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Abstract.

We study the singularities of secant maps associated to pairs of
plane curves providing their geometrical interpretation up to codimen-
sion 2. We show that for most pairs of closed plane curves the secant
map is a stable map from the torus to the plane. We determine the
isotopy type of the singular set of the secant map associated to pairs
of convex closed curves in terms of their Whitney indices.

§1. Introduction

The local properties of secant maps associated to curves in 3-space
were studied by J.W. Bruce [2], who proved that for generic pairs of
curves these map is locally stable and thus may only have isolated cross-
cap points. We consider here the secant map associated to closed plane
curves α, β : S1 → R2 and analyze its singularities from the local and
multi-local viewpoints, providing their geometrical characterization up
to codimension 2 (Theorem 3.1). As a consequence of Thom’s funda-
mental transversality lemma, we show that the secant map of a generic
pair of closed plane curves is a stable map from the torus to the plane
(Theorem 4.5). In the particular case α = β, we see that for most rigid
motions φ on the plane, the pair (α, φ · α) is a generic couple of curves.

From a global viewpoint, we prove that the number of singular
curves of the secant map of a generic pair of closed convex curves with
respective Whitney indexes n and m, is exactly twice the maximum
common divisor μn,m of n and m (Theorem 5.10). Moreover, all the
singular curves are of type ( n

μn,m
, m
μn,m

). As a consequence, we get that
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given a convex curve α with Whitney index n, the secant map of pair
(α, φ ·α) (where φ is any rigid motion such that (α, φ ·α) is a good pair
of curves) has exactly n singular curves, all of them being toric curves
of type (1, 1).

The general case, including non necessarily convex curves, will be
treated in a forthcoming paper. We would like to thank J. Mart́ınez
Alfaro and R. Oset for helpful comments.

§2. Isotopy invariants of closed curves

It is a well known fact that a generic immersion of S1 into the plane
has normal crossings, in other words, a finite number of transverse double
points. In fact, standard transversality arguments in jet spaces lead, as
a consequence of Thom’s Transversality Theorem ([7]), to the fact that
the set of regular closed plane curves with normal crossings is open
and dense in C∞(S1,R2) with the Whitney C∞-topology. Analogous
arguments show that for a curve α lying in an open and dense subset of
C∞(S1,R2), the inflection points are isolated and do not coincide with
the vertices of α. This means that the curvature of α and its derivative
do not vanish at the same time. We shall denote by S the open and
dense subset of C∞(S1,R2) made of closed plane curves with normal
crossings and isolated inflection points that satisfy this condition.

An isotopy between two regular plane curves α and β is a smooth
map

F : S1 × [0, 1] −→ R2

(s, u) �−→ Fu(s)

such that Fu is a regular plane curve for all u ∈ [0, 1] and F0 = α and
F1 = β

We say that F is a stable isotopy provided Fu is a stable immersion,
for all u ∈ [0, 1], that is, Fu is a closed regular plane curve with normal
crossings.

The Gauss map of a regular curve α : S1 → R2 is given by

Gα : S1 −→ S1

s �−→ α′(s)
‖α′(s)‖ .

Denote by κα the curvature function of α. An inflection point s0 of α is
characterized by the condition κα(s0) = 0, or equivalently α′′(s0) = 0.
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So we have that s0 is a singular point of Gα if and only if it is an
inflection point of α.

The Whitney index of a closed curve α is defined as the degree of
the map Gα : S1 → S1. We denote it by iα. The following theorem tells
us that this index is a complete isotopy invariant for the space of closed
regular plane curves.

Theorem 1 (H. Whitney [10]). Two closed regular plane curves are
isotopic if and only if they have the same Whitney index.

We recall that the first homology group of the torus S1 × S1 is
generated by two loops that we shall denote as γ1 (parallel) and γ2
(meridian) and we have that any loop γ in the torus is homotopic to
aγ1 + bγ2, for convenient a, b ∈ Z, we then say that γ is of type (a, b).
Closed curves of type (0, 0) are homotopically trivial. Two curves on
the torus are isotopic if and only if they have the same type (a, b).

§3. Singularities of secant maps on plane curves

Given two plane curves α, β : S1 → R2, the secant map between
them is defined as:

Sα,β : S1 × S1 −→ R2

(s, t) �−→ (α(s)− β(t)).

Our purpose in this section is to analyze the singularities of secant
maps associated to couples of curves (α, β) providing their geometri-
cal interpretation. All the curves we consider along this paper will be
immersed curves.

