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Abstract.

We study D4-singularities of constant mean curvature (CMC) sur-
faces in Riemannian and semi-Riemannian spaceforms. We will give
criteria for D−

4 -singularities, which are related to the Hopf differen-
tial. We also show the non-existence of (spacelike) CMC surfaces with
D+

4 -singularities.

§1. Introduction

Singularities of wave fronts can appear on surfaces via parallel trans-
formations. It is known that generic singularities of wave fronts in
3-spaces are cuspidal edges and swallowtails. Moreover, the singular-
ities of the bifurcations in generic one-parameter families of wave fronts
in 3-spaces are cuspidal lips, cuspidal beaks, cuspidal butterflies and
D4-singularities, in addition to the above two (see [1, 15]). There are
criteria for these singularities in [16, 17, 20, 26]. On the other hand, in
[11], Fukui and Hasegawa studied singularities of the parallel surfaces
of regular surfaces in Euclidean 3-space R3. They gave criteria for cus-
pidal edges, swallowtails, cuspidal lips, cuspidal beaks, cuspidal butter-
flies and D4-singularities by using geometric invariants of the original
surfaces, for example principal curvatures.

For constant mean curvature (CMC) surfaces in Riemannian and
semi-Riemannian spaceforms, there are several studies. In general, CMC
surfaces in semi-Riemannian spaceforms have singularities (see [4, 10, 14,
23, 24, 29, 30], for example). In [30], criteria for cuspidal edges and swal-
lowtails of maximal surfaces were obtained by using Weierstrass data.
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Similarly, for maximal surfaces and CMC 1 surfaces, criteria for corank
one singularities were given in [10]. Umeda [29] gave criteria for cuspidal
edges, swallowtails and cuspidal cross caps of extended CMC surfaces
in Minkowski 3-space R

2,1, and in [23, 24], the first author of this paper
also studied the analogues of Umeda’s criteria for these singularities of
extended CMC surfaces in other semi-Riemannian spaceforms.

However, the above previous studies did not consider corank two
singularities of such surfaces. It is well-known that the corank two singu-
larities appear even on CMC surfaces in Riemannian spaceforms. Thus
in this paper, we consider the criteria for the corank two singularities,
especially D4-singularities.

For CMC H �= 0 surfaces in R3 and R2,1, the following fact is known.

(For the definition of f̂ t, see (2.4).)

Fact 1.1 ([11, 13]). Let f be a conformal (spacelike) CMC surface in
R3 (or R2,1) with mean curvature H > 0, unit normal vector ν and the
Hopf differential factor Q, and let p be an umbilic point of f . Then for

t = 1/H, the parallel transform f̂ t of f becomes a conformal (spacelike)
CMC surface in R

3 (or R
2,1) with mean curvature −H and the Hopf

differential factor −Q. Moreover, f̂ t has a corank two singularity at p.

For CMC surfaces in the spherical 3-space S
3, hyperbolic 3-space

H3, de Sitter 3-space S2,1 and anti-de Sitter 3-space H2,1, the following

is known. (For definitions of f̂ t and f̌ t, see (2.5) and (2.6).)

Fact 1.2 ([6, 8]). Let f : U → M3 be a conformal (spacelike) CMC
H surface and ν its unit normal vector.

(1) If M3 = H
3 or S

2,1 with H > 1, then for t = arccothH, f̂ t

becomes a conformal (spacelike) CMC surface in M3 with mean
curvature −H.

(2) If M3 = H3 (resp. S2,1) with 0 < H < 1, then for t =
arctanhH, f̌ t = ν̂t becomes a conformal spacelike CMC sur-
face in S2,1 (resp. H3) with mean curvature −H.

(3) If M3 = S
3 or H

2,1 with mean curvature H > 0, then for

t = arccotH, f̂ t is a conformal (spacelike) CMC surface in
M3 with mean curvature −H. Moreover, if f is a conformally
immersed minimal (resp. maximal) surface, then ν is a con-
formal minimal (resp. maximal) surface in M3 and f is a unit
normal vector to ν.

By these facts, considering parallel transforms of CMC surfaces nat-
urally emphasizes their umbilic points, and parallel transforms play an
important role in understanding relations between umbilic points and
corank two singularities. Moreover, by Facts 1.1 and 1.2, we can start
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to consider a regular CMC surface f with an umbilic point instead of a

CMC surface f̂ (or f̌) with aD4-singularity via parallel transform. Thus,
in this paper, we study (spacelike) CMC surfaces with D4-singularities
in Riemannian and semi-Riemannian spaceforms, and we give criteria
for D4-singularities in terms of the Hopf differential factors (Theorem
3.2). For minimal surfaces, we give conditions for which they have D4-
singularities by using Weierstrass data (Theorems 3.6 and A.4).

