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Singularity analysis of lightlike hypersurfaces of
partially null curves
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Abstract.

We have gotten singularity classifications of lightlike hypersurfaces
of a pseudo null curve in R

4
2
[6]. This paper is to characterize singulari-

ties of lightlike hypersurfaces of a partially null curve in the same space
and give an example of such curves.

§1. Introduction

The notions of partially and pseudo null curves are derived from
null curves, also called lightlike curves. There widely exist null curves
in Minkowski spacetime. About half a century ago, null curves were
researched from the view point of differential geometry [3]. In 1985,
W. B. Bonnor further investigated curves with lightlike normals [4].
Until 1995, J. Walrave gave the definitions of partially and pseudo null
curves [24].

A pseudo null curve is not a lightlike curve, but its tangent curve is
a lightlike curve. A partially null curve is not a lightlike curve, nor is its
tangent curve. Normally, partially null curves are curves with lightlike
binormals [21].

Additionally, M. Petrović-Torgašev, K. İlarslan, and E. Nešović ([21],
2005) give the Frenet equations of pseudo null and partially null curves
in R

4
2 and classify all such curves with constant curvatures. Thereafter,

pseudo and partially null curves have been widely concerned and many
good results have been obtained from the view point of differential ge-
ometry [1, 8, 9, 10, 11, 20, 23, 25]. Pseudo null Bertrand curves, pseudo
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null Mannheim curves, the inextensible flows and the position vector
of partially null curves are considered, respectively in [8], [9], [23] and
[25]. And the relations are gotten in [10] between pseudo and partially
null rectifying curves and centrodes (Darboux vectors), which play some
important roles in mechanics, kinematics as well as in differential geom-
etry. Moreover, the involute-evolute of the pseudo null curve is studied
in [20], and they prove that there is no involute of pseudo null curves in
Minkowski 3-space. On the other hand, the research about submanifolds
in semi-Riemannian spaces have been hot issues in recent years from the
view point of singularity theory and differential geometry. There ap-
peared many good achievements [2, 12, 13, 14, 15, 16, 17, 18, 19, 22].

We have researched pseudo null timelike curves with lightlike frames
given in [21], that are curves with lightlike principal normal vectors, i.e.
‖γ′′‖ = 0. In this paper, we focus on partially null timelike curves,
that are curves with lightlike binormals. However, we find it difficult to
construct the lightlike frame in [21]. For example if we take γ′′′ as a light-
like binormal vector, then γ′′ is also lightlike. Therefore, we construct
a frame without lightlike vectors and naturally extend our research to
the case of ‖γ′′‖ �= 0. Take n1 = γ′′/‖γ′′‖ as the unit principal normal
vector. When n1 is spacelike, γ has two lightlike binormal vectors which
is a partially null curve. We also consider the case that n1 is timelike.
The current study is inspired by the report of S. Izumiya and T. Sato
[18]. We focus on the singularity analysis of lightlike hypersurfaces of
partially null curves.

The paper is organized as follows: Section 2 summarizes the required
formalism of the basic notions concerning the semi-Euclidean 4-space
with index 2 and gives the main results about geometric information of
singularities of lightlike hypersurfaces, which can measure the the order
of the contact between a partially null curve and a lightcone. Section 3
introduces the one parameter family of lightcone Gaussian indicatrices
named lightcone Gaussian surfaces from the view point of differential
geometry. Section 4 constructs Lorentz distance-squared functions to
characterize the contact relations between partially null curves and the
lightcone. Section 5 gives the proof of the main result, i.e. Theorem
1, through the methods of the classical unfolding theory in singularity
theory. Finally, in Section 6 we give an example to illustrate the sin-
gularities of lightlike hypersurfaces and some properties of the lightcone
Gaussian surfaces.

We assume throughout the paper that all manifolds and maps are
C∞ unless explicitly stated otherwise.
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§2. The basic concepts and Main Results

The semi-Euclidean four space with index two (R4
2, 〈, 〉) is the vector

space R4 endowed with the metric induced by the pseudo-scalar product
〈x,y〉 = −x0y0−x1y1+x2y2+x3y3, for any vectors x = (x0, x1, x2, x3),
y = (y0, y1, y2, y3) in R

4. The non-zero vector x ∈ R
4
2 is called spacelike,

lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0 respectively.

The norm of the vector x ∈ R
4
2 is defined as ‖x‖ =

√|〈x,x〉|. The
signature of a vector x ∈ R

4
2\{0} is defined as

sign(x) =

⎧⎨
⎩

1 x is spacelike
0 x is lightlike
−1 x is timelike.

