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Localization, local cohomology, and the b-function
of a D-module with respect to a polynomial

Toshinori Oaku

Abstract.

Given a D-module M generated by a single element, and a poly-
nomial f , one can construct several D-modules attached to M and
f and can define the notion of the (generalized) b-function following
M. Kashiwara. These modules are closely related to the localization
and the local cohomology of M . We show that the b-function, if it
exists, controls these modules and present general algorithms for com-
puting these modules and the b-function if it exists without any further
assumptions. We also give some examples of multiplicity computation
of such D-modules including a possibly well-known explicit formula for
the localization of the polynomial ring by a hyperplane arrangement.
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§1. Introduction

Let K be an algebraically closed field of characteristic zero and
K[x] = K[x1, . . . , xn] be the polynomial ring with x = (x1, . . . , xn). Let
Dn = K[x]〈∂〉 = K[x]〈∂1, . . . , ∂n〉 be the n-th Weyl algebra, i.e., the ring
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Key words and phrases. D-module, Gröbner basis, localization, local coho-

mology, b-function, hyperplane arrangement, multiplicity.



354 T. Oaku

of differential operators with polynomial coefficients with respect to the
variables x, where we denote ∂ = (∂1, . . . , ∂x) with ∂i = ∂xi = ∂/∂xi

being the derivation with respect to xi. An arbitrary element P of Dn

is written in a finite sum

P =
∑
α∈Nn

aα(x)∂
α with aα(x) ∈ K[x],

where we denote ∂α = ∂α1
1 · · · ∂αn

n for a multi-index α = (α1, . . . , αn) ∈
Nn with N being the set of non-negative integers. One can define the
dimension of a finitely generated left Dn-module M ; J. Bernstein [3], [4]
proved that the dimension of M is not less than n unless M is the zero
module. A finitely generated left Dn-module is called holonomic if its
dimension is n or else it is the zero module.

Let M be a finitely generated left Dn-module and f ∈ K[x] be a
non-constant polynomial. Then the localization M [f−1] and the local

cohomology groups Hj
(f)(M) have natural structures of left Dn-module

and are holonomic if so is M , as was shown by Kashiwara [13]. More
generally, one can construct a left Dn[s]-module

M(u, f, s) = Dn[s](u⊗ fs)

with an indeterminate s. Suppose that M is generated by u over Dn.
Then the (generalized) b-function for u and f is defined to be the uni-
variate (and monic) polynomial bu,f (s) of the least degree such that

bu,f (s)(u⊗ fs) ∈ Dn[s](u⊗ fs+1)

holds. The existence of bu,f (s) was proved by Kashiwara [13] under the
assumption that M is holonomic outside of the hypersurface f = 0. If
M is the polynomial ring K[x] with u = 1, then bu,f (s) is nothing but
the classical Bernstein-Sato polynomial, or simply the b-function, of f .
In the same way as the Bernstein-Sato polynomial controls the localiza-
tion of the polynomial ring as a Dn-module, the b-function controls the
localization M [f−1] or its generalization Dn(u⊗ fλ).

On the other hand, algorithms to compute M(u, f, s) and the b-
function if it exists were introduced in [17] under the assumption that M
is f -torsion free. These algorithms are based on various Gröbner bases
over the ring of differential operators as is presented, e.g., in [23] and
[18]. Torrelli [24] studied the b-function bu,f (s) systematically when M
is the local cohomology group Hk

(f1,...,fk)
(K[x]) under the assumption

that f1, . . . , fk, f define a quasi-homogeneous non-isolated singularity,
together with the general property of M(u, f, s) under the assumption
that M is holonomic without f -torsion.
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The purpose of our study on the b-function andM(u, f, s) is twofold:
first, we want to clarify how the b-function controls the moduleM(u, f, s)
and the localization M [f−1] as well as the local cohomology H1

(f)(M).

This will be performed in Sections 2 and 5. These results should be
more or less well-known under some stronger conditions. See, e.g., [24]
and Chapter VI of [5], where M is assumed to be f -torsion free, or
regular holonomic. The second purpose is to remove the assumption of
f -saturatedness from our former algorithms in [17]. For this purpose, we
reinterpret the algorithm introduced in [21] for the localization M [f−1]
in Section 3. Our algorithms work at least if M is holonomic outside of
f = 0 without any further assumptions.

In the latter half of this article (Sections 5 and 6), we study the
multiplicity (in the sense of Bernstein [3]) and the length of a holonomic
D-module, as the most fundamental numerical invariants. This can be
also used to prove a relation between bu,f (s) and M(u, f, λ). We also
give some examples of the multiplicity computation of the localization or
the local cohomology. In the last section, we present, together with an
elementary proof, a possibly well-known formula on the length and the
multiplicity of the localization of the polynomial ring by a polynomial f
which defines a hyperplane arrangement. The result is that the length
and the multiplicity of K[x, f−1] both coincide with π(1), where π(t) is
what is called the Poincaré polynomial of the hyperplane arrangement.

We use computer algebra system Risa/Asir [16] for computation of
Gröbner bases over the ring of differential operators, and in particular,
for computation of D-module theoretic integration, which is needed in
the localization algorithm.

We would like to thank the organizers of MSJ SI 2015 for the in-
vitation both to the conference and to the proceedings. We would be
pleased if we could convince the reader who is interested in D-module
theory of the usefulness of Gröbner bases, which are the main theme of
MSJ SI 2015, over the ring of differential operators in our case. This
work was supported by JSPS Grant-in-Aid for Scientific Research (C)
26400123.

§2. The b-function for a D-module and a polynomial

Let K be an arbitrary field of characteristic zero and X = Kn be
the n-dimensional affine space over K. We denote by DX the n-th Weyl
algebra Dn over K. Let M be a left DX -module and f ∈ K[x] a non-
constant polynomial. We can associate several DX -modules with M and
f by translating the definitions by Kashiwara [13] for analyticD-modules
to algebraic setting. First, the localization M [f−1] := M⊗K[x]K[x, f−1]
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and the local cohomology groups Hj
(f)(M) (j = 0, 1) are defined with M

being regarded as a K[x]-module; they become again left DX -modules.
Introducing an indeterminate s, let

Lf := K[x, f−1, s]fs

be the free K[x, f−1, s]-module with a free generator fs. Then Lf has a
natural structure of left DX [s]-module through the action of ∂xi on Lf

defined by

∂xi(a(x, s)f
−kfs) =

(
∂a(x, s)

∂xi
f−k + (s− k)fia(x, s)f

−k−1

)
fs

for j = 1, . . . , n with fi := ∂f/∂xi. Sometimes f−kfs is abbreviated to
fs−k.