For surfaces in S
3, H3, S2,1 or H2,1, their unit normal vectors form

surfaces. Thus we can compare curvatures of CMC surfaces with curva-
tures of their unit normal vectors (Proposition 4.1). Moreover, we show
a kind of duality between parallel transforms of CMC surfaces and their
unit normal vectors (Proposition 4.3).

§2. Preliminaries

2.1. Surfaces in spaceforms

We recall some properties of surfaces in several spaceforms. For
more details, see [15, 16, 17].

Let R
n = {(x1, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} be an n-dimensional

vector space. For any x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R
n, we

define the pseudo inner product with the signature (n−k, k) (0 ≤ k < n)
by

〈x,y〉 =
n−k∑
i=1

xiyi −
n∑

j=n−k+1

xjyj .

We denote Rn−k,k = (Rn, 〈, 〉). We say that a vector x ∈ Rn \ {0} is
spacelike, timelike or lightlike if 〈x,x〉 > 0, < 0 or = 0 respectively. We
note that Rn,0 = Rn is the Euclidean n-space. If k = 1, we call the space
R

n−1,1 the Minkowski n-space.
Let e1, . . . ,en be the pseudo orthonormal basis of Rn−k,k and xi =

(xi
1, . . . , x

i
n) ∈ R

n−k,k (1 ≤ i ≤ n−1). Then we define the wedge product
x1 ∧ · · · ∧ xn−1 with respect to the signature (n− k, k) by

(2.1) x1 ∧ · · · ∧ xn−1 =

∣∣∣∣∣∣∣∣∣

e1 · · · en−k −en−k+1 · · · −en
x1
1 · · · x1

n−k x1
n−k+1 · · · x1

n
...

. . .
...

...
. . .

...
xn−1
1 · · · xn−1

n−k xn−1
n−k+1 · · · xn−1

n

∣∣∣∣∣∣∣∣∣
.

One can check that 〈xi,x1 ∧ · · · ∧ xn−1〉 = 0 holds for 1 ≤ i ≤ n− 1.
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Let n = 4. Then we define the following spaceforms:

S
3 = {x ∈ R

4 | 〈x,x〉 = 1}, H
3 = {x ∈ R

3,1 | 〈x,x〉 = −1},
S
2,1 = {x ∈ R

3,1 | 〈x,x〉 = 1}, H
2,1 = {x ∈ R

2,2 | 〈x,x〉 = −1}.
We call S3, H3, S2,1 and H

2,1 the spherical 3-space, the hyperbolic 3-
space, the de Sitter 3-space and the anti-de Sitter 3-space, respectively.
It is known that S3 and S

2,1 (resp. H3 and H
2,1) have constant sectional

curvature 1 (resp. −1).
Let M3 be a 3-dimensional spaceform one of R3, R2,1, S3, H3, S2,1

or H2,1. Let f : U → M3 be a surface, where U ⊂ (R2;u, v) is an open
set. The surface f is said to be spacelike if the induced metric via f is
positive definite on U . Then we consider the unit normal vector ν to f .
If M3 = R

3 or R2,1, ν is defined as

ν =
fu ∧ fv
|fu ∧ fv| (fu = ∂f/∂u, fv = ∂f/∂v),

where |x| = √|〈x,x〉|. If M3 is one of the other spaceforms, ν can be
taken as

ν =
f ∧ fu ∧ fv
|f ∧ fu ∧ fv| .

In these cases, we use 〈·, ·〉 as the induced metric from the ambient space
R

4−k,k (k = 0, 1, 2).

2.2. CMC surface theory

In this section, we explain some basical notations, as in [2] and [5].
Let M3 be one of R3, R2,1, S3, H3, S2,1 or H

2,1. Let f : U → M3 be
a spacelike surface, where U is a simply-connected domain in C with
usual complex coordinate z = u + iv (i =

√−1). We say that f is a
conformal surface if there exists a conformal coordinate system on U ,
namely, 〈fz, fz〉 = 〈fz̄, fz̄〉 = 0 and 〈fz, fz̄〉 = 2g2 hold for some function
g : U → R, where ∂z = (∂u − i∂v)/2 and ∂z̄ = (∂u + i∂v)/2. For a
conformal surface f , the first fundamental form of f is given as

ds2 = 4g2(du2 + dv2).

Take the unit normal vector field ν. Then the mean curvature H and
the Hopf differential factor Q are given by

(2.2) H =
1

2g2
〈fzz̄, ν〉, Q = 〈fzz, ν〉.