We call NCα = {x = (x0, x1, x2, x3) ∈ R
4
2|〈x−α,x−α〉 = 0} a lightcone

with vertex α, and denote NC∗ = NC0\{0}.
For any x1,x2,x3 ∈ R

4
2, we define the vector x1 ∧ x2 ∧ x3 as

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣
−e0 −e1 e2 e3
x0
1 x1

1 x2
1 x3

1

x0
2 x1

2 x2
2 x3

2

x0
3 x1

3 x2
3 x3

3

∣∣∣∣∣∣∣∣
,

where xi = (x0
i , x

1
i , x

2
i , x

3
i ) and {e0,e1,e2,e3} is the canonical basis of

R
4
2. Obviously,

〈x,x1 ∧ x2 ∧ x3〉 = det(x,x1,x2,x3),

so that x1 ∧ x2 ∧ x3 is pseudo orthogonal to any xi(i = 1, 2, 3).
Let γ : I −→ R

4
2 be a smooth regular curve (i.e.,γ′(t) �= 0), where I

is an open interval. For any t ∈ I, the curve γ is called spacelike, lightlike
or timelike if the velocity of the curve is 〈γ̇(t), γ̇(t)〉 > 0, 〈γ̇(t), γ̇(t)〉 = 0
or 〈γ̇(t), γ̇(t)〉 < 0 respectively.

Let γ : I −→ R
4
2 be a unit speed timelike curve, parameterized by

the arclength parameter s, i.e. 〈γ′(s),γ′(s)〉 = −1. If γ′′ is a spacelike
vector, we can choose two lightlike binormal vectors such that γ is a
partially null curve. In [21], the authors have given a frame of partially
null curve, which contains two transversal lightlike vectors. The tangent
and the principal normal vector fields are defined respectively by

T (s) = γ′(s), N(s) =
γ′′(s)

‖γ′′(s)‖ .

The first and second binormal vector fields are taken from the subspace
{T,N}⊥, denoted respectively by B1 and B2. Then the lightlike frame
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{T,N,B1, B2}[21] associated with the partially null curve satisfies

〈T, T 〉 = −〈N,N〉 = −1, 〈B1, B1〉 = 〈B2, B2〉 = 0, 〈B1, B2〉 = −1,

〈N,B1〉 = 〈N,B2〉 = 〈T,N〉 = 〈T,B1〉 = 〈T,B2〉 = 0.

The two transversal lightlike vectors can be substituted by a space-
like vector and a timelike vector

B1 +B2√
2

and
B1 −B2√

2
.

Therefore, for a general situation, if ‖γ′′(s)‖ �= 0 (i.e. γ′′ is a spacelike
vector or a timelike vector), we can construct, without loss of generality,
a pseudo-orthogonal frame without lightlike vectors. Denote t(s) =
T (s), n1(s) = N(s). Take k1(s) = ‖γ′′(s)‖ as a curvature function. As
γ is not a pseudo null curve, k1(s) �= 0. Then take n2(s) = (δ1k1(s)t(s)−
n′

1(s))/k2(s), where k2(s) = ‖δ1k1(s)t(s)− n′
1(s)‖ and δi = sign(ni(s))

(i = 1, 2, 3). n3(s) is defined as

n3(s) =
t(s) ∧ n1(s) ∧ n2(s)

‖t(s) ∧ n1(s) ∧ n2(s)‖ .

So we define a pseudo-orthogonal frame F = {t(s),n1(s),n2(s),n3(s)}
of R4

2 which is a positively oriented 4-tuple of vectors satisfying

〈t, t〉 = −1, 〈ni,ni〉 = δi,

〈t,n1〉 = 〈t,n2〉 = 〈t,n3〉 = 〈n1,n2〉 = 〈n1,n3〉 = 〈n2,n3〉 = 0,
(1)

where δ1δ2δ3 = −1 and δ1 + δ2 + δ3 = 1.
The Frenet formula of γ with respect to the frame F is as follows⎧⎪⎪⎨

⎪⎪⎩
t′(s) = k1(s)n1(s)
n′

1(s) = δ1k1(s)t(s)− k2(s)n2(s)
n′

2(s) = −δ3k2(s)n1(s)− k3(s)n3(s)
n′

3(s) = −δ1k3(s)n2(s),

(2)

where k2(s) = −δ2〈n′
1(s),n2(s)〉, k3(s) = −δ3〈n′

2(s),n3(s)〉.
Remark 1. γ is a partially null curve when δ1 = 1. We can take

n2 ± n3 as the two lightlike binormal vectors. For the sake of com-
pleteness and unification, we take the pseudo-orthogonal frame F =
{t,n1,n2,n3} without lightlike vectors, and naturally extend our results
to the case of ‖γ′′‖ �= 0.
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Remark 2. We focus on k2(s) �= 0. Otherwise,

n′
1(s) ≡ δ1k1(s)t(s).