We shall say that a smooth map f from a surface X to the plane is
A-stable if any element lying in a small enough open neighbourhood of
f in C∞(X,R2) with the Whitney C∞-topology is A-equivalent to f . A
well known theorem of Whitney states that the critical set of stable maps
from a surface to the plane is composed of smooth curves made of fold
points and isolated cusp points ([7], [11]). From the global viewpoint,
we have that the image of the critical set (apparent contour) of a stable
map from a closed surface to the plane is a collection of closed plane
curves with transverse intersections and isolated singular points (simple
cusps) which correspond to the cusps of the map.

Given a smooth map f : R2 → R2, we denote its singular set by
Σf and its apparent contour f(Σf) by C(f). The codimension 1 germs
from the plane to the plane were first studied by Gaffney and Ruas
(unpublished work) and subsequently by other authors [1, 3, 4, 6, 12]. A
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complete classification of the simple germs from the plane to the plane,
including all the germs of codimensions one and two, was obtained by
J. Rieger [9]. The following list contains all these germs up to codimen-
sion 2. Observe that all of them have corank at most one.

singularity normal form A-codimension
regular (x, y) 0
fold (x, y2) 0
cusp (x, y3 + xy) 0

lips and beaks (4±2 ) (x, y3 ± x2y) 1
goose (43) (x, y3 + x3y) 2

swallowtail (5) (x, y4 + xy) 1
butterfly (6±) (x, xy + y5 ± y7) 2
gulls (115) (x, xy2 + y4 + y5) 2

It is well known that the set of stable maps from a closed surface M
to the plane is a residual subset of C∞(M,S1).

Given a germ f : (R2, 0) → (R2, 0) of corank one, by appropriate
changes of variables at the source and the target, we can write it as:

f : (R2, 0) −→ (R2, 0)

(x, y) �−→ (x, f2(x, y))

where j∞f2(x, y) =
∑∞

i,j=1 ci,jx
iyj .

The following tables provide the characterization of each singularity
in terms of the coefficients ci,j .

singularity normal form conditions frequency
regular (x, y) c0,1 �= 0 open dense subset
fold (x, y2) c0,1 = 0 smooth curves

c0,2 �= 0
cusp (x, y3 + xy) c0,1 = 0 isolated points

c0,2 = 0
c1,1 �= 0
c0,3 �= 0

swallowtail (x, y4 + xy) c0,1 = 0 isolated points
c0,2 = 0 in 1-parameter
c0,3 = 0 families
c1,1 �= 0
c0,4 �= 0



Singularities of secant maps on closed plane curves 369

singularity normal form conditions frequency
lips (x, y3 + x2y) c0,1 = 0 isolated points
beaks (x, y3 − x2y) c0,2 = 0 in 1-parameter

c1,1 = 0 families
c0,3 �= 0

lips 3c2,1c0,3 > c21,2
beaks 3c2,1c0,3 < c21,2

butterfly (6±) c0,1 = c0,2 = 0 isolated points
c0,3 = c0,4 = 0 in 2-parameter
c1,1, c0,5 �= 0 families

6+ (x, xy + y5 + y7) c0,7 > 0
6− (x, xy + y5 − y7) c0,7 < 0

goose (43) (x, y3 + x3y) c0,1 = c0,2 = 0 isolated points
c1,1 = c2,1 = 0 in 2-parameter
c0,3, c3,1 �= 0 families

gulls (115) (x, xy2 + y4 + y5) c0,1 = c0,2 = 0 isolated points
c1,1 = c0,3 = 0 in 2-parameter

c1,2, c0,4, c0,5 �= 0 families

The list of multi-germs from the plane to the plane up to codi-
mension one was first determined by Ch́ıncaro ([5]). A complete list of
multi-germs up to codimension 2, obtained by F. Aicardi and T. Ohmoto
[8], can be seen in the next table.

singularity normal form conditions frequency
transversal cross (x, y2; x̄, ȳ2) x = x̄ isolated points

of 2 folds y2 = ȳ2

c0,1 = 0
c0,2 �= 0
c̄0,1 = 0
c̄0,2 �= 0

cross of fold (x, y2; x̄, ȳ3 + x̄ȳ) x = x̄ isolated points
and cusp y2 = ȳ3 + x̄ȳ in 1-parameter

c0,1 = 0 families
c0,2 �= 0
c̄0,1 = 0
c̄0,2 = 0
c̄1,1 �= 0
c̄0,3 �= 0
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singularity normal form conditions frequency
cross of 3 folds (x, y2; x̄, ȳ2; ¯̄x, ¯̄y2) x = x̄ = ¯̄x isolated points

mutually y2 = ȳ2 = ¯̄y2 in 1-parameter
transversal c0,1 = 0 families

c0,2 �= 0
c̄0,1 = 0
c̄0,2 �= 0
¯̄c0,1 = 0
¯̄c0,2 �= 0

We analyze now the geometrical meaning of the singularities of the
above tables in the particular case of secant maps. Given a couple of
plane curves (α, β), consider the Jacobian map of Sα,β:

JSα,β(s, t) =

(
α′
1(s) −β′

1(t)
α′
2(s) −β′

2(t)

)
,

where α(s) = (α1(s), α2(s)) and β(s) = (β1(s), β2(s)). Since both curves
are regular, it follows that rank JSα,β(s, t) ≥ 1, for all (s, t) ∈ S1 × S1.
Moreover, we have that (s, t) ∈ S1×S1 is a singular point of Sα,β if and
only if the tangent vectors α′(s) and β′(t) are parallel (we denote this
as α′(s)||β′(t)).

We can write Sα,β in the standard normal form

f : (R2, 0) −→ (R2, 0)

(x, y) �−→ (x, f2(x, y))

where f2(x, y), x and y are functions of s and t. We shall work locally at
a singular point (s, t) that by simplicity of notation we shall consider to
be (0, 0). Since it is a singular point of Sα,β , we have that α′(s)||β′(t),
therefore it is possible to make a change of variables in R2 such that
α(s) = (s, a(s)) and β(t) = (t, b(t)) for convenient functions a and b
defined in a neighbourhood of (0, 0). Then we have,

Sα,β : (R2, 0) −→ (R2, 0)

(s, t) �−→ (s− t, a(s)− b(t)).

By applying the change of variables x = s− t, y = s+ t we get

S̄α,β(x, y) = (x, f2(x, y))

with f2(x, y) = a(x+y
2 ) − b(y−x

2 ). If we write the Taylor series of the

functions a and b at the origin as j∞a(0) =
∑∞

i=1 ais
i and j∞b(0) =∑∞

j=1 bjt
j , we obtain
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j∞f2(x, y) =
(
a1

(
x+y
2

)
+ a2

(
x+y
2

)2
+ · · ·

)
−
(
b1

(
y−x
2

)
+ b2

(
y−x
2

)2
+ · · ·

)

= a1+b1
2 x+ a1−b1

2 y+ a2−b2
4 x2+2a2+b2

4 xy+ a2−b2
4 y2+· · · = ∑∞

i,j=1 ci,jx
iyj ,

where ci,j =

(
i+ j
i

)
ai+j+(−1)i+1bi+j

2i+j .

We can now write the values of the coefficients ci,j in the above tables
in terms of the coefficients ai and bj . Here we observe that ci,j = 0 if
and only if ai+j = (−1)ibi+j .

Lemma 2. The goose (43) cannot occur as a singularity of secant
maps.

Proof. This follows immediately from the above table by observing
that in the particular case of a secant map we have that c2,1 = 0 if and
only if a3 = b3 if and only if c0,3 = 0. Q.E.D.

Now, by analyzing the coefficients ci,j in terms of the ai and bj , we
obtain the following geometrical interpretation for the singularities of a
secant map up to codimension 2:

singularity normal form ai and bj geometrical meaning
regular (x, y) a1 �= b1 α′(s) ∦ β′(t)
fold (x, y2) a1 = b1 α′(s) ‖ β′(t)

a2 �= b2 κα(s) �= κβ(t)
cusp (x, y3 + xy) a1 = b1 α′(s) ‖ β′(t)

a2 = b2 �= 0 κα(s) = κβ(t) �= 0
a3 �= b3 κ′

α(s) �= κ′
β(t)

swallowtail (x, y4 + xy) a1 = b1 α′(s) ‖ β′(t)
a2 = b2 �= 0 κα(s) = κβ(t) �= 0
a3 = b3 �= 0 κ′