The tensor product M⊗K[x]Lf has a natural structure of left DX [s]-
module induced by

∂xi(u⊗ a(x, s)fs) = (∂xiu)⊗ a(x, s)fs+u⊗ ∂xi(a(x, s)f
s) (1 ≤ i ≤ n)

for u ∈ M and a(x, s) ∈ K[x, s]. In what follows, we fix an arbitrary
nonzero element u of M . Let

M(u, f, s) := DX [s](u⊗ fs)

be the left DX [s]-submodule of M ⊗K[x] Lf generated by u ⊗ fs. In a
special case where M = K[x] and u = 1, let us denote by

Nf = K[x](1, f, s) = DX [s]fs

the left DX [s]-submodule of Lf generated by fs. Set

I(u, f) := {b(s) ∈ K[x] | b(s)(u⊗ fs) ∈ Dn[s](fu⊗ fs)}.
If I(u, f) �= {0}, then the (monic) generator bu,f (s) of I(u, f) is called
the (generalized) b-function for u and f . It was defined by Kashiwara
[13] with the following existence theorem.

Theorem 2.1 (Kashiwara [13]). Let DX be defined over an alge-
braically closed field K of characteristic zero. If a left DX-module M is
holonomic on Xf = {x ∈ X | f(x) �= 0}, then one has I(u, f) �= {0} for
any u ∈ M .

When M = K[x] and u = 1, the b-function b1,f (s) is nothing but
what is called the Bernstein-Sato polynomial, or the b-function, asso-
ciated with f . In fact, Kashiwara proved this theorem for a module
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M over the ring of differential operators with analytic coefficients and
a complex analytic function f . This corresponds to what is called the
local b-function. The coincidence of the local b-functions in the algebraic
setting and in the analytic setting is noticed, e.g., as Corollary 8.6 of
[17]. It will turn out in what follows that the b-function ‘controls’ the
D-modules associated with M and f .

The b-function can exist even if M is not holonomic on Xf .

Example 2.2. Set n = 2, x1 = x, x2 = y, and P = x∂2
x + ∂y.

Then M := DX/DXP = DXu with u being the residue class of 1 is not
holonomic even outside of x = 0 (the dimension of M is three), but has
the b-functions bu,x(s) = (s+ 1)(s+ 2) and bu,y(s) = s+ 1. In fact, one
has

(−x∂2
x + 2(s+ 1)∂x − ∂y)(u⊗ xs+1) = (s+ 1)(s+ 2)u⊗ xs,

P (u⊗ ys+1) = (s+ 1)u⊗ ys

in M ⊗K[x,y]K[x, y, x−1]xs and in M ⊗K[x,y]K[x, y, y−1]ys respectively.

Definition 2.3. A left DX -module M is said to be f -saturated or
f -torsion free if the homomorphism f : M → M is injective. This is
equivalent to H0

(f)(M) = 0.

An algorithm to determine if there exists the b-function and to com-
pute it if it exists was given in [17] under the assumption that M = DXu
is f -torsion free.

Let us define a DX -automorphism t : Lf → Lf by

t(a(x, s)f−kfs) = a(x, s+ 1)f−k+1fs

for a(x, s) ∈ K[x, s] and k ∈ N. The inverse t−1 is defined by

t−1(a(x, s)f−kfs) = a(x, s− 1)f−k−1fs.

It induces a DX -automorphism

t : M ⊗K[x] Lf −→ M ⊗K[x] Lf ,

which also induces a DX -endomorphism of M(u, f, s). Note that the
actions of t and s on M(u, f, s) satisfies the commutation relation st =
t(s−1). It follows that tM(u, f, s) is a left DX [s]-module. It also follows
from the definition that bu,f (s) is the minimal polynomial of s acting
on the left DX -module M(u, f, s)/tM(u, f, s) since P (s)(fu ⊗ fs) =
t(P (s− 1)(u⊗ fs)).
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Let λ ∈ K be a constant. Then specializing the parameter s to λ,
we obtain left DX -modules

Lf (λ) := Lf/(s− λ)Lf , Nf (λ) := Nf/(s− λ)Nf .

Let us denote by fλ and fs|s=λ the residue class of fs in Lf (λ), and
that of fs in Nf (λ) respectively. In particular, Lf (λ) = K[x, f−1]fλ is
a free K[x, f−1]-module generated by fλ. In the same way, we define a
left DX -module

M(u, f, λ) = M(u, f, s)/(s− λ)M(u, f, s)

and denote the residue class of u⊗ fs in M(u, f, λ) by (u⊗ fs)|s=λ.
Kashiwara also proved the following fundamental fact, to which we

shall give an elementary proof in Section 5.

Theorem 2.4 (Kashiwara [13]). Let K be algebraically closed. If
M is holonomic on Xf , then M(u, f, λ) is a holonomic DX-module for
any u ∈ M and λ ∈ K.

Let us define the specialization homomorphism

ρλ : M ⊗K[x] Lf −→ M ⊗K[x] Lf (λ)

by
ρλ(v ⊗ a(x, s)f−kfs) = v ⊗ a(x, λ)f−kfλ

for v ∈ M , a(x, s) ∈ K[x, s], and k ∈ N. Then ρλ(P (s)w) = P (λ)ρλ(w)
holds for any w ∈ M ⊗K[x] Lf and P (s) ∈ DX [s]. Since any element
of (s − λ)M(u, f, s) is sent by ρλ to zero, ρλ induces a surjective DX -
homomorphism

ρ̃λ : M(u, f, λ) −→ DX(u⊗ fλ) ⊂ M ⊗K[x] Lf (λ),

which sends (u ⊗ fs)|s=λ to u ⊗ fλ. It is not injective in general even
if M = K[x] and u = 1. For example, ∂xx

0 = 0 holds in Lx(0) but
∂x(x

s|s=0) does not vanish in Nx(0).

Lemma 2.5. Let M = DXu be a left DX-module generated by u.

(1) Every element of M⊗K[x]Lf can be expressed as Q(s)(u⊗fs−k)
with some Q(s) ∈ DX [s] and k ∈ N.

(2) Let λ be an arbitrary element of K. Then every element of
M ⊗K[x] Lf (λ) can be expressed as Q(u ⊗ fλ−k) with some
Q ∈ DX and k ∈ N.
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Proof. From the identity

∂xi(v ⊗ fs−k) = (∂xiv)⊗ fs−k + v ⊗ (s− k)fif
s−k−1

for any v ∈ M and k ∈ Z, we get

(∂xiv)⊗ fs−k = (∂xif − (s− k)fi)(v ⊗ fs−k−1).

By induction, we can show that for any multi-index α ∈ Nn and k ∈ Z,
there exists Qα(s) ∈ DX [s] such that

(∂α
x v)⊗ fs−k = Qα(s)(v ⊗ fs−k−|α|).

This proves the statement (1). The statement (2) can be proved simi-
larly. Q.E.D.

The following proposition should be well-known; see, e.g., Proposi-
tions 7.1 and 7.4 of [17]. The case M = K[x] and f = 1 was proved by
Kashiwara [12].

Proposition 2.6. Let M be a left DX-module generated by u ∈ M
and assume that there exists the b-function bu,f (s). Let λ be an element
of K and suppose that bu,f (λ− k) �= 0 for any positive integer k. Then

(1) The image ρλ(M(u, f, s)) = DX(u⊗fλ) coincides with M⊗K[x]

Lf (λ). In other words, M ⊗K[x] Lf (λ) is generated by u⊗ fλ

over DX .
(2) ker ρλ ∩ M(u, f, s) coincides with (s − λ)M(u, f, s). Hence

ρ̃λ : M(u, f, λ) → DX(u ⊗ fλ) is an isomorphism of left DX-
modules.