It means that γ is locally a plane curve.

We define ngγ : U −→ NC∗, where U = I × [0, 2π), by

ngγ(s, θ) =

(
1− δ1

2
+

1− δ2
2

cos θ +
1− δ3

2
cos θ

)
n1(s)

+

(
1− δ1

2
cos θ +

1− δ2
2

+
1− δ3

2
sin θ

)
n2(s)

+

(
1− δ1

2
sin θ +

1− δ2
2

sin θ +
1− δ3

2

)
n3(s),

(3)

it is called the lightcone Gaussian surface of γ.

Remark 3. If δ1 = δ3 = 1, δ2 = −1, ngγ(s, θ) = cos θn1(s) +
n2(s) + sin θn3(s), that is a surface on the lightcone.

We define the lightlike hypersurface along γ

nhγ : U × R −→ R
4
2

by nhγ(s, θ, t) = γ(s)+ tngγ(s, θ). If we fix θ0, the lightlike hypersurface
is just a lightlike ruled surface along γ.

We also define a new important function of the timelike curve in R
4
2

by

η(s) =
(
k1k2(k

′′
1 + δ3k1k

2
2)− k′1(2k

′
1k2 + k1k

′
2)

∓ k1k2k3

√
δ2k21k

2
2 + δ1(k′1)2

)
(s).

(4)

Let F : R4
2 −→ R be a submersion and γ : I −→ R

4
2 be a timelike

curve. We say that γ and F−1(0) have k-point contact for t = t0 if the
function h(t) = F ◦ γ(t) satisfies h(t0) = h′(t0) = · · · = h(k−1)(t0) = 0,
h(k)(t0) �= 0. We also say that γ and F−1(0) have at least k-point contact
for t = t0 if the function h(t) = F ◦ γ(t) satisfies h(t0) = h′(t0) = · · · =
h(k−1)(t0) = 0. For any fixed v0 ∈ R

4
2, we have a model surface NCv0 . It

is a lightcone with vertex v0. We now consider the following conditions
(A 1) The number of points p of γ(I) where the model surface at p

having five-point contact with the curve γ is finite.
(A 2) There is no point p of γ(I) where the model surface at p

having greater than or equal to six-point contact with the curve γ.
Here, we present the main results in this paper.
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Theorem 1. Let γ : I −→ R
4
2 be a timelike curve with ‖γ′′(s)‖ �= 0.

Let v0 = nhγ(s0, θ0, t0), we have the following :
(1) NCv0 and γ have at least 2-point contact at s0.
(2) NCv0 and γ have 3-point contact at s0 if and only if there exists
θ0 ∈ [0, 2π) such that

ϕ(s0, θ0) �= 0 and γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ0),

where ϕ(s, θ) = k′1(s)(
δ1−1
2 + δ1+1

2 cos θ)−k1(s)k2(s)(
1−δ1
2 cos θ+ δ2−1

2 +
1−δ3
2 sin θ). Under this condition, the lightlike hypersurface nhγ at v0

is locally diffeomorphic to C(2, 3) × R
2 and the lightlike focal set nfγ is

non-singular.
(3) NCv0 and γ have 4-point contact at s0 if and only if there exists
θ0 = θ(s0) ∈ [0, 2π) such that ϕ(s0, θ(s0)) = 0, η(s0) �= 0 and

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0)).

Under this condition, the lightlike hypersurface nhγ at v0 is locally dif-
feomorphic to SW ×R, the lightlike focal set nfγ is locally diffeomorphic
to C(2, 3, 4)× R and the singular value set of nfγ is a regular curve.
(4) NCv0 and γ have 5-point contact at s0 if and only if there exists
θ(s0) ∈ [0, 2π) such that ϕ(s0, θ(s0)) = η(s0) = 0, η′(s0) �= 0 and

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0)).

Under this condition, the lightlike hypersurface nhγ at v0 is locally dif-
feomorphic to BF , the lightlike focal set nfγ is locally diffeomorphic to
C(BF )× R and the singular value set of nfγ is locally diffeomorphic to
the C(2, 3, 4, 5)-cusp.