α(s) = κ′
β(t) �= 0

a4 �= b4 κ′′
α(s) �= κ′′

β(t)

a1 = b1 α′(s) ‖ β′(t)
a2 = b2 = 0 κα(s) = 0 = κβ(t)
a3 �= b3 κ′

α(s) �= κ′
β(t)

a3 �= 0, b3 �= 0 κ′
α(s) �= 0, κ′

β(t) �= 0

lips (x, y3 + x2y) a3 > b3 κ′
α(s) > κ′

β(t)

beaks (x, y3 − x2y) a3 < b3 κ′
α(s) < κ′

β(t)
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singularity normal form ai and bj geometrical meaning
butterfly (x, xy + y5 ± y7) a1 = b1 α′(s) ‖ β′(t)

a2 = b2 �= 0 κα(s) = κβ(t) �= 0
a3 = b3 κ′

α(s) = κ′
β(t)

a4 = b4 κ′′
α(s) = κ′′

β(t)

a5 �= b5 κ′′′
α (s) �= κ′′′

β (t)

6+ a7 > b7 κ′′′′′
α (s) > κ′′′′′

β (t)

6− a7 < b7 κ′′′′′
α (s) < κ′′′′′

β (t)

gulls (x, xy2 + y4 + y5) a1 = b1 α′(s) ‖ β′(t)
a2 = b2 = 0 κα(s) = κβ(t) = 0
a3 = b3 �= 0 κ′

α(s) = κ′
β(t) �= 0

a4 �= b4 κ′′
α(s) �= κ′′

β(t)

We observe that (s, t) is a cusp point of the secant map Sα,β if and
only if the translation T12 of vector β(t) − α(s) takes the tangent line
and osculating circle of α at s to the tangent line and osculating circle
of β at t. In other words, the curves T12 · α and β have a contact of
order 2 at the point p = T12 · α(s) = β(t).

For the codimension 1 phenomena we have:

a) (s, t) is a swallowtail point of Sα,β if and only if the curves T12·α
and β have a contact of order 3 at the point p = T12·α(s) = β(t)
and this is not an inflection point.

b) (s, t) is a lips (or beaks) point of Sα,β if and only if the curves
T12 · α and β have a contact of order 2 at the point p = T12 ◦
α(s) = β(t), which is an inflection point of both curves.

By applying these arguments to all the germs of codimension lesser
or equal to 2 and we can state:

Theorem 3. The following table provides the geometrical interpre-
tation of all the possible singularities, up to codimension 2, of the secant
maps associated to a couple of plane curves α and β, where T12 denotes
the translation of the plane given by the vector α(s)− β(t) :
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singularity type A-codimensión geometrical interpretation
regular 0 α′(s) ∦ β′(t)
fold 0 α′(s) ‖ β′(t)
cusp 0 α′(s) ‖ β′(t)

κα(s) = κβ(t)
lips or beaks 1 α′(s) ‖ β′(t)

κα(s) = κβ(t) = 0
swallowtail 1 T12 ◦ α and β have

contact of order 3
butterfly 2 T12 ◦ α and β have

contact of order 4
gulls 2 T12 ◦ α and β have

contact of order 3
and vanishing curvature

§4. Stability of secant maps

Given two plane curves α, β : S1 −→ R2, consider their secant map

Sα,β : S1 × S1 −→ R2

(s, t) �−→ (α(s)− β(t)).

As above, we can take a convenient reparametrization and a change
of variables to take this map to the form S̄α,β(x, y) = (x, f2(x, y)), where

f2(x, y) = a(x+y
2 )− b(y−x

2 ).

We recall the following transversality result due to R. Thom (see [7])

Lemma 4. (Fundamental transversality lemma) Given dif-
ferentiable manifolds X, B, Y , let W be a submanifold of Y and j :
B −→ C∞(X,Y ) a (non necessarily continuous) map. Suppose that
Φ : X × B −→ Y is a smooth map, such that Φ(x, b) = j(b)(x) and
Φ � W . Then the subset {b ∈ B|j(b) � W} is dense in B.

We use this lemma in order to prove the following:

Proposition 5. Given two plane curves α, β : S1 → R2, for almost
all (in the sense of an open and dense subset of ) Euclidean motions
φ : R2 → R2, the secant map of the pair (α, φ ◦β) is a locally stable map
(that is, it may only have fold curves and isolated cusp singularities)
from the torus to the plane.
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Proof. Consider the subset J3(S1,R2)×J3(S1,R2) of pairs of 3-jets
of closed plane curves in which we denote the natural local coordinates
as (s, t, r10,0, r

