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A brief introduction to Enriques surfaces
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To Shigeru Mukai on the occasion of his 60th birthday

Abstract.

This is a brief introduction to the theory of Enriques surfaces over
arbitrary algebraically closed fields.
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§1. Introduction

This is a brief introduction to the theory of Enriques surfaces. Over
C, this theory can be viewed as a part of the theory of K3-surfaces,
namely the theory of pairs (X, ι) consisting of a K3-surface X and a
fixed-point-free involution ι on X. It also can be viewed as the the-
ory of lattice polarizes K3 surfaces, where the lattice M is the lattice
U(2) ⊕ E8(2) with the standard notation of quadratic hyperbolic lat-
tices [24]. The account of this theory can be found in many introductory
lecture notes, for example, in [6], [40], [48], and in books [5] or [7]. We
intentionally omit this theory and try to treat the theory of Enriques
surfaces without appeal to their K3-covers. This makes more sense when
we do not restrict ourselves with the basic field of complex numbers and
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take for the ground field an algebraically closed field of arbitrary char-
acteristic p ≥ 0. This approach to Enriques surfaces follows the book of
F. Cossec and the author [18], the new revised, corrected and extended
version of which is in preparation [19].

The author shares his passion for Enriques surfaces with Shigeru
Mukai and is happy to dedicate this survey to him. He is grateful to
the organizers of the conference, and especially to Shigeyuki Kondō, for
the invitation and opportunity to give a series of lectures on Enriques
surfaces. He also thanks Daniel Allcock for providing proofs of some
group-theoretical results and the thorough referee for pointing out to
many inaccuracies in its earlier version of the survey.

§2. History

Let S be a smooth projective surface over an algebraically closed
field k. We use the customary notations from the theory of algebraic
surfaces. Thus we reserve D to denote a divisor on S and very often
identify it with the divisor class modulo linear equivalence. The group
of such divisor classes is the Picard group Pic(S). The group of divisor
classes with respect to numerical equivalence is denoted by Num(S). We
denote by |D| the linear system of effective divisors linearly equivalent
to D. We set

hi(D) = dimk H
i(S,OS(D)), pg = h0(KS) = h2(OS), q = h1(OS).

We use the Riemann-Roch Theorem

h0(D)− h1(D) + h2(D) = 1
2 (D

2 −D ·KS) + 1− q + pg

and Serre’s duality hi(D) = h2−i(KS −D).
The theory of minimal models provides us with a birational mor-

phism f : S → S′ such that either the canonical class KS′ is nef (i.e.
KS′ ·C ≥ 0 for any effective divisor C), or S′ is a projective bundle over
Spec k, or over a smooth projective curve B.

If the latter happens the surface S is called ruled and, if S′ = P2 or
B ∼= P1, it is called rational. A rational surface has pg = q = 0 since
the latter are birational invariants. In 1894, Guido Castelnuovo tried to
prove that the converse is true. He could not do it without an additional
assumption that h0(2KS) = 0. He used the so called termination of
adjoints (showing that, under this assumption |C +mKS | = ∅ for any
curve C and large m, and, if m is minimal with this property, the linear
system |C+(m−1)KS | gives a pencil of rational curves on S that implies
the rationality).
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The modern theory of minimal models provides us with a simple
proof of Castelnuovo’s Theorem. First use that D2 ≥ 0 for any nef
divisor D.1 Thus, if S is not rational, then we may assume that KS is
nef, hence K2

S ≥ 0. By Riemann-Roch, h0(−KS) + h0(2KS) ≥ K2
S + 1

implies h0(−KS) ≥ 1, thus −KS ≥ 0 cannot be nef unless KS = 0 in
which case pg = 1.

Still not satisfied, Castelnuovo tried to avoid the additional assump-
tion that h0(2KS) = 0. He discussed this problem with Enriques during
their walks under arcades of Bologna. Each found an example of a sur-
face with pg = q = 0 with some effective multiple of KS . Since the
termination of the adjoint is a necessary condition for rationality, the
surfaces are not rational.

The example of Enriques is a smooth normalization of a non-normal
surface X of degree 6 in P3 that passes with multiplicity 2 through the
edges of the coordinate tetrahedron. Its equation is

F = x2
1x

2
2x

2
3+x2

0x
2
2x

2
3+x2

0x
2
1x

2
3+x2

0x
2
1x

2
2+x0x1x2x3q(x0, x1, x2, x3) = 0,

where q is a non-degenerate quadratic form.
The surface X has ordinary singularities : a double curve Γ with

ordinary triple points that are also triple points of the surface, and a
number of pinch points. The completion of a local ring at a general point
is isomorphic to k[[t1, t2, t3]]/(t1t2), at triple points k[[t1, t2, t3]]/(t1t2t3),
and at pinch points k[[t1, t2, t3]]/(t

2
1 + t22t3). Let π : S → X be the

normalization. The pre-image of a general point on Γ consists of two
points, the pre-image of a triple point consists of three points, and the
pre-image of a pinch point consists of one point.

Let c0 = HomOX (π∗OS ,OX). It is an ideal in OX , called the con-
ductor ideal. It is equal to the annihilator ideal of π∗OS/OX . Let
c = c0OS . This is an ideal in OS and π∗(c) = c0. The duality theorem
for finite morphisms gives an isomorphism

(1) ωS = c⊗ π∗OX(d− 4),

where ωS is the canonical sheaf on S and d = degX (in our case d =
6). In particular, it implies that c is an invertible sheaf isomorphic to
OS(−Δ), where Δ is an effective divisor on S. Under the assumption
on singularities, c0 ∼= JΓ, hence Δ = π−1(Γ).

Returning to our sextic surface, we find that deg Γ = 6, the number
t of triple points is equal to 4 and each edge contains 4 pinch points. The

1In fact, take any positive number N and an ample divisor A, then ND+A
is ample and (ND +A)2 = N2D2 + 2NA ·D +A2 must be positive, however if
D2 < 0 and N is large enough, we get a contradiction.
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canonical class formula shows that ωS
∼= π∗OS(2)(−Δ). The projection

formula gives π∗ωS
∼= OX(2)⊗JΓ (we use that c0 annihilates π∗OS/OX).

Since deg Γ = 6, ωS has no sections, i.e. pg(S) = 0. Also, the exact
sequence

0 → JΓ(2) → OX(2) → OΓ(2) → 0

allows us to check that H1(S, ωS) ∼= H1(X,JΓ(2)) = 0, i.e. q = 0.
We use that the curve Γ is an ACM-scheme, i.e. the canonical ho-
momorphism of graded algebras ⊕H0(P3,OP3(n)) → ⊕H0(Γ,OΓ(n)) is
surjective.

Now,
ω⊗2
S

∼= OS(2KS) ∼= c⊗2 ⊗ π∗OP3(2d− 8)

∼= π∗OX(4)(−2Δ) = π∗(OX(4)⊗ J<2>
Γ ),

where J<2>
Γ is the second symbolic power of the ideal sheaf c0 = JΓ,

the sheaf of functions vanishing with order ≥ 2 at a general point of Γ.
The global section of the right-hand side defined by the union of four
coordinate planes shows that h0(2KS) > 0, in fact, ω⊗2

S
∼= OS .

It follows from the description of singularities of the sextic that the
pre-image of each edge of the tetrahedron, i.e. an irreducible component
of the double curve Γ, is an elliptic curve. The pre-image of the section
of the surface with a face of the tetrahedron is the sum of three elliptic
curves F1 + F2 + F3, where Fi · Fj = 1, i �= j and F 2

i = 0. The pre-
images of the opposite edges are two disjoint elliptic curves Fi+F ′

i . The
preimage of the pencil of quadrics with the base locus equal to the union
of four edges excluding a pair of opposite edges is an elliptic pencil on
S of the form |2Fi| = |2F ′

i |.
This example of Enriques was included in Castelnuovo’s paper [13]

and was very briefly mentioned in Enriques foundational paper [30], n.39.
Enriques returned to his surface only much later, in a paper of 1906 [31],
where he proved that any nonsingular surface with q = pg = 0, 2KS ∼ 0
is birationally isomorphic to a sextic surface as above or its degeneration
[31]. Modern proofs of Enriques’ results were given in the sixties, in the
dissertations of Boris Averbuch from Moscow [2], [3] and Michael Artin
from Boston [1].

In his paper Castelnuovo considers the birational transformation of
P3 defined by the formula

T : (x0 : x1 : x2 : x3) = (y2y3 : y0y1 : y0y2 : y0y3).