We respectively call

C(2, 3) = {(x1, x2)|x1 = u2, x2 = u3},
C(2, 3, 4) = {(x1, x2, x3)|x1 = u2, x2 = u3, x3 = u4},
C(2, 3, 4, 5) = {(x1, x2, x3, x4)|x1 = u2, x2 = u3, x3 = u4, x4 = u5}

(2, 3)-cusp, (2, 3, 4)-cusp, (2, 3, 4, 5)-cusp.
And we respectively call SW = {(x1, x2, x3)|x1 = 3u4 + u2v, x2 =

4u3 + 2uv, x3 = v}, BF = {(x1, x2, x3, x4)|x1 = 5u4 + 3vu2 + 2wu, x2 =
4u5 + 2vu3 + wu2, x3 = u, x4 = v}, C(BF ) = {(x1, x2, x3, x4)|x1 =
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6u5 + u3v, x2 = 25u4 + 9u2v, x3 = 10u3 + 3uv, x4 = v} swallowtail,
butterfly, c-butterfly (i.e., the singular value set of the butterflies). One
can see Figure 1, Figure 2 and Figure 3. We will give the proof of
Theorem 1 in §5.

Fig. 1. (2,3)-cusp and Swallowtail.

§3. Lightcone Gaussian Surface

In this section, we analyse the lightcone Gaussian surface from
the view point of differential geometry. And we obtain that a light-
cone Gaussian surface is locally either a regular Lorentz surface, or a
1-lightlike surface.

Let x : U −→ NC∗ be an embedding of an open subset U ⊂ R
2.

We denote M = x(U) and identify M and U through the embedding x.
Denote TM and TpM the tangent bundle and the tangent space of M
at p ∈ M . M is called a Lorentz surface if TpM is a Lorentz plane for
any point p ∈ M .

If 〈·, ·〉 is degenerate on TM , we say that M is a lightlike submanifold
of NC∗. Next, we introduce some basic notions about lightlike subman-
ifolds (see [7]). Denote by F(M) the algebra of smooth functions on M
and by Γ(E) the F(M) module of smooth sections of a vector bundle E
(same notation for any other vector bundle) over M . For a degenerate
tensor field 〈·, ·〉 on M , there exists locally a vector field ξ ∈ Γ(TM)
such that 〈ξ,X〉 = 0 for any X ∈ Γ(TM). Then for each tangent space
TpM we have TpM

⊥ = {u ∈ TpNC∗|〈u,v〉 = 0 ∀v ∈ TpM}, which is a
degenerate 1-dimensional subspace of TpNC∗. The radical subspace of
TpM (denoted as RadTpM) is defined by

RadTpM = {ξp ∈ TpM |〈ξp,X〉 = 0 ∀X ∈ TpM}.
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Fig. 2. Projection of a (2,3,4,5)-cusp respectively on x1x2x3-
space, x1x2x4-space, x1x3x4-space, x2x3x4-space.

The dimension of RadTpM = TpM ∩ TpM
⊥ depends on p ∈ M . The

submanifold M of NC∗ is said to be a 1-lightlike submanifold if the
mapping

RadTM : M −→ TM

p �−→ RadTpM

defines a smooth distribution of rank 1 on M .
For the lightcone Gaussian surface ngγ , we have the following results.

Proposition 1. Let ngγ be the lightcone Gaussian surface of γ with
‖γ′′(s)‖ �= 0.
(1) If n1 is a timelike vector, ngγ is a regular surface.
(2) If n1 is a spacelike vector, the singular set of ngγ is

{(n2 + n3)(s0),±(n2 − n3)(s0)|k3(s0) = 0}.
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Fig. 3. When v = 0, projection of a butterfly respectively
on x1x2x3-space, x1x2w-space, x1x3w-space, x2x3w-
space.

Proof. If δ1 = −1,

∂ngγ
∂θ

= − sin θn2 + cos θn3,

∂ngγ
∂s

= −k1t− k2 cos θn1 + (k3 sin θ − k2)n2 − k3 cos θn3.

As k1(s) �= 0, the above two vectors are definitely linearly independent.
It means ngγ is a regular surface. If δ1 �= −1,

∂ngγ
∂θ

=− sin θn1 +
1− δ3

2
cos θn2 +

1 + δ3
2

cos θn3,

∂ngγ
∂s

=
1 + δ1

2
k1 cos θt+

(
−1− δ2

2
k2 +

1− δ3
2

k2 sin θ

)
n1

+

(
δ2 − 1

2
k3 sin θ − k2 cos θ − 1− δ3

2
k3

)
n2

+

(
−1− δ2

2
k3 − 1− δ3

2
k3 sin θ

)
n3.
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∂ngγ/∂θ and ∂ngγ/∂s are linearly dependent if and only if cos θ0 = 0
and k3(s0) = 0. Therefore, the singular set of ngγ is given by

{(n2 + n3)(s0),±(n2 − n3)(s0)|k3(s0) = 0}.
Q.E.D.