2
0,0, r

1
1,0, r

2
1,0, r

1
0,1, r

2
0,1, r

1
2,0, r

2
2,0, r

1
1,1, r

2
1,1, r

1
0,2, r

2
0,2, r

1
3,0,

r23,0, r
1
2,1, r

2
2,1, r

1
1,2, r

2
1,2, r

1
0,3, r

2
0,3). We take in J3(S1,R2)× J3(S1,R2)

the variety

T = {j3f ∈ J3(S1 × S1,R2) | rik,j = 0 if k �= 0 ∧ j �= 0}
made of 3-jets of maps with vanishing crossed derivatives. Observe that
any 3-jet of J3(S1 × S1,R2) originated by a linear combination of two
closed curves belongs to T . Denote by O(2) the group of all plane
rotations and define the map,

λ : O(2) −→ C∞(J3(S1,R2)× J3(S1,R2), T )

ϕ �−→ λ(ϕ) = Sϕ

where

Sϕ : J3(S1,R2)× J3(S1,R2) −→ T

(j3α(0), j3β(0)) �−→ j3((ϕ ◦ α)− β)(0).

It is easy to see that the map

Λ : J3(S1,R2)× J3(S1,R2)×O(2) −→ T

(j3α(0), j3β(0), ϕ) �−→ λ(ϕ)(j3α(0), j3β(0))

is a submersion and hence transversal to any submanifold of T .
We can now take X = J3(S1,R2) × J3(S1,R2), B = O(2), Y = T ,

j = λ and Φ = Λ and apply the above Thom’s fundamental transversal-
ity to the two following submanifolds:

W1 =

⎧⎨
⎩f ∈ T |

r11,0r
2
0,1 = r21,0r

1
0,1

r12,0r
2
0,2 = r22,0r

1
0,2

r13,0r
2
0,3 = r23,0r

1
0,3

⎫⎬
⎭ ,

W2 =

⎧⎨
⎩f ∈ T |

r11,0r
2
0,1 = r21,0r

1
0,1

r11,0r
2
2,0 = r12,0r

2
1,0

r10,1r
2
0,2 = r10,2r

2
0,1

⎫⎬
⎭ .

These can be respectively considered as the subsets of 3-jets of cou-
ples of curves whose secant map has a corank one singularity of swallow-
tail type or worse and those having a corank two singularity of lips/beaks
type or worse. As a consequence of Thom’s fundamental transversality
lemma, we obtain two dense subsets of rotations φ for which the pair
(φ ◦ α, β) respectively avoids such singularities. Moreover, we can also
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take each one of these as an open subset, for we observe that if any one
of the above requirements holds for a couple (α, β), due to the compact-
ness of the domain, standard topological arguments warranty that they
will also hold for any small enough rotation of β. Then the intersection
of these two open dense subsets provides the required open and dense
subset. Q.E.D.

Lemma 6. The image of the derivative of Sα,β at a corank one
point (s, t) is a vector parallel to α′(s) (and hence to β′(t)).

Proof. Consider parametrisations α and β given by α(s) = (s, α2(s))
and β(t) = (t, β2(t)), with j∞α2(0) =

∑∞
i=1 ais

i and j∞β2(0) =
∑∞

j=1 bjt
j .

Then we can write Sα,β(s, t) = (s− t, α2(s)− β2(t)) and the differential
of Sα,β is given by

DSα,β =

(
1 −1

α′
2(s) −β′

2(t)

)
.

The singular set Σ(Sα,β) is a 1-manifold made of the points satisfying the
condition β′

2(t) − α′
2(s) = 0. Consider the orthogonal (−β′′

2 (t),−α′′
2 (s))

to the tangent vector to Σ(Sα,β) at (s, t) and take the differential of Sα,β

Sα,β∗(−β′′
2 (t),−α′′

2 (s)) =

( −β′′
2 (t)− α′′

2 (s)
−α′

2(s)β
′′
2 (t)− β′

2(t)α
′′
2 (s)

)
.

If (s, t) is a singular point, we have β′
2(t) = α′

2(s). So Sα,β∗(−β′′
2 (t),

−α′′
2 (s)) = (−β′′

2 (t) − α′′
2 (s))(1, α

′
2(s)). On the other hand, −β′′

2 (t) −
α′′
2 (s) �= 0 because the point is a corank one singularity, therefore we

obtain the required result. Q.E.D.

Proposition 7. Given two plane curves α, β : S1 → R2, for almost
all Euclidean motion φ : R2 → R2 (in the sense of an open and dense
subset of motions), the secant map of the pair (α, φ ◦ β) is a globally
stable map from the torus to the plane.

Proof. We just need to add appropriate multilocal conditions to
the open and dense subset of rotations obtained in the above proposi-
tion. Essentially, we need to ensure that the secant map will avoid the
following phenomena:

a) Tangencial crossing of 2 folds.
b) Crossing of a fold and a cusp.
c) Crossing of 3 folds.