Plugging in this formula in the equation of the sextic, we obtain

F (x0, x1, x2, x3) = y40y
2
2y

2
3Q1(y0y1, y2y3, y1y3, y1y2)
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+y30y1y
2
2y

2
3Q2(y0y1, y2y3, y1y3, y1y2).

After dividing by y30y
2
2y

2
3 , we obtain that the image of X is a surface of

degree 5 in P3 given by the equation

G = y0Q1(y0y1, y2y3, y1y3, y1y2) + y1Q2(y0y1, y2y3, y1y3, y1y2) = 0.

It has four singular points [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]. The
local computations show that the first two points are double points lo-
cally isomorphic to a singularity z2 + f4(x, y) = 0, where f4(x, y) is a
binary form of degree four without multiple roots. Classics called such a
surface singularity an ordinary tacnode with the tacnodal tangent plane
z = 0. Nowadays we call such a singularity a simple elliptic singularity
of degree 2. Its minimal resolution has a smooth elliptic curve as the
exceptional curve with self-intersection equal to −2. The other two sin-
gular points of the quintic surface are ordinary triple points (= simple
elliptic singularities of degree 3).

One can show the converse: a minimal resolution of a normal quintic
surface with two ordinary triple points and two tacnodes with tacnodal
tangent planes equal to faces of the tetrahedron with vertices at the
singular points is an Enriques surface. In modern times, the quintic
birational models of Enriques surfaces were studied in [37], [53], [54].

Consider the birational transformation of P3 given by the formula

(2) (y0 : y1 : y2 : y3) = (x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2).

It transforms the sextic surface V (F6) to a birationally isomorphic sextic
surface V (G6). The two birational morphisms S → P3 are defined by
linear systems |H| and |H +KS |.

Since [0, 0, 0, 1] is a triple point of the quintic surface V (G), we can
write its equation in the form

G = x2
3A3(x0, x1, x2) + 2x3B4(x0, x1, x2) + C5(x0, x1, x2) = 0,

Projecting from the triple point [0, 0, 0, 1], we get a rational double cover
V (G) ��� P2. Its branch curve is a curve of degree 8 given by the
equation B2

4 − C5A3 = 0. The projections of the tacnodal planes y0 =
0 and y1 = 0 are line components of this octic curve. The residual
sextic curve has a double point at the intersection of these lines and
two tacnodes with tacnodal tangent lines equal to the lines. This is an
Enriques octic.
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In 1906 Enriques proved that any Enriques surface is birationally
isomorphic to the double cover of P2 with branch curve as above or its
degeneration [31].

Caslelnuovo gave also his own example of a non-rational surface
with q = pg = 0. It differs from Enriques’ one by the property that
h0(2K) = 2. In this example, S is given as a minimal resolution of a
surface X of degree 7 in P3 with the following singularities:

• a triple line �;
• a double conic C disjoint from �;
• 3 tacnodes p, q, r with tacnodal tangent planes α = 0, β =
0, γ = 0 containing �.

The equation is
F7 = f2

3h+ αβγf4 = 0,

where h = 0 is any plane containing the line �, f3 = 0 is a cubic surface
containing � and C. The tacnodal planes are tangent planes to f3 = 0
at the points p, q, r. The quartic surface f4 = 0 contains C as a double
conic.

The pencil of planes through the line � cuts out a pencil of quartic
curves on X with 2 nodes on C. Its members are birationally isomorphic
to elliptic curves. On the minimal resolution S′ of X, we obtain an
elliptic fibration with a 2-section defined by the pre-image of the double
conic. Each tacnodal tangent plane cuts out a double conic, and the pre-
image of it on S′ is a divisor 2Ei + 2Fi, where Ei is a (−1)-curve and
Fi is an elliptic curve. Blowing down E1, E2, E3, we obtain a minimal
elliptic surface S with three double fibers. The canonical class is equal
to −F + F1 + F2 + F3. It is not effective. However, 2KS ∼ F , so
h0(2K) = 2.

§3. Generalities

Recall Noether’s Formula

12(1− q + pg) = K2
S + c2,

where c2 =
∑

(−1)ibi(S) is the Euler characteristic in the usual topology
if k = C or l-adic topology otherwise.
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In classical definition, an Enriques surface is a smooth projective
surface with q = pg = 0 and 2KS = 0. It is known that q = h1(OS) is
equal to the dimension of the tangent space of the Picard scheme PicS/k.

Thus its connected component Pic0S/k is trivial. The usual computation,

based on the Kummer exact sequence, gives that b1 = 2dimPic0S/k.
Thus b1 = 0. Noether’s Formula implies that c2 = 12, hence b2 = 10.
Also, since 2KS = 0, S is a minimal surface of Kodaira dimension 0. A
modern definition of an Enriques surface is the following (see [9]):

Definition 1. An Enriques surface is a smooth projective minimal
algebraic surface of Kodaira dimension 0 satisfying b1 = 0 and b2 = 10.

Other minimal surfaces of Kodaira dimension 0 are abelian surfaces
with b1 = 4, b2 = 6, K3-surfaces with b1 = 0, b2 = 22, and hyperelliptic
surfaces with b1 = b2 = 2 (see [9]).

Let S be an Enriques surface. Since the Kodaira dimension is zero,
we obtain that K2

S = 0. Also, since h0(KS) is bounded, pg ≤ 1.
Noether’s Formula gives q = pg.

Recall that Pic0S/k parameterizes divisor classes algebraically equiv-
alent to zero. It is an open and closed subscheme of the Picard scheme.
PicS/k contains another closed and open subscheme PicτS/k that pa-
rameterizes divisor classes numerically equivalent to zero. The group
PicS/k(k) is the Picard group Pic(S) of divisor classes modulo linear

equivalence. The group Pic0(S) := Pic0S/k(k) is the subgroup of divisor

classes algebraically equivalent to zero. The group Picτ (S) := PicτS/k(k)
is the subgroup of numerically trivial divisor classes. The quotient
group NS(S) = Pic(S)/Pic0(S) is a finitely generated abelian group,
the Néron-Severi group of S. The quotient group Pic(S)τ/Pic0(S) is
the torsion subgroup Tors(NS(S)) of the Néron-Severi group and the
quotient Pic(S)/Picτ (S) is isomorphic NS(S)/Tors(NS(S)). It is a free
abelian group denoted by Num(S).

If p = 0, all group schemes are reduced and q = dimPic0S/k. In

our case, this implies that q = 0. It is known that Pic0S/k is reduced if

pg = 0 and, and for Enriques surfaces, this always happens if p �= 2 [10].

If p = 2 and q = pg = 1, the group scheme Pic0S/k coincides with

PicτS/k. It is a finite non-reduced group scheme of order 2 isomorphic
to the group schemes μ2 or α2. In the first case, an Enriques surface is
called a μ2-surface, and in the second case it is called an α2-surface, or
supersingular surface (because in this case the Frobenius acts trivially
on H1(S,OS) and H2(S,OS)).

If h2(OS) = h1(OS) = 0, the Enriques surface S is called classical.
In this case Pic0S/k = 0, Pic(S) = NS(S) and PicτS/k is a constant group
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scheme defined by the group Tors(NS(S)). By Riemann-Roch, for any
torsion divisor class D �= 0 in Pic(S), we have h0(D)+h0(KS −D) ≥ 1.
This implies that either D or KS − D is effective. Since a non-trivial
torsion divisor class cannot be effective, we have D ∼ KS .

It is known that KS is numerically trivial if the Kodaira dimension
is equal to 0 (this is a highly non-trivial result, the core of the classifi-
cation of algebraic surfaces). Since h0(2KS) �= 0 because otherwise S is
rational, and KS is numerically trivial, 2KS = 0. So, Tors(Pic(S) is of
order ≤ 2. It is trivial if q = pg = 1 and of order 2 otherwise.

If p �= 2, the non-trivial 2-torsion element KS in Pic(S) gives rise
to an étale double cover f : X → S. We have c2(X) = 2c2(S) = 24,
KX = f∗(KS) = OX . Thus, X is a K3-surface. If p = 2 and S is a μ2-
surface, the same is true: there exists an étale double cover f : X → S
and X is a K3-surface. In other words, an Enriques surface in these
cases is the quotient of a K3-surface by a fixed-point-free involution.
So, the theory of Enriques surfaces becomes a chapter in the theory of
K3 surfaces. This has been much overused in the modern literature by
applying transcendental methods, in particular, the theory of periods
of K3 surfaces, to solve some problems on Enriques surfaces of pure
geometrical nature. These tools do not apply to the case of Enriques
surfaces over fields of positive characteristic, however one can still cheat
for some problems by lifting Enriques surfaces to characteristic 0.