Proposition 2. Let ngγ be the lightcone Gaussian surface of γ with
‖γ′′(s)‖ �= 0.
(1) If n1 is a timelike vector, ngγ is a Lorentz surface.
(2) If n1 is a spacelike vector, except the singular parts ngγ is a Lorentz
surface in the local neighborhood of (s, θ0), where θ0 �= π/2, 3π/2. Oth-
erwise, if θ0 = π/2 or 3π/2, it is a 1-lightlike surface.

Proof. At regular parts, ngγ can be locally generated by this two
vectors ∂ngγ/∂θ and ∂ngγ/∂s. Obviously, ∂ngγ/∂θ is a spacelike vector.
Let

ι = P −
〈
P,

∂ngγ
∂θ

〉
∂ngγ
∂θ

,

where

P =

(
1 + δ3

2
k3 +

1− δ3
2

k2

)
∂ngγ
∂θ

+

(
1 + δ2

2
+

1− δ2
2

cos θ

)
∂ngγ
∂s

.

Then 〈ι, ∂ngγ/∂θ〉 = 0 and

〈ι, ι〉 = 1− δ1
2

(−k21) +
1− δ2

2
(−k21 cos

4 θ) +
1− δ3

2
(−k21 cos

2 θ).

Thus, ngγ can also be locally generated by ∂ngγ/∂θ and ι at regular
parts.

When δ1 = −1, 〈ι, ι〉 = −k21 < 0. It means ngγ is a Lorentz surface.
When δ1 �= −1, 〈ι, ι〉 ≤ 0. It means ngγ is a Lorentz surface (1-lightlike
surface) in the local neighborhood of (s, θ0), where

θ0 �= π

2
,
3

2
π

(
θ0 =

π

2
or

3

2
π

)
.

This completes the proof. Q.E.D.

§4. A Family of Lorentz Distance-Squared Functions

In this section we introduce one very useful family of functions on a
partially null curve. For a partially null curve γ, we define the function

G : I × R
4
2 −→ R, G(s,v) = 〈γ(s)− v,γ(s)− v〉.
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This function is called the Lorentz distance-squared function of γ. We use
the notation gv(s) = G(s,v) for any fixed vector v in R

4
2. They describe

the contact between γ(s) and a lightcone. As we study this family of
functions, it will become clear how singularities and the corresponding
catastrophes arise.

By using Eqs. (2) and by making tedious calculations, we can state
Proposition 3.

Proposition 3. Let γ : I −→ R
4
2 be a timelike curve with ‖γ′′(s)‖ �=

0. Suppose that γ(s0) �= v0, then we have the following.
(1) gv0(s0) = g′v0

(s0) = 0 if and only if there exist θ0 ∈ [0, 2π) and
μ ∈ R \ {0} such that γ(s0)− v0 = μngγ(s0, θ0).
(2) gv0(s0) = g′v0

(s0) = g′′v0
(s0) = 0 if and only if there exists θ0 ∈ [0, 2π)

such that

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0)).

(3) gv0(s0) = g′v0
(s0) = g′′v0

(s0) = g′′′v0
(s0) = 0 if and only if there exists

θ0 ∈ [0, 2π) such that

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0))

and ϕ(s0, θ0) = 0, where ϕ(s, θ) = k′1(s)(
δ1−1
2 + δ1+1

2 cos θ)− k1(s)k2(s)

( 1−δ1
2 cos θ + δ2−1

2 + 1−δ3
2 sin θ). So we can write θ0 = θ(s0).

(4) gv0(s0) = g′v0
(s0) = g′′v0

(s0) = g′′′v0
(s0) = g

(4)
v0 (s0) = 0 if and only if

there exists θ(s0) ∈ [0, 2π) such that

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0))

and ϕ(s0, θ(s0)) = η(s0) = 0.

(5) gv0(s0) = g′v0
(s0) = g′′v0

(s0) = g′′′v0
(s0) = g

(4)
v0 (s0) = g

(5)
v0 (s0) = 0 if

and only if there exists θ(s0) ∈ [0, 2π) such that

γ(s0)− v0 =
1

k1(s0)(
δ1−1
2 + δ1+1

2 cos θ0)
ngγ(s0, θ(s0))

and ϕ(s0, θ(s0)) = η(s0) = η′(s0) = 0.

