
Advanced Studies in Pure Mathematics 78, 2018

Singularities in Generic Geometry

pp. 313–330

Evolutes of curves in the Lorentz-Minkowski plane

S. Izumiya, M. C. Romero Fuster and M. Takahashi

Abstract.

We can use a moving frame, as in the case of regular plane curves
in the Euclidean plane, in order to define the arc-length parameter
and the Frenet formula for non-lightlike regular curves in the Lorentz-
Minkowski plane. This leads naturally to a well defined evolute asso-
ciated to non-lightlike regular curves without inflection points in the
Lorentz-Minkowski plane. However, at a lightlike point the curve shifts
between a spacelike and a timelike region and the evolute cannot be
defined by using this moving frame. In this paper, we introduce an
alternative frame, the lightcone frame, that will allow us to associate
an evolute to regular curves without inflection points in the Lorentz-
Minkowski plane. Moreover, under appropriate conditions, we shall
also be able to obtain globally defined evolutes of regular curves with
inflection points. We investigate here the geometric properties of the
evolute at lightlike points and inflection points.

§1. Introduction

The evolute of a regular plane curve is a classical subject of differen-
tial geometry on Euclidean plane which is defined to be the locus of the
centres of the osculating circles of the curve (cf. [3, 7, 8]). It is useful
to recognize a vertex of a regular plane curve as a singularity (generi-
cally, a 3/2 cusp singularity) of the evolute. Recently, the evolutes have
been considered in other spaces, such as hyperbolic, de Sitter, anti de
Sitter and Minkowski space, as an application of singularity theory, see
[4, 9, 10, 11, 13, 14, 15, 16, 17].

Received March 26, 2016.
Revised June 29, 2016.
2010 Mathematics Subject Classification. Primary 53A35; Secondary

53D35, 53C50.
Key words and phrases. evolute, inflection point, lightcone frame,

Lagrangian singularity, Legendrian singularity.



314 S. Izumiya, M. C. Romero Fuster and M. Takahashi

For a non-lightlike regular curve in the Lorentz-Minkowski plane, we
can use a moving frame along the curve and define the arc-length param-
eter and the Frenet formula. This leads to the definition of the curvature
and the evolute of a non-lightlike regular curves without inflection points
in the Lorentz-Minkowski plane, see [14] for the definition and properties
of the evolute of a non-lightlike regular curves without inflection points.
On the other hand, we can consider the caustics of a regular curve, which
is defined even at the lightlike points of the curve. Then the caustics
of a non-lightlike regular curve without inflection points coincides the
evolute.

The lightlike points occur when of the curve moves between spacelike
and timelike regions and it can be seen that closed curves in the Lorentz-
Minkowski plane must have at least four lightlike points. Hence we can
not define the evolute globally by using the standard moving frame.
In this paper, we introduce an alternative frame, composed of lightlike
vector directions at each point, that we shall call the lightcone frame.
This allows us to define not only an evolute for the regular curves without
inflection points, but also for regular curves with inflection points under
certain conditions in the Lorentz-Minkowski plane. We can see that the
evolute of a regular curve with lightlike points is a completion of the
evolute of a non-lightlike regular curve.

In §2, we introduce the Frenet formula for non-lightlike curves and
the evolute of a non-lightlike regular curves without inflection points. In
order to consider the lightlike points, we introduce to the lightcone frame
in §3. We obtain a kind of a curvature for a regular curve in the Lorentz-
Minkowski plane and prove the corresponding existence and uniqueness
theorems. In §4, we see that the evolute of a regular curve without in-
flection points can be regarded not only as a front (a wavefront) but also
as a caustic. Furthermore, we describe the behaviour of the evolute at
a lightlike point. In §5, we define the evolute of a regular curve with
inflection points under appropriate conditions. We show with some ex-
amples that the evolutes obtained in this way for the Lorentz-Minkowski
geometry happen to be quite different from the corresponding ones in
the well known case of the Euclidean geometry.

All maps and manifolds considered here are differentiable of class
C∞.

Acknowledgement. This work started during the visit of the first
and third authors to the Universitat de València. We would like to
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§2. Preliminaries

The Lorentz-Minkowski plane R
2
1 is the plane R

2 endowed with the
metric induced by the pseudo-scalar product 〈u,v〉 = −u0v0 + u1v1,
where u = (u0, u1) and v = (v0, v1).

We say that a non-zero vector u ∈ R
2
1 is spacelike if 〈u,u〉 > 0,

lightlike if 〈u,u〉 = 0, and timelike if 〈u,u〉 < 0 respectively. The norm

of a vector u = (u0, u1) ∈ R
2
1 is defined by ||u|| = √|〈u,u〉| and the

vector u⊥ is given by u⊥ = (u1, u0). By definition, 〈u,u⊥〉 = 0 and
||u|| = ||u⊥||. We have u⊥ = ±u if and only if u is lightlike, and u⊥ is
timelike (respectively, spacelike) if and only if u is spacelike (respectively,
timelike).

