
Advanced Studies in Pure Mathematics 78, 2018

Singularities in Generic Geometry

pp. 449–469

Weierstrass-type representations for
timelike surfaces

Masashi Yasumoto

Abstract.

In this paper we give the Weierstrass-type representation for
Lorentz conformal minimal surfaces in Minkowski 3-space that was de-
rived by Konderak, and a new one for Lorentz conformal constant mean
curvature 1 surfaces in anti de Sitter 3-space, using integrable systems
techniques. As an application, we analyze their singularities. Finally,
we describe first steps toward discretization of these timelike surfaces.

§1. Introduction

The study of zero mean curvature (ZMC, for short) surfaces in
Minkowski 3-space R2,1 is one recent topic of research on the differ-
ential geometry of surfaces. Kobayashi [11] derived a Weierstrass-type
representation for conformal immersions with mean curvature identi-
cally 0 in R

2,1, called conformal maximal surfaces. Magid [16] derived
a Weierstrass-type representation for timelike immersions with mean
curvature identically 0 and null coordinate systems, which are called
timelike minimal surfaces in R2,1, and Inoguchi, Toda [9] derived its
normalized version using a loop groups formulation, which is closely
related to integrable systems techniques. Unlike the case of minimal
surfaces in Euclidean 3-space R3, ZMC surfaces in R

2,1 have certain sin-
gularities (see [6], [7], [18], [20] for example). Very recently, Akamine [1]
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analyzed behaviors of two null curves generating a timelike minimal sur-
face and its Gaussian curvature near singular points.

Stepping away from ZMC surfaces in R2,1, here we also see timelike
constant mean curvature (CMC, for short) surfaces in other Lorentzian
spaceforms. As mentioned in [14], there exists a correspondence be-
tween timelike CMC surfaces in different Lorentzian spaceforms, which
is called the Lawson-type correspondence. In particular, there exists a
Lawson-type correspondence between timelike minimal surfaces in R

2,1

and timelike CMC 1 surfaces in anti de Sitter 3-space H
2,1. So, like in

the case of conformal CMC 1 surfaces in H3 (see [3], [19] for example),
it is natural to expect that there exists a Weierstrass-type represen-
tation for timelike CMC 1 surfaces in H2,1. In fact, Lee [14] derived
the Weierstrass-type representation for timelike CMC 1 surfaces in H

2,1

parametrized by null coordinate systems.
In the “smooth” (or, continuous) case, we can reparametrize sur-

faces. In particular, we can reparametrize timelike surfaces with null
coordinate systems to timelike surfaces with Lorentz conformal coordi-
nate systems (see [9] for example). However, as typified by the work in
[2], it is generally difficult to reparametrize discrete surfaces (cf. [8]).
For this reason, when discretizing surfaces, we would like to find suitable
coordinate systems that are compatible with discretization. In [21], we
describe discrete surfaces with Lorentz conformal curvature line coordi-
nate systems in R

2,1 called discrete timelike isothermic surfaces. In the
case of isothermic surfaces, away from umbilic points, CMC (possibly,
zero mean curvature) surfaces can be reparametrized to be isothermic.
In contrast to that, timelike minimal and CMC surfaces are not neces-
sarily timelike isothermic. As mentioned in [15], there are three kinds of
Lorentz isothermic surfaces, so discretizing the other cases is a remaining
problem.

In this paper, as preparation for [21], we derive a Weierstrass-type
representation for timelike minimal surfaces in R

2,1 parametrized by
Lorentz conformal coordinate systems (Lorentz conformal minimal sur-
faces in R

2,1, for short) via integrable systems techniques. Using para-
complex analysis introduced in [10], we derive the Lax pair for Lorentz
conformal CMC surfaces in R

2,1 and H
2,1 in Propositions 3.1, 5.1. As an

application, we obtain the Weierstrass-type representations for Lorentz
conformal minimal surfaces in R

2,1 (see Theorem 1), which was derived
by Konderak [13], and for Lorentz conformal CMC 1 surfaces in H2,1 (see
Theorem 2). Furthermore, we analyze the singularities of these surfaces.
In the case of Lorentz conformal minimal surfaces in R2,1, Takahashi [18]
gave explicit criteria for cuspidal edge singularities, swallowtail singular-
ities and cuspidal cross cap singularities to appear (see Theorem 3 here).
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Here we introduce an alternative proof of this. In addition, we give ex-
plicit criteria for the same types of singularities to appear on Lorentz
conformal CMC 1 surfaces in H2,1, in Theorem 4. In the last appen-
dix, we briefly introduce discrete timelike isothermic surfaces in R

2,1. In
particular, we introduce the Weierstrass-type representation for discrete
timelike isothermic minimal surfaces in R

2,1.

§2. Lorentz conformal CMC surfaces in R
2,1

First we consider Lorentz conformal CMC surfaces in R2,1 using Lax
pairs. In this section we introduce 3×3 Lax pairs for Lorentz conformal
CMC surfaces in R2,1 and derive the compatibility condition for Lorentz
conformal CMC surfaces in R

2,1. Let

R
n,1 :=

({x = (x1, · · · , xn, x0)
t;xi ∈ R}, 〈·, ·〉)

be the (n+1)-dimensional Minkowski space with Lorentz metric 〈x, y〉 =
x1y1+ · · ·+xnyn−x0y0, and let C′ be the set of para-complex numbers,
that is,

C
′ := {a+ j′b; a, b ∈ R, j′: non-real s.t. (j′)2 = +1},

where j′ is called the para-complex imaginary unit. Then C′ can be
identified with the Minkowski plane R

1,1 by the identification

R1,1 −→ C′

∈ ∈

(x, y) �−→ x+ j′y
.