By (2.2), one can check that H and Q change to −H and −Q, respec-
tively, when we change ν to −ν. We assume that H is constant. It is
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known that the Codazzi equation implies that Q is holomorphic. More-
over, the extrinsic Gaussian curvature K is written as

K = − 1

4g4
QQ̄+H2.(2.3)

We now define the parallel transforms f̂ t and f̌ t of f . If M3 = R3

or R2,1,

(2.4) f̂ t = f + tν

for some constant t ∈ R. In this case, ν is also a unit normal vector to

f̂ t. If M3 = S
3 or H2,1, f̂ t and ν̂t are

(2.5) f̂ t = cos tf + sin tν, ν̂t = − sin tf + cos tν

for some constant t ∈ R. If M3 = H3 or S2,1, we define

(2.6) f̂ t = cosh tf + sinh tν, f̌ t = ν̂t = sinh tf + cosh tν

for some constant t ∈ R (cf. [6] and [8]).

Remark 2.1. It is a well-known fact that if the spaceforms or the
value of H change, then the integrable equation (i.e. Gauss equa-
tion) also changes. This change creates a difference in the construction
method of the CMC surface f (see [8] for example). However, we will
show the existence and non-existence of D±

4 -singularities of the CMC
surface without depening on the choice of the spaceform or the value of
H (see Theorem 3.2).

2.3. Wave fronts

We recall some notions of wave fronts. For details, see [1, 10, 15, 17,
27].

Let f : U → M3 be a C∞ map, where U is a simply-connected
domain in R

2 and M3 is one of R3, R2,1, S3, H3, S2,1 or H2,1. We call f
a wave front or front if for each point p ∈ U there exists a unit normal
vector field ν along f and the map L = (f, ν) : U → T1M

3 gives an
surface, where T1M

3 is the unit tangent bundle over M3. A point p ∈ U
is called a singular point if f is not an surface at p. Let S(f) denote the
set of singular points of f . We set a function λ on U as

(2.7) fu ∧ fv = λν

when M3 = R
3 or R2,1, and

(2.8) f ∧ fu ∧ fv = λν
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when M3 = S3, H3, S2,1 or H2,1, where ∧ denotes the wedge product
as in (2.1). We call this function λ the signed area density function.
By definition, λ−1(0) = S(f) holds. A singular point p is called non-
degenerate if the exterior derivative dλ does not vanish at p. On a
neighborhood of a non-degenerate singular point, there exists a smooth
regular curve γ(t) satisfying γ(0) = p such that γ(t) parametrizes the
set of singular points. We call this curve γ a singular curve and the
direction of γ′ = dγ/dt a singular direction. The dimension of the kernel
Ker dfγ(t) of the differential map dfγ(t) is one and there exists a never-
vanishing vector field η(t) such that 〈η(t)〉R = Ker dfγ(t). We call η(t) a
null vector field and the direction of η a null direction.

Definition 2.2. Let f : (U, p) → (R3, f(p)) be a map-germ around
p. Then f has a cuspidal edge at p if the map-germ f at p is A-equivalent
to the map-germ (u, v) �→ (u, v2, v3) at 0, and f has a swallowtail at p if
the map-germ f at p is A-equivalent to the map-germ (u, v) �→ (u, 3v4+
uv2, 4v3+2uv) at 0, and f has aD±

4 -singularity at p if the map-germ f at
p isA-equivalent to the map-germ (u, v) �→ (2uv,±u2+3v2,±2u2v+2v3)
at 0, where the two map-germs f, g : (R2,0) → (R3,0) are said to be A-
equivalent if there exist diffeomorphism-germs θ : (R2,0) → (R2,0) on
the source and Θ : (R3,0) → (R3,0) on the target such that Θ◦f = g◦θ
holds.

We note that cuspidal edges and swallowtails are non-degenerate
singular points of fronts. On the other hand, D4-singularities are degen-
erate singular points with corank two. There are well-known criteria for
cuspidal edges and swallowtails (see [20, Proposition 1.3]). There is a
criterion for D±

4 -singularities as well.

Fact 2.3 ([26, Theorem 1.1]). Let f be a front and λ the signed
area density function. A singular point p is a D+

4 -singularity (resp.
D−

4 -singularity) if and only if the following conditions hold :

(1) rank dfp = 0.
(2) detHessλ < 0 (respectively, detHessλ > 0) at p.

§3. Constant mean curvature surfaces with D4-singularities

3.1. Surfaces with non-zero constant mean curvature

In this section, we consider the cases such that

(3.1)

{
H �= 0 if M3 = R3, R2,1, S3 or H2,1,

H �= 0, 1 if M3 = H
3 or S2,1.
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Fig. 1. The left hand side is a D+
4 -singularity and the right

hand side is a D−
4 - singularity of a wave front.

Lemma 3.1. Let f : (U, z) → M3 be a conformal CMC H surface,
ν a unit normal vector to f and p an umbilic point.