For any finite commutative group schemeG over k, one has a natural
isomorphism

Homgr-sch/k(D(G),PicS/k) ∼= H1
fl(S,G),

where D(G) is the Cartier dual of G and the right-hand-side is the
group of flat cohomology with coefficients in the sheaf represented by
G. This group is isomorphic to the group of isomorphism classes of G-
torsors over S. In our case, by taking G = (Z/2Z)k,μ2,α2, we obtain
D(G) = μ2, (Z/2Z)k,α2, respectively. If p �= 2 the groups μ2 and
(Z/2Z)k are isomorphic. Hence, we have a non-trivial (Z/2Z)k-torsor if
p �= 2, or S is a μ2-surface. The corresponding degree 2 finite étale cover
π : X → S is a K3-surface. The cover is known as the K3-cover of an
Enriques surface. The Galois group of the cover is a group of order 2,
acting freely on X with the quotient isomorphic to S. Conversely, any
such involution ι on a K3-surface, defines, after passing to the quotient
map X → X/〈ι〉 the K3-cover of the Enriques surface S ∼= X/〈ι〉.

If p = 2 and S is a classical Enriques surface or an α2-surface, the
non-trivial μ2 or α2-torsor defines an inseparable degree 2 cover X → S,
also called the K3-cover. However, the surface X is not isomorphic to
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a K3-surface. It is birationally isomorphic to a K3-surface or it is a
non-normal rational surface.

Let ρ = rank Pic(S) = rank NS(S). If k = C, the Hodge decompo-
sition H2(S,C) = H2,0 + H1,1 +H0,2 implies that H1,1 = b2(S) = 10.
By the Lefschetz Theorem, all integral 2-cohomology classes are alge-
braic, hence H2(S,Z) = Pic(S) and H2(S,Z)/Tors = Num(S) = Z10.
The Poincaré Duality implies that the intersection form on Num(S) is a
quadratic form on Num(S) defined by a symmetric matrix with determi-
nant ±1. We say that Num(S) is a quadratic unimodular lattice. The
adjunction formula D2 = 2χ(OS(D)) − 2 for any irreducible effective
divisor D implies that D2 is always even. The Hodge Index Theorem
gives that the signature of the real quadratic space Num(S)⊗R is equal
to (1, 9). Finally, Milnor’s Theorem about even unimodular indefinite
integral quadratic forms implies that Num(S) = U ⊥ E8, where U is a
hyperbolic plane over Z and E8 is a certain negative definite unimodular
even quadratic form of rank 8.

If p �= 0, more subtle techniques, among them the duality theorems
in étale and flat cohomology imply the same result provided one proves
first that ρ = b2 = 10. There are two proofs of this fact one by E.
Bombieri and D. Mumford [10] and another by W. Lang [41]. The first
proof uses the existence of an elliptic fibration on S, the second one uses
the fact that an Enriques surface with no global regular vector fields can
be lifted to characteristic 0. The fact that Num(S) is isomorphic to the
lattice U ⊕ E8 was first proven by L. Illusie [35] who used crystalline
cohomology.

One can use the following description of the lattice U⊕E8 which we
denote by E10, sometimes it is called the Enriques lattice. Let Z1,10 be
the standard hyperbolic lattice with an orthonormal basis e0, e1, . . . , e10
satisfying (ei, ej) = 0, (e0, e0) = 1, (ei, ei) = −1, i > 0. Then E10 is
isomorphic as a quadratic lattice to the orthogonal complement of the
vector k10 = 3e0 − · · · − e10. The vectors

α0 = e0 − e1 − e2 − e3, αi = ei − ei+1, i = 1, . . . , 9

can be taken as a basis of E10. It is called a canonical root basis. The
matrix of the symmetric bilinear form with respect to this basis is equal
to −2I10 + A, where A is the incidence matrix of the graph pictured in
Fig. 1:

The Enriques lattice E10 is isomorphic to the orthogonal complement
of the canonical class of a rational surface obtained by blowing up 10
points in the projective plane. In fact, if we denote by e0 the class of the
pre-image of a line on the plane and by ei the classes of the exceptional
divisors, we obtain that the canonical class is equal to−3e0+e1+· · ·+e10,
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• • • • • • • • •

•

α1 α2 α3 α4 α5 α6 α7 α8 α9

α0

Fig. 1. Enriques lattice

hence the claim. This explains the close relationship between the theory
of Enriques surfaces and the theory of rational surfaces. In fact, if we
take the 10 points in the special position, namely to be the double points
of an irreducible rational curve of degree 6, the rational surface, called a
Coble surface, lies on the boundary of a partial compactification of the
moduli space of Enriques surfaces.

We set
fi = ei + k10, i = 1, . . . , 10.

Since (fi, k10) = 0, these vectors belong to E10. We have

(fi, fj) = 1− δij ,

where δij is the Kronecker symbol. Also, adding up the expressions for
the fi’s, we obtain

f1 + · · ·+ f10 = 9k10 + 3e0 = 3(10e0 − 3e1 − · · · − 3e10).

We set

δ =
1

3
(f1 + · · ·+ f10) = 10e0 − 3e1 − · · · − 3e10.

We have
(δ, δ) = 10, (δ, fi) = 3, (fi, fj) = 1− δij .

A sequence of k isotropic vectors in E10 satisfying the last property is
called an isotropic k-sequence. The maximal k possible is equal to 10.
An ordered isotropic 10-sequence defines a root basis in E10 as follows.
Consider the sublattice L of E10 spanned by f1, . . . , f10. The direct
computation shows that its discriminant is equal to −9, thus it is a
sublattice of index 3 in E10. The vector δ = 1

3 (f1+ · · ·+f10) has integer
intersection with each fi, hence it defines an element in the dual lattice
L∗ such that 3δ ∈ L. This implies that δ ∈ E10 and we may set

α∗
0 = δ, α∗

1 = δ − f1, α∗
2 = 2δ − f1 − f2, α∗

i = 3δ − f1 − · · · − fi, i ≥ 3.

The vectors (α∗
1, . . . , α

∗
10) form a basis of E10 and its dual basis α0, . . . , α9

is a canonical root basis with the intersection graph as in Figure 1.
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The following matrix is the intersection matrix of the vectors α∗
i . It

was shown to me first by S. Mukai during our stay in Bonn in 1983.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 7 14 21 18 15 12 9 6 3
7 4 9 14 12 10 8 6 4 2
14 9 18 28 24 20 16 12 8 4
21 14 28 42 36 30 24 18 12 6
18 12 24 36 30 25 20 15 10 5
15 10 20 30 25 20 16 12 8 4
12 8 16 24 20 16 12 9 6 3
9 6 12 18 15 12 9 6 4 2
6 4 8 12 10 8 6 4 2 1
3 2 4 6 5 4 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let O(E10) be the orthogonal group of the lattice E10, i.e. the group
of automorphisms of E10 preserving the quadratic form. We have

O(E10) = W (E10)× {±1},
where W (E10) is the Weyl group of E10 generated by reflections sαi :
x �→ x+ (x, αi)αi. It coincides with the full reflection group of E10, the
group generated by sα : x �→ x + (x, α)α, where α is any vector with
(α, α) = −2 (see, for example, [26]).

§4. Polarized Enriques surfaces

The moduli space of Enriques surfaces exists as a stack only. If p �= 2,
it is an irreducible smooth unirational Artin stack of dimension 10. Over
C, it admits a coarse moduli space isomorphic to an arithmetic quotient
of a symmetric domain of orthogonal type (or type IV). If p = 2, it
consists of two irreducible unirational components intersecting along a 9-
dimensional substack. One component corresponds to classical Enriques
surfaces and another one corresponds to μ2-surfaces. The intersection
corresponds to α2-surfaces. This is a recent result of Christian Liedtke
[43].

To consider a quasi-projective moduli space one has to polarize the
surface. A polarized surface is a pair (S,D), whereD is a nef divisor class
with D2 > 0 and |D| is base-point-free. An isomorphism of polarized
surfaces (S,D) → (S′, D′) is an isomorphism f : S → S′ such that
f∗(D′) ∼ D. Let us discuss such divisor classes.

Let D be any irreducible curve on S. By adjunction formula, D2 ≥
−2. If D2 = −2, then D ∼= P1. An Enriques surface containing a
smooth rational curve is called nodal and unnodal otherwise. If D2 ≥ 0,
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by Riemann-Roch, h0(D) > 0. Let Wn
S be the subgroup of the reflection

group of Num(S) generated by the reflections sα, where α is the class
of a smooth rational curve. Applying elements of Wn

S , we obtain that
D ∼ D0 +

∑
Ri, where D0 is a nef effective divisor, and Ri

∼= P1. If
D is nef and D2 ≥ 2, then h1(D) = 0 and dim |D| = 1

2D
2. If D2 = 0,

then D = kE, where h0(E) = 1 but h0(2E) = 2. The linear system
|2E| is a pencil of curves of arithmetic genus 1. It defines a morphism
f : S → P1 whose general fiber is a curve of arithmetic genus 1. It is
called a genus one fibration. A general fiber is nonsingular if p �= 2 but
could have a cusp if p = 2. In the latter case the genus one fibration is
called a quasi-elliptic fibration. If KS �= 0 (resp. KS = 0), a genus one
fibration has two fibers (resp. one fiber) of the form 2F , called a double
fiber.