Let g : Σ(⊂ C
′) → C

′ be a map. Take z = x + j′y ∈ Σ and set ∂z :=
1

2
(∂x + j′∂y) , ∂z̄ :=

1

2
(∂x − j′∂y), then g is a p-holomorphic function

if gz̄ = ∂z̄g = 0 holds, that is, the Cauchy-Riemann type equation holds
(see Theorem V.1 in [10]). In this paper we abbreviate |z|2∗ := zz̄ for
z ∈ C′.

Let f : Σ ⊂ C
′ → R

2,1 be a Lorentz conformal immersion satisfying

〈fz, fz〉 = 〈fz̄, fz̄〉 = 0, 〈fz, fz̄〉 = 2e2u

and N : Σ → S
1,1 its spacelike unit normal vector field, where

S
1,1 := {X ∈ R

2,1; 〈X,X〉 = 1},
and u : Σ → R is a real-valued function. In the above equation, 〈·, ·〉
denotes the split-complex bilinear extension of the usual R2,1 Lorentz
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inner product (which is no longer an actual Lorentz inner product). The

mean curvature H of f is H =
1

2
e−2u〈fzz̄, N〉. Setting Q := 〈fzz, N〉,

we have

〈fz, fzz〉 = 〈fz, fzz̄〉 = 〈fz̄, fzz̄〉 = 〈fz̄, fz̄z̄〉 = 〈N,Nz〉 = 〈N,Nz̄〉 = 0,

〈fz̄, fzz〉 = 4uze
2u, 〈fz, fz̄z̄〉 = 4uz̄e

2u, 〈Nz, fz〉 = −Q,

〈Nz̄, fz̄〉 = −Q̄, 〈N, fzz̄〉 = −〈Nz, fz̄〉 = −〈Nz̄, fz〉 = 2He2u,

where Q is called the (coefficient of the) Hopf differential of f . The
Hopf differential will play an important role in distinguishing the three
types of Lorentz conformal immersions in Appendix A. Then we have
the following Gauss-Weingarten type equations:

fzz = 2uzfz +QN, fzz̄ = 2He2uN,

fz̄z̄ = 2uz̄fz̄ + Q̄N, Nz = −1

2
(2Hfz +Qe−2ufz̄),

Nz̄ = −1

2
(2Hfz̄ + Q̄e−2ufz).

Here we define e1 := (fz + fz̄)/(2e
u), e2 := j′(fz − fz̄)/(2e

u) and then
F := (N, e1, e2) is an orthogonal frame of the surface satisfying

Fz = F(Θ + Υz), Fz̄ = F(Θ̄ + Υz̄) with

Θ =

⎛
⎝ 0 α β
−α 0 0
β 0 0

⎞
⎠ , Υ =

⎛
⎝0 0 0
0 0 j′u
0 j′u 0

⎞
⎠ , where

α =
1

2
(Qe−u + 2Heu), β =

j′

2
(Qe−u − 2Heu).

The compatibility condition Fzz̄ = Fz̄z gives

4uzz̄ + 4H2e2u − e−2uQQ̄ = 0 (Gauss),

Qz̄ = 2Hze
2u (Codazzi).

The Codazzi equation implies that Q is p-holomorphic when H is con-
stant. Henceforth, we assume that H is constant.

§3. The 2 × 2 Lax pair for timelike CMC surfaces

Here we identify each element in R
2,1 as follows:

(1)

R2,1 −→ su′2

∈ ∈

(x1, x2, x0) �−→
(

j′x1 −j′x2 − x0

−j′x2 + x0 −j′x1

) ,
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where su′2 is the Lie algebra of the Lie group

SU′
2 :=

{(
a b
−b̄ ā

)
; a, b ∈ C

′, |a|2∗ + |b|2∗ = 1

}
.

Then the metric becomes 〈X,Y 〉 = 1

2
trace(XY ), with X and Y identi-

fied with the matrix forms above. So the metric does not change under
the adjoint action X �→ FXF−1, Y �→ FY F−1. Now, the adjoint action

F

(
j′x1 −j′x2 − x0

−j′x2 + x0 −j′x1

)
F−1

(
F =

(
a+ j′b c+ j′d
−c+ j′d a− j′b

)
∈ SU′

2

)
induces the associated linear map

(x1, x2, x0)
t �→ A(x1, x2, x0)

t, where

A =

⎛
⎝a2 − b2 − c2 + d2 −2ac+ 2bd −2bc+ 2ad

2ac+ 2bd a2 + b2 − c2 − d2 2ab+ 2cd
2bc+ 2ad 2ab− 2cd a2 + b2 + c2 + d2

⎞
⎠

∈ SO+
2,1 :=

{
M = (aij) ∈ SL3R;MI ′M t = I ′, a33 > 0

}
,

with I ′ =

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠. Let F ∈ SU′

2 be the matrix satisfying

e1 = F

(
0 −j′

−j′ 0

)
F−1, e2 = F

(
0 −1
1 0

)
F−1, N = F

(
j′ 0
0 −j′

)
F−1.

Then,

fz = −2j′euF
(
0 1
0 0

)
F−1, fz̄ = −2j′euF

(
0 0
1 0

)
F−1.