The arguments run in a similar way as those in Proposition 5. For
the condition a) we apply lemma 4 in the following context:
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X = 2J
3(S1,R2)× 2J

3(S1,R2) (2J
3(S1,R2) being the space of cou-

ples of 3-jets with different sources), B = O(2), j = λ, Φ = Λ, where

Y = T2 = {2j3f ∈ 2J
3(S1 × S1,R2) | ria,b = 0 if a �= 0 ∧ b �= 0

r̄ia,b = 0 if a �= 0 ∧ b �= 0}
and

W = W3 =

⎧⎪⎪⎨
⎪⎪⎩
f ∈ T2 |

r10,0 = r̄10,0 ∧ r20,0 = r̄20,0
r11,0r

2
0,1 = r21,0r

1
0,1

r̄11,0r̄
2
0,1 = r̄21,0r̄

1
0,1

r11,0r̄
2
0,1 = r̄21,0r

1
0,1

⎫⎪⎪⎬
⎪⎪⎭

is the subset of multijets of curves having a tangencial crossing of two
folds. Now, as a consequence of the Fundamental Transversality Lemma
we can ensure the existence of a residual subset of rotations of the curve
β, such that the secant map of the new pair does not meet W3.

The condition b) is treated through an analogous argument where
X, B and Y are as above and

W = W4 =

⎧⎪⎪⎨
⎪⎪⎩
f ∈ T2 |

r10,0 = r̄10,0 ∧ r20,0 = r̄20,0
r11,0r

2
0,1 = r21,0r

1
0,1

r̄11,0r̄
2
0,1 = r̄21,0r̄

1
0,1

r̄12,0r̄
2
0,2 = r̄22,0r̄

1
0,2

⎫⎪⎪⎬
⎪⎪⎭

.

In case c), we also take X, B are as above and put

Y = T3 =

⎧⎨
⎩3j

3f ∈ 3J
3(S1 × S1,R2) |

ria,b = 0 if a �= 0 ∧ b �= 0

r̄ia,b = 0 if a �= 0 ∧ b �= 0
¯̄ria,b = 0 if a �= 0 ∧ b �= 0

⎫⎬
⎭

and

W = W5 =

⎧⎪⎪⎨
⎪⎪⎩
f ∈ T3 |

r10,0 = r̄10,0 = ¯̄r10,0 ∧ r20,0 = r̄20,0 = ¯̄r20,0
r11,0r

2
0,1 = r21,0r

1
0,1

r̄11,0r̄
2
0,1 = r̄21,0r̄

1
0,1

¯̄r11,0 ¯̄r
2
0,1 = ¯̄r21,0 ¯̄r

1
0,1

⎫⎪⎪⎬
⎪⎪⎭

.

Finally, arguing as in the previous proposition, we show the existence
of open and dense subsets of rotations whose corresponding multi-jets
do not cut respectively W3,W4 and W5. By taking the intersections of
these subsets we obtain the required open dense subset. Q.E.D.

Theorem 8. There is an open and dense subset of couples of closed
plane curves in R2 with the Whitney C∞-topology, whose corresponding
secant map is a (globally) stable map from the torus to the plane.
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Proof. As a consequence of the Proposition 7 we can approach any
pair of closed plane curves (α, β) by a sequence of pairs {(αn, βn)}∞n=1

whose corresponding secant map is globally stable. From this we can
conclude the density. On the other hand, to see the openness of this set,
we observe that given a pair of curves (α, β), for which Sα,β is a globally
stable map, any other couple (ᾱ, β̄) which is near enough to (α, β) in
the C∞-Whitney topology (and thus in the C3-topology) also satisfies
the requirements to be globally stable (for their 3-jets will avoid the
subsets W1,W2,W3,W4 and W5 constructed in the above propositions).

Q.E.D.

Remark 9. Observe that analogous arguments can be applied when
α = β in order to show that for almost all Euclidean motions φ : R2 →
R2, the secant map of the pair (α, φ ◦ α) is a (globally) stable map from
the torus to the plane.

§5. Global viewpoint

Definition 5.1. Given two closed plane curves α, β we say that
(α, β) is a stable pair of curves if the secant map Sα,β is A-stable.