We have the pseudo-circle in R
2
1 with centre v ∈ R

2
1 and a ∈ R,

PS(v, a) = {u ∈ R
2
1 | 〈u− v,u− v〉 = a}.

We can classify the pseudo-circles with centre v ∈ R
2
1 and radius r > 0

into the following types:

S1
1(v, r) = {u ∈ R

2
1 | 〈u− v,u− v〉 = r2},

LC∗(v, 0) = {u ∈ R
2
1 | 〈u− v,u− v〉 = 0},

H1(v,−r) = {u ∈ R
2
1 | 〈u− v,u− v〉 = −r2}.

We denote by S1
1(r), LC

∗ and H1(−r) the pseudo-circles centred at the
origin in R

2
1.

Let γ : I → R
2
1 be a smooth curve, where I is an interval of R. We

say that γ is spacelike (respectively, timelike) if γ̇(t) = (dγ/dt)(t) is a
spacelike (respectively, timelike) vector for any t ∈ I. Moreover, a point
γ(t) (or, t) is called a spacelike (respectively, lightlike, timelike) point if
γ̇(t) is a spacelike (respectively, lightlike, timelike) vector.

Let γ : I → R
2
1 be a spacelike or a timelike curve. In this case, we

may take the arc-length parameter s of γ. It follows that ||γ′(s)|| = 1
for all s ∈ I, where γ′(s) = (dγ/ds)(s). We denote by t(s) the unit
tangent vector and n(s) the unit normal vector to γ(s) such that
{t(s),n(s)} is oriented anti-clockwise. Actually, t(s) = γ′(s) and n(s) =
(−1)ω+1γ′(s)⊥, where ω = 1 if γ is timelike and ω = 2 if γ is spacelike.
Then we have the Frenet formula:(

t′(s)
n′(s)

)
=

(
0 κ(s)

κ(s) 0

)(
t(s)
n(s)

)
,
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where κ(s) is defined to be the curvature of γ. Thus,

κ(s) =
〈t′(s),n(s)〉
〈n(s),n(s)〉 = (−1)ω+1〈t′(s),n(s)〉 = 〈γ′′(s), γ′(s)⊥〉.

Even if γ is not parametrised by the arc-length and t denotes the pa-
rameter, then the unit tangent and the unit normal vectors to γ(t) such
that {t(t),n(t)} is oriented anti-clockwise are given by

t(t) =
γ̇(t)

||γ̇(t)|| , n(t) = (−1)ω+1 γ̇(t)⊥

||γ̇(t)|| .

It follows that(
ṫ(t)
ṅ(t)

)
=

(
0 ||γ̇(t)||κ(t)

||γ̇(t)||κ(t) 0

)(
t(t)
n(t)

)
and the curvature is given by κ(t) = 〈γ̈(t), γ̇(t)⊥〉/||γ̇(t)||3.

We call a point γ(t0) (or, t0) an inflection point if 〈γ̈(t0), γ̇(t0)⊥〉 = 0.
An inflection point of a spacelike, or a timelike regular curve γ is a point
γ(t) such that κ(t) = 0.

The evolute of a curve γ without inflection points is defined to be
the curve in R

2
1 given by

e(t) = γ(t)− 1

κ(t)
n(t).(1)

The properties of the evolute of a spacelike or a timelike curve are given
in [14].

We cannot consider the evolute (1) at a lightlike point, since the
curvature is not well defined at it. In this paper, we introduce another
frame and define the evolutes of regular curves, both without inflection
points and with inflection points under appropriate conditions, in the
Lorentz-Minkowski plane.

§3. Lightcone frame

We denote L+ = (1, 1) and L
− = (1,−1). By definition, L+ and L

−

are independent lightlike vectors and 〈L+,L−〉 = −2. We call {L+,L−}
a lightcone frame on R

2
1.

Let γ : I → R
2
1 be a regular curve (with lightlike points). There

exists a smooth function (α, β) : I → R
2 \ {0} such that

γ̇(t) = α(t)L+ + β(t)L−(2)
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for all t ∈ I. We say that a regular curve γ with the lightlike tangential
data (α, β) if the condition (2) holds. Then we have γ̇(t)⊥ = α(t)L+ −
β(t)L−. Since 〈γ̇(t), γ̇(t)〉 = −4α(t)β(t), γ(t) is a spacelike (respectively,
lightlike or timelike) point if and only if α(t)β(t) < 0 (respectively, = 0
or > 0).

Theorem 1. (The Existence Theorem) Let (α, β) : I → R
2 \ {0}

be a smooth mapping. There exists a regular curve γ : I → R
2
1 with the

lightlike tangential data (α, β).