Set U := F−1Fz =

(
U11 U12

U21 U22

)
, V := F−1Fz̄ =

(
V11 V12

V21 V22

)
. Our

task here is to compute U and V explicitly. The compatibility condition
fzz̄ = fz̄z gives U12 = −V21, uz + U22 − U11 = 0, uz̄ + V11 − V22 = 0.
And the condition fzz̄ = 2He2uN implies U12 = −V21 = −Heu. By
conditions fzz = 2uzfz + QN, fz̄z̄ = 2uz̄fz̄ + Q̄N , we have U21 =
1
2Qe−u, V12 = − 1

2 Q̄e−u. Finally, by the trace-free conditions of U and
V , we conclude the following proposition, which is called the 2× 2 Lax
pair for timelike CMC surfaces:

Proposition 3.1. For some Fz0∈Σ ∈ SU′
2, we have the solution

F ∈ SU′
2 by solving Fz = FU, Fz̄ = FV , where Fz = FU, Fz̄ = FV ,

and

U =
1

2

(
uz −2Heu

Qe−u −uz

)
, V =

1

2

( −uz̄ −Q̄e−u

2Heu uz̄

)
.
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§4. Weierstrass-type representation for Lorentz conformal
minimal surfaces in R

2,1

Applying the Lax pair for timelike CMC surfaces, we will derive a
Weierstrass-type representation for Lorentz conformal minimal surfaces
in R2,1. Defining functions a, b : Σ → C′ such that

F = e−
u
2

(
a b̄
−b ā

)
(aā+ bb̄ = eu),

one can compute that

Fz̄ =
e−u/2

2

(−uz̄a+ 2az̄ −uz̄ b̄+ 2b̄z̄
uz̄b− 2bz̄ −uz̄ā+ 2āz̄

)
.

On the other hand, by Proposition 3.1, we have

FV =
e−u/2

2

(−uz̄ j′Q̄e−ua+ uz̄ b̄
uz̄b −j′Q̄e−ub+ uz̄ā

)
.

So, az̄ = bz̄ = 0. Thus, a and b are p-holomorphic functions. Now,

fz = −2j′euF
(
0 1
0 0

)
F−1 = −2j′

(
ab a2

−b2 −ab

)
.

Then we have fz = (−2ab, a2 − b2, j′(a2 + b2))t in the standard R
2,1

coordinate via the identification (1). Here we introduce the following
lemma, which immediately follows from the Cauchy-Riemann type equa-
tion (compare with Remark 3.4.2 in [5]).

Lemma 4.1. For any real-valued φ : Σ → R and p-holomorphic
function Ψ : Σ → C′,

ψz = Ψz ⇔ ψ = ReΨ + c (c : constant).

Using Lemma 4.1, we have Re

∫
fzdz =

1

2
f +−→c for some constant

−→c ∈ R
2,1. Then,

f = 2Re

∫
(−2ab, a2 − b2, j′(a2 + b2))tdz

= Re

∫
(2g, 1− g2,−j′(1 + g2))tω,

where g = a/b and ω = −2b2dz = ω̂dz (ω̂ := −2b2). Note that, by
holomorphicity of a and b, g is a p-meromorphic function and ω is a
p-holomorphic 1-form. Thus we have the following theorem, which was
already described by Konderak [13]:
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Theorem 1. Let (g, ω) be a pair consisting of a p-meromorphic
function and a p-holomorphic 1-form. Then a Lorentz conformal mini-
mal surface f in R2,1 can be locally constructed by

(2) f = Re

∫
(2g, 1− g2,−j′(1 + g2))tω

with metric (1 + gḡ)ωω̄. Conversely, any Lorentz conformal minimal
surface f in R

2,1 is locally described in this manner.

Remark. We have three remarks here:

• The coefficient ω̂ of ω is a map from Σ to {X ∈ C
′; |X|2∗ >

0, ReX < 0}. On the other hand, even when ω̂ takes values
in {X ∈ C

′; |X|2∗ > 0, ReX > 0}, f is still Lorentz conformal
minimal.

• When ω̂ takes values in {X ∈ C
′; |X|2∗ < 0}, f is still Lorentz

conformal minimal, but causalities of fx and fy switch. This
can be interpreted as follows: When |ω̂|2∗ < 0, we set g̃ := j′g
and ω̃ := j′ω. Then Equation (2) can be rewritten as

(3) f = Re

∫ (
2g̃, j′(1− g̃2),−1− g̃2

)t
ω̃.

The metric of f is −(1 − |g̃|2∗)2|ω̃|2∗. That form is the same
as the Weierstrass-type representation for Lorentz conformal
minimal surfaces in R

2,1 derived in [18]. Also in our approach,
if we assume that 〈fz, fz̄〉 = −2e2u in Section 2, we have the
same form as in Equation (3).

• Let f be a Lorentz conformal minimal surface given as in The-

orem 1. Then a surface f � := Im

∫
(2g, j′(1 − g2),−1 − g2)tω

is also a Lorentz timelike minimal surface with metric −(1 +
gḡ)ωω̄. The f � given in this way is called the conjugate Lorentz
conformal minimal surface of f .

Here we see the Gauss map N of a Lorentz conformal minimal sur-
face f described by Equation (2). N is described as follows:

N = F

(
j′ 0
0 −j′

)
F−1 = j′e−u

(|a|2∗ − |b|2∗ −2ab̄
−2āb −|a|2∗ + |b|2∗

)
.