Proof. (1) In view of Lemma 2.5, we have only to show that
u ⊗ fλ−k belongs to ρλ(M(u, f, s)) for any k ∈ N. This is obvious
for k = 0 since ρλ(u⊗ fs) = u⊗ fλ.

Let us show that u⊗fλ−k belongs to ρλ(M(u, f, s)). Suppose k ≥ 1.
There exists P (s) ∈ DX [s] such that P (s)(u⊗ fs+1) = bu,f (s)(u⊗ fs).
Applying t−k, we get

P (s− k)(u⊗ fs+1−k) = bu,f (s− k)(u⊗ fs−k)

in M ⊗K[x] Lf . Proceeding inductively, we see that there exists P̃ (s) ∈
DX [s] such that

(1) P̃ (s)(u⊗ fs) = bu,f (s− 1) · · · bu,f (s− k)u⊗ fs−k

holds in M ⊗K[x] Lf . The homomorphism ρλ gives an identity

P̃ (λ)(u⊗ fλ) = bu,f (λ− 1) · · · bu,f (λ− k)u⊗ fλ−k
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in M ⊗K[x] Lf (λ). Since bu,f (λ− j) �= 0 for j = 1, . . . , k by the assump-
tion, it follows that

u⊗ fλ−k =
1

bu,f (λ− 1) · · · bu,f (λ− k)
P̃ (λ)(u⊗ fλ).

The right-hand side belongs to ρλ(M(u, f, s)). This completes the proof
of (1).

(2) Assume ρλ(Q(s)(u ⊗ fs)) = 0 with Q(s) ∈ DX [s]. There exist
l ∈ N and Qj ∈ DX which are zero except finitely many indices j such
that

Q(s)(u⊗ fs) =
∑
j≥0

(Qju)⊗ (s− λ)jfs−l.

By the assumption, ρλ(Q(s)(u⊗fs)) = (Q0u)⊗fλ−l vanishes inM⊗K[x]

Lf (λ), which means that (Q0u) ⊗ f−l vanishes in M ⊗K[x] K[x, f−1].

It follows that (Q0u) ⊗ 1 = f l(Q0u) ⊗ f−l = 0 in M ⊗K[x] K[x, f−1].
Consequently, (Q0u)⊗ fs vanishes in M ⊗K[x] Lf . Thus we have

Q(s)(u⊗fs) = (s−λ)
∑
j≥1

(Qju)⊗(s−λ)j−1fs−l = (s−λ)Q′(s)(u⊗fs−k)

with some k ∈ N and Q′(s) ∈ DX [s] in view of the proof of Lemma 2.5.
By using (1) we obtain

bu,f (s− 1) · · · bu,f (s− k)Q(s)(u⊗ fs) = (s− λ)Q′(s)P̃ (s)(u⊗ fs).

Hence bu,f (λ−1) · · · bu,f (λ−k)Q(s)(u⊗fs) belongs to (s−λ)M(u, f, s).
This completes the proof of (2). Q.E.D.

The following proposition extends Lemma 1.3 of Walther [27] for
the case M = K[x] and u = 1 almost verbatim.

Lemma 2.7. Under the same assumption as in the preceding propo-
sition, assume moreover that bu,f (λ) = 0. Then one has

DX(fu⊗ fλ) � DX(u⊗ fλ)

in M ⊗K[x] Lf (λ). In particular, M ⊗K[x] Lf (λ) is generated by u⊗ fλ,

but not by u⊗ fλ+1 = fu⊗ fλ, over DX .

Proof. There exists P (s) ∈ DX [s] such that P (s)(fu ⊗ fs) =
bu,f (s)(u ⊗ fs). Assume DX(fu ⊗ fλ) = DX(u ⊗ fλ). Then there
exists A ∈ DX such that (1− Af)(u⊗ fλ) = 0. By virtue of (2) of the
preceding proposition, there exist Q(s), R(s) ∈ DX [s] such that

1−Af = Q(s) + (s− λ)R(s), Q(s)(u⊗ fs) = 0.
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It follows that

bu,f (s)

s− λ
(u⊗ fs) =

bu,f (s)

s− λ
Af(u⊗ fs) + bu,f (s)R(s)(u⊗ fs)

=

(
bu,f (s)

s− λ
A+R(s)P (s)

)
(fu⊗ fs).

This means that bu,f (s)/(s− λ) belongs to the ideal I(u, f), which con-
tradicts the definition of bu,f (s). This completes the proof. Q.E.D.

Summing up we obtain

Theorem 2.8. Let M = DXu be a left DX-module generated by
u ∈ M and f ∈ K[x] be a non-constant polynomial. Assume that there
exists the b-function bu,f (s) for u and f . Then the following conditions
on λ ∈ K are equivalent:

(1) bu,f (λ− k) �= 0 for any positive integer k.
(2) M ⊗K[x] Lf (λ) is generated by u⊗ fλ over DX .

Proof. Assume bu,f (λ− k) = 0 for some positive integer k and let
k0 be the maximum among such k. Then by (1) of Proposition 2.6 and
Lemma 2.7, we have

Lf (λ) = Lf (λ− k0) = DX(u⊗ fλ−k0)

� DX(u⊗ fλ−k0+1) ⊃ DX(u⊗ fλ).

Hence Lf (λ) is not generated by u⊗ fλ. Q.E.D.

The converse of the statement (2) of Proposition 2.6 will be given
in Theorem 5.9 of Section 5 under the additional assumption that M is
holonomic on Xf .

Let us recall local cohomology of D-modules. Let M be a finitely
generated left DX -module, and I be an ideal of K[x]. Then the k-th
local cohomology group Hk

I (M) supported by I is defined to be the k-th
derived functor of the functor

M 
−→ H0
I (M) = {u ∈ M | Iku = 0 for some k ∈ N}.

They have natural structure of left DX -module, and they are holonomic
if so is M as was proved by Kashiwara [13] in the analytic category.

If I is the principal ideal (f) generated by f ∈ K[x], then there
exists an exact sequence

0 −→ H0
(f)(M) −→ M

ι−→ M [f−1] −→ H1
(f)(M) −→ 0
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of left DX -modules, where ι stands for the natural homomorphism such
that ι(v) = v ⊗ 1 in M [f−1] = M ⊗K[x] K[x, f−1] for v ∈ M . Hence

there is an isomorphism H1
(f)(M) ∼= M [f−1]/ι(M) as left DX -module.

In general, algorithms to compute Hk
I (M) as left DX -module were

given in [17] for the case I is principal, and in [26] and [20] for general
I, under the condition that M is holonomic. See also [25], where related
topics such as associated primes and the Weyl closure are also discussed.

Corollary 2.9. Let M = DXu be a left DX-module generated by
u ∈ M and f ∈ K[x] be a non-constant polynomial. Assume that there
exists the b-function bu,f (s) for u and f . Then the following conditions
are equivalent:

(1) bu,f (j) �= 0 for any integer j < k.
(2) The localization M [f−1] is generated by u⊗ f−k over DX .
(3) The local cohomology group H1

(f)(M) is generated by the coho-

mology class [u⊗ f−k] over DX .