Proof. Let γ : I → R
2
1 be

γ(t) =

(∫
(α(t) + β(t)) dt,

∫
(α(t)− β(t)) dt

)
.

By a direct calculation, γ is a regular curve and satisfies the condition
(2). Q.E.D.

Proposition 1. If γ and γ̃ : I → R
2
1 are regular curves with the

same lightlike tangential data (α, β), then there exists a constant c ∈ R
2
1

such that γ̃(t) = γ(t) + c.

Proof. Since γ̇(t) = ˙̃γ(t) for all t ∈ I, we have the result. Q.E.D.

The condition of Proposition 1 seems to be strong. We consider a
mild condition for the uniqueness as a Lorentz motion.

Definition 1. Let γ and γ̃ : I → R
2
1 be regular curves. We say that

γ and γ̃ are congruent through a Lorentz motion if there exist a matrix
A and a constant c ∈ R

2
1 such that γ̃(t) = A(γ(t))+c for all t ∈ I, where

A is given by

A =

(
cosh θ − sinh θ
− sinh θ cosh θ

)
or A = −

(
cosh θ − sinh θ
− sinh θ cosh θ

)
for some θ ∈ R.

Proposition 2. Let γ and γ̃ : I → R
2
1 be regular curves with the

lightlike tangential data (α, β) and (α̃, β̃) respectively. Suppose that γ
and γ̃ are congruent through a Lorentz motion, that is, there exist a
matrix

A =

(
cosh θ − sinh θ
− sinh θ cosh θ

) (
or, A = −

(
cosh θ − sinh θ
− sinh θ cosh θ

))
and a constant c ∈ R

2
1 such that γ̃(t) = A(γ(t)) + c. Then

α̃(t) = (cosh θ − sinh θ)α(t), β̃(t) = (cosh θ + sinh θ)β(t)
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(or, α̃(t) = −(cosh θ − sinh θ)α(t), β̃(t) = −(cosh θ + sinh θ)β(t)).

Proof. Suppose that γ̃(t) = A(γ(t)) + c. Since

˙̃γ(t) = A (γ̇(t)) = A
(
α(t)L+ + β(t)L−) = α(t)A(L+) + β(t)A(L−)

= α(t)(cosh θ − sinh θ)L+ + β(t)(cosh θ + sinh θ)L−,

we have the result. Q.E.D.

Note that cosh θ − sinh θ = e−θ and cosh θ + sinh θ = eθ.

Theorem 2. (The Uniqueness Theorem) Let γ and γ̃ : I → R
2
1 be

regular curves with the lightlike tangential data (α, β) and (α̃, β̃) respec-
tively. Suppose that the lightlike points of γ and γ̃ are isolated. If

α(t)β(t) = α̃(t)β̃(t)

and

α̇(t)β(t)− α(t)β̇(t) = ˙̃α(t)β̃(t)− α̃(t)
˙̃
β(t)

for all t ∈ I, then γ and γ̃ are congruent through a Lorentz motion.

Proof. We fix a non-lightlike point γ(t0) of γ and γ̃(t0) of γ̃. Then

α(t0)β(t0) = α̃(t0)β̃(t0) > 0 or < 0. There exists a Lorenz motion,

namely, a matrix A =

(
cosh θ − sinh θ
− sinh θ cosh θ

)
and a constant c ∈ R

2
1,

such that
γ̃(t0) = ±A(γ(t0)) + c, ˙̃γ(t0) = ±Aγ̇(t0).

By differentiating α(t)β(t) = α̃(t)β̃(t), we have

α̇(t)β(t) + α(t)β̇(t) = ˙̃α(t)β̃(t) + α̃(t)
˙̃
β(t).

It follows from the second condition

α̇(t)β(t)− α(t)β̇(t) = ˙̃α(t)β̃(t)− α̃(t)
˙̃
β(t)

that α̇(t)β(t) = ˙̃α(t)β̃(t) and α(t)β̇(t) = α̃(t)
˙̃
β(t). Thus we have(

α(t) α̃(t)

α̇(t) ˙̃α(t)

)(
β(t)

−β̃(t)

)
=

(
0
0

)
.

For a non-lightlike point γ(t), we have α(t) �= 0 and β(t) �= 0. There-

fore α(t) ˙̃α(t) − α̇(t)α̃(t) = 0 for non-lightlike points. It follows that
(d/dt)(α̃(t)/α(t)) = 0 and hence there is a constant b ∈ R such that
α̃(t) = bα(t). Since γ(t0) is a non-lightlike point and α̃(t0) = bα(t0),
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we have b = ±e−θ. Moreover, β̃(t) = (1/b)β(t) for non-lightlike points.
Since lightlike points of γ and γ̃ are isolated, we have α̃(t) = bα(t) and

β̃(t) = (1/b)β(t) on I. Thus,

α̃(t) = ±(cosh θ − sinh θ)α(t), β̃(t) = ±(cosh θ + sinh θ)β(t).