The singular set of the secant map of a stable pair of closed plane
curves is a finite set of disjoint closed regular curves in the torus. Our
aim in this section is to obtain global relations between the isotopy type
of the closed plane curves α and β and those of the singular curves of Sα,β

as closed curves in the torus. We denote by {Σi}mi=1 the set of singular
curves of Sα,β . Since each Σi is a closed regular curve in S1×S1, we can
choose a continuous regular parametrization σi : S1 → S1 × S1, such
that σi(S

1) = Σi. Consider now the two natural projections Πs,Πt :
S1 × S1 −→ S1, respectively given by Πs(s, t) = s and Πt(s, t) = t and
denote by Gα and Gβ the respective Gauss maps of the closed plane
curves α and β. Then it is easy to see that Gα ◦Πs ◦ σi = Gβ ◦Πt ◦ σi.
We will denote this map as Gσi and refer to it as the Gauss map of the
toric curve σi.

Recall that the singularities of the Gauss map Gα (resp. Gβ) are
the inflection points of the plane curve α (resp. β). Then we have the
following characterization for the singularities of the maps Gσi .

Lemma 10. The map Gσi has a singularity at a point (α(s0), β(t0)) ∈
Σi if and only if either s0 is a singular point of Gα, or t0 is a singular
point of Gβ.

Proof. Clearly, since Gσi = Gα ◦Πs ◦σi = Gβ ◦Πt ◦σi, the singular
points of Gα and Gβ lead to singular points of Gσi . On the other hand,
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since the map σi has no singular points, we have that a singularity of
Gσi must be either a singular point of Gα or a singular point of Πs. In
case it is not a singular point of Gα, then we have a singular point for
Πs, but this implies that it is not a singular point of Πt, from which we
get that it must be a singular point of Gβ . Q.E.D.

Definition 5.2. We define the tangency function of a pair (α, β) as

Bα,β : S1 × S1 −→ R

(s, t) �−→ det(α′(s), β′(t)).

Lemma 11. The singular points of the secant map Sα,β are the
zeros of Bα,β.

Proof. We have that (s, t) ∈ B−1
α,β(0) ⇔ det(α′(s), β′(t)) = 0 ⇔

α′(s) ‖ β′(t) ⇔ (s, t) ∈ ∑
(Sα,β). Q.E.D.

Remark 12. Observe that the above lemma implies that B−1
α,β(0) is

a non necessarily connected regular closed curve in the torus.

Proposition 13. There is an open and dense subset of stable pairs
(α, β), for which 0 is a regular value of the tangency function Bα,β.

Proof. We have that 0 fails to be a regular value if there exist (s, t)

such that Bα,β(s, t) = 0 and
∂Bα,β

∂s (s, t) =
∂Bα,β

∂t (s, t) = 0. But this
implies that det(α′(s), β′(t)) = 0 = det(α′′(s), β′(t)) = det(α′(s), β′′(t)),
which implies that rank {α′(s), β′(t), α′′(s), β′′(t)} = 1. This amounts
to say that the curves α and β have an inflection point respectively s
and t and their tangent vectors are parallel. Clearly, a small rotation of
one of the curves will avoid this situation. Q.E.D.

Definition 5.3. We say that a stable pair closed plane curves (α, β)
is a good pair if 0 is a regular value of its tangency function Bα,β.

Lemma 14. Given a good pair of closed plane curves (α, β),

a) (s, t) is a singular point of Πt|B−1
α,β(0)

if and only if α(s) is an

inflection point of α (= singular point of Gα).
b) (s, t) is a singular point of Πs|B−1

α,β(0)
if and only if β(t) is an

inflection point of β (= singular point of Gβ).

Proof. The singularities of the projections Πs,Πt : S
1 × S1 → S1

on B−1
α,β(0) are given by the zeros of the partial derivatives of Bα,β. Then

we have,

s ∈ ΣΠt|B−1
α,β(0)

⇔ ∂Bα,β

∂s
(s, t) = 0.
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But this means that ∂
∂s (det(α

′(s), β′(t))) = det(α′′(s), β′(t)) = 0. Now,

(s, t) ∈ B−1
α,β(0), so we have that rank {α′(s), β′(t), α′′(s)} = 1. There-

fore α(s) is an inflection point of α (i.e. a singular point of Gα). Anal-
ogously, (s, t) is a singular point of Πs|B−1

α,β(0)
⇔ β(t) is an inflection

point of β (i.e. a singular point of Gβ). Q.E.D.

Proposition 15. The existence of homotopically trivial connected
components in the singular set of the secant map Sα,β implies that both
curves are non convex.