(1) Suppose that M3 = S
3 or H

2,1 and H > 0. Then p is a corank

two singular point of f̂ t if and only if t = arccotH.
(2) Suppose that M3 = H

3 or S
2,1 and H > 1. Then p is a corank

two singular point of f̂ t if and only if t = arccothH.
(3) Suppose that M3 = H

3 or S
2,1 and 0 < H < 1. Then p is a

corank two singular point of f̌ t if and only if t = arctanhH.

Proof. We show (2) and (3) in the case of M3 = H
3. For the case

of M3 = S2,1 and (1), one can show the result in a similar way.
Let f : U → M3 = H

3 be a conformal CMCH surface. Suppose that

H > 1. Then we consider f̂ t as in (2.6). Since νz = (−2Hfz−Qg−2fz̄)/2
and νz̄ = (−Q̄g−2fz − 2Hfz̄)/2 by (2.2), we have

f̂ t
z = (cosh t−H sinh t)fz − Q

2g2
sinh tfz̄,

f̂ t
z̄ = − Q̄

2g2
sinh tfz + (cosh t−H sinh t)fz̄.

Since p is an umbilic point, Q(p) = Q̄(p) = 0. Thus f̂ t
z = f̂ t

z̄ = 0 at p if
and only if t = arccothH. Therefore we have the assertion (2).

Next we show (3). Assume that 0 < H < 1. By direct computations,
we see that

f̌ t
z = (sinh t−H cosh t)fz − Q

2g2
cosh tfz̄,

f̌ t
z̄ = − Q̄

2g2
cosh tfz + (sinh t−H cosh t)fz̄.

Hence f̌ t
z = f̌ t

z̄ = 0 at p if and only if t = arctanhH. Q.E.D.
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Theorem 3.2. Let f be a CMC surface in M3 with mean curvature
H satisfying the condition (3.1), Q(z) the Hopf differential factor and p
a corank two singular point. Then f has a D−

4 -singularity at p if and
only if Qz(p) �= 0. Moreover, f does not have a D+

4 -singularity at p.

Proof. By Facts 1.1 and 1.2, if f : U → M3 is a CMC H surface,

then f̂ t and f̌ t are CMC H surfaces on the set of regular points for
suitable distance t. Therefore we consider the CMC surface f with an

umbilic point p and singularities of its parallel transform f̂ t at p. Since
one can prove this similarly by using Lemma 3.1 in other cases, we
consider just the case of M3 = R3.

Let f : U → R
3 be a CMC surface and p an umbilic point, where U ⊂

C is a simply-connected domain with conformal coordinate z = u + iv.
By the previous section, 〈fz, fz〉 = 〈fz̄, fz̄〉 = 0 and 〈fz, fz̄〉 = 2g2 for
some function g on U . We now consider the parallel transformation of

f given by f̂ t = f + tν, where t ∈ R is constant. In this case, we can

take a unit normal vector ν̂t of f̂ t as ν. By Fact 1.1, rank df̂ t(p) = 0 if
and only if t = 1/H.

We fix t = 1/H. The signed area density function of f̂ t is given by

λ̂t = 〈f̂ t
u∧f̂ t

v, ν〉 = −2i〈f̂ t
z∧f̂ t

z̄, ν〉. Using νz = (−2Hfz−Qg−2fz̄)/2, νz̄ =

(−2Hfz̄ − Q̄g−2fz)/2 and (2.3), the signed area density function λ̂t is
rewritten as

λ̂t = −2i(1− 2tH + t2K)〈fz ∧ fz̄, ν〉.
Since −2i〈fz ∧ fz̄, ν〉 �= 0, we may regard

(3.2) λ̃t = 1− 2tH + t2K

as the signed area density function of f̂ t. By direct computations, λ̃t
z

and λ̃t
z̄ are

λ̃t
z = −t2

(QzQ̄+QQ̄z)g − 4QQ̄gz
4g5

,

λ̃t
z̄ = −t2

(Qz̄Q̄+QQ̄z̄)g − 4QQ̄gz̄
4g5

.
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Since Q(p) = Q̄(p) = 0, λ̃t
z(p) = λ̃t

z̄(p) = 0, that is, dλ̃t(p) = 0 holds.

We consider the Hessian of λ̃t. The second derivative λ̃t
zz becomes

(3.3) λ̃t
zz = − t2

4g5
{(QzzQ̄+ 2QzQ̄z +QQ̄zz)g + (QzQ̄+QQ̄z)g

− 4(QzQ̄gz +QQ̄zgz +QQ̄gzz)}

− t2
5{(QzQ̄+QQ̄z)g − 4QQ̄gz}gz

4g
.