The above proposition also states that the discriminant set of the
Lorentz distance-squared function G is given by

DG = nhγ(U × R) = {v = γ(s) + μngγ(s, θ) | (s, θ) ∈ U, μ ∈ R},
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which is the image of the lightlike hypersurface along γ. Therefore, a
singular point of the lightlike hypersurface is the point v0 = γ(s0) +
μ0ngγ(s0, θ0), where μ0 = (k1(s0)(

δ1−1
2 + δ1+1

2 cos θ0))
−1.

We define nfγ : U −→ R
4
2 as

nfγ(s, θ) = γ(s) + μ0ngγ(s, θ),

we call it the lightlike focal set of γ. By definition, the lightlike focal set
is the singular value set of the lightlike hypersurface nhγ .

§5. Proof of the Main Results

In this section we classify singularities of the lightlike hypersurface
along γ as an application of the unfolding theory of functions. Detailed
descriptions could be found in [5]. Let

F : (R× R
r, (s0,x0)) −→ R

be a function germ. We call F an r-parameter unfolding of f, if f(s) =
Fx0(s,x0). We say f has Ak-singularity at s0, if f

(p)(s0) = 0 for all
1 ≤ p ≤ k and f (k+1)(s0) �= 0. Let F be an r-parameter unfolding of f ,
where f has Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of
the partial derivative ∂F/∂xi at s0 as

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

αji(s− s0)
j , (i = 1, . . . , r).

If the rank of k × r matrix (α0i, αji) is k (k ≤ r), then F is called a
versal unfolding of f , where α0i = ∂F/∂xi(s0,x0).

Inspired by the proposition in the previous section, we have:

Dl
F =

{
x ∈ R

r | ∃ s ∈ R, F (s,x) =
∂F

∂s
(s,x) = · · · = ∂lF

∂sl
(s,x) = 0

}
,

which is called a discriminant set with order l. Therefore, we have the
following proposition.

Proposition 4. For a timelike curve γ with ‖γ′′(s)‖ �= 0,

DG = D1
G = nhγ(U × R), D2

G = nfγ(U)

and
D3

G is the singular value set of nfγ .

Then we have the following classification theorem as Corollary 7.7
in [18].
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Theorem 2. Let F : (R × R
r, (s0,x0)) −→ R be an r-parameter

unfolding of f with Ak-singularity at s0. Suppose F is a versal unfolding
of f, then we have the following assertions :
(a) If k = 1, then DF is locally diffeomorphic to {0}×R

r−1 and D2
F = ∅.

(b) If k = 2, then DF is locally diffeomorphic to C(2, 3) × R
r−2, D2

F is
locally diffeomorphic to {0} × R

r−2 and D3
F = ∅.

(c) If k = 3, then DF is locally diffeomorphic to SW × R
r−3, D2

F is
locally diffeomorphic to C(2, 3, 4)×R

r−3, D3
F is locally diffeomorphic to

{0} × R
r−3 and D4

F = ∅.
(d) If k = 4, then DF is locally diffeomorphic to BF × R

r−4, D2
F

is locally diffeomorphic to C(BF ) × R
r−4, D3

F is locally diffeomorphic
to C(2, 3, 4, 5) × R

r−4, D4
F is locally diffeomorphic to {0} × R

r−4 and
D5

F = ∅.
For the proof of Theorem 1 we have the following fundamental

proposition in this paper.

Proposition 5. If g(s) has Ak-singularity (k = 1, 2, 3, 4) at s0, then
G is a versal unfolding of g.

Proof. By definition,

G(s,v) = −(x0(s)− v0)2 − (x1(s)− v1)2 +(x2(s)− v2)2 +(x3(s)− v3)2,

where γ(s) = (x0(s), x1(s), x2(s), x3(s)) and v = (v0, v1, v2, v3). For a
fixed v0 = (v00 , v

1
0 , v

2
0 , v

3
0), the 3-jet of ∂G/∂vi(s,v0) at s0 is

j(3)
∂G

∂vi
(s0)

=

{
2(xi)′(s− s0) + (xi)′′(s− s0)

2 + (xi)′′′

3 (s− s0)
3 i = 0, 1

−2(xi)′(s− s0)− (xi)′′(s− s0)
2 − (xi)′′′

3 (s− s0)
3 i = 2, 3

.