Thus we have N =
1

1 + gḡ
(−1 + gḡ, 2Re(g), 2Im(g))t. This tells us that

the Gauss maps of Lorentz conformal timelike minimal surfaces can be
expressed via the inverse of stereographic projection of g.
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§5. Lorentz conformal CMC surfaces in H2,1

Here we consider Lorentz conformal CMC surfaces in H
2,1. Let

R2,2 := ({x = (x1, x2, x3, x4)
t;xi ∈ R}, 〈·, ·〉∗) be the 4-dimensional

Lorentz space with metric 〈x, y〉∗ = x1y1 + x2y2 − x3y3 − x4y4. Then

H
2,1 := {x ∈ R

2,2; 〈x, x〉∗ = −1}
denotes the 3-dimensional anti de Sitter space. Let f : Σ → H2,1 be
a Lorentz conformal immersion satisfying 〈fz, fz〉∗ = 〈fz̄, fz̄〉∗ = 0,
〈fz, fz̄〉∗ = 2e2u. Here N : Σ → S1,2 denotes the unit normal vec-
tor field satisfying 〈f,N〉∗ = 〈fz, N〉∗ = 〈fz̄, N〉∗ = 0, where S

1,2 :=
{x ∈ R2,2; 〈x, x〉∗ = 1}. By a similar computation as in Section 2, we
have

fzz = 2uzfz +QN, fzz̄ = −2e2uf − 2He2uN,

fz̄z̄ := 2uz̄fz̄ + Q̄N, Nz = −1

2
(2Hfz +Qe−2ufz̄),

Nz̄ = −1

2
(2Hfz̄ + Q̄e−2ufz).

Setting F := (f, fz, fz̄, N), we have Fz = FU , Fz̄ = FV , where

U =

⎛
⎜⎜⎝
0 0 2e2u 0
1 2uz 0 −H
0 0 0 − 1

2Qe−2u

0 Q 2He2u 0

⎞
⎟⎟⎠ ,

V =

⎛
⎜⎜⎝
0 2e2u 0 0
0 0 0 − 1

2 Q̄e−2u

1 0 2uz̄ −H
0 2He2u Q̄ 0

⎞
⎟⎟⎠ .

The compatibility condition Fzz̄ = Fz̄z gives

4uzz̄ + 4e2u(H2 − 1)−QQ̄e−2u = 0 (Gauss equation),

Qz̄ = 2Hze
2u (Codazzi equation).

From here, we consider 2× 2 Lax pairs for Lorentz conformal CMC
surfaces in H

2,1. First we identify

R2,2 −→
{(

x1 + x4 x3 − j′x2

x3 + j′x2 x1 − x4

)
;xi ∈ R

}

∈ ∈

x = (x1, x2, x3, x4)
t �−→ X =

(
x1 + x4 x3 − j′x2

x3 + j′x2 x1 − x4

)
,
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and the Lorentz metric becomes

〈X,Y 〉R2,2 = −1

2
trace

(
X

(
0 −1
1 0

)
Y

(
0 −1
1 0

))

for X, Y considered in matrix form.
Here we give a description of rigid motions of R

2,2. For a given
point X ∈ R2,2, consider the adjoint action X �→ A · X · Āt, where

A =

(
a b
c d

)
∈ SL2C

′ for a = a1 + j′a2, b = b1 + j′b2, c = c1 + j′c2,

d = d1 + j′d2 with ai, bi, ci, di ∈ R. By a straightforward computation,
one can show that the adjoint action induces the following matrix R:

Lemma 5.1. Set SO2,2 := {G ∈ SL4R;GI ′′Gt = I ′′}, where

I ′′ =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Then, by an adjoint action X �→ A · X · Āt, x, the vector form of X,
maps to R · x, where

R =

⎛
⎜⎜⎝

α1 Im(āb+ c̄d) Re(āb+ c̄d) α2

Im(āc+ b̄d) Re(ād− b̄c) Im(ād+ b̄c) Im(āc− b̄d)
Re(āc+ b̄d) Im(ād− b̄c) Re(ād+ b̄c) Re(āc− b̄d)

α3 Im(āb− c̄d) Re(āb− c̄d) α4

⎞
⎟⎟⎠ ∈ SO2,2

with

α1 =
1

2
(aā+ bb̄+ cc̄+ dd̄), α2 =

1

2
(aā− bb̄+ cc̄− dd̄),

α3 =
1

2
(aā+ bb̄− cc̄− dd̄), α4 =

1

2
(aā− bb̄− cc̄+ dd̄).

Using the matrix form, H2,1 is expressed as

H
2,1 = {X|X = X̄t, 〈X,X〉R2,2 = −1}.

Moreover, we have another expression of H2,1 as in Lemma 5.2. The
proof of Lemma 5.2 is almost the same as the proof of Lemma 5.2.1 in
[5], so here we mention only the result.

Lemma 5.2. H2,1 can be written as

{
A

(
1 0
0 −1

)
Āt;A ∈ SL2C

′
}
.
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In this setting, there exists an F ∈ SL2C
′ such that

f = F

(
1 0
0 −1

)
F̄ t, e1 = F

(
0 −j′

j′ 0

)
F̄ t,

e2 = F

(
0 1
1 0

)
F̄ t, N = FF̄ t,

where e1 :=
fu
2eu

, e2 :=
fv
2eu

. Our task is to determine such F =

F (z, z̄) ∈ SL2C
′. Defining U := F−1Fz =

(
U11 U12

U21 U22

)
, V := F−1Fz̄ =(

V11 V12

V21 V22

)
, we can write

fu = 2j′euF
(
0 −1
1 0

)
F̄ t, fv = 2euF

(
0 1
1 0

)
F̄ t,

and we have

fz = 2j′euF
(
0 0
1 0

)
F̄ t, fz̄ = −2j′euF

(
0 1
0 0

)
F̄ t.

The compatibility condition fzz̄ = fz̄z of f implies that V12 = −V12, uz̄+
V22 + U11 = 0, U21 = −U21. By the condition fzz̄ = 2e2uf + 2He2uN ,
we have V12 = j′eu(1+H), U21 = j′eu(1−H), and the condition fzz =

2uzfz+QN implies U12 = j′

2 Qe−u, uz−U22−V11 = 0, V21 = − j′

2 Q̄e−u,

and also the condition Nz = −Hfz− 1
2Qe−2ufz̄ gives U11 = −V11, U22 =

−V22. In conclusion, we have the following proposition.