Thus λ̃t
zz(p) = 0 holds. Similarly, we see that λ̃t

z̄z̄(p) = 0 holds. By
direct calculation, we have

(3.4)

λ̃t
zz̄ = − t2

4g5
{(Qzz̄Q̄+QzQ̄z̄ +Qz̄Q̄z +QQ̄zz̄)g + (QzQ̄+QQ̄z)gz̄

− 4(Qz̄Q̄gz +QQ̄z̄gz +QQ̄gzz̄)}

− t2
5{(QzQ̄+QQ̄z)g − 4QQ̄gz}gz̄

4g
.

By this equation, λ̃t
zz̄ = −t2QzQ̄z̄/4g

4 holds at p. Identifying C with
R2 by C  z = u+ iv �→ (u, v) ∈ R2, we have

λ̃t
uu = λ̃t

zz+2λ̃t
zz̄+ λ̃t

z̄z̄, λ̃t
uv = i(λ̃t

zz− λ̃t
z̄z̄), λ̃t

vv = −(λ̃t
zz−2λ̃t

zz̄+ λ̃t
z̄z̄).

By the above computations, it follows that

λ̃t
uu = λ̃t

vv = 2λ̃t
zz̄ = −t2

QzQ̄z̄

2g4
, λ̃t

uv = 0

hold at p. Thus we have

detHess(u,v)(λ̃
t)p = λ̃t

uu(p)λ̃
t
vv(p)− λ̃t

uv(p)
2 = t4

(QzQ̄z̄)
2

4g8
≥ 0.

This completes the proof of the case M3 = R3, by Fact 2.3.
If M3 = R

2,1, we can take λ̃t as the same as in the case of R3. If
M3 = S3 or H2,1, we have the assertion by using the signed area density

for f̂ t as in (2.5)

λ̃t = cos2 t− 2H cos t sin t+K sin2 t.

If M3 = H
3 or S2,1, we show this by using

λ̃t = cosh2 t− 2H cosh t sinh t+K sinh2 t
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for f̂ t and
λ̃t = sinh2 t− 2H cosh t sinh t+K cosh2 t

for f̌ t. Q.E.D.

Examples: Here we construct CMC surfaces with D−
4 -singularities in

H3. By Theorem 3.2, we need to choose the Hopf differential factor so
that Qz(p) �= 0 at a point p. Now we fix Q = −z for CMC H > 1 or
0 ≤ H < 1 surfaces and we have the 3-legged Smyth-type surfaces as
in [3], [23], [24] and [28]. Applying Theorem 3.2, we get the following
figures with a D−

4 -singularity at the origin z = 0:

Fig. 2. 3-legged Smyth surface with H > 1 in H
3 and its

parallel transform with D−
4 -singularity.

Fig. 3. 3-legged Smyth surface with 0 < H < 1 in H
3 and the

normal vector of its parallel transform into S
2,1 with D−

4 -

singularity.

3.2. Minimal surfaces with D4-singularities

We now consider the condition that minimal surfaces (resp. maximal
surfaces) in R

3 (resp. R2,1) have D4-singularities. For minimal surfaces,
the following representation formula is known.

Fact 3.3 ([25]). Any simply-connected minimal surface f : U(⊂
C) → R

3 can be parametrized as

(3.5) f = Re

∫
(1− g2, i(1 + g2), 2g)ω,
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where g : U → C is a meromorphic function and ω = ω̂dz and g2ω̂ are
holomorphic.

We call the pair (g, ω) the Weierstrass data. On the other hand, the
representation formula for maximal surfaces is also known.

Fact 3.4 ([18]). Any simply-connected maximal surface f : U(⊂
C) → R2,1 can be parametrized as

(3.6) f = Re

∫
(1 + g2, i(1− g2),−2g)ω,

where g : U → C is a meromorphic function and ω = ω̂dz and g2ω̂ are
holomorphic.

We also call the pair (g, ω) the Weierstrass data. We should remark
that there are several studies on maximal surfaces (see [7, 10, 22, 30],
for example).

Here we consider a relationship between D4-singularities and min-
imal (or maximal) surfaces, using the following ansatz: the function g
of Weierstrass data (g, ω) is “holomorphic” at a singular point p of f .
As you can see in Facts 3.3 and 3.4, the function g is meromorphic in
general, and has poles at some z = q. However, if a pole q of g coincides
with a singular point p of f , then criteria for D4-singularities become
more complicated. (See Appendix A for datails.)

Lemma 3.5. Let f : U → R
3 (resp. R

2,1) be a minimal surface
(resp. a maximal surface) constructed by (3.5) (resp. (3.6)) with holo-
morphic functions g, ω̂. Then p ∈ U is a corank two singular point of
f if and only if ω̂(p) = 0. Moreover, f is a front at p if and only if
gz(p) �= 0.