It follows that (d/dt)(γ̃(t) ∓ A(γ(t))) = 0. By γ̃(t0) = ±A(γ(t0)) + c,
we have γ̃(t) = ±A(γ(t))+ c. Therefore, γ and γ̃ are congruent through
the Lorentz motion. Q.E.D.

Remark 1. Let γ(t) = (t, t) and γ̃(t) = (t,−t). Since (α(t), β(t)) =

(1, 0) and (α̃(t), β̃(t)) = (0, 1), the conditions α(t)β(t) = α̃(t)β̃(t) and

α̇(t)β(t) − α(t)β̇(t) = ˙̃α(t)β̃(t) − α̃(t)
˙̃
β(t) in Theorem 2 are satisfied.

However, L+ and L
− are not congruent through a Lorentz motion by

Proposition 2.

§4. Evolutes of regular curves without inflection points

Let γ : I → R
2
1 be a regular curve with the lightlike tangential data

(α, β). Since 〈γ̈(t), γ̇(t)⊥〉 = 2(α̇(t)β(t)−α(t)β̇(t)), γ(t0) is an inflection
point of γ if and only if

α̇(t0)β(t0)− α(t0)β̇(t0) = 0.(3)

We define an evolute Ev(γ) : I → R
2
1 of γ : I → R

2
1 with the lightlike

tangential data (α, β) by

Ev(γ)(t) = γ(t)− 2α(t)β(t)

α̇(t)β(t)− α(t)β̇(t)

(
α(t)L+ − β(t)L−)(4)

without inflection points.
Suppose that γ is a spacelike (or, timelike) regular curve. We have

the following expression for the curvature κ in terms of the lightlike
tangential data (α, β) of γ.

Proposition 3. Let γ : I → R
2
1 be a spacelike (or, timelike) regular

curve with the lightlike tangential data (α, β). The curvature κ of γ is
given by

κ(t) =
α̇(t)β(t)− α(t)β̇(t)

4|α(t)β(t)|√|α(t)β(t)| .

Proof. Since γ̇(t) = α(t)L+ + β(t)L−, we have γ̈(t) = α̇(t)L+ +

β̇(t)L− and γ̇(t)⊥ = α(t)L+ − β(t)L−. It follows that

κ(t) =
〈γ̈(t), γ̇(t)⊥〉

||γ̇(t)||3 =
α̇(t)β(t)− α(t)β̇(t)

4|α(t)β(t)|√|α(t)β(t)| .

Q.E.D.
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Remark 2. By Proposition 3, the conditions of Theorem 2 say that
the curvatures of spacelike (or, timelike) congruent regular curves are the
same.

Since

n(t) = (−1)ω
γ̇(t)⊥

||γ̇(t)|| = (−1)ω
α(t)L+ − β(t)L−

2
√|α(t)β(t)|

and Proposition 3, the evolute (1) of a regular non-lightlike curve is
given by

e(t) = γ(t)− 1

κ(t)
n(t)

= γ(t) + (−1)ω
2|α(t)β(t)|

α̇(t)β(t)− α(t)β̇(t)
(α(t)L+ − β(t)L−).

If γ is spacelike (respectively, timelike), then ω = 2 and α(t)β(t) < 0
(respectively, ω = 1 and α(t)β(t) > 0). It follows that

e(t) = γ(t)− 2α(t)β(t)

α̇(t)β(t)− α(t)β̇(t)

(
α(t)L+ − β(t)L−) = Ev(γ)(t).

Therefore, the evolute Ev(γ)(t) is a generalization of the evolute e(t).

Remark 3. If γ(t0) is a lightlike point of γ, then α(t0) = 0 and
β(t0) �= 0, or α(t0) �= 0 and β(t0) = 0. Thus, we have Ev(γ)(t0) = γ(t0).

We see next that the evolute Ev(γ)(t) of γ without inflection points
can be regarded not only as a front (a wavefront), but also as a caustic.

Let γ : I → R
2
1 be a regular curve with the lightlike tangential

data (α, β) and without inflection points. We consider two families of
functions:

F : I × R
2
1 → R

is given by
F (t,v) = 〈γ(t)− v, γ̇(t)〉,

and
D : I × R

2
1 → R

is given by
D(t,v) = 〈γ(t)− v, γ(t)− v〉.

Given v ∈ R
2
1, we denote fv(t) = F (t,v) and dv(t) = D(t,v).
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Proposition 4. (1) fv(t) = 0 if and only if there exists λ ∈ R such
that v = γ(t)− λγ̇(t)⊥.

(2) fv(t) = ḟv(t) = 0 if and only if

v = γ(t)−
(
2α(t)β(t)/(α̇(t)β(t)− α(t)β̇(t))

)
γ̇(t)⊥.