The condition for versatility can be checked as follows.
(1) When g has A1-singularity at s0, we require the 1× 4 matrix

A1 = (2(x0 − v0), 2(x1 − v1),−2(x2 − v2),−2(x3 − v3))

to have rank 1, which it always does since v0 �= γ(s0).
(2) When g has A2-singularity at s0, we require 2× 4 matrix

A2 =

(
2(x0 − v0) 2(x1 − v1) −2(x2 − v2) −2(x3 − v3)
2(x0)′ 2(x1)′ −2(x2)′ −2(x3)′

)

to have rank 2. Otherwise, if rankA2 = 1, it means that γ(s0) − v0

and t(s0) are linearly dependent. This contradicts with the fact that
{t(s),n1(s),n2(s),n3(s)} is the pseudo-orthogonal frame of γ.
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(3) When g has A3-singularity at s0, we require 3× 4 matrix

A3 =

⎛
⎝ 2(x0 − v0) 2(x1 − v1) −2(x2 − v2) −2(x3 − v3)

2(x0)′ 2(x1)′ −2(x2)′ −2(x3)′

(x0)′′ (x1)′′ −(x2)′′ −(x3)′′

⎞
⎠

to have rank 3. Otherwise, if rankA3 = 2, it means that γ′′(s0) can be
generated by γ(s0) − v0 and t(s0). Through a straightforward calcula-
tion, we can easily show that it is a contradiction.

(4) When g has A4-singularity at s0, we require 4× 4 matrix

A4 =

⎛
⎜⎜⎝

2(x0 − v0) 2(x1 − v1) −2(x2 − v2) −2(x3 − v3)
2(x0)′ 2(x1)′ −2(x2)′ −2(x3)′

(x0)′′ (x1)′′ −(x2)′′ −(x3)′′
1
3 (x

0)′′′ 1
3 (x

1)′′′ − 1
3 (x

2)′′′ − 1
3 (x

3)′′′

⎞
⎟⎟⎠

to have rank 4.
In fact

detA4 =
4

3
det(γ(s0)− v0,γ

′(s0),γ′′(s0),γ′′′(s0))

= − 4k1(s0)k2(s0)

3( δ1−1
2 + δ1+1

2 cos θ0)

(
δ3 + 1

2
sin θ0 +

δ3 − 1

2

)
.

When δ3 = −1

detA4 =
4k1(s0)k2(s0)

3( δ1−1
2 + δ1+1

2 cos θ0)
�= 0.

When δ3 = 1 and δ1 = −1, we have detA4 �= 0 under the condition
that k′1(s0) �= ±(k1k2)(s0). If k′1(s0) = ±(k1k2)(s0), then k′′1 (s0) =
k1(s0)k

2
2(s0) ± k1(s0)k

′
2(s0) because η(s0) = 0. Then η′(s0) = 0. This

contradicts with the assumption that g has A4-singularity at s0. When
δ3 = 1 and δ2 = −1, the proof is the same. Here, it is omitted. Therefore,
rankA4 = 4.

In summary, G is a versal unfolding of g. This completes the proof.
Q.E.D.

We now give the proofs of Theorem 1.
Proof of Theorem 1 Let γ : I −→ R

4
2 be a timelike regular curve

with ‖γ′′(s)‖ �= 0. As v0 = nhγ(s0, θ0, t0), we give a function G : R4
2 −→

R, by G(u) = 〈u− v0,u− v0〉, then we assume that gv0(s) = G(γ(s)).
Because G−1(0) = NCv0 and 0 is a regular value of G, γ and NCv0 have
(k+1)-point contact for s0 if and only if gv0(s) has Ak-singularity at s0.



Lightlike hypersurfaces of partially null curves 197

Thus γ and NCv0 have at least 2-point contact for s0 if and only if
gv0(s0) = g′v0

(s0) = 0. By Proposition 4, we have

D1
G = nhγ(U × R), D2

G = nfγ(U)

and
D3

G is the singular value set of nfγ .

By combining Proposition 3, Theorem 2, and Proposition 5, we get the
results. Q.E.D.

For the proof of the generic properties, one can see [6] that are
omitted here.

§6. Example

As an application and an illustration of the main result (Theorem
1), we give an example of a partially null curve in this section.

Example 1. Let γ be a unit speed timelike curve of R4
2 defined by

γ(s) = (
√
2es, s, es cos s, es sin s) with respect to arclength parameter s

and satisfying ‖γ′′(s)‖ �= 0. The tangent vector t(s) is given by

t(s) = (
√
2es, 1, es cos s− es sin s, es sin s+ es cos s).

And

n1(s) =(1, 0,−
√
2 sin s,

√
2 cos s),

n2(s) =
1√

es + 1
(
√
2e2s, es, e2s cos s− e2s sin s+ cos s,

e2s cos s+ e2s sin s+ sin s),

n3(s) =
1√

e2s + 1
(
√
2,−es,− sin s, cos s),

k1(s) =
√
2es,

k2(s) =
√
2e2s + 2,

k3(s) =
−e3s cos s+ e3s sin s+ 2e2s − es cos s+ 1√

es + 1(e2s + 1)3/2
.