Proof. Let f : U → R3 be a minimal surface with the Weierstrass
data (g, ω = ω̂dz2). The differentials of f are

fz =
1

2
(1− g2, i(1 + g2), 2g)ω̂, fz̄ =

1

2
(1− ḡ2,−i(1 + ḡ2), 2ḡ)¯̂ω.

Thus we have the first assertion.
Next, we show the condition of f to be a front at p. Let p be a

corank two singular point of f . Then f is a front at p if and only if its
unit normal vector ν : U → S

2 gives an surface at p. Under the above
settings, the unit normal vector ν to f is given by

ν =

(
g + ḡ

|g|2 + 1
, i

ḡ − g

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
.
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Since g is holomorphic at p, gz̄(p) = 0 holds. Differentiating ν, we have

νz = gz

(
1− ḡ2

(1 + |g|2)2 , i
−1− ḡ2

(1 + |g|2)2 ,
2ḡ

(1 + |g|2)2
)
,

νz̄ = gz

(
1− g2

(1 + |g|2)2 , i
1 + g2

(1 + |g|2)2 ,
2g

(1 + |g|2)2
)

at p. Thus we have the conclusion.
For maximal surfaces, one can show this similarly by identifying R

2,1

with R
3 and using the Euclidean unit normal vector nE given as

nE =
1√

(1 + |g|2)2 + 4|g|2 (g + ḡ, i(ḡ − g), 1 + |g|2)

(see [30, (3.3)]). Q.E.D.

Theorem 3.6. Let f : U ⊂ (C, z) → R3 (resp. f : U ⊂ (C, z) →
R

2,1) be a minimal surface (resp. a maximal surface) given by holomor-
phic functions g, ω̂. Then a point p ∈ U is a D−

4 -singularity of f if
and only if ω̂(p) = 0 and Qz(p) �= 0 (resp. ω̂(p) = 0, Qz(p) �= 0 and
|g(p)| �= 1). Here Q = gzω̂ is the Hopf differential factor. Moreover, f
does not have a D+

4 -singularity at p.

Proof. First, we show the case of a minimal surface. The signed
area density function λ of f can be given as

λ = −2i〈fz ∧ fz̄, ν〉 = (1 + |g|2)2|ω̂|2.

Since 1+|g|2 �= 0, we may treat λ̂ = |ω̂|2 = ω̂ ¯̂ω as the signed area density
function. Moreover, since fz(p) = fz̄(p) = 0, p is a corank two singular

point. The differentials of λ̂ in z, z̄ ∈ U are

λ̂z = 0, λ̂z̄ = 0, λ̂zz = 0, λ̂zz̄ = ω̂z
¯̂ωz̄, λ̂z̄z̄ = 0

at p, since ω̂(p) = ¯̂ω(p) = ω̂z̄(p) = ¯̂ωz(p) = 0. Identifying z = u + iv ∈
C and (u, v) ∈ R

2, we see that λ̂uu(p) = λ̂vv(p) = 2ω̂z(p)¯̂ωz̄(p) and

λ̂uv(p) = 0. Hence the Hessian of λ̂ is

detHess(u,v)(λ̂)p = 4|ω̂z(p)|4 ≥ 0.

By Fact 2.3 and Lemma 3.5, f has a D−
4 -singularity at p if and only if

gz(p) �= 0 and ω̂z(p) �= 0. On the other hand, the derivative of the Hopf
differential factor Q is

Qz(p) = gzz(p)ω̂(p) + gz(p)ω̂z(p) = gz(p)ω̂z(p),
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since gzz is finite at p. Thus we have the assertion.
Next, we consider a maximal surface that is not a maxface. We

identify R3 with R2,1. The signed area density function is

λ = −2i〈fz × fz̄,nE〉Euc = (|g|2 − 1)|ω̂|2
√

(1 + |g|2)2 + 4|g|2,
where × and 〈·, ·〉Euc mean the Euclidean vector product and the

Euclidean inner product of R3. From Lemma 3.5, we may take λ̂ = ω̂ ¯̂ω.
By using similar arguments, we obtain the assertion. Q.E.D.

By the Lawson correspondence, the first fundamental forms of (space-
like) CMC 1 surfaces in H3 (resp. S2,1) are equal to the first fundamental
forms of corresponding minimal surfaces in R

3 (resp. maximal surfaces
in R2,1). This means that they have the same signed area density func-
tions. Thus we obtain the condition that (spacelike) CMC 1 surfaces
have D−

4 -singularities similarly.
On the other hand, when f : U → M3 = S

3, H
3, S

2,1 or H
2,1 is

a minimal surface, there is no Weierstrass type representation formula.
However, if p ∈ U is an umbilic point for f , then its unit normal vector
ν has a corank two singularity at p. By using similar calculations as in
the proof of Theorem 3.2, we see that ν has a D−

4 -singularity at p if and
only if Qz(p) �= 0, where Q is the Hopf differential factor of f .