Proposition 5.1. For some Fz0∈Σ ∈ SL2C
′, we obtain the solution

F ∈ SL2C
′ by solving Fz = FU, Fz̄ = FV , where

U =
1

2

( −uz j′Qe−u

2j′eu(1−H) uz

)
,

V =
1

2

(
uz̄ 2j′eu(1 +H)

−j′Q̄e−u −uz̄

)
.

Proposition 5.1 implies that we obtain any CMC H surface in H2,1

by solving the equations in Proposition 5.1 and inserting the solution

into f = F

(
1 0
0 −1

)
F̄ t. We should remark that, for any B ∈ SU′

1,1 :={(
p q
q̄ p̄

)∣∣∣∣ p, q ∈ C′, |p|2∗ − |q|2∗ = 1

}
, replacing F in f = F

(
1 0
0 −1

)
F̄ t
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with FB does not change the resulting surface. Like in the case of confor-
mal CMC 1 surfaces in H

3, we would like to determine the B ∈ SU′
1,1 so

that FB is anti p-holomorphic i.e. (FB)z = 0. The condition (FB)z = 0
implies Bz = −UB. Setting W := Bz̄B

−1, we have the following ex-
pression

Bx = (W − U)B, By = −j′(W + U)B.

Then we must choose two matrices W − U, −j′(W + U) ∈ su′1,1 so

that B ∈ SU′
1,1, where su′1,1 is the Lie algebra of SU′

1,1. By a simple
computation, we can show that

W − U, −j′(W + U) ∈ su′1,1 ⇔ W =

(
1 0
0 −1

)
Ū t

(
1 0
0 −1

)
.

Here we assume that H ≡ 1. Then the compatibility condition Uz̄ +

Wz + [U,W ] = 0 for B does hold. Setting B =

(
p q
q̄ p̄

)
∈ SU′

1,1, we

have

(FB)−1(FB)z̄ = B−1

{
V +

(
1 0
0 −1

)
Ū t

(
1 0
0 −1

)}
B

= 2j′eu
(

p̄q̄ p̄2

−q̄2 −p̄q̄

)
.

So (F̄ B̄)−1(F̄ B̄)z = −2j′eu
(

pq p2

−q2 −pq

)
= 2eup2

⎛
⎝ − j′q

p −j′

j′
(

j′q
p

)2
j′q
p

⎞
⎠.

Setting g =
j′q
p
, ω̂ = 2eup2, F̂ = F̄ B̄, and we have

F̂z = F̂

(−g −j′

j′g2 g

)
ω̂.

Setting F̃ := (F̂−1)t, we have F̃z = F̃

(
g −j′g2

j′ −g

)
ω̂. Note that, writing

f̂ = F̂

(
1 0
0 −1

)(
F̂
)t

= (x1, x2, x3, x4)
t in the vector form, we have

f̃ = F̃

(
1 0
0 −1

)(
F̃
)t

= (−x1,−x2, x3, x4)
t. So f̂ and f̃ coincide, up to

a rigid motion of R2,2. In conclusion, replacing F̃ with F , we have the
following theorem, which we call the Weierstrass-type representation for
Lorentz conformal CMC 1 surfaces in H

2,1.

Theorem 2. Any Lorentz conformal CMC 1 surface in H2,1 can be
locally constructed in the following way :
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(1) Solve

Fz = F

(
g −j′g2

j′ −g

)
ω̂

with some initial condition Fz0∈Σ ∈ SL2C
′.

(2) Substitute F in (1) into f = F

(
1 0
0 −1

)
F̄ t.

Furthermore, the metric of f becomes df2 = (1 + |g|2∗)2|ω|2∗dzdz̄.
Like in the case of Lorentz conformal minimal surfaces in R2,1, re-

placing g and ω̂ with j′g and j′ω̂, we have another expression for the
Weierstrass-type representation for Lorentz conformal CMC 1 surfaces
in H

2,1, as follows:

Proposition 5.2. Any Lorentz conformal CMC 1 surface in H
2,1

can be locally constructed in the following way :

(1) Solve

Fz = F

(
g −g2

1 −g

)
ω̂

with some initial condition Fz0∈Σ ∈ SL2C
′.

(2) Substitute F in (1) into f = F

(
1 0
0 −1

)
F̄ t.

Furthermore, the metric of f becomes df2 = −(1− |g|2∗)2|ω̂|2∗dzdz̄.
Like in the case of conformal CMC 1 surfaces in 3-dimensional de

Sitter space, surfaces described by Theorem 2 (or Proposition 5.2) gen-
erally have singularities. Their singularities are analyzed in Section 7.

§6. Singularities of Lorentz conformal minimal surfaces in R
2,1

Here we analyze singularities of Lorentz conformal minimal surfaces
in R

2,1. Note that surfaces described by Equation (2) are locally Lorentz
conformal minimal immersions in R2,1, but this is not the case globally.
In fact, the following proposition holds.

Lemma 6.1. Let f be a surface in R
2,1 given by Equation (2).

Then, away from |ω|2∗ = 0, f has singularities if and only if |g|2∗ = −1.