Proof. The equivalence of (1) and (2) is a special case of Theorem
2.8. In general, if M [f−1] is generated by u ⊗ f−k, then H1

(f)(M) =

M [f−1]/ι(M) is generated by its residue class. Conversely, assume that
M [f−1]/ι(M) is generated by [u ⊗ f−k]. Then for any w ∈ M [f−1],
there exist P,Q ∈ DX such that

w = P (u⊗ f−k) + (Qu)⊗ 1 = (P +Qfk)(u⊗ f−k).

Henece M [f−1] is generated by u⊗ f−k. Q.E.D.

§3. Localization algorithm revisited

Let X = Kn be the n-dimensional affine space over K. Let M be a
left module over DX = Dn and f ∈ K[x] be a non-constant polynomial.
Then Xf := {x ∈ X | f(x) �= 0} is an affine open subset of X. Our
purpose is to reformulate the algorithm given in [21] for computing the
localization M [f−1] := M ⊗K[x] K[x, f−1] as left DX -module by using
local cohomology, hoping to clarify the meaning of the algorithm as well
as to make the canonical homomorphism ι : M → M [f−1] more explicit.

We assume in what follows, as well as in [21], that M is a holonomic
DX -module, or else it is holonomic on Xf with K being algebraically
closed; i.e., Char(M) ∩ π−1(Xf ) is an n-dimensional algebraic set of
π−1(Xf ), where Char(M) is the characteristic variety of M , which is an
algebraic set of the cotangent bundle T ∗X = {(x, ξ) ∈ Kn × Kn} and
π : T ∗X → X is the projection (see e.g., 2.4 of [18]).
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Introducing a new variable t, set Y = X ×K � (x, t) and

Z := {(x, t) ∈ Y | tf(x) = 1}.
Then Z is an affine subset of Y which is isomorphic to Xf . Let

BZ|Y := H1
(tf(x)−1)(K[x, t]) = K[x, t, (tf − 1)−1]/K[x, t]

be the first local cohomology group of K[x, t] with support in Z, which
we regard as a left DY -module. An arbitrary element of BZ|Y is ex-
pressed as [

a(x, t)

(tf(x)− 1)k+1

]
(k ∈ N, a(x, t) ∈ K[x, t]),

where the bracket denotes the residue class in BZ|Y .
Set fi = ∂f/∂xi for i = 1, . . . , n and define

δ(k,l) :=

[
f l+1

(tf − 1)k+1

]

for k, l ∈ Z with l ≥ −1. Note that δ(k,l) = 0 by the definition if k < 0.
As left K[x, t]-module, BZ|Y is generated by δ(k,−1) with k ∈ N.

We have the following identities for k, l ≥ 0:

∂tδ
(k,l) = −(k + 1)

[
f l+2

(tf − 1)k+2

]
= −(k + 1)δ(k+1,l+1),

∂xiδ
(k,l) = (l + 1)

[
fif

l

(tf − 1)k+1

]
− (k + 1)

[
tfif

l+1

(tf − 1)k+2

]

= (l + 1)fiδ
(k,l−1) − (k + 1)

[
fi(tf − 1 + 1)f l

(tf − 1)k+2

]
= (l + 1)fiδ

(k,l−1) − (k + 1)fi(δ
(k,l−1) + δ(k+1,l−1))

= (l − k)fiδ
(k,l−1) − (k + 1)fiδ

(k+1,l−1),

tδ(k,l) =

[
tf l+1

(tf − 1)k+1

]
=

[{(tf − 1) + 1}f l

(tf − 1)k+1

]
= δ(k−1,l−1) + δ(k,l−1).

In particular, we have

(∂tt+ k)δ(k,l) = −(k + 1)δ(k+1,l), tδ(0,0) = δ(0,−1).

Hence BZ|Y is generated by δ(0,0) = [f(tf − 1)−1] as a left DY -module.

Lemma 3.1. One has (tf −1)δ(0,0) = 0 and (∂xi −fi∂tt
2)δ(0,0) = 0

for i = 1, . . . , n.
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Proof. The first equality follows immediately from the definition.
The second equality follows from

∂tt
2δ(0,0) = ∂ttδ

(0,−1) = −δ(1,−1)

in view of the formulae above. Q.E.D.

Let us regard BZ|Y as a module over the subring K[x] of DY and
consider the localization

BZ|Y [f−1] := BZ|Y ⊗K[x] K[x, f−1]

= K[x, t, f−1, (tf − 1)−1]/K[x, t, f−1]

with respect to f . Let us denote the residue class in BZ|Y [f−1] by [•]′ in
order to distinguish it from the residue class in BZ|Y which is denoted
[•].

Lemma 3.2. The natural homomorphism

ι′ : BZ|Y �
[

a(x, t)

(tf − 1)k+1

]

−→

[
a(x, t)

(tf − 1)k+1

]′
∈ BZ|Y [f−1]

is an isomorphism of left DY -modules.

Proof. Assume ι′([a(x, t)(tf − 1)−k−1]) = 0 with a(x, t) ∈ K[x, t].
Then there exists an integer l such that f la(x, t) is divisible by (tf−1)k+1

inK[x, t]. Since f and tf−1 are relatively prime, a(x, t) must be divisible
by (1− tf)k+1. This proves that ι′ is injective.

Let us show that ι′ is surjective. It suffices to show that

[f−m(tf − 1)−k−1]′ ∈ ι′(BZ|Y )

for any k,m ∈ N by induction on k + m, which obviously holds for
k = m = 0. Suppose k +m ≥ 1. We have[

tf

(tf − 1)k+1

]
=

[
1 + (tf − 1)

(tf − 1)k+1

]
=

[
1

(tf − 1)k+1

]
+

[
1

(tf − 1)k

]
.

It follows that[
f−m

(tf − 1)k+1

]′
=

[
tf1−m

(tf − 1)k+1

]′
−
[

f−m

(tf − 1)k

]′
.

By the induction hypothesis, the right-hand side belongs to the image
of ι′. This completes the proof. Q.E.D.
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Proposition 3.3. Let M be a finitely generated left DX-module.
Then the homomorphism

BZ|Y ⊗K[x] M
∼−→ BZ|Y ⊗K[x] M [f−1]

of left DY -modules, which is induced by the natural homomorphism ι :
M → M [f−1] is an isomorphism.

Proof. We have

BZ|Y ⊗K[x] M [f−1] = BZ|Y ⊗K[x] (K[x, f−1]⊗K[x] M)

= (BZ|Y ⊗K[x] K[x, f−1])⊗K[x] M

= BZ|Y [f−1]⊗K[x] M.

Hence the isomorphism ι′ induces an isomorphism

BZ|Y ⊗K[x] M
∼−→ BZ|Y [f−1]⊗K[x] M = BZ|Y ⊗K[x] M [f−1].

Q.E.D.