Obviously, n2 and n3 can be substituted by two transversal lightlike
vectors n2 + n3 and n2 − n3. Accordingly, γ is a partially null curve.

In this example ngγ(s, θ) = cos θn1(s) + sin θn2(s) + n3(s). By
maple, k3(s) �= 0 for any s ∈ R. Thus it is a regular surface. Moreover,
ngγ is a Lorentz surface in the local neighborhood of (s, θ0), where θ0 �=
π/2, 3π/2. Otherwise, if θ0 = π/2 or 3π/2, it is a 1-lightlike surface.
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The important functions associated with γ are as follows

ϕ(s, θ) =
√
2es cos θ − 2es

√
e2s + 1 sin θ,

η(s) = −2e2s
√
2e2s + 2(1 + 2e2s)− 4e2s(3e2s + 2)√

2e2s + 2

+
2es

√
2e2s(2e2s + 3)(−e3s cos s+ e3s sin s+ 2e2s − es cos s+ 1)√

es + 1(e2s + 1)
.

By maple, we find η(s) �= 0 for any s ∈ R and ϕ(s, θ) = 0 if and only if

tan θ = 1/
√
2e2s + 2.

Furthermore, the vector parametric equations of the lightlike hyper-
surface nhγ are given by

{nhγ1, nhγ2, nhγ3, nhγ4},
where

nhγ1(s, θ, t) =
√
2es + t

(
cos θ +

√
2 +

√
2e2s sin θ√

1 + e2s

)
,

nhγ2(s, θ, t) = s+
tes(sin θ − 1)√

1 + e2s
,

nhγ3(s, θ, t) = es cos s+ t
(
−
√
2 sin s cos θ

+
sin θ(e2s cos s− e2s sin s+ cos s)− sin s√

e2s + 1

)
,

nhγ4(s, θ, t) = es sin s+ t
(√

2 cos s cos θ

+
sin θ(e2s sin s+ e2s cos s+ sin s) + cos s√

e2s + 1

)
.

We take v0 = nhγ(s0, θ0, t0), where s0 = 0, θ0 = arctan(1/
√
4) and

t0 = −(
√
2 cos(arctan(1/

√
4)))−1. So ϕ(s0, θ0) = 0 and η(s0) �= 0. By

Theorem 1, nhγ at v0 is locally diffeomorphic to SW ×R, see Figure 1.
In general, for any

v = nhγ(s, arctan(1/
√
2e2s + 2),−(

√
2 cos(arctan(1/

√
4)))−1),

we have ϕ(s, arctan(1/
√
2e2s + 2)) = 0 and η(s) �= 0. Accordingly, nhγ

is locally diffeomorphic to SW × R at v.
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[11] K. İlarslan, E. Nešović, Some characterizations of pseudo null and partially
null osculating curves in Minkowski space-time, Int. Electron. J. Geom.,
4 (2011), 1–12.

[12] S. Izumiya, D. Pei, M. C. Romero-Fuster, Spacelike surfaces in anti de
Sitter four-space from a contact viewpoint, Proc. Steklov Inst. Math.,
267 (2009), 156–173.



200 X. Cui and D. Pei

[13] S. Izumiya, D. Pei, M. C. Romero-Fuster, M. Takahashi, The horospherical
geometry of submanifolds in hyperbolic space, J. London Math. Soc., 71
(2005), 779–800.

[14] S. Izumiya, D. Pei, T. Sano, E. Torii, Evolutes of hyperbolic plane curves,
Acta Math. Sin. (Engl. Ser.), 20 (2004), 543–550.

[15] S. Izumiya, M. C. Romero-Fuster, K. Saji, Flat lightlike hypersurfaces in
Lorentz-Minkowski 4-space, J. Geom. Phys., 59 (2009), 1528–1546.

[16] S. Izumiya, K. Saji, The mandala of Legendrian dualities for pseudo-spheres
in Lorentz-Minkowski space and “flat” spacelike surfaces, J. Singul., 2
(2010), 92–127.

[17] S. Izumiya, K. Saji, M. Takahashi, Horospherical flat surfaces in hyperbolic
3-space, J. Math. Soc. Japan, 62 (2010), 789–849.

[18] S. Izumiya, T. Sato, Lightlike hypersurfaces along spacelike submanifolds
in Minkowski space-time, J. Geom. Phys., 71 (2013), 30–52.

[19] L. F. Martins, J. J. Nuño-Ballesteros, Contact properties of surfaces in R
3

with corank 1 singularities, Tohoku Math. J., 67 (2015), 105–124.
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