −
7 9 10 9 11 − − − −
8 13 12 13 12 14 − − −
9 16 16 15 16 15 17 − −
10 20 19 19 18 19 18 20 −
11 24 23 22 22 21 22 21 23
≥12 4c2−20 4c2−21 ≤4c2−22

From O’Grady’s lemma 8.1 the boundary has pure codimension 1.
In the lines c2 = 10, 11 we emphasize in boldface the strata which can
contribute a codimension 1 piece of the boundary. For c2 = 11, there
are two possibilities, the usual M(11, 10) and M(11, 4). For c2 = 10
the possibilities are M(10, 9), M(10, 8), M(10, 6) which can give pieces
of codimension 1, and furthermore M(10, 4) which must be a separate
irreducible component since it has the same dimension 20 as the full
moduli space.

Using Hartshorne’s connectedness theorem (Corollary 8.4), and the
bounds we know for the singular locus inside the moduli space of bundles
(Lemma 18.6 for the main piece V which itself meets the boundary, and
the other pieces are even smaller [198]), we may conclude that if two dif-
ferent irreducible components meet, they must both meet the boundary.
There exists at least one irreducible component meeting the boundary,
for example one containing V . Therefore, Nijsse’s connectedness theo-
rem (18.8) implies that any irreducible component has to intersect the
boundary starting from c2 = 10 onwards.

From the explicit description of [198], we are able to conclude that
the boundary pieces M(10, 9), M(10, 8), and M(10, 6) have to attach to
moduli spaces of bundles with seminatural cohomology; thus, by [199]
these must all go to the unique seminatural component for c2 = 10.
Some further work is needed to treat the codimension 1 intersection be-
tween M(10) and M(10, 4) = M(10, 4) because the intersection will be
a codimension 1 subvariety in the latter, hence not including a general
point, in M(10, 4). But, this discussion again leads to the seminatural
condition, allowing us to conclude that the only irreducible component
for c2 = 10 is the seminatural one considered in [199]. This completes
the proof for the row c2 = 10. For c2 = 11, irreducibility is obtained by
noting that the two boundary components M(11, 10) and M(11, 4) have
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a nontrivial intersection. For c2 ≥ 12 there is only a single possible codi-
mension 1 boundary component so irreducibility follows by induction.

A lot is left to be done. On the one hand to study more carefully
the irreducible components of the moduli space—all of the questions we
have discussed above: rationality, Betti numbers, existence of Poincaré
families and so on, are open. And, on the other hand to try to extend
the investigation to other surfaces. One direction would be to go to
higher degrees: what is the first place where there are two irreducible
components, for a very general hypersurface of degree d (Question 5.4)?
What happens for low values of c2 (Question 17.2)? The other direction
is to relax the assumption that X is very general. In that case, the
Picard group has higher rank, and there is a choice of polarization to
define stability, so wallcrossing phenomena can be expected.
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[202] R. Miró-Roig, The moduli Spaces of Rank 2 Stable Vector Bundles Over
Veronesean Surfaces, manuscripta 72 (1993), 391-402.

[203] T. Mochizuki, A theory of the invariants obtained from the mod-
uli stacks of stable objects on a smooth polarized surface, Preprint
Arxiv:math/0210211 (2002).

[204] T. Mochizuki, Donaldson type invariants for algebraic surfaces. Transition
of moduli stacks, Lecture Notes in Math. 1972, Springer (2009).

[205] T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bun-
dles II, Geom. and Top. 13 (2009), 359-455.

[206] N. Mohan Kumar, A. Rao, G. Ravindra, Generators for vector bundles on
generic hypersurfaces, Math. Res. Lett. 14 (2007), 649-655.

[207] N. Mohan Kumar, A. Rao, G. Ravindra, Arithmetically Cohen-Macaulay
bundles on hypersurfaces, Comment. Math. Helv. 82 (2007), 829-843.

[208] S. Mukai, Duality between D(X) and D(X ′) with its application to Picard
sheaves, Nagoya Math. J. 81 (1981), 153-175.