For any nef divisor D with D2 > 0, let Φ(D) = min{|D ·E|}, where
E2 = 0. The function Φ satisfies an inequality (see [18], Corollary 2.7.1)

Φ(D)2 ≤ D2.

We have Φ(D) = 1 if and only if |D| has base-points (two counting
with multiplicity). Also Φ(D) = 2 if and only |D| defines a double
cover of a normal surface, or a birational morphism onto a non-normal
surface, or D2 = 4 and the map is of degree 4 onto P2. In the first case,
the linear system is called superelliptic (renamed to bielliptic in [19]).
Finally, Φ(D) ≥ 3 if and only if |D| defines a birational morphism onto
a normal surface with at most rational double points as singularities.

Here are examples.
If D2 = 2, then D ∼ E1 + E2 or D ∼ 2E1 + R +KS , where |2Ei|

are genus one pencils and R ∼= P1 such that Ei ·E2 = 1 and R ·E1 = 1.
The linear system |D| is a pencil of curves of arithmetic genus 2.

Assume D2 = 4 and Φ(D) = 1, then, after blowing up the two base
points, we obtain a degree 2 map to P2 with the branch divisor equal to
an Enriques octic which may be degenerate if S is nodal. If Φ(D) = 2,
and S is unnodal, then D ∼ E1 +E2, where |2Ei| are genus one pencils
and E1 · E2 = 2. The map given by |D| is a finite map of degree 4
onto P2. If p �= 2, its branch locus is a curve of degree 12, the image
of the dual of a nonsingular cubic curve under a map P2 → P2 given by
conics [55]. If p = 2, the map could be inseparable. If S is a μ2-surface,
the map is separable and its branch curve is a plane cubic. If p �= 2
or S is a μ2-surface, the preimage D̃ of D on the K3-cover X defines

a linear system |D̃| on X that maps X onto a complete intersection of
three quadrics in P5.

Assume D2 = 6 and Φ(D) = 2. Again, if S is unnodal, then D ∼
E1+E2+E3, where |2Ei| are genus one pencils and Ei ·Ej = 1. The map
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is a birational map onto an Enriques sextic in P3. The moduli space of
polarized surfaces (S,D) admits a compactification, a GIT-quotient of
the space of sextic surfaces passing through the edges of the tetrahedron
with multiplicity two.

Assume D2 = 8 and Φ(D) = 2. If S is unnodal, then D ∼ 2E1+2E2

orD ∼ 2E1+2E2+KS , where |2Ei| are genus one pencils and E1·E2 = 1.
In the first case, the map given by the linear system |D| is a double
cover φ : S → D4, where D is a 4-nodal quartic del Pezzo surface.
It is isomorphic to a complete intersection of two quadrics in P4 with
equations

x0x1 + x2
2 = 0, x3x4 + x2

2 = 0.

Its minimal resolution is isomorphic to the blow-up X of five points in
the projective plane equal to the singular points of an Enriques octic
curve. The rational map X ��� D4 is given by the anti-canonical linear
system. The cover ramifies over the singular points and a curve from
|OD(2)|. Thus, birationally, the cover is isomorphic to the double cover
of the plane branched over an Enriques octic.

If S is nodal, the degree 8 polarization can be also given by the
linear system |4E + 2R| or |4E + 2R +KS |, where |2E| is a genus one
pencil and R is a (−2)-curve with E ·R = 1. In the first case, the linear
system |4E+2R| defines a degree 2 cover of a degenerate 4-nodal quartic
del Pezzo surface. Its equations are

x0x1 + x2
2 = 0, x3x4 + x2

0 = 0.

It has two ordinary nodes and one rational double point of type A3. Its
minimal resolution is isomorphic to the blow-up of four points in the
plane equal to singular points of a degenerate Enriques octic.

Figure 2 is the picture of the branch curve of the rational map
S ��� D̃, where D̃ is a minimal resolution of singularities of D. We
assume here that p �= 2.

If S admits a K3-cover, then the preimage of the linear system |D|
on the cover defines a degree 2 map onto P1 × P1 with branch curve of
type (4, 4) invariant with respect to an involution of the quadric with
four isolated fixed points. This is sometimes referred to as the Horikawa
model.

The linear system |D +KS |, where |D| = |2E1 + 2E2| or |4E + 2R|
as above, maps S birationally onto a non-normal surface of degree 8 in
P4. So, we see that the type of polarization depends on the linear but
not the numerical equivalence class of the divisor.

Note that all such linear systems exist on any Enriques surface,
nodal or not.
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Fig. 2. Branch curve of a bielliptic map (p �= 2)

Finally, assume D2 = 10 and Φ(D) = 3. If S is unnodal, the linear
system |D| defines a closed embedding onto a surface F of degree 10
in P5. Its homogeneous ideal is generated by 10 cubics. This model
was first studied by Gino Fano in [32] and [33]. One can represent
the divisor class 3D as the sum of 10 divisor classes E1 + · · · + E10

whose numerical classes form an isotropic 10-sequence in Num(S). The
images of Ei and E′

i ∈ |Ei +KS | are plane cubics contained in F. The
linear system |D − Ei − Ej |, i �= j, consists of an isolated genus one
curve Eij which is mapped onto a curve of degree 4 on F. The linear
system |Ei + Ej + Ek|, k �= i �= j, maps S onto an Enriques sextic S′

in P3, the image of Eij is an elliptic quintic, and the images of Ei and
Ej are coplanar edges of the tetrahedron. The images of the 7 curves
Es, s �= i, j, k, and 21 curves Eab, a, b �= i, j, k, are plane cubic curves on
S′. The residual cubic curve is the unique curve in the linear system
|E1 +E2 +E3 −Es| or |E1 +E2 +E3 −Eab|, they intersect at 6 points
lying on the edges and three additional points. If p �= 2, we also have
the adjoint 28 curves E′

i and E′
ab numerically equivalent to Ei and Eab,

respectively. The corresponding planes containing the images of the
curves in a pair of adjoint curves intersect along a line in a face of the
tetrahedron. The image of the cubic curve Es (resp. Eab) under the
Cremona transformation (2) is the cubic curve E′

s (resp. E′
ab).

Note that the numerical equivalence classes of the curves Ei are
determined uniquely by the choice of the Fano polarization |D|. A choice
of an ordered representatives Ei of these classes such that 3D ∼ E1 +
· · · + E10 defines a supermarking of S, i.e. a splitting of the projection
Pic(S) → Num(S) preserving the intersection forms. A marking of S is
just an isomorphism of quadratic lattices Num(S) → E10. So, there are
29 supermarkings lifting a given marking. A supermarking of S defines a
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choice of 10 planes in P5 cutting out 10 plane cubics on the Fano model F.
One can show that the moduli space of supermarked unnodal Enriques
surfaces is irreducible and it is mapped into an irreducible component
of the variety of ordered 10-tuples of mutually intersecting planes in P5

(see [28]).
If S is nodal and KS �= 0, one of the Fano polarization D or D+KS

maps S into a nonsingular quadric in P5. If we identify the quadric
with the Grassmann variety G(2, 4) of lines in P3, then the image of S
is isomorphic to the Reye congruence of lines, the set of lines in a web
of quadrics in P3 that are contained in a pencil from the web. Such
polarization of a nodal surface is called a Reye polarization [17]. If D is
a Reye polarization, then |D+KS | maps S into P5 that can be identified
with a general 5-dimensional linear system of quadrics. The image of S
is the locus of reducible quadrics.

An interesting open problem is to determine the Kodaira dimension
of the moduli space of polarized Enriques surface. If D2 = 4 and D =
|E1+E2| with E1 ·E2 = 2, then the moduli space is rational [12]. If |D| =
|E1+E2+E3| is an Enriques sextic polarization, then, up to a projective
transformation, a sextic model is defined uniquely by the quadratic form
q. This shows that the moduli space is also rational. The moduli space
of Enriques surfaces with polarization of degree 8 and type |2E1+2E2| is
birationally isomorphic to the GIT-quotient |OD4(2)|/Aut(D4). It can
be shown to be rational [19]. The moduli space of Enriques surfaces
with a Fano polarization is birationally covered by the space of quintic
elliptic curves in P3 [56]. It was shown in loc.cit. that the latter space is
rational and of dimension 10 . Thus the moduli space of Fano polarized
Enriques surfaces is unirational.