Proof. The restriction of each one of the projections Πs and Πt to
any homotopically trivial curve in the torus has at least two singular
points. Then, as a consequence of Lemma 14 we get that each one of
the curves α and β must have at least two inflection points. Q.E.D.

Given two natural numbers n and m, we shall denote by μn,m the
maximum common divisor of n and m.

Theorem 16. Given a good pair of closed convex plane curves (α, β)
with respective Whitney indices n,m > 0, we have that Sα,β has exactly
2μn,m singular curves, all of them being toric curves of type ( n

μn,m
, m
μn,m

).

Proof. We can choose the same orientation in both curves. From
the convexity of the curves, we get that each tangent direction occurs
exactly 2n times in α and 2m times in β (for Gα and Gβ are both
regular maps). Given v ∈ S1, denote Iv = {s ∈ S1 : α′(s)||v} and
Jv = {s ∈ S1 : β′(s)||v}. Once we fix a point in the curve α(S1) we can
label the points of Iv and Jv according to the natural order given by the
orientation of α and β respectively. So we can write Iv = {si}2ni=1 and
Jv = {tj}2mj=1. We observe that there is a unique singular curve of Sα,β

passing through each pair (si, tj) ∈ Iv×Jv. Moreover, the projections Πs

and Πt are strictly monotone functions in s and t (for the maxima and
minima of Πs and Πt correspond respectively to the inflection points of
α and β and these curves are assumed to be convex). Therefore, we can
assume that the Gauss map Gσi is strictly increasing on each singular
curve σi. These curves connect the point (si, tj) to the point (si+1, tj+1),
for i = 2, · · · , n− 1 and j = 2, · · · , n− 1; moreover, for each j, the point
(s2n, tj) is connected to (s1, tj+1).

From a global viewpoint, we can decompose the torus into 4nm
rectangles with vertices at the points {(si, tj)}2n,2mi,j=1 . Since the curves are
convex, it follows from Proposition 15 that there are no homotopically
trivial singular curves. Then the singular set is made by a union of
arcs (without self-intersections) joining the opposite vertices in each one
of the rectangles (i.e., arcs joining the point (si, tj) with (si+1, tj+1)
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for i = 1, · · · , 2n, j = 1, · · · , 2m and (s2n, tj) with (s1, tj+1) for j =
1, · · · , 2m). Such curves can be seen, up to isotopy, as the union of all
the principal diagonals of the small rectangles. We now prove that these
are closed curves of type ( n

μn,m
, m
μn,m

). From the topological viewpoint,

we can substitute this grid by another one at which all the rectangles
have the same size = 2π

2n × 2π
2m . In this last case, the slope of each

diagonal curve is given by σ = m
n = m′

n′ , where n′ = n
μm,n

and m′ =
m

μm,n
. This implies that, up to identification of the torus with the plane

rectangle [0, 2π]× [0, 2π], each one of these lines is given by the equation

y = m′
n′ (x − x0), where x0 is the initial point of the considered line on

the x-axis. Now, we observe that the increment of x along each vertical

turn must be given by Δx = 2πm′
n′ , so this curve needs to make m′ turns

in the vertical sense order to reach its initial point again. Analogously,
it follows that it needs to make n′ turns in the horizontal sense. Suppose

now that there is some m′
1 < m′ such that x0 + m′

12π
n′
m′ = x0 + 2πk.

Then we would have that
m′

1−n′

m′ = k. But this implies that m′
n′ = k

m′
1

which contradicts the assumption that μn,m is the maximum common
divisor of m and n. Therefore, we can conclude that the number of
vertical turns of each one of these curves is m′ = m

μm,n
and analogously,

we get that the number of horizontal turns of each curve is n′ = n
μm,n

.

It now follows that the total number of curves must be μ2n,2m = 2μn,m

as required. Q.E.D.

Finally, we call the attention on the following particular cases:

Corollary 16.1. Suppose that (α, β) is a good pair of closed convex
plane curves, where α is a standard circle and β is a convex plane curve
with Whitney index n, then the secant map Sα,β has exactly 2 singular
curves, both of them of type (1, n).

Corollary 16.2. Given a convex closed plane curve α with Whitney
index n > 0, for any rigid motion φ : R2 → R2, such that the pair
(α, φ · α) is a good pair of curves, the secant map Sα,φ·α has exactly 2n
singular curves, all of them of type (1, 1).

Remark 17. As a consequence of this last result we have that the
topological type of the secant map of the pair Sα,φ·α does not depend on
the choice of the rigid motion φ, as far as (α, φ · α) be a good pair of
curves.
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