168 N. Mestrano and C. Simpson

[209] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian
or K3 surface, Inventiones 77 (1984), 101-116.

[210] S. Mukai, Noncommutativizability of Brill-Noether theory and 3-
dimensional Fano varieties, Sugaku 49 (1997), 1–24.

[211] S. Mukai, Vector bundles and Brill-Noether theory, In: Current topics
in complex algebraic geometry (Berkeley, 1992/93) MSRI Publ. 28,
Cambridge Univ. Press (1995), 145-158,

[212] S. Mukai, Finite generation of the Nagata invariant rings in A-D-E cases,
Preprint (2005).

[213] S. Mukai, Counterexamples to Kodaira’s vanishing and Yau’s inequality
in positive characteristics, Kyoto J. Math. 53 (2013), 515-532.

[214] S. Mukai, H. Nasu, Obstructions to deforming curves on a 3-fold, I: A gen-
eralization of Mumford’s example and an application to Hom schemes,
J. Alg. Geom. 18 (2009), 691-709.

[215] D. Mumford, Geometric Invariant Theory, Springer-Verlag (1965).
[216] D. Mumford, P. Newstead, Periods of a moduli space of bundles on curves,

Amer. J. Math. 90 (1968), 1200-1208.
[217] K. Nagao, H. Nakajima, Counting invariant of perverse coherent sheaves

and its wall-crossing, I.M.R.N. 2011 (2011), 3885-3938.
[218] H. Nakajima, K. Yoshioka, Instanton counting on blowup. I. 4-dimensional

pure gauge theory, Inventiones 162 (2005), 313-355.
[219] T. Nakashima, Moduli of stable bundles on blown up surfaces, J. Math.

Kyoto Univ. 33 (1993), 571-581.
[220] T. Nakashima, A construction of stable vector bundles on Calabi-Yau man-

ifolds, Journal of Geometry and Physics 49 (2004) 224–230.
[221] M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a

compact Riemann surface, Ann. of Math. 82 (1965), 540-567.
[222] N. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions,

In: The unity of mathematics, Progr. Math. 244, Birkhäuser (2006),
525-596.

[223] P. Newstead, A non-existence theorem for families of stable bundles, J.
London Math. Soc. 6 (1973), 259-266.

[224] P. Newstead, Comparison theorems for conic bundles, Math. Proc. Cam-
bridge Philos. Soc. 90 (1981), 21-31.

[225] P. Nijsse, The irreducibility of the moduli space of stable vector bundles
of rank 2 on a quintic in P3, Preprint Arxiv:alg-geom/9503012 (1995).

[226] N. Nitsure, Topology of conic bundles, J. London Math. Soc. 35 (1987),
18-28.

[227] N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London
Math. Soc. 62 (1991), 275-300.

[228] N. Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math.
Soc. 6 (1993), 597-609.

[229] K. O’Grady, The irreducible components of moduli spaces of vector bundle
on surfaces, Inventiones 112 (1993), 585-613.



Moduli of sheaves 169

[230] K. O’Grady, Moduli of vector bundles on projective surfaces: some basic
results, Inventiones 123 (1996), 141-207.

[231] K. O’Grady, Moduli of vector-bundles on surfaces, In: Algebraic geometry
(Santa Cruz 1995), AMS Proceedings of Symposia in Pure Math.

62, Part 1 (1997), 101-126.
[232] K. O’Grady, The weight-two Hodge structure of moduli spaces of sheaves

on a K3 surface, J. Alg. Geom. 6 (1997), 599-644.
[233] K. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine

Angew. Math. 512 (1999), 49-117.
[234] K. O’Grady, Involutions and linear systems on holomorphic symplectic

manifolds, Geom. Funct. An. 15 (2005), 1223-1274.
[235] R. Pandharipande, R. Thomas, Curve counting via stable pairs in the

derived category, Inventiones 178 (2009), 407-447.
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