It is conjectured that the moduli space of polarized Enriques surfaces
is always unirational (or, at least of negative Kodaira dimension).2 Note
that, over C, the coarse moduli space of Enriques surface is rational [39].

§5. Nodal Enriques surfaces

Recall that a nodal Enriques surface is an Enriques surface S con-
taining a smooth rational curve. By adjunction formula, the self-
intersection of such curve is equal to −2, for this reason it is often called
a (−2)-curve. Over C, a smooth rational curve R on S splits under
the K3-cover π : X → S into the disjoint sum of two smooth rational
curves R+ and R−. The Picard group Pic(X) contains the divisor class

2A recent paper of V. Gritsenko and K. Hulek (Moduli of polarized Enriques
surfaces, math.AG.arXiv:1502.02723) disproves this conjecture.
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R+ − R− that does not belong to π∗(Pic(S)). The theory of periods
of lattice polarized K3 surfaces shows that the nodal surfaces form an
irreducible hypersurface in the coarse moduli space of Enriques surfaces.
Over any algebraically closed field of characteristic p �= 2 one can show
that a nodal Enriques surface is isomorphic to a Reye congruence of lines
in P3. The moduli space of Reye congruences is an irreducible variety of
dimension 9. On the other hand, the moduli space of Enriques sextics is
of dimension 10. This shows that a general Enriques surface is unnodal.

There are several invariants that measure how nodal an Enriques
surface could be. The first one is the non-degeneracy invariant d(S)
defined in [18], p. 182. It is equal to the maximal k such that there
exists an isotropic k sequence (f1, . . . , fk) in Num(S) where each fi is a
nef numerical divisor class. If S is unnodal, then d(S) = 10, maximal
possible. It is known that d(S) ≥ 3 if p �= 2. However, no example of
a surface with d(S) = 3 is known to me. Note that this result implies,
if p �= 2, that any Enriques surface admits a non-degenerate Enriques
sextic model or a non-degenerate double octic model.

The next invariant was introduced by Viacheslav Nikulin [52]. To
define it we assume that p �= 2, or S is a μ2-surface.

Let π : X → S be the K3-cover and ι be the fixed-point involu-
tion with quotient isomorphic to S. Denote by N+ (N−) the subgroup
of Pic(X) that consists of invariant (anti-invariant) divisor classes. It
is clear that N− is contained in the orthogonal complement (N+)⊥ in
Pic(S). Also, since G = 〈ι〉 acts freely, N+ = π∗(Pic(S)). Since N+

contains an ample divisor, N− does not contain (−2)-curves. By the
Hodge Index Theorem, N− is negative definite. The quotient group
N−/Im(ι∗ − 1) = Ker(ι∗ + 1)/Im(ι∗ − 1) is isomorphic to the cohomol-
ogy group H1(G,Pic(X)), where G = 〈ι〉. The Hochshild-Serre spec-

tral sequence in étale cohomology gives a boundary map d2 : E1,1
2 =

H1(G,Pic(X)) → E3,0
2 = H3(G,Gm(X)) ∼= Hom(G, k∗). Its kernel

coincides with the kernel of the homomorphism of the Brauer groups
π∗ : Br(S) → Br(X), see [8]. It is shown in loc.cit. that d2 coincides
with the norm map Nm : Pic(X) → Pic(S)3 restricted to Ker(ι∗ + 1)
and its image is contained in Ker(π∗) = 〈KS〉. It is known that Br(X)
is of order 2 if KS �= 0 and it is trivial otherwise (see [18], Proposition
5.3.5). Thus, the order of N−/Im(ι∗ − 1) is at most 4, and in the case
when S is a μ2-surface, the group is trivial.

Consider the subgroup N−
0 = Im(ι∗−1) of N−. For any x ∈ Pic(X),

we have ι∗(x)+x ∈ π∗(Pic(S)), hence (ι∗(x)+x)2 = 2x2+2x · ι∗(x) ≡ 0

3Recall that the norm map is defined on invertible sheaves by setting
Nm(L) = detπ∗L.
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mod 4, and we obtain that x · ι∗(x) is even. This implies that (x −
ι∗(x))2 ≡ 0 mod 4. Thus the lattice N−

0 ( 12 ) is an integral even lattice.

Note that N+( 12 )
∼= E10.

Let us consider elements δ− = (ι∗ − 1)(x) in N−
0 such that δ2− = −4

and δ+ := (ι∗ + 1)(x) is equal to π∗(y), where y2 = −2. Let Δ+
S be the

set of such classes y. Note that, if δ− = (ι∗ − 1)(x′), then x′ = x + z,
where ι∗(z) = z, hence δ+ = ι∗(x)+x+2z = π∗(y′), where y′ = y+2z′.
Thus each δ− determines a unique coset in Num(S). Let Δ

+

S be the
subset of such cosets. Let W (Δ+

S ) be the subgroup of WS generated by

reflections in the classes of elements of Δ+
S . For any α ∈ W (Δ+

S ), we

have π∗(α) = ι∗(β) + β for some β ∈ Pic(S), so that, for and y ∈ Δ+
S ,

we get

π∗(sα(y)) = π∗(y + (y, α)α) = ι∗(x+ (y, α)β) + (x+ (y, α)β).

This shows that Δ+
S is invariant with respect to W (Δ+

S ).
Let

Num(S) := Num(S)/2Num(S) ∼= E10 := E10/2E10
∼= F10

2 .

We equip the vector space E10 with the quadratic form q : E10 → F2

defined by
q(x+ 2E10) =

1
2x

2 mod 2.

One can show that the quadratic form is non-degenerate and is of even
type, i.e. equivalent to the orthogonal direct sum of five hyperbolic
planes x1x2 + x3x4 + · · · + x9x10. Its orthogonal group is denoted by
O+(10,F2). It contains a simple subgroup of index 2. We denote by
(x, y) the value of the associated symmetric form b(x, y) = q(x + y) +
q(x) + q(y) on a pair x, y ∈ Num(S).

Let us identify Num(S) with E10. Nikulin defines the r-invariant of

S as the subset ΔS
+
of E10 equal to the image of Δ+

S in Num(S). This
is a subset J of F10

2 satisfying two properties

• J ⊂ q−1(1);
• for any r ∈ J, sr(J) = J , where sr(x) = x+ (x, r)r.

Note that Δ+
S contains divisor classes y with y2 = −2 such that

y ≡ R mod 2Num(S) for some (−2)-curve R (it is easy to see, using

Riemann-Roch on X, that y or −y is effective). So, ΔS
+

contains the

set RS of cosets of (−2)-curves on S and the larger set RS
′
obtained

from this set by applying sr, where r ∈ RS . I do not know whether this

larger set coincides with ΔS
+
.
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Another invariant, the R-invariant is defined by Nikulin as follows.
Let K to be the sublattice of N−

0 ( 12 ) spanned by the classes δ−. It is
a negative definite lattice spanned by vectors of norm −2. It follows
that it is a root lattice, the orthogonal sum of root lattices of types
A,D,E. We also have a homomorphism φ : K/2K → Num(S) that
sends δ− to y + 2Num(S), where π∗(y) = δ+. Note that the image of

φ is the linear subspace spanned by ΔS
+

and the image of the cosets

of the δ−’s is the set ΔS
+
. The Nikulin R-invariant is the pair (K,H),

where H = Ker(φ).
A slightly different definition of the R-invariant was given by S.

Mukai [48]. He considers the kernel of the norm map Nm : Pic(X) →
Pic(S) and defines the root system of S as a sublattice of Ker(Nm)( 12 )
generated by vectors with norm (−2).

Over C, one can use the theory of periods of K3 surfaces to show
that Enriques surfaces with rankK = r form a codimension r subvariety
in the moduli space.

If p = 2 and S is not a μ2-surface, we still have the subset RS
′
of

F10
2 and we define the r-invariant of S as the smallest subset r(S) of RS

′

such that any RS
′
can be written as a sum of elements from r(S). We

picture r(S) as a graph with vertices in r(S) and the edges connecting
two elements x, y in r(S) such that (x, y) = 1.

•#r(S) = 1 :

#r(S) = 2 : • • • •(a) (b)

#r(S) = 3 : • •
•��

��
�

��
��
�(a) (b) (c) (d)• •

•
• •

•
• •

•��
��

�

An Enriques surface is called a general nodal if #r(S) = 1, i.e. any
two (−2)-curves are congruent modulo 2Num(S). In terms of the R-
invariant, it means that (K,H) = (A1, {0}). The following theorem
gives equivalent characterizations of general nodal surfaces [19].