Proof. (1) 〈γ(t)−v, γ̇(t)〉 = 0 if and only if there exists λ ∈ R such
that γ(t)− v = λγ̇(t)⊥ if and only if v = γ(t)− λγ̇(t)⊥.

(2) Since ḟv(t) = 〈γ̇(t), γ̇(t)〉 + 〈γ(t) − v, γ̈(t)〉 = −4α(t)β(t) +

2λ(α̇(t)β(t)−α(t)β̇(t)) = 0, we have λ = 2α(t)β(t)/(α̇(t)β(t)−α(t)β̇(t)).
The converse also holds. Q.E.D.

Clearly, we have the following relationship between fv and dv :
ḋv(t) = 2fv(t). Then, as a consequence of Proposition 4, we obtain
the following result.

Proposition 5. (1) ḋv(t) = 0 if and only if there exists λ ∈ R such
that v = γ(t)− λγ̇(t)⊥.

(2) ḋv(t) = d̈v(t) = 0 if and only if

v = γ(t)−
(
2α(t)β(t)/(α̇(t)β(t)− α(t)β̇(t))

)
γ̇(t)⊥.

We refer to [1, 2, 11, 12, 13, 18] for the definitions of Morse families
in the theories of Legendre and Lagrange singularities. In particular, we
shall follow the notations in [11, 12, 13].

Proposition 6. The map F : I × R
2
1 → R is a Morse family of

hypersurfaces, namely,(
F,

∂F

∂t

)
: I × R

2
1 → R× R

is non-singular.

Proof. We denote γ(t) = (x(t), y(t)) and v = (x, y). It is enough
to show that

rank

⎛⎝ ∂F/∂t ∂2F/∂t2

∂F/∂x ∂2F/∂t∂x
∂F/∂y ∂2F/∂t∂y

⎞⎠ (t,v) = 2.

Since F (t,v) = 〈γ(t) − v, γ̇(t)〉 = −(x(t) − x)ẋ(t) + (y(t) − y)ẏ(t), we
have

∂F

∂x
(t,v) = ẋ(t),

∂F

∂y
(t,v) = −ẏ(t),

∂2F

∂t∂x
(t,v) = ẍ(t),

∂2F

∂t∂y
(t,v) = −ÿ(t).
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It follows that −ẋ(t)ÿ(t) + ẍ(t)ẏ(t) = −〈γ̈(t), γ̇(t)⊥〉 �= 0. Q.E.D.

The discriminant set of F is given by

Σ(F ) =
{
(t,v) ∈ I × R

2
1 | fv(t) = f ′

v(t) = 0
}
.

We consider the projective cotangent bundle π : PT ∗
R

2
1 → R

2
1 over R2

1.
By Proposition 6, we have that Σ(F ) is a 1-dimensional submanifold
and

LF : Σ(F ) → PT ∗
R

2
1; (t,v) �→

(
v,

[
∂F

∂x
(t,v) :

∂F

∂y
(t,v)

])
is a Legendre immersion with respect to the canonical contact structure
on PT ∗

R
2
1. Now, it follows from Proposition 4 that π ◦ LF (Σ(F )) co-

incides with the evolute of γ. Therefore, we get that the evolute Ev(γ)
can be interpreted as the front (wavefront) of the LF .

Proposition 7. The map D : I × R
2
1 → R is a Morse family of

functions, namely,
∂D

∂t
: I × R

2
1 → R

is a non-singular.

Proof. We use the same notations as in the proof of Proposition 6.
Since (∂D/∂t)(t,v) = 2F (t,v), it is enough to show that the gradient
vector of F is non-zero. (∂F/∂x)(t,v) = ẋ(t), (∂F/∂y)(t,v) = −ẏ(t)
and since γ is a regular curve, we have the conclusion. Q.E.D.

The catastrophe set and the bifurcation set of D are respectively
given by

C(D) =
{
(t,v) ∈ I × R

2
1 | ḋv(t) = 0

}
and

BD =
{
v ∈ R

2
1| there exists t ∈ I such that (t,v) ∈ C(D), d̈v(t) = 0

}
.

We consider the cotangent bundle π̃ : T ∗
R

2
1 → R

2
1 over R2

1. By Proposi-
tion 7, C(D) is a smooth 2-dimensional submanifold and

L(D) : C(D) → T ∗
R

2
1; (t,v) �→

(
v,

∂D

∂x
(t,v),

∂D

∂y
(t,v)

)
is a Lagrange immersion with respect to the canonical symplectic struc-
ture on T ∗

R
2
1. By Proposition 5, the critical value set of π̃ ◦ L(D) is

the bifurcation set of D. Therefore, the evolute Ev(γ) is the caustic of
L(D).
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Example 1. Let γ : [0, 2π) → R
2
1 be a circle γ(t) = (r cos t, r sin t)

in the Minkowski plane, where r > 0. Since

γ̇(t) = (−r sin t, r cos t)

=
1

2
(−r sin t+ r cos t)L+ +

1

2
(−r sin t− r cos t)L−,

we have

α(t) =
1

2
(−r sin t+ r cos t) , β(t) =

1

2
(−r sin t− r cos t) .