Proof. By a direct computation, we have

fx =

(
gω + ḡω̄,

1

2
(ω + ω̄ − g2ω − ḡ2ω̄),−j′

2
(ω − ω̄ + g2ω − ḡ2ω̄)

)t

,

fy = j′
(
gω − ḡω̄,

1

2
(ω − ω̄ − g2ω + ḡ2ω̄),−j′

2
(ω + ω̄ + g2ω + ḡ2ω̄)

)t

.
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Now we regard fx and fy as vectors in R3 and we take the vector product
fx ×R3 fy of fx and fy in R

3. Then we have

fx ×R3 fy = (1 + |g|2∗)|ω|2∗(−1 + |g|2∗, 2Re(g),−2Im(g))t.

Since we assume that |ω|2∗ 
= 0, f has singularities when |g|2∗ = −1.
Q.E.D.

Remark. By the proof of Lemma 6.1, we can take the unit normal
vector field ν : D → S

2 of f , as a surface in R
3, as

(4) ν =
(−1 + |g|2∗, 2Re(g),−2Im(g))t√
(|g|2∗ − 1)2 + 4(Re(g)2 + Im(g)2)

.

Here we introduce useful criteria for an image of a singular point to
be A-equivalent to a cuspidal edge, swallowtail, or cuspidal cross cap,
which was shown in [7], [12] (see also [18], [20]).

Proposition 6.1 ([7], [12]). Let p = γ(0) ∈ D ⊂ R
2 be a non-

degenerate singular point of a front f : D → R3, let γ(t) be a singular
curve around p, and let η(t) be a vector field of null directions along γ(t).
Then we have the following :

(1) The image f(p) is A-equivalent to a cuspidal edge if and only
if η(0) is not proportional to γ̇, where γ̇ = dγ/dt.

(2) The image f(p) is A-equivalent to a swallowtail if and only if
η(0) is proportional to γ̇, and

d

dt
det(γ̇, η(t))

∣∣∣∣
t=0


= 0.

(3) Let f : D → R
3 be a frontal with normal vector field ν, and let

γ(t) be a singular curve on D passing through a non-degenerate
singular point p = γ(0). Then the image f(p) is A-equivalent
to a cuspidal cross cap if and only if
• det(γ̇(0), η(0)) 
= 0,
• det(df(γ̇(0)), ν(0), dν(η(0))) = 0,

• d

dt
det(df(γ̇(0)), ν(0), dν(η(0)))

∣∣∣∣
t=0


= 0.

Applying these useful criteria for such singularities, we give explicit
conditions for cuspidal edge, swallowtail and cuspidal cross cap singu-
larities of Lorentz conformal minimal surfaces to appear, which was ob-
tained by Takahashi [18]:

Theorem 3. Let f : Σ → R2,1 be a surface given by Equation (2),
and let p ∈ Σ be a singular point of f . Then
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(1) f(p) is A-equivalent to a cuspidal edge if and only if

Re

(
g′

g2ω̂

)

= 0, Im

(
g′

g2ω̂

)

= 0,

(2) f(p) is A-equivalent to a swallowtail if and only if

g′

g2ω̂
∈ R \ {0}, Re

{
g

g′

(
g′

g2ω̂

)′}

= 0,

(3) f(p) is A-equivalent to a cuspidal cross cap if and only if

g′

g2ω̂
∈ j′R \ {0}, Im

{
g

g′

(
g′

g2ω̂

)′}

= 0,

where ′ = d/dz.

In [18], Takahashi substituted the Weierstrass-type representation
(3) for another expression as in Theorem 4.3 in [16] (in [18], this ex-
pression is called the real representation for timelike minimal surfaces
in R

2,1). After that, he derived explicit criteria for singularities of time-
like minimal surfaces [16] in R2,1. As a corollary, he showed Theorem 3
here. In this paper we give Theorem 3 more directly. In order to show
Theorem 3, we give the following lemma.

Lemma 6.2. Let f be a surface described by Equation (2) and let
p be a point in Σ. Then f is a front on a neighborhood of p, and p is a

non-degenerate singular point if and only if Re

(
g′

g2ω̂

)

= 0.

Proof. Here we assume that |g|2∗ = −1 and |ω̂|2∗ 
= 0. Then

df =
1

2

(
2,

1

g
− g,−j

(
1

g
+ g

))t

gω +
1

2

(
2,

1

ḡ
− ḡ, j

(
1

ḡ
+ ḡ

))t

ḡω̄

=
1

2

(
2,

1

g
− g,−j

(
1

g
+ g

))t

(gω + ḡω̄)

= (1,−Re(g),−Im(g))t(gω + ḡω̄).

In particular, η =
j

gω̂
gives the null direction at p with the following

identification:

(a, b) ∈ R
2 ↔ z := a+ j′b ∈ C

′ ↔ a∂x + b∂y ↔ z∂z + z̄∂z̄.
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Take ν as in Equation (4), and we have

dν = sgn(Im(g))
j

2
√
2

(
dg

g
− dḡ

ḡ

)
1

(Im(g))2
(Re(g), 1, 0)t.

If dg(p) = 0, the pair (f, ν) : Σ → R
3×S

2 is not immersed. Assume that
dg 
= 0, and we have the null direction of dν at p which is proportional

to μ :=

(
g′

g

)
. On the other hand, f is a front on a neighborhood of p

if and only if η and μ are linearly independent, implying

det(μ, η) = Im(μ̄η) = Im

(
g′

g
· j′

gω̂

)
= Re

(
g′

g2ω̂

)

= 0.

Define the signed area density as follows:

λ := (fx × fy) · ν = (1 + |g|2∗)|ω|2∗
√
(|g|2∗ − 1)2 + 4(Re(g)2 + Im(g)2),

where · in the above equation denotes the ordinary Euclidean inner
product. When p is a singular point, since |g(p)|2∗ = −1, we have

dλ = −2
√
2|Im(g)||ω̂|2∗

(
dg

g
+

dḡ

ḡ

)
.