Theorem 2. The following properties are equivalent.

(i) S is a general nodal Enriques surface;
(ii) Any genus one fibration on S contains at most one reducible

fiber that consists of two irreducible components. A half-fiber
is irreducible.

(ii’) Any genus one fibration on S contains at most one reducible
fiber that consists of two irreducible components.

(iii) Any two (−2)-curves are f -equivalent.
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(iv) For any Fano polarization h, the set Πh = {R ∈ RS : R·h ≤ 4}
consists of one element.

(v) For any d ≤ 4, S admits a Fano polarization h such that Πh =
{R}, where R · h = d.

(vi) A genus one pencil that admits a smooth rational curve as a
2-section does not contain reducible fibres.

Here two (−2)-curves R and R′ are called f -equivalent if there exists
a sequence of genus one fibrations |2E1|, . . . , |2Ek−1| and a sequence of
(−2)-curves R1 = R, . . . , Rk = R′ such that

R1 +R2 ∈ |2E1|, R2 +R3 ∈ |2E2|, . . . , Rk−1 +Rk ∈ |2Ek−1|.
Obviously, the f -equivalence is an equivalence relation on the set of
nodal curves.

§6. Automorphisms of Enriques surfaces

One of the main special features of Enriques surfaces is the rich-
ness of its symmetry group, i.e the group Aut(S) of birational automor-
phisms. Since S is a minimal model, this group coincides with the group
of biregular automorphisms. The group of biregular automorphisms of
any projective algebraic variety X over k is the group of k-points of a
group scheme AutX/k of locally finite type. This means that the con-

nected component of the identity Aut0X/k of AutX/k is an algebraic
group scheme over k, and the group of connected components is count-
able. The tangent space of Aut0X/k at the identity point is isomorphic

to the space of regular vector fields H0(X,ΘX/k). All of this can be
found, for example, in [44].

It is known that in the case of an Enriques surface dimH0(S,ΘS/k) ≤
1 and the equality takes place only if p = 2 and S is an α-surface or an
exceptional classical Enriques surface, the latter surfaces were described
in [29].

Theorem 3. Let S be an Enriques surface. Then dimAut0S/k = 0.

If h0(ΘS/k) = 0, then AutS/k is reduced and Aut0S/k is trivial.

Proof. The second assertion follows immediately from the discus-
sion in above. Suppose H0(S,ΘS/k) �= 0. If AutS/k is reduced then

Aut0S/k is a one-dimensional connected algebraic group G over k. There
are three possibilities: G = Gm,Ga, or G is an elliptic curve. A con-
nected algebraic group acts trivially on the Néron-Severi group of S.
Since S has a non-trivial genus one fibration with some rational fibers,
the group G preserves the set of singular fibers, and being connected,
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preserves any singular fiber. If G is an elliptic curve, then G must fix
any point x on a singular fiber. Thus G acts linearly on any mk

S,x/m
k+1
S,x ,

and being complete, it act trivially. This implies that G acts trivially
on the completion of the local ring OS,x, hence on the ring itself, hence
on its fraction ring, hence on S.

Suppose G is a linear group of positive dimension acting on an ir-
reducible algebraic variety X. We can always choose a one-dimensional
subgroup of G and assume that it acts freely on X. Then, by Rosen-
licht’s Theorem, there exists a G-invariant open subset U of X such that
the geometric quotient U → U/G exists and its fibers are orbits of G. As
is well-known this implies that U is a principal homogenous space over
U/G (see, for example, [50], Proposition 0.9). Thus U , and hence X, is
a ruled variety, i.e. it is birationally isomorphic to P1 × U/G. Applying
this to S, we find a contradiction. Q.E.D.

Enriques himself realized that Aut(S) is an infinite discrete group.
In his paper [31] of 1906 he remarks that any S containing a general
pencil of elliptic curves has infinite automorphism group. The paper
ends with the question whether there exists a special degeneration of
the sextic model such that the group of automorphisms is finite.

A usual way to investigate Aut(S) is to consider its natural repre-
sentation by automorphisms of some vector space or of an abelian group.
In our case, this would be Num(S). Since automorphisms preserve the
intersection form, we have a homomorphism

ρ : Aut(S) → O(Num(S)) ∼= O(E10).

From now on, we fix an isomorphism Num(S) ∼= E10 and identify these
two lattices. Since automorphisms preserve the ample cone in Num(S),
the image does not contain −1E10 , hence it is contained in the preimage
WS of the reflection group W (E10) in O(Num(S)). It is a subgroup of
O(Num(S)) generated by reflections in numerical divisor classes x with
x2 = −2. The kernel of ρ preserves the set {h, h + KS}, where h is a
very ample divisor class. Thus it preserves 2h, hence it is contained in a
group of projective automorphisms of some projective space Pn. It must
be a linear algebraic group, hence it is a finite group.

The reduction homomorphism E10 → E10 = E10/2E10 defines a
homomorphism of the groups W (E10) → O+(10,F2). Let

W (E10)(2) := Ker(W (E10) → O+(10,F2)).

It is called the 2-level congruence subgroup of W (E10). The preimage of
W (E10)(2) in WS will be denoted by WS(2). It does not depend on a
choice of an isomorphism WS

∼= W (E10).
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Proposition 4 (A. Coble). The subgroup W (E10)(2) is the smallest
normal subgroup containing the involution σ = 1U ⊕ (−1)E8 for some
(hence any) orthogonal decomposition E10 = U ⊕ E8.

Proof. A proof suggested by Eduard Looijenga and following
Coble’s incomplete proof is computational. It is reproduced in [18],
Chapter 2, §10. The following nice short proof is due to Daniel Allcock.

Let Γ be the minimal normal subgroup containing σ. It is generated
by the conjugates of σ in W = W (E10). Let (f, g) be the standard basis
of the hyperbolic plane U . If α0, . . . , α7 is the basis of E8 corresponding
to the subdiagram of type E8 of the Coxeter diagram of the Enriques
lattice E10, then we may take

f = 3α0 + 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8,

and g = f +α9. The stabilizer Wf of f in W is the semi-direct product
E8 � W (E8) ∼= W (E9), where E9 is the affine group of type E8 and
W (E9) is its Weyl group, the reflection group with the Coxeter diagram
of type T2,3,6. The image φv of v ∈ E8 = U⊥ under the map φ : E8 →
Wf is the transformation

φv : x �→ x− (
v2

2
(f, x) + (v, x))f + (x, f)v.

The inclusion of W (E8) in W (E9) is natural, it consists of compositions
of the reflections in the roots α0, . . . , α7. In particular, any w ∈ W (E8)
acts identically on E⊥

8 = U . The image of σ in W (E9) is equal to
−idE8 ∈ W (E8) ⊂ W (E9). Let us compute the φv-conjugates of σ. If
x ∈ E8, we have

φv ◦ σ ◦ φ−v(x) = φv(σ(x+ (v · x)f))
= φv(−x+ (v · x)f) = (−x+ (v · x)f) + (v · x)f = −x+ 2(v · x)f.

Thus the intersection of Γ with Wf is equal to φ(2E8) : 2. The quotient

Wf/Γ ∩Wf injects into O(Ē10) ∼= O+(10,F2).
Let us consider the subgroup H generated by Wf and Γ. Since

Wf normalizes Γ ∩Wf , the kernel of the homomorphism H → O(Ē10)
coincides with Γ. To finish the proof it suffices to show that H coincides
with the preimage Wf̄ in W of the stabilizer subgroup of the image f̄ of

f in O(Ē10). Indeed, the kernel of Wf̄ → O(Ē10) is equal to W (E10)(2)
and hence coincides with Γ.

Let us consider a sublattice L of E10 generated by the roots
α0, . . . , α8, α

′
9, where α′

9 = α8 + 2g − f . The Dynkin diagram of this
basis is the following
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• • • • • • • •

••

α1 α2 α3 α4 α5 α6 α7 α8

α′
9

α0

Here all the roots, except α′
9, are orthogonal to f . So, H contains

the reflections defined by these roots. Also the root α8−f is orthogonal
to f , and α′

9 is transformed to it under the conjugate of the group
φ(2E8) stabilizing g (instead of f). So H contains sα′

9
too. The Coxeter

diagram contains three subdiagrams of affine types Ẽ8, Ẽ8 and D̃8. The
Weyl group is a crystallographic group with a Weyl chamber being a
simplex of finite volume with 3 vertices at the boundary. This implies
that H has at most 3 orbits of (± pairs) of primitive isotropic vectors in
E10. On the other hand, Wf̄ contains H and has at least three orbits of

them, because the stabilizer of f̄ in O(Ē10) has three orbits of isotropic
vectors (namely, {f̄}, the set of isotropic vectors distinct from f̄ and
orthogonal to f̄ , and the set of isotropic vectors not orthogonal to f̄).
This implies that the set of orbits of primitive isotropic vectors of H and
Wf̄ is the same. Since the stabilizers of f in these two groups are both
equal to Wf , it follows that H = Wf̄ .