It follows that the evolute of the circle is given by

Ev(γ)(t) =
(
r(1− sin2 t+ cos2 t) cos t, r(1 + sin2 t− cos2 t) sin t

)
,

see Figure 1.

Figure 1. the circle with r = 1 and the evolute.

Remark 4. It is worth noting that the evolute of circles in the
Euclidean plane is a point. Therefore the evolute in the Lorenz-Minkowski
plane is different from the evolute in the Euclidean plane.

A point t (or, γ(t)) is called a vertex for a non-lightlike regular curve
γ if κ̇(t) = 0. The following result has been given in [14].

Proposition 8. ([14, Proposition 3.2]) Let γ : I → R
2
1 be a non-

lightlike regular curve without inflection points.
(1) The evolute of a spacelike (respectively, timelike) curve is a time-

like (respectively, spacelike) curve.
(2) The evolute of γ is singular precisely at the vertices of γ.

We consider now the case of lightlike points.

Proposition 9. Let γ : I → R
2
1 be a regular curve with the lightlike

tangential data (α, β) and without inflection points.
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(1) If γ(t0) is a lightlike point of γ, then Ev(γ)(t0) is also a lightlike
point of Ev(γ).

(2) If γ(t0) is a lightlike point of γ, then Ev(γ)(t0) is a regular point
of Ev(γ).

Proof. (1) By definition of the evolute of γ, we have

Ėv(γ)(t) = α(t)L+ + β(t)L− − 2α(t)β(t)

α̇(t)β(t)− α(t)β̇(t)

(
α̇(t)L+ − β̇(t)L−

)
− d

dt

(
2α(t)β(t)

α̇(t)β(t)− α(t)β̇(t)

)(
α(t)L+ − β(t)L−) .

Moreover, (d/dt)(2α(t)β(t)/α̇(t)β(t)− α(t)β̇(t)) is given by

2
α̇2(t)β2(t)− α2(t)β̇2(t)− α(t)β(t)(α̈(t)β(t)− α(t)β̈(t))(

α̇(t)β(t)− α(t)β̇(t)
)2 .

If α(t0) = 0 and β(t0) �= 0, then Ėv(γ)(t0) = 3β(t0)L
−. On the other

hand, if β(t0) = 0 and α(t0) �= 0, then Ėv(γ)(t0) = 3α(t0)L
+. Hence

Ev(γ)(t0) is also a lightlike point of Ev(γ).

(2) By the same calculation of (1), Ėv(γ)(t0) �= 0 at a lightlike point
γ(t0) of the curve. Q.E.D.

If we denote Ėv(γ)(t) = αEv(t)L
+ + βEv(t)L

−, then αEv(t) =

α(t)

(
−3α̇2(t)β2(t) + 3α2(t)β̇2(t) + 2α(t)β(t)(α̈(t)β(t)− α(t)β̈(t))

(α̇(t)β(t)− α(t)β̇(t))2

)
,

βEv(t) =

−β(t)

(
−3α̇2(t)β2(t) + 3α2(t)β̇2(t) + 2α(t)β(t)(α̈(t)β(t)− α(t)β̈(t))

(α̇(t)β(t)− α(t)β̇(t))2

)
.

As a corollary of Propositions 8 and 9, we have the following result.

Corollary 1. Let γ : I → R
2
1 be a regular curve with lightlike tan-

gential data (α, β) and without inflection points.
(1) Suppose that Ev(γ) is a regular curve. Then γ is a spacelike

(respectively, lightlike or timelike) curve if and only if Ev(γ) is a timelike
(respectively, lightlike or spacelike) curve.

(2) The evolute Ev(γ) is singular precisely at the vertices of γ.
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The singularities of dv estimate the contact of γ with the pseudo
circles. By Proposition 5, the evolute is given by the locus of the centres
of the pseudo circles of at least second order contact with γ at t0. This
pseudo circle is given by its centre v = Ev(γ)(t0) and radius r = ||γ(t0)−
v||, namely,

PS(v, 〈γ(t0)− v, γ(t0)− v〉)
= {(x, y) ∈ R

2
1 | 〈(x, y)− v, (x, y)− v〉 = 〈γ(t0)− v, γ(t0)− v〉}.

By a direct calculation, we have

〈γ(t0)− v, γ(t0)− v〉 = 4

(
2α(t0)β(t0)

α̇(t0)β(t0)− α(t0)β̇(t0)

)2

α(t0)β(t0).