Proposition 3.4. Let M be a finitely generated left DX-module.
Then there exists an isomorphism

BZ|Y ⊗K[x] M
∼−→ BZ|Y [f−1]⊗K[x,f−1] M [f−1]

of left DY -modules.

Proof. We have

BZ|Y [f−1]⊗K[x,f−1] M [f−1]

= (BZ|Y ⊗K[x] K[x, f−1])⊗K[x,f−1] M [f−1] = BZ|Y ⊗K[x] M [f−1].

This completes the proof combined with Proposition 3.4. Q.E.D.

LetDX [f−1] := K[x, f−1]⊗K[x]DX andDY [f
−1] := K[x, f−1]⊗K[x]

DY be the localization of DX and DY by f , which can be regarded as
ring extensions of DX and of DY respectively. Then BZ|Y [f−1] and

BZ|Y [f−1] ⊗K[x,f−1] M [f−1] have natural structures of left DY [f
−1]-

module.

Definition 3.5. We set δ(j) = ι′(δ(j,j)) for j ∈ N. We denote
δ = δ(0).

Lemma 3.6. As an element of the left DY [f
−1]-module BZ|Y [f−1],

the annihilator of δ coincides with the left ideal of DY [f
−1] generated by

t− f−1, ∂xi − fi∂tt
2 (i = 1, . . . , n).
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Proof. By Lemma 3.1, these operators annihilate δ. Assume P ∈
DY [f

−1] annihilates δ. There exist elements Qi and R of DY [f
−1] such

that

P = Q0(t− f−1) +
n∑

i=1

Qi(∂xi − fi∂tt
2) +R

and that R belongs to K[x, f−1, ∂t]. Writing R in a finite sum

R =
l∑

j=0

rj(x)f
−k∂j

t

with rj(x) ∈ K[x] and k, l ∈ N, we have

0 = Rδ =
l∑

j=0

f−krj(x)∂
j
t δ =

l∑
j=0

(−1)jj!f−krj(x)δ
(j)

= f−k

[∑l
j=0(−1)jj!(tf − 1)l−jrj(x)

(tf − 1)l+1

]′

.

Since ι′ is injective, this implies that rj(x) = 0 for any j ≥ 0, that is,
R = 0. Q.E.D.

Proposition 3.7. Any element of BZ|Y [f−1] ⊗K[x,f−1] M [f−1] is

uniquely expressed as a finite sum
∑

j≥0 δ
(j) ⊗ vj with vj ∈ M [f−1].

Proof. By Lemma 3.6, BZ|Y [f−1] is isomorphic to K[x, f−1, ∂t] as

left K[x, f−1]-module. Hence δ(j) = (−1)j(1/j!)∂j
t δ (j ∈ N) constitute

a free basis of BZ|Y [f−1] over K[x, f−1]. This implies the assertion of
the proposition. Q.E.D.

Definition 3.8. Set ϑi := ∂xi − fi∂tt
2 for i = 1, . . . , n. Define a

ring homomorphism τ from DX to DY by

τ : DX � P (x, ∂x) 
−→ P (x, ϑ1, . . . , ϑn) ∈ DY .

Since ϑ1, . . . , ϑn commute with each other, and [ϑi, xj ] = δij , this sub-
stitution is a well-defined ring homomorphism.

Lemma 3.9. One has

δ(0,0) ⊗ Pv = τ(P )(δ(0,0) ⊗ v), δ ⊗ Pv′ = τ(P )(δ ⊗ v′)

in BZ|Y ⊗K[x]M and in BZ|Y [f−1]⊗K[x,f−1]M [f−1] respectively for any

v ∈ M , v′ ∈ M [f−1] and P ∈ DX .
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Proof. We have only to show the first equality. Since

(∂xi − fi∂tt
2)δ(0,0) = 0,

we have

τ(∂xi)(δ
(0,0) ⊗ v) = (∂xi − fi∂tt

2)δ(0,0) ⊗ v + δ(0,0) ⊗ ∂xiv

= δ(0,0) ⊗ ∂xiv.

We can verify that

τ(P )(δ(0,0) ⊗ v) = δ(0,0) ⊗ (Pv)

holds by induction on the order of P . Q.E.D.

Proposition 3.10. Let v ∈ M [f−1], P ∈ DX , and k ∈ N. Then
P (f−kv) = 0 holds in M [f−1] if and only if τ(P )tk(δ ⊗ v) = 0 holds in
BZ|Y [f−1]⊗K[x,f−1] M [f−1].

Proof. Since tkfkδ = (1 + tkfk − 1)δ = δ, we have by Lemma 3.9

δ ⊗ P (f−kv) = τ(P )(δ ⊗ f−kv)

= τ(P )tkfk(δ ⊗ f−kv) = τ(P )tk(δ ⊗ v).

This vanishes if and only if P (f−kv) = 0 by Proposition 3.7. Q.E.D.

Summing up we obtain

Theorem 3.11. Let M = DXu be a left DX-module generated by
u and I = AnnDXu the annihilator of u so that M = DX/I. Let
ι : M → M [f−1] be the canonical homomorphism which sends u ∈ M to
u⊗ 1. Let G be a finite set of generators of I, and J be the left ideal of
DY generated by {τ(P ) | P ∈ G} and tf − 1. Then

(1) J coincides with the annihilator AnnDY (δ ⊗ ι(u)) of δ ⊗ ι(u)
in BZ|Y [f−1]⊗K[x,f−1] M [f−1].

(2) BZ|Y [f−1] ⊗K[x,f−1] M [f−1] is generated by δ ⊗ ι(u) as a left
DY -module.

(3) As a left DY -module, BZ|Y ⊗K[x] M is isomorphic to DY /J .

Proof. (1) It is obvious that J is contained in AnnDY (δ ⊗ ι(u)).
Suppose P (δ ⊗ ι(u)) = 0 with P ∈ DY . There exist R ∈ DY [f

−1] and
aα,j(x) ∈ K[x, f−1] which are zero except finitely many (α, j) ∈ Nn ×N
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such that

P =
∑

α∈Nn,j≥0

aα,j(x)∂
j
t (∂x1 − f1∂tt

2)α1 · · · (∂xn − fn∂tt
2)αn

+R(t− f−1)

=
∑
j≥0

∂j
t τ(Qj) +R(t− f−1)

with Qj :=
∑

α∈Nn aα,j(x)∂
α
x ∈ DX [f−1]. Then we have

0 = P (δ ⊗ ι(u)) =
∑
j≥0

∂j
t τ(Qj)(δ ⊗ ι(u)) =

∑
j≥0

(−1)jj!δ(j) ⊗Qjι(u)

and consequently Qjι(u) = 0 for each j ≥ 0 by Proposition 3.7. This
implies that f lQju = 0 holds in M , that is, f lQj belongs to I, for
some l ∈ N independent of j. We may also assume that f lR belongs
to DY f . Hence f lP =

∑
j≥0 ∂

j
t τ(f

lQj) + f lR(t − f−1) belongs to J .

Since (1 − tlf l)kP belongs to DY (1 − tlf l), and hence to J , if we take
k ∈ N sufficiently large, and tlf lP belongs to J , we conclude that P
itself belongs to J .