Example: Here we construct CMC 1 surfaces with D−
4 -singularities in

H
3. Using Theorem 3.6, we fix the Weierstrass data (g, ω) = (cot(z−1),

(ez − 1)dz) for a CMC 1 surface in H3. Applying Theorem 3.6, we get
the following figure with a D−

4 -singularity at the origin z = 0:

Fig. 4. CMC 1 surface with D−
4 -singularity in H3.
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§4. Curvatures of unit normal vector fields to constant mean
curvature surfaces

In this section, M3 denotes one of S3, H3, S2,1 or H2,1. We consider
relations between a CMC surface f : U → M3 and a unit normal vector
ν to f .

Proposition 4.1. Let f : U → M3 be a (spacelike) CMC H surface,
and let ν be a unit normal vector to f . Let K denote the extrinsic
Gaussian curvature of f . Then the extrinsic Gaussian curvature Kν

and the mean curvature Hν of ν are

Kν =
1

K
, Hν =

H

K
,

Moreover, the unit normal vector ν has a constant harmonic mean cur-
vature 1/2H.

Here the harmonic mean curvature HMC is given by

HMC =
K

2H
.

Proof. We consider the case f : U → H
3. One can show other cases

similarly. Let (u, v) be a conformal coordinate system on U . Then the
determinant of the first fundamental matrix Iν is given by

det Iν = EνGν − F 2
ν = K2E2,

where

Iν =

(〈νu, νu〉 〈νu, νv〉
〈νv, νu〉 〈νv, νv〉

)
=

(
Eν Fν

Fν Gν

)
,

and E = 〈fu, fu〉 = 〈fv, fv〉. It follows that the coefficients of the second
fundamental form of ν are the same as that of f by definition. Thus we
have the assertions by straightforward calculations. Q.E.D.

For M3 = S3, H2,1 and H > 0, or M3 = H3, S2,1 and H > 1, the

parallel transformations f̂ t and ν̂t are defined as in (2.5) and (2.6). If
M3 = H

3, S2,1 and 0 < H < 1, the parallel transforms of f and ν are

f̌ t = ν̂t, ν̌t = f̂ t, respectively. Thus it is sufficient to consider f̂ t and ν̂t.

Lemma 4.2. Under the above settings, the extrinsic Gaussian cur-

vatures Kt and Kt
ν , and the mean curvatures Ht and Ht

ν for f̂ t and ν̂t

are given by the following :

Kt =

⎧⎪⎪⎨
⎪⎪⎩

sin2 t+ 2H cos t sin t+K cos2 t

cos2 t− 2H cos t sin t+K sin2 t
,

sinh2 t+ 2H cosh t sinh t+K cosh2 t

cosh2 t− 2H cosh t sinh t+K sinh2 t
,
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Kt
ν =

⎧⎪⎪⎨
⎪⎪⎩

cos2 t− 2H cos t sin t+K sin2 t

sin2 t+ 2H cos t sin t+K cos2 t
,

cosh2 t− 2H cosh t sinh t+K sinh2 t

sinh2 t+ 2H cosh t sinh t+K cosh2 t
,

Ht =

⎧⎪⎪⎨
⎪⎪⎩

(1−K) cos t sin t+H(cos2 t− sin2 t)

cos2 t− 2H cos t sin t+K sin2 t
,

− (1 +K) cosh t sinh t−H(cosh2 t+ sinh2 t)

cosh2 t− 2H cosh t sinh t+K sinh2 t
,

Ht
ν =

⎧⎪⎪⎨
⎪⎪⎩

(1−K) cos t sin t+H(cos2 t− sin2 t)

cos2 t+ 2H cos t sin t+K sin2 t
,

− (1 +K) cosh t sinh t−H(cosh2 t+ sinh2 t)

cosh2 t+ 2H cosh t sinh t+K sinh2 t
.

Proof. One can show the above formulas directly by applying the
same computations as in [19]. Q.E.D.

By Proposition 4.1 and Lemma 4.2, we immediately have the following:

Proposition 4.3. Let f : U → M3 = S
3, H

3, S
2,1, H

2,1 be a CMC
H �= 0 surface and ν its unit normal vector. A point p is an umbilic
point for f if and only if p is a non-flat umbilic point for ν. Moreover,

if f̂ t (resp. f̌ t) has a D−
4 -singularity at p, p is a flat umbilic point of ν̂t

(resp. ν̌t) (see Figures 5, 6).

f : CMC with umbilic point at p��

Parallel transform

��

Normal �� ν : CHMC with non-flat umbilict p��

Parallel transform

��
f̂ : CMC with D−

4 -singularity at p
Normal �� ν̂ : CHMC with flat umbilic p

Fig. 5. The case that f is a (spacelike) CMC surface in S3,
H

2,1 (resp. H3, S2,1) with H > 0 (resp. H > 1)

f : CMC with umbilic point at p��

Normal of parall. surf.