Since γ(t0) is a timelike (respectively, lightlike, or spacelike) point of
γ(t) if and only if α(t0)β(t0) > 0 (respectively, = 0 or < 0), the pseudo
circle is S1

1(v, r) (respectively, LC
∗(v, 0) or H1(v,−r)), see Figure 2.

t = 0 t = π/4 t = π/2

Figure 2. The pseudo circles and the evolute of the circle in Example 1.

§5. Evolutes of regular curves with inflection points

In the Euclidean plane, we cannot define the evolutes of regular
curves and fronts at their inflection points (cf. [3, 5, 7, 8]). On the
other hand, under appropriate conditions in the Euclidean plane, we
can define an evolute at the inflection points of a frontal (cf. [6]).

In the Lorentz-Minkowski plane, the lightlike points play the role
of the singular points. We may define the evolute of a regular curve
at its inflection points under appropriate conditions. It follows that
the situation in both cases, the Euclidean geometry and the Lorentz-
Minkowski geometry, appears to be quite different.

Let γ : I → R
2
1 be a regular curve with inflection points, having

lightlike tangential data (α, β). We may define an evolute under the
following existence and uniqueness conditions:
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Definition 2. The evolute Ev(γ) : I → R
2
1 of γ is given by

Ev(γ)(t) = γ(t) + λ(t)(α(t)L+ − β(t)L−),(5)

if there exists a unique smooth function λ : I → R such that

−2α(t)β(t) = λ(t)(α̇(t)β(t)− α(t)β̇(t)).

In such case, we say that the evolute Ev(γ) exists.

The uniqueness condition is well-known as a topological condition.

Lemma 1. Suppose that there exists a continuous function λ : I →
R such that λ(t) = −2α(t)β(t)/(α̇(t)β(t) − α(t)β̇(t)) on Λ = {t ∈
I | α̇(t)β(t) − α(t)β̇(t) �= 0}. Then the function λ is a unique if and
only if Λ is a dense subset of I.

Remark 5. If the inflection points are isolated, then the condition
that Λ is a dense subset of I is satisfied.

In this section, we assume that Λ = {t ∈ I | α̇(t)β(t)−α(t)β̇(t) �= 0}
is a dense subset of I. Then we have that if such a smooth function λ
exists, the uniqueness condition is guaranteed by Lemma 1.

Observe that provided the evolute Ev(γ) exists at an inflection
point, then this must be a lightlike point of γ. Since γ is a regular
curve, the function D is a Morse family of functions. Hence Ev(γ) is
still a caustic of L(D). However, the function F is not a Morse family
of hypersurface.

We can now prove an extension of Proposition 9 including the in-
flection points case.

Proposition 10. Let γ : I → R
2
1 be a regular curve with the light-

like tangential data (α, β). Suppose that the evolute Ev(γ) exists and

−2α(t)β(t) = λ(t)(α̇(t)β(t)− α(t)β̇(t)).
(1) If γ(t0) is an inflection point of γ and a regular point of Ev(γ),

then Ev(γ)(t0) is a lightlike point of Ev(γ). Moreover, Ev(γ)(t0) is an
inflection point of Ev(γ).

(2) Suppose that γ(t0) is a lightlike point. Then Ev(γ)(t0) is a sin-
gular point of Ev(γ) if and only if one of the following condition holds.

(i) α(t0) = λ(t0) = 1− λ̇(t0) = 0 and β(t0) �= 0,

(ii) β(t0) = λ(t0) = 1 + λ̇(t0) = 0 and α(t0) �= 0,

(iii) α(t0) = α̇(t0) = (1−λ̇(t0))β(t0)−λ(t0)β̇(t0) = 0 and β(t0) �= 0,

(iv) β(t0) = β̇(t0) = (1+ λ̇(t0))α(t0)+λ(t0)α̇(t0) = 0 and α(t0) �= 0.

Proof. (1) By differentiating the evolute

Ev(γ)(t) = γ(t) + λ(t)(α(t)L+ − β(t)L−),
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we have

d

dt
Ev(γ)(t) =

(
(1 + λ̇(t))α(t) + λ(t)α̇(t)

)
L
+

+
(
(1− λ̇(t))β(t)− λ(t)β̇(t)

)
L
−.

It follows that αEv(t) = (1 + λ̇(t))α(t) + λ(t)α̇(t) and βEv(t) = (1 −
λ̇(t))β(t)− λ(t)β̇(t). Since γ(t0) is an inflection point of γ, it holds that
γ(t0) is a lightlike point of γ. It follows that α(t0) = α̇(t0) = 0, β(t0) �= 0

or β(t0) = β̇(t0) = 0, α(t0) �= 0. Therefore, we have αEv(t0) = 0 or
βEv(t0) = 0. If Ev(γ)(t0) is a regular point of Ev(γ), then Ev(γ)(t0) is
a lightlike point of Ev(γ).