(2) By the assumption, Lemma 2.5, and Proposition 3.7, an arbi-
trary element of BZ|Y [f−1]⊗K[x,f−1]M [f−1] is expressed as a finite sum∑

j≥0

∂j
t δ ⊗ Pj(u⊗ f−k)

with Pj ∈ DX and k ∈ N. We get∑
j≥0

∂j
t δ ⊗ Pj(u⊗ f−k) =

∑
j≥0

∂j
t τ(Pj)(δ ⊗ (u⊗ f−k))

=
∑
j≥0

∂j
t τ(Pj)t

kfk(δ ⊗ (u⊗ f−k))

=
∑
j≥0

∂j
t τ(Pj)t

k(δ ⊗ ι(u)).

This completes the proof of (2).
(3) follows from (1), (2) and Proposition 3.4. Q.E.D.

Definition 3.12. For the sake of simplicity of the notation, let us
set

M̃ := BZ|Y [f−1]⊗K[x,f−1] M [f−1] ∼= BZ|Y ⊗K[x] M
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and define a homomorphism ϕ : M [f−1] → M̃/∂tM̃ by

ϕ(v) = δ ⊗ v mod ∂tM̃.

for v ∈ M [f−1].

Theorem 3.13. The homomorphism ϕ : M [f−1] → M̃/∂tM̃ is an
isomorphism of left DX [f−1]-modules, and consequently of DX-modules.

Proof. By Proposition 3.7 one has direct sum decompositions

M̃ = (δ ⊗M [f−1])⊕ (δ(1) ⊗M [f−1])⊕ (δ(2) ⊗M [f−1])⊕ · · · ,
∂tM̃ = (δ(1) ⊗M [f−1])⊕ (δ(2) ⊗M [f−1])⊕ · · ·

as K[x, f−1]-modules. Hence ϕ is an isomorphism of K[x, f−1]-modules.
For v ∈ M [f−1] and P ∈ DX [f−1], one has

P (δ ⊗ v) ≡ τ(P )(δ ⊗ v) = δ ⊗ Pv mod ∂tM̃

since P − τ(P ) belongs to ∂tDY . Hence ϕ is an isomorphism of left
DX [f−1]-modules. Q.E.D.

Theorem 3.14. Assume K is algebraically closed. If M is holo-
nomic on Xf , i.e., if Char(M)∩π−1(Xf ) is an n-dimensional algebraic
set, then DY /J is a holonomic DY -module.

Proof. We may assume M = DX/I. By the definition, we have

Char(DY /J) = {(x, t; ξ, τ) ∈ K2n+2 |
σ(P )(x, ξ1 − f1t

2τ, . . . , ξn − fnt
2τ) (∀P ∈ I), tf(x) = 1}

= {(x, t; ξ, τ) | (x, ξ1 − f1t
2τ, . . . , ξn − fnt

2τ) ∈ Char(M), tf(x) = 1}.
Hence there is a bijection

(Char(M) ∩ π−1(Xf ))×K � (x, ξ, τ)


−→ (x, 1/f(x); ξ1 + f1t
2τ, . . . , ξn + fnt

2τ) ∈ Char(DY /J).

This implies that Char(DY /J) is of dimension n+ 1. Q.E.D.

The DX -module M̃/∂tM̃ is nothing but the integral of the DY -

module M̃ with respect to t, and M̃ is isomorphic to DY /J by Theorem

3.11. Suppose that M is holonomic on Xf . Then M̃ = DY /J is a

holonomic DY -module by the theorem above. Hence M̃/∂tM̃ is also
a holonomic DX -module. In particular, there exists k0 ∈ N, or else
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k0 = −1, such that M̃/∂tM̃ is generated by residue classes [tjδ ⊗ u] =
ϕ(u⊗ f−j) for 0 ≤ j ≤ k0.

The relations among these generators, i.e., a presentation of the
DX -module M̃/∂tM̃ can be computed by the integration algorithm for
D-modules under the assumption that what is called the b-function
b(s) with respect to the weight vector w = (0, ..., 0, 1; 0, ..., 0,−1) for
(x1, . . . , xn, t; ∂x1 , . . . , ∂xn , ∂t) exists. The integer k0 above can be taken
as the maximum integer root of b(s). See [19], [23], [18] for details. This
condition is fulfilled if BZ|Y ⊗K[x]M = DY /J is holonomic, which is the
case if M is holonomic on Xf .

In conclusion, we get

Algorithm 3.15 (localization). Input: A set G0 of generators of
a left ideal I = AnnDXu of DX such that M = DXu.
Output: a presentation of M [f−1].

(1) Let J be the left ideal of DY generated by τ(G0) ∪ {tf − 1}.
(2) Compute the b-function b(s) ofDY /J with respect to the weight

vector (0, ..., 0, 1; 0, ..., 0,−1) by e.g., Algorithm 5.6 of [18]. Quit
if b(s) does not exist; the computation fails.

(3) Let k0 be the maximum integer root of b(s) if any. Then

DY /(J + ∂tDY ), which is isomorphic to M̃/∂tM̃ , is generated
by the residue classes [tj ] with 0 ≤ j ≤ k0. If k0 < 0 or b(s)
does not have any integer root, then M [f−1] = 0; quit.

(4) Compute a set G1 of generators of the left DX -submodule

N :=

{
(P0, P1, . . . , Pk0) ∈ (DX)k0+1 |

k0∑
j=0

Pj [t
j ] = 0

}

of (DX)k0+1 by using the integration algorithm (e.g., Algo-
rithm 5.10 of [18]). Then one has isomorphisms

M [f−1] ∼= DY /(J + ∂tDY ) ∼= (DX)k0+1/N,

by which u⊗ 1, . . . , u⊗ f−k0 correspond to the residue classes
[(1, 0, . . . , 0)], . . . , [(0, . . . , 0, 1)].

In [21], the homomorphism τ above (denoted φ in [21]) is defined
with ϑi replaced by ∂xi −fit

2∂t. This induces the homomorphism M →
M [f−1] which sends u to u⊗ f−2 instead of u⊗ 1.

The algorithm above and the isomorphisms

H0
(f)(M) = ker ι ∼= AnnDX ι(u)/AnnDXu, H1

(f)(M) = M [f−1]/ι(M)
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also provide us with algorithms to compute Hj
(f)(M) for j = 0, 1, which

work at least if M is holonomic on Xf . We remark that H. Tsai gave an
algorithm for H0

(f)(M) without any assumption on M ; see Algorithms

4.3 and 4.5 of [25].

Algorithm 3.16 (ι(M) and Hj
(f)(M)). Input: A set G0 of

generators of a left ideal I = AnnDXu of DX such that M = DXu.
Output: presentations of ι(M), H1

(f)(M), and H0
(f)(M) as

DX -modules.

(1) Compute the integer k0 and a set G1 of generators of the mod-
ule N of Algorithm 3.15.