Thus we have that dλ(p) 
= 0 if and only if dg(p) 
= 0. Therefore, if

Re

(
g′

g2ω̂

)
holds at p, p is non-degenerate, since dg(p) 
= 0. Q.E.D.

Here we go back to the proof of Theorem 3. First we assume that
Re

(
g′/(g2ω̂)

) 
= 0 at a singular point p. This condition implies that
f is a front and p is a non-degenerate singular point. Since the set
of singular points must satisfy |g|2∗ = −1, the singular curve γ(t) with

γ(0) = p satisfies g(γ(t))g(γ(t)) = −1. Differentiating this equation

with respect to t implies Re

(
g′

g
γ̇

)
= 0, where γ̇ :=

dγ

dt
. This implies

γ̇ ⊥
(
g′

g

)
⇒ γ̇ ‖ j′

(
g′

g

)
.

So we can parametrize γ as γ̇(t) = j′
(
g′

g

)
(γ(t)). Applying item (1) in

Proposition 6.1, we have

det(γ̇, η) = Im(γ̇η) = −Im

(
g′

g2ω̂

)

= 0.
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Thus we have proven item (1) in Theorem 3. Next we assume that

Im

(
g′

g2ω̂

)∣∣∣∣
t=0

= 0. Then

d

dt
det(γ̇, η)

∣∣∣∣
t=0

= −Im

{(
g′

g2ω̂

)′
dγ

dt

}

= −Im

{
j′
(

g′

g2ω̂

)′ (
g′

g

)}
= −Re

{(
g′

g2ω̂

)′ (
g′

g

)}

= −
∣∣∣∣g′g

∣∣∣∣
2

∗
Re

{
g

g′

(
g′

g2ω̂

)′}

= 0.

Applying item (2) in Proposition 6.1, we have the condition of item (2)
in Theorem 3. Finally we show item (3) in Theorem 3. First we have

det(γ̇(0), η(0)) = Im(γ̇, η) = −Im

(
g′

g2ω̂

)

= 0,

det(df(γ̇), ν, dν(η)) = Re

(
g′

g2ω̂

)
· ψ0 = 0,

where ψ0 is a smooth function on a neighborhood of p satisfying
ψ0(p) 
= 0. Thus we have the first condition of item (3) in Theorem 3.
By the last condition of item (3) in Proposition 6.1, we have

d

dt
det(df(γ̇), ν, dν(η))

∣∣∣∣
t=0

=
d

dt
Re

(
g′

g2ω̂

)∣∣∣∣
t=0

=

∣∣∣∣g′g
∣∣∣∣
2

∗
Im

{
g

g′

(
g′

g2ω̂

)′}

= 0.

This completes the proof of Theorem 3.

§7. Singularities of Lorentz conformal CMC 1 surfaces in H2,1

Here we introduce our second result about criteria for Lorentz con-
formal CMC 1 surfaces in H2,1. Again we assume that |ω̂|2∗ 
= 0. We
can use the Weierstrass-type representation in Proposition 5.2 to prove
Theorem 4, but we will omit the complete proof, as the following result
is analogous to that of Theorem 3.

Theorem 4. Let f : Σ → H
2,1 be a surface in H

2,1 described by
Proposition 5.2 and let p be a non-degenerate singular point of f . Then
f has singularities if and only if |g(p)|2∗ = 1, and
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(1) f(p) is A-equivalent to a cuspidal edge if and only if

Re

(
g′

g2ω̂

)

= 0, Im

(
g′

g2ω̂

)

= 0,

(2) f(p) is A-equivalent to a swallowtail if and only if

g′

g2ω̂
∈ R \ {0}, Re

{
g

g′

(
g′

g2ω̂

)′}

= 0,

(3) f(p) is A-equivalent to a cuspidal cross cap if and only if

g′

g2ω̂
∈ j′R \ {0}, Im

{
g

g′

(
g′

g2ω̂

)′}

= 0.

Due to the replacement of F̂ with F̃ in Section 5 (see the above
argument for Theorem 2), the proof of Theorem 4 is almost the same as
of Theorem 3.4 in [7], so here we remark on only the differences.

Lemma 7.1. Let f be a surface in H2,1 described by Proposition 5.2.
Away from |ω̂|2∗ 
= 0, f has singular points if and only if |g(p)|2∗ = 1.

Proof. Define ξ := FF̄ t and a 3-form Ω on H2,1 by

Ω(X1,X2,X3) := det(f,X1,X2,X3)

for arbitrary vector fields X1,X2,X3 of H2,1, where f denotes the posi-
tion vector in H

2,1. Then Ω gives a volume element on H
2,1, since

Ω(fx, fy, ξ) = det(f, fx, fy, ξ)

= det

⎛
⎜⎜⎝
0 2Re(gω̂) 2Im(gω̂) 1
0 Im((1− g2)ω̂) Re((1− g2)ω̂) 0
0 Re((1 + g2)ω̂) Im((1 + g2)ω̂) 0
1 0 0 0

⎞
⎟⎟⎠

= (1− |g|2∗)(1 + |g|2∗)|ω̂|2∗.
Note that, unlike the case of CMC 1 faces in S2,1, f might have singu-
larities if |g|2∗ = −1. On the other hand, we can confirm that f does not
have singularities in that case, proving the lemma. Q.E.D.

Except for that point, if we admit the same η and μ as in the case
of Lorentz conformal minimal surfaces in R2,1 (see the proof of Lemma
6.2), the proof of Theorem 4 is almost the same as the one of Theorem
3.4 in [7]. Thus we omit the proof here.
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Finally, we see duality of singularities for Lorentz conformal minimal
surfaces in R

2,1. As a direct consequence of Theorem 3, we immediately
have the following property.