��

Normal �� ν : CHMC with non-flat umbilic p��

Normal of parall. surf.

��
f̌ : CMC with D−

4 -singularity at p
Normal �� ν̌ : CHMC with flat umbilic p

Fig. 6. The case that f is a (spacelike) CMC surface in H3,
S2,1 with 0 < H < 1
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§Appendix A. The D4-singularity and the poles of meromor-
phic functions g for minimal surfaces

In Section 3.2, we considered a relationship between D4-singularities
and minimal surfaces, and assumed that the function g of the Weierstrass
data (g, ω) is “holomorphic” at a singular point p. Thus, we omitted the
case that a pole of the meromorphic function g coincides with a singular
point. Here we will consider this remaining case and give the criteria for
D4-singularities of such minimal surfaces. However, for the pole of g, we
no longer have the relationship between the criteria for D4-singularities
and the Hopf differential factor Q (see Theorem A.4).

Lemma A.1. Let f be a minimal surface with the Weierstrass data
(g, ω = ω̂dz). Suppose that p is a pole of g. Then p is a corank two
singular point of f if and only if g2ω̂ = 0 at p.

Proof. By

fz =
1

2
(1− g2, i(1 + g2), 2g)ω̂, fz̄ =

1

2
(1− ḡ2,−i(1 + ḡ2), 2ḡ)¯̂ω,

we see that fz = fz̄ = 0 at p if and only if ω̂ = gω̂ = g2ω̂ = 0 at
p. However ω̂ = gω̂ = g2ω̂ = 0 is equivalent to g2ω̂ = 0 because
g(p) = ±∞. Q.E.D.

Lemma A.2. Let f be a minimal surface with the Weierstrass data
(g, ω = ω̂dz). Suppose that p is a pole of g and corank two singularity

of f . Then f is a front at p if and only if
|gz̄|2 − |gz|2
(|g|2 + 1)2

�= 0 at p.

Proof. By ν =

(
g + ḡ

|g|2 + 1
, i

ḡ − g

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
, we have

νz ∧ νz̄ =
2i(|gz̄|2 − |gz|2)

(|g|2 + 1)2
ν.

Thus, we notice that f is a front at p if and only if
|gz̄|2 − |gz|2
(|g|2 + 1)2

�= 0 at

p. Q.E.D.

Remark A.3. If we write g =
h2

h1
by using holomorphic functions h1

and h2 such that h1(p) = 0 and h2(p) is a non-zero value, then

|gz̄|2 − |gz|2
(|g|2 + 1)2

�= 0 at p ⇐⇒ (h1)z(p) �= 0.
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Here we get criteria for D4-singularities of minimal surfaces when a
point p is both a singular point of f and a pole of g.

Theorem A.4. Let f be a minimal surface with the Weierstrass
data (g, ω = ω̂dz). Suppose that p is a pole of g. Then the point p is a
D−

4 -singularity of f if and only if⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g2ω̂ = 0,
|gz̄|2 − |gz|2
(|g|2 + 1)2

�= 0 and

ω̂z �= 0 or (gω̂)z �= 0 or (g2ω̂)z �= 0 at p.

Moreover, f does not have a D+
4 -singularity at p.

Proof. The signed area density function λ can be given as

λ = (1 + |g|2)2|ω̂|2 = |ω̂|2 + 2|gω̂|2 + |g2ω̂|2.
Then, we have

λz = ω̂z
¯̂ω + ω̂ ¯̂ωz + 2

(
(gω̂)zgω̂ + gω̂(gω̂)z

)
+ (g2ω̂)zg2ω̂ + g2ω̂(g2ω̂)z.

All terms appearing in the above equation are zero at p. Thus, λz(p) = 0.
We can continue computing to get the following

λz̄(p) = λzz(p) = λz̄z̄(p) = 0 and λzz̄(p) = |ω̂z|2 + 2|(gω̂)z|2 + |(g2ω̂)z|.
Hence the Hessian of λ is

detHess(u,v)(λ)p = 4
(|ω̂z|2 + 2|(gω̂)z|2 + |(g2ω̂)z|

)2 ≥ 0.

By Fact 2.3 and Lemma 3.5, we have the assertion. Q.E.D.

Remark A.5. For the case of maximal surfaces in R
2,1, when a point

p is both a singular point and a pole of g, we can apply similar compu-
tation as in Section 3.2. Thus, we omit it.
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