(2) Compute a set G2 of generators of the left ideal

Ĩ := {P ∈ DX | (P, 0, . . . , 0) ∈ N} = AnnDX ι(u)

of DX by using a Gröbner basis of N with respect to a POT
(position-over-term) order (see e.g., Chapter 5 of [9]). Then

one has ι(M) ∼= DX/Ĩ with the correspondence ι(u) ↔ 1.
(3) Set

G′
1 := {(P1, . . . , Pk0) | (P0, P1, . . . , Pk0) ∈ G1 (∃P0 ∈ DX)}
and N ′ be the left DX -submodule of (DX)k0 generated by G′

1.
Compute a set G3 of generators of the left ideal

I1 := {P ∈ DX | (0, . . . , 0, P ) ∈ N ′} = AnnDX [f−k0ι(u)]

of DX by using a Gröbner basis of N ′ with respect to a POT
order. Then one has H1

(f)(M) ∼= DX/I1 with the correspon-

dence [f−k0ι(u)] ↔ 1.
(4) Set G2 = {P1, . . . , Pl}. Compute a set of generators of the left

DX -module

N0 :=

{
(Q1, . . . , Ql) ∈ (DX)l |

l∑
j=1

QjPj ∈ I

}

through syzygies among {P1, . . . , Pl} ∪G0. Then one has

H0
(f)(M) ∼= Ĩ/I ∼= (DX)l/N0

with the correspondence

P1u ↔ (1, 0, . . . , 0) mod N0, . . . , Plu ↔ (0, . . . , 0, 1) mod N0.
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In what follows, we freely use the notation and the terminology
introduced in Chapters 2, 3, 5 of [18] concerning weight vectors, Gröbner
bases, and b-functions.

Example 3.17. Set n = 1 and x = x1. It is easy to see that

Nx = DXxs ∼= DX/DX(x∂x − s).

Since the b-function of x is s+1, Nx(λ) is isomorphic to the submodule
DXxλ of Lx(λ) and hence x-saturated, if λ �∈ N. So let us consider
M = Nf (0) = DX/DXx∂x. Let u be the residue class of 1 in M .
The left ideal J of DY defined in Theorem 3.11 is generated by tx − 1
and ∂x − ∂tt

2. A Gröbner basis of J with respect to a monomial order
adapted to the weight vector (1, 0;−1, 0) for (t, x, ∂t, ∂x) is

tx−1, x2∂x−∂t, t∂t−x∂x+1 = ∂tt−x∂x, t2∂t−∂x+2t = ∂tt
2−∂x.

The b-function of J with respect to the weight vector above (see 5.2 of
[18]) is divisible by s(s − 1) by virtue of the operator ∂tt

2 − ∂x. Hence

the integration module M̃/∂tM̃ = DY /(J + ∂tDY ) is generated by the
residue classes [u] and [tu], which correspond to u ⊗ 1 and u ⊗ x−1 in
M [x−1] respectively, over DX . The fundamental relations among the
generators can be read off from the Gröbner basis above as follows (see
Algorithm 5.10 of [18]):

x[tu]− [u] = 0, ∂x[u] = 0, x2∂x[tu] + [u] = 0, (x∂x + 1)[tu] = 0.

We translate these relations to vectors

(−1, x), (∂x, 0), (1, x2∂x), (0, x∂x + 1)

in the free module D2
X . Let N be the left DX -submodule of D2

X gen-
erated by these vectors. By using Gröbner bases of N with respect to
POT orders we can confirm that AnnDX [u] = DX∂x and AnnDX [tu] =
DX(x∂x + 1). Hence M [x−1] is generated by u ⊗ x−1 and isomorphic
to DX/DX(x∂x +1) ∼= K[x, x−1] with the correspondence u⊗x−1 ↔ 1.
The image ι(M) of ι : M → M [x−1] is isomorphic to DX/DX∂x ∼= K[x]
with the correspondence u⊗ 1 ↔ 1. Finally we get

H0
(x)(M) = ker ι = DX∂xu = K[∂x]u ∼= DX/DXx,

H1
(x)(M) = DX [tu]/DX [u] ∼= DX/DXx.

The following is an example of non-holonomic M :
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Example 3.18. Set n = 2, x1 = x, x2 = y, P = x∂2
x + ∂y, and

M = DX/DXP = DXu as in Example 2.2. Then M is x- and y-
saturated. The localizations of M are

M [x−1] = DX(u⊗ x−2) = DX/DX(x2∂x
2 + 4x∂x + x∂y + 2),

M [y−1] = DX(u⊗ y−1) = DX/DX(xy∂x
2 + y∂y + 1).

The first local cohomology groups are

H1
(x)(M) = DX [u⊗ x−2] = DX/(DXx2 +DXx∂y),

H1
(y)(M) = DX [u⊗ y−1] = DX/DXy,

both of which are not holonomic.

Example 3.19. Set n = 2, x1 = x, x2 = y, and f = x3 − y2. Let
us consider

M = DX/(DX∂xf +DX∂yf) = DXu (u = 1).

The characteristic variety of M is

Char(M) = {(x, y; ξ, η) ∈ K4 | x3 − y2 = 0} ∪ {(x, y; 0, 0) | (x, y) ∈ X}.
Hence M is holonomic on Xf but not on X. The localization M [f−1] is
given by

M [f−1] = DX/(DX(2x∂x + 3y∂y + 6) +DX(2y∂x + 3x2∂y))

with the correspondence u ⊗ 1 ↔ 1 and is holonomic on X. Hence we
have ι(M) = M [f−1] and H1

(f)(M) = 0. Algorithm 3.16 also gives a

presentation of H0
(f)(M), which is rather complicated. We can verify

that its characteristic variety is

Char(H0
(f)(M)) = {(x, y; ξ, η) ∈ K4 | x3 − y2 = 0}

as is expected.

§4. Algorithms for u⊗ fs and the b-function

The purpose here is to give algorithms to compute M(u, f, s) and
M(u, f, λ) as well as the b-function bu,f (s) for an arbitrary DX -module
M = DXu that is holonomic on Xf , and an arbitrary non-constant
polynomial f . Algorithms for these objects were already given in [17]
under the additional assumption that M is f -saturated. We remove this
assumption by using the localization algorithm.
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Set X = Kn and Y = Kn+1 with coordinates x = (x1, . . . , xn) of X
and (x, t) of Y . Let f = f(x) ∈ K[x] be a non-constant polynomial and
let Z be the affine subset Z = {(x, t) | t = f(x)} of Y . (Note that Z is
different from what was defined in the previous section.) We regard the
local cohomology group

BZ|Y := H1
Z(K[x, t]) = K[x, t, (t− f)−1]/K[x, t]

as a left DY -module. For k ∈ N, let

δ(k)(t− f(x)) =

[
(−1)kk!

(t− f(x))k+1

]

be the residue class in BZ|X and denote δ(t − f) = δ(0)(t − f). Then
δ(t− f) satisfies a holonomic system

(t− f)δ(t− f) = (∂xi + fi∂t)δ(t− f) = 0 (1 ≤ i ≤ n)

with fi = ∂f/∂xi. Hence there exists an isomorphism BZ|Y ∼= DY /J0
with

J0 := DY (t− f) +DY (∂x1 + f1∂t) + · · ·+DY (∂xn + fn∂t)

as left DY -module since J0 is maximal. In particular, δ(k)(t−f) (k ∈ N)
constitute a free basis of BZ|Y over K[x].