Q.E.D.

Theorem 5. Let S be an unnodal Enriques surface. Then ρ :
Aut(S) → WS is injective and the image contains WS(2).

Proof. In the complex case the assertion about the injectivity of
the map follows from the classification of automorphisms that act iden-
tically on Num(S) due to S. Mukai and Y. Namikawa [45], [46]. Without
assumption on the characteristic, one can deduce it from the arguments
in [25].

Consider the linear system |D| = |2E1 + 2E2| with D2 = 8. As was
explained in section 4, it defines a degree 2 map S → D4 ⊂ P4, where D4

is a 4-nodal quartic del Pezzo surface. Let σ be the deck transformation
of the cover and σ∗ = ρ(σ) ∈ WS .

4 It is immediate that σ∗ leaves
invariant the divisor classes of E1 and E2, and acts as the minus identity
on the orthogonal complement of the sublattice 〈E1, E2〉 generated by
E1, E2. The latter is isomorphic to the hyperbolic plane U and U⊥ is
isomorphic to the lattice E8 (sorry for the confusing notation). Now any
conjugate of σ∗ in WS is also realized by some automorphism. In fact,
w · σ∗ · w−1 leaves invariant w(〈E1, E2〉), and the deck transformation
corresponding to the linear system |2w(E1)+2w(E2)| realizes w·σ∗ ·w−1.

4Since S has no smooth rational curves, the cover is a finite separable map
of degree 2.



Enriques surfaces 23

Now we invoke the previous proposition that says that W (E10)(2)
is the minimal normal subgroup of W (E10) containing σ∗.

Q.E.D.

Here is the history of the theorem. We followed the proof of A.
Coble in the similar case when S is a Coble surface. This surface is a
degeneration of an Enriques surface, although I do not know whether
one can deduce the result from Coble’s theorem.

Over C, the proof follows immediately from the Global Torelli Theo-
rem for K3-surfaces. It was first stated by V. Nikulin [51] and, indepen-
dently, by W. Barth and C. Peters [4]. Also the Global Torelli Theorem
implies that the subgroup generated by Aut(S) and the subgroup Wn

S

generated by reflections in the classes of (−2)-curves is of finite index in
WS . In particular, Aut(S) is finite if and only Wn

S is of finite index in
WS . If S has no nonzero regular vector fields, then the same is true in
any characteristic. This follows easily from the proof of Theorem 2.1 in
a recent paper [42].

If k = C, one can show that for a general, in the sense of moduli,
Enriques surface, Aut(S) ∼= W (E10)(2).

The interesting case is when S is a nodal Enriques surface. Over C,
Nikulin proves that, up to finite groups, Aut(S) is determined by the
r or the R-invariant of S. He deduces the following theorem from the
Global Torelli Theorem for K3-surfaces [52].

Theorem 6 (V. Nikulin). Let W (S;Δ+
S ) be the subgroup of WS

leaving invariant the set Δ+
S , and let W (Δ+

S ) be the normal subgroup of

W (S;Δ+
S ) generated by reflections in such curves. Then the homomor-

phism ρ : Aut(S) → W (S;Δ+
S )/W (Δ+

S ) has a finite kernel and a finite
cokernel.

Let r(S) be the r-invariant of S and let 〈r(S)〉 be the subspace of
AS generated by r(S) and RS be the preimage of 〈r(S)〉⊥ under the
reduction modulo 2E map. This is called the Reye lattice of S. An
equivalent definition is

RS = {x ∈ Num(S) : x ·R ≡ 0 mod 2 for any (−2)-curve R}.
Obviously, the action of Aut(S) on S preserves the set of (−2)-curves,
hence preserves the Reye lattice. Thus we have a homomorphism

ρ : Aut(S) → O(RS).

Let ARS = R∨
S/RS be the discriminant group of RS . Since any element

in the image of ρ lifts to an isometry of the whole lattice E10, it must be
contained in the kernel of the natural homomorphism O(RS) → O(ARS ).
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Suppose S is a general nodal Enriques surface. In this case the Reye
lattice RS is a sublattice of Num(S) of index 2. It is isomorphic to the
lattice U ⊕E7 ⊕A1. One can choose a basis defined by δ, E1, . . . , E10 as
above such that the nontrivial coset is equal to the coset of the divisor
class α = δ−2E10. Then RS = {x ∈ E10 : x ·α ∈ 2Z} has a basis formed
by the divisor classes

β0 = δ − E1 − · · · − E4, βi = Ei − Ei+1, i = 1, . . . , 9.

The matrix of the quadratic lattice is equal to −2I10 + B, where B is
the incidence matrix of the graph:

• • • • • • • • •

•

β2 β3 β4 β5 β6 β7 β8 β9β1

β0

Fig. 3. Reye lattice

We denote this quadratic lattice by E2,4,6 and call it the Reye lattice.
Note that the Reye lattice is 2-reflective, i.e. the subgroup

Ref2(E2,4,6) generated by reflections in vectors α with α2 = −2 is of
finite index in the orthogonal group (see [26], Example 4.11). How-
ever, it is larger than the Weyl group W2,4,6 of the lattice E2,4,6 gen-
erated by reflections in the vectors βi. The former group is gener-
ated by the reflections sβi and the vector r = f − β9, where f =
2β0 + β1 + 2β2 + 3β3 + 4β4 + 3β5 + 2β6 + β7 is an isotropic vector.
We have r · β9 = 2 and r · βi = 0, i �= 9. The Coxeter graph of the full
2-reflection group of E2,4,6 is the following:

• • • • • • • • • •

•

β2 β3 β4 β5 β6 β7 β8 β9β1

β0

r

Since Ref2(E2,4,6) is of finite index in O(E2,4,6), and since E2,4,6

is of finite index in E10, it is of finite index in W (E10). In particular,
the 2-level congruence subgroup of Ref2(E2,4,6)(2) is of finite index in
W (E10). If we choose an isomorphism RS → E2,4,6 such that r represents
the class of a (−2)-curve, then the image of Wn

S is a normal subgroup
of Ref2(E2,4,6)(2) and the quotient is isomorphic to the 2-level subgroup
of W2,4,6.

If S admits a K3-cover, then Nikulin’s r-invariant ΔS
+

consists of
one element. The set Δ+

S consists of vectors of norm −2 in the unique
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coset in Num(S) that contains a (−2)-curve. If k = C, applying Nikulin’s
Theorem 6, we obtain, that, up to a finite group, Aut(S) is isomorphic
to W2,4,6.

The next theorem gives a much more precise result about the struc-
ture of the group of automorphisms of a general nodal Enriques surface.

Since RS has discriminant group isomorphic to (Z/2Z)2, its reduc-
tion modulo 2RS is a quadratic vector space. with 2-dimensional radical.
The radical is generated by the cosets of r and β0 + β1 + β3. and its
orthogonal group is isomorphic to G = 28 � Sp(8,F2). It is known that
the homomorphism W (RS) → G is surjective [14], [34]. Let W (RS)(2)

′

be equal to the pre-image of the subgroup 28. Obviously it contains the
2-level congruence subgroup W (RS)(2) as a subgroup of index 28.

Theorem 7. Let S be a general Enriques surface and ρ : Aut(S) →
W (RS) be its natural representation. Then the kernel of ρ is trivial, and
the image is equal to W (RS)(2)

′.

Proof. Consider the following sublattices of E2,4,6.

• L1 = 〈β0, . . . , β6〉. It isomorphic to E7 and L⊥
1
∼= A1 ⊕ U .

• L2 = 〈β0, β2, . . . , β7〉. It is isomorphic to E7 and L⊥
2

∼= A1 ⊕
U(2).

• L3 = 〈β0, β2, . . . , β8〉. It is isomorphic to E8 and L⊥
3

∼= A1 ⊕
A1(−1).

Define the following involutions of T2,4,6:

• K = −idL1 ⊕ idL⊥
1
;

• G = (−idL2 ⊕ idL⊥
2
) ◦ sβ9 ;

• B = −idL3 ⊕ idL⊥
3
;

One proves in [18], again following A. Coble, that the minimal
normal subgroup 〈〈B,K〉〉 containing B,K coincides with W (RS)(2)
and together with G, the three involutions K,B,G normally generate
W (RS)(2)

′.5 It remains to show that all of these involutions and their
conjugate can be realized by automorphisms of S.