By differentiating −2α(t)β(t) = λ(t)(α̇(t)β(t)− α(t)β̇(t)), we have

−2(α̇(t)β(t) + α(t)β̇(t))

= λ̇(t)(α̇(t)β(t)− α(t)β̇(t)) + λ(t)(α̈(t)β(t)− α(t)β̈(t)).

Moreover,

α̇Ev(t)βEv(t)− αEv(t)β̇Ev(t)

=
(
λ̈(t)α(t) + (1 + 2λ̇(t))α̇(t) + λ(t)α̈(t)

)
βEv(t)

−
(
−λ̈(t)β(t) + (1− 2λ̇(t))β̇(t)− λ(t)β̈(t)

)
αEv(t).

If α(t0) = α̇(t0) = 0, β(t0) �= 0, then αEv(t0) = 0 and λ(t0)α̈(t0) = 0.

Also, if β(t0) = β̇(t0) = 0, α(t0) �= 0, then βEv(t0) = 0 and λ(t0)β̈(t0) = 0.

Both cases, we have α̇Ev(t0)βEv(t0) − αEv(t0)β̇Ev(t0) = 0. Hence
Ev(γ)(t0) is an inflection points of Ev(γ).

(2) Since γ(t0) is a lightlike point of γ, we have λ(t0) = 0 or γ(t0) is
an inflection point of γ. By definition, Ev(γ)(t0) is a singular point of
Ev(γ) if and only if αEv(t0) = βEv(t0) = 0.

First we assume that λ(t0) = 0. If α(t0) = 0 and β(t0) �= 0, then

Ev(γ)(t0) is a singular point of Ev(γ) if and only if 1− λ̇(t0) = 0. Also
if β(t0) = 0 and α(t0) �= 0, then Ev(γ)(t0) is a singular point of Ev(γ)

if and only if 1 + λ̇(t0) = 0.
Next, we assume that γ(t0) is an inflection point of γ. By the proof

of (1), Ev(γ)(t0) is a singular point of Ev(γ) if and only if α(t0) =

α̇(t0) = 0, β(t0) �= 0 and βEv(t0) = 0, or β(t0) = β̇(t0) = 0, α(t0) �= 0
and αEv(t0) = 0. This completes the proof. Q.E.D.

Remark 6. We can use the same definition (5) in order to define
the evolute of γ with singular points. In this case, α and β vanish
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simultaneously at the singular points. Moreover, a singular point of γ is
also an inflection point of γ.

Example 2. Let γ : R → R
2
1 be a graph of a smooth function f , that

is, γ(t) = (t, f(t)). Then we have α(t) = (1+ḟ(t))/2, β(t) = (1−ḟ(t))/2.
It follows that

α(t)β(t) =
1

4
(1 + ḟ(t))(1− ḟ(t)), α̇(t)β(t)− α(t)β̇(t) =

f̈(t)

2
.

Hence if there exists a unique smooth function λ such that

−(1 + ḟ(t))(1− ḟ(t)) = λ(t)f̈(t),

then we have the evolute Ev(γ)(t) = γ(t) + λ(t)(α(t)L+ − β(t)L−) of
γ(t).

For example, let f(t) = t+t3. Note that γ(0) is an inflection point of
γ. Then α(t) = (2+ 3t2)/2, β(t) = −(3/2)t2, α(t)β(t) = −3t2(2+ 3t2)/4

and α̇(t)β(t)− α(t)β̇(t) = 6t. It follows that we have λ(t) = (1/2)t(2 +
3t2) and the evolute Ev(γ) is given by

Ev(γ)(t) =

(
t+

1

2
t(2 + 3t2)(1 + 3t2), 2t+

5

2
t3
)
,

see Figure 3.

γ(t) = (t, t+ t3) γ(t) and the evolute Ev(γ)

Figure 3.

Example 3. Let γ : [0, 2π) → R, γ(t) = (cos t, sin t cos t) be an
eight figure. Then α(t) = (cos 2t − sin t)/2, β(t) = −(sin t + cos 2t)/2,

α(t)β(t) = −(cos 2t − sin t)(cos 2t + sin t)/4 and α̇(t)β(t) − α(t)β̇(t) =
cos t(1+2 sin2 t)/2. It follows that we have λ(t) = cos t(4 cos2 t−3)/(1+
2 sin2 t) and the evolute Ev(γ) is given by Ev(γ)(t) =(

cos t

(
1 +

(4 cos2 t− 3) cos 2t

1 + 2 sin2 t

)
, sin t cos t

(
1− 4 cos2 t− 3

1 + 2 sin2 t

))
,
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see Figure 4. Note that γ(t) for t = π/2 and t = 3π/2 are inflection
points.

γ(t) = (cos t, sin t cos t) γ(t) and the evolute Ev(γ)

Figure 4.
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