Corollary 7.1 ([18]). Let f be a surface in R2,1 described by Equa-
tion (2), let f � be its conjugate surface and let p be a singular point of f
and f �. Then f(p) is A-equivalent to a swallowtail if and only if f �(p)
is A-equivalent to a cuspidal cross cap.

Remark. Since the criteria for the three types of singularities in
Theorems 3, 4 are exactly the same, the same duality holds in the case
of Lorentz conformal CMC 1 faces in H

2,1.

§Appendix A. Introduction to discrete timelike isothermic
surfaces in R

2,1

In this appendix we briefly introduce discrete timelike isothermic
surfaces in R

2,1. First we define two kinds of smooth timelike surfaces
in R2,1 and H2,1.

Definition A.1. Let f be a timelike immersion into R2,1. Then f
is timelike isothermic (resp. anti isothermic) if f admits Lorentz con-
formal curvature line coordinates (resp. Lorentz conformal asymptotic
coordinates).

Magid [15] considered Lorentz isothermic surfaces in Rn−j,j . As
mentioned in [15], there are three kinds of Lorentz isothermic surfaces
in Rn−j,j . Here we only consider the case n = 2, j = 1. In this case
we can characterize such Lorentz isothermic surfaces in R

2,1 using the
notion of Hopf differential Q (several terminologies can be found in [15]).

Proposition A.1. Let f : D(⊂ C′) → R2,1 be a Lorentz conformal
immersion parametrized by para-complex coordinates z = x + j′y with
spacelike unit normal vector field ν. Then f has an umbilic point at
p ∈ D if and only if Q = 0 at p. Moreover, f is timelike isothermic
(resp. anti isothermic) if and only if Q defined in Section 2 is a non-
zero real function (resp. pure para-imaginary unit times non-zero real
function).

Remark. As mentioned in [15], there is another kind of timelike
isothermic surface, which has not yet been named. Here we refer to
these types of surfaces as timelike surfaces of the third kind. A Lorentz
conformal surface is a timelike surface of the third kind if and only if Q
is (1± j′) times a non-zero real function.
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When f is an umbilic-free timelike isothermic surface, we can
reparametrize f so that Q ≡ 1. In particular, when we consider time-
like isothermic minimal surfaces in R2,1, we can reparametrize Lorentz
conformal minimal surfaces f described by Equation (2) so that Q =
g′ω̂ ≡ 1. So the Weierstrass-type representation for timelike isothermic
minimal surfaces in R

2,1 can be written as

f = Re

∫ (
2g

g′
,
1− g2

g′
,
−j′(1 + g2)

g′

)t

dz.

Our first main result in [21] is a discrete analogue of the Weierstrass-
type representation for discrete timelike isothermic minimal surfaces (see
Theorem 5 here).

We now briefly introduce discrete timelike isothermic surfaces in
R

2,1. In particular, we introduce discrete timelike (isothermic) minimal
surfaces in R2,1. As in Section 3, each element in R2,1 is identified with
the matrix as in Equation (1), and we denote p = (m,n), q = (m+1, n),
r = (m + 1, n + 1), s = (m,n + 1). Then we define discrete timelike
isothermic surfaces in R

2,1 as follows (the reason why we define them in
this way can be found in [21]):

Definition A.2. Let F : Z2 → R
2,1 be a discrete surface. Then

• F is called a discrete timelike isothermic surface if
– each quadrilateral (Fp, Fq, Fr, Fs) with vertices

Fp, Fq, Fr, Fs lies in a timelike plane,
– all quadrilaterals (Fp, Fq, Fr, Fs) are convex,
– all quadrilaterals satisfy cr(Fp, Fq, Fr, Fs) = 1.

• A discrete timelike isothermic surface g : Z2 → R
1,1 ∼= C

′ is
called a discrete p-holomorphic function.

Roughly speaking, in Definition A.2, the first two conditions are the
discrete counterpart of an immersion condition for a smooth timelike
surface.

We have aWeierstrass-type representation for discrete timelike isother-
mic minimal surfaces in R

2,1. Details can be found in [21].

Theorem 5. A discrete timelike minimal surface F : Z2 → R2,1

can be locally constructed using a discrete p-holomorphic function g :
Z2 → C′ by solving

Fq − Fp =
1

2
Re

(
gp + gq
gq − gp

,
1− gpgq
gq − gp

, −j′(1 + gpgq)

gq − gp

)t

,

Fs − Fp =
1

2
Re

(
gp + gs
gs − gp

,
1− gpgs
gs − gp

, −j′(1 + gpgs)

gs − gp

)t

.
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Fig. 1. Examples of discrete timelike isothermic minimal surfaces

Conversely, any discrete timelike minimal surface locally satisfies the
above equations for some discrete p-holomorphic function g.

In Figure 1, we show several examples of discrete timelike isother-
mic minimal surfaces in R2,1. These pictures obviously have certain
configurations of singularities. In [21], their singularities are analyzed.

Finally, we introduce several open problems related to the topics in
this paper.

• How can we describe discrete timelike isothermic non-zero CMC
surfaces in R

2,1? If we can describe such discrete surfaces, is
there any construction of discrete timelike isothermic CMC
surfaces like in [17]?

• Is there a Weierstrass-type representation for discrete timelike
isothermic CMC 1 surfaces in H

2,1? If yes, do discrete timelike
isothermic CMC 1 surfaces in H2,1 have singularities?

• How can we describe discrete anti-isothermic surfaces?
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