The involution K is realized by the deck transformation of the dou-
ble cover S → C3 of a cubic surface C3 defined by a linear system
|2E1 + 2E2 −R|, where E1, E2 are half-fibers with E1 ·E2 = 1 and R is
a smooth rational curve with R ·E1 = R ·E2 = 0. One can show that it
always exists.

5The computational proof from [18] can now be replaced by a conceptual
proof due to D. Allcock (Congruence subgroups and Enriques surface automor-
phisms, math.AG.arXiv:1601.00103).
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The involution B is realized by the deck transformation of the double
cover S → D′ onto a degenerate 4-nodal quartic del Pezzo surface defined
by the linear system |4E1 + 2R|, where E1 is a half-fiber and R is a
smooth rational curve with E1 ·R = 1.

Finally, the involution G is realized by the double cover S → D
defined by the linear system |2E1 + 2E2| which we considered in the
previous discussion. Note that G ∈ W (E10)(2) but does not belong to
W (RS)(2). Q.E.D.

The letters B, G and K here stand for E. Bertini, C. Geiser and S.
Kantor. The K3-cover π : X → S of a general nodal Enriques surface
is birationally isomorphic to a quartic symmetroid Y . This is a quartic
surface in P3 with 10 nodes, its equation is given by the determinant of a
symmetric matrix with entries linear forms in the projective coordinates.
The surface X admits a birational map σ : X → Y , so it is a minimal
resolution of Y . Let Q1, . . . , Q10 be the exceptional curves and H is
the class of a pre-image of a plane section of Y . For a general X,
the Picard group of X is generated by H,Qi and H ′ such that 2H ′ ∼
3H −Q1 − · · ·−Q10. The orthogonal complement of the divisor class of
2H −Q1 − · · · −Q10 is isomorphic to π∗(RS) ∼= RS(2). The involutions
K, B, and G are induced by a Cremona involution of P3 that leave Y
invariant. Let us describe them.

The Kantor involution is defined by the linear system |Q| of quartics
through the first 7 nodes p1, . . . , p7 of the symmetroid. This linear sys-
tem defines a degree 2 rational map P3 ��� Σ ⊂ P6, where Σ is a cone
over the Veronese surface in P5. We consider the elliptic fibration on
the blow-up P̃3 of 7 points of P3 defined by the net of quadrics through
the seven points. It has the negation birational involution defined by the
eighth base point. If we take a quartic elliptic curve E through p1, . . . , p7
passing through a point p, then a quartic surface from the linear system
|Q| that contains p intersects E at one more point p′. This defines an
involution on E, p �→ p′. The set of fixed points is the set of quartics
from |Q| that has an eight node. Thus the three remaining nodes of the
symmetroid are fixed and this makes the symmetroid invariant. Note
that the birational Kantor involution of P3 is an analog of the Bertini
involution of the plane.

The other two involutions are dilated Bertini and Geiser involutions
of the plane. They extend these involutions to the three dimensional
space.
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The classification of finite subgroups of Aut(S) is far from being
complete. We do not even know what is the list of possible automor-
phism groups of an unnodal Enriques surface. However, we can mention
the following result (explained to me by Daniel Allcock).

Theorem 8. Let G be a finite non-trivial subgroup contained in
WS(2). Then it is a group of order 2, and all such subgroups are con-
jugate in WS. The quotient S/G is isomorphic to a 4-nodal quartic del
Pezzo surface.

Proof. We identify Num(S) with the lattice E10. Suppose G con-
tains an element σ of order 2. Then V = E10⊗Q splits into the orthogo-
nal direct sum of eigensubspaces V+ and V− with eigenvalues 1 and −1.
For any x = x+ + x− ∈ E10, x+ ∈ V−+, x− ∈ V−, we have

σ(x)± x = (x+ − x−)± (x+ + x−) ∈ 2E10.

This implies 2x± ∈ 2E10, hence x± ∈ E10 and the lattice E10 splits into
the orthogonal sum of sublattices V+ ∩ E10 and V− ∩ E10. Since E10

is unimodular, the sublattices must be unimodular. This gives V+ ∩
E10

∼= U or E8 and V− ∩ E10
∼= E8 or U , respectively. Since σ = g∗

leaves invariant an ample divisor, we must have V+ ∩ E10
∼= U . Thus

σ = 1U + (−1)E8 and hence σ = g∗ for some deck transformation of
S → D.

Suppose G contains an element σ of odd order m. Then σm − 1 =
(σ − 1)(1 + σ + · · · + σm−1) = 0, hence, for any x �∈ 2E10 which is not
σ-invariant, we have

x+ σ(x) + · · ·+ σm−1(x) ≡ mx mod 2E10.

Since m is odd, this gives x ∈ 2E10, a contradiction.
Finally, we may assume that G contains an element of order 2k, k >

1. Then it contains an element σ of order 4. Let M = Ker(σ2+1) ⊂ E10.
Since σ2 = −1E8 ⊕1U for some direct sum decomposition E10 = E8⊕U ,
we obtain M ∼= E8. The equality (σ2 + 1)(σ(x)) = σ3(x) + σ(x) =
−(σ2 + 1)(x), implies that σ(M) = M . Consider M as a module over
the principal ideal domain R = Z[t]/(t2 + 1). Since M has no torsion,
it is isomorphic to R⊕4. This implies that there exists v, w ∈ M such
that σ(v) = w and σ(w) = −v. However, this obviously contradicts our
assumption that σ ∈ W (E10)(2). Q.E.D.

Over C one can use the coarse moduli space of Enriques surfaces to
show that a general (resp. general nodal) Enriques surface has automor-
phism group isomorphic to W (E10)(2) (resp. W2,4,6(2)

′). I believe that
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the same is true in any characteristic but I cannot prove it (except in
the case of μ2-surfaces or general unnodal surface if p �= 2).

In any case if p �= 2, the image of the automorphism group Aut(S)
in W (E10) is not the whole group. This is because W (E10) contains a
subgroup isomorphic to W (E8) and the known information about finite
groups of automorphisms of K3-surfaces shows that the order of this
group is too large to be realized as an automorphism group of a K3-
surface and hence of an Enriques surface.

When the root invariant of an Enriques surface becomes large, the
automorphism group may become a finite group. The first example of
an Enriques surface with a finite automorphism group isomorphic to S4

belongs to G. Fano [33]. However, I failed to understand Fano’s proof.
An example of an Enriques surface with automorphism group isomorphic
to the dihedral group D4 of order 8 was given in my paper [20]. At
that time I did not know about Fano’s example. Later on all complex
Enriques surfaces with finite automorphism groups were classified by
Nikulin [51] (in terms of their root invariant RS and by S. Kondō [38]
by explicit construction). There are seven classes of such surfaces with
automorphisms groups

D4, S4, 24 �D4, 2
2 � (Z/4Z � Z/5Z), Z/2Z �S4,S5, S5.

Their Nikulin R-invariants are, respectively,

(E8 ⊕A1, {0}), (D9, {0}), (D8 ⊕A⊕2
1 ,Z/2Z),

(D5 ⊕D5,Z/2Z), (E7 ⊕A2 ⊕A1,Z/2Z), (E6 ⊕A4, {0}), (A9 ⊕A1, {0}).
Note that Kondō’s classification works in any characteristic �= 2 and
there are more examples in characteristic 2 (see [25]).

We refer to the latest works in progress of H. Ito, S. Mukai and
H.Ohashi on the classification of finite groups of automorphisms of com-
plex Enriques surfaces [47], [48], [49], [36]. Note, that, via equivariant
lifting an Enriques surface to characteristic 0, the classification is the
same in all characteristics except when p = 2 and S is an μ2 or an
α2-surface (see [25], Theorem 2). Another remark is that any finite
subgroup of W (E10) is conjugate to a subgroup of W (R), where R is a
negative root lattice corresponding to some subdiagram of the Dynkin
diagram of the root basis α0, . . . , α9 [11], Chapter V, §4, Exercise 2. The
types of maximal subdiagrams with this property are

D9, A1+A8, A1+A2+A6, A4+A5, D5+A4, E6+A3, E7+A2, E8+A1, A9.
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This implies that the image of a finite subgroup G of Aut(S) in W (E10)
is isomorphic to a subgroup of W (R), where R is one of the above root
systems.

To conclude our survey let me refer to my earlier surveys of the
subject [22], [23]. Sadly, many of the problems of the theory discussed
in these surveys remain unsolved.
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