Following Malgrange [15], let us give Lf = DX [s]fs a structure of
left DY -module by

t(a(x, s)f−kfs) = a(x, s+ 1)f−k+1fs,

∂t(a(x, s)f
−kfs) = −sa(x, s− 1)f−k−1fs

for a(x, s) ∈ K[x, s] and k ∈ N. The actions of t and ∂t on Lf satisfy
[∂t, t] = 1, and they commute with xi, ∂xi . Hence the definition above
extends to the action of DY on Lf . In particular, ∂ttf

s = −sfs holds,
which will play an important role in what follows.

With respect to this action, we can regard BZ|Y as a left

DY -submodule of Lf by identifying δ(k)(t − f) with (−1)ks(s − 1) · · ·
(s− k + 1)fs−k in Lf . In fact, we have

J0 = AnnDY f
s = AnnDY δ(t− f)

since J0 annihilates fs as well as δ(t− f) and J0 is a maximal left ideal.
For a left DX -module M = DXu, let us consider the tensor product

M ⊗K[x] BZ|Y , which is a left DY -module.
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Definition 4.1. Set ϑ′
i := ∂xi + fi∂t for i = 1, . . . , n. Define a ring

homomorphism τ ′ from DX to DY by

τ ′ : DX � P (x, ∂x) 
−→ P (x, ϑ′
1, . . . , ϑ

′
n) ∈ DY .

Since ϑ′
1, . . . , ϑ

′
n commute with each other, and [ϑ′

i, xj ] = δij , this sub-
stitution is a well-defined ring homomorphism.

Since ϑ′
iδ(t− f) = 0 for 1 ≤ i ≤ n,

τ ′(P )(v ⊗ δ(t− f)) = Pv ⊗ δ(t− f)

holds for any v ∈ M and P ∈ DX . Hence we have

Pu⊗ ∂k
t δ(t− f) = ∂k

t (Pu⊗ δ(t− f)) = ∂k
t τ

′(P )(u⊗ δ(t− f)).

This proves

Lemma 4.2. If M = DXu, then the left DY -module M ⊗K[x]BZ|Y
is generated by u⊗ δ(t− f).

Theorem 4.3. Let M = DXu be a left DX-module generated by u
and f ∈ K[x]. Let G be a finite set of generators of I := AnnDXu and
let J be the left ideal of DY generated by {τ ′(P ) | P ∈ G} ∪ {t − f}.
Then J coincides with the annihilator AnnDY (u⊗ δ(t− f)). Moreover,
if M is a holonomic DX-module, then M ⊗K[x] BZ|Y is a holonomic
DY -module.

The first part of this proposition was proved by Walther [26]. The
proof is almost the same as the proof of Theorem 3.11. The last assertion
can be proved in the same way as Theorem 3.14.

Thus we have an algorithm to compute M⊗K[x]BZ|Y . The inclusion
BZ|X ⊂ Lf induces a homomorphism

ψ : M ⊗K[x] BZ|Y −→ M ⊗K[x] Lf

of left DY -modules. Our main aim is to compute the DX [s]-submodule
M(u, f, s) = DX [s](u ⊗ fs) of M ⊗K[x] Lf , which is the image of the
submodule DX [s](u⊗ fs) of M ⊗K[x] BZ|Y by ψ. The following lemma
was proved in [17] as Proposition 6.13.

Lemma 4.4. The homomorphism ψ above is injective if and only
if M is f -saturated.

Proof. An arbitrary element of M⊗K[x]BZ|Y is expressed uniquely
as

w =
k∑

j=0

vj ⊗ δ(j)(t− f)
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with k ∈ N and vj ∈ M . Then

ψ(w) =
k∑

j=0

(−1)jvj ⊗ (s(s− 1) · · · (s− j + 1)f−jfs)

vanishes if and only if each vj⊗f−j vanishes in M⊗K[x]K[x, f−1], which

is equivalent to vj ∈ H0
(f)(M). Q.E.D.

Lemma 4.5. Let M = DXu be a left DX-module generated by u
and f ∈ K[x] be a non-constant polynomial. Let ι : M → M [f−1] be the
canonical homomorphism. Then ι induces isomorphisms

M ⊗K[x] Lf
∼−→ ι(M)⊗K[x] Lf , M(u, f, s)

∼−→ ι(M)(u, f, s)

of left DX [s]-modules.

Proof. Since Lf is isomorphic to K[x, f−1, s] as a K[x, s]-module,
we have only to show that the natural homomorphism

M [f−1] → ι(M)[f−1]

is an isomorphism, which is obvious by the definition. The second iso-
morphism follows from the first. Q.E.D.

Summing up we obtain

Algorithm 4.6 (M(u, f, s) and M(u, f, λ)). Input: A finite set of
generators of a left ideal I of DX so that M = DXu = DX/I, a
non-constant f ∈ K[x], and λ ∈ K.
Output: presentation of M(u, f, s) and of M(u, f, λ).

(1) Compute ι(M) = DX/AnnDY ι(u) by Algorithm 3.16.
(2) Compute J = AnnDY (ι(u)⊗ δ(t− f)) by using Theorem 4.3.
(3) Compute J ∩DX [s], which is equal to AnnDX [s](ι(u) ⊗ fs) =

AnnDX [s](u⊗ fs).
(4) The substitution s = λ for generators of J ∩DX [s] gives a set

of generators of AnnDX (u⊗ fs)|s=λ.

Proposition 4.7. Let M = DXu be a left DX-module generated by
u and f ∈ K[x] a non-constant polynomial. Then the b-function bu,f (x)
exists if and only if there exists a nonzero polynomial b(s) ∈ K[s] such
that
(2)
b(−∂tt)(u⊗ δ(t− f)) ∈ tDX [t∂t](u⊗ δ(t− f)) = DX [t∂t]t(u⊗ δ(t− f)).

If M is f -saturated and such b(s) exists, then bu,f (s) is the monic poly-
nomial of the minimum degree among such b(s).
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Proof. Assume that (2) holds. Then there exists P (s) ∈ DX [s]
such that

b(−∂tt)(u⊗δ(t−f)) = P (−∂tt)t(u⊗δ(t−f)) = P (−∂tt)f(u⊗δ(t−f)).

Applying the homomorphism ψ we get b(s)(u ⊗ fs) = P (s)(u ⊗ fs+1).
Hence bu,f (s) exists and divides b(s).

On the other hand, assume that there exist nonzero b(s) ∈ K[s]
and P (s) ∈ DX [s] such that b(s)(u ⊗ fs) = P (s)(u ⊗ fs+1) holds in
M ⊗K[x] Lf . Then as is seen by the proof of Lemma 4.4, there exists
k ∈ N such that

fkb(−∂tt)(u⊗ δ(t− f)) = fkP (−∂tt)f(u⊗ δ(t− f)).

Since

fkb(−∂tt)(u⊗δ(t−f)) = b(−∂tt)f
k(u⊗δ(t−f)) = b(−∂tt)t

k(u⊗δ(t−f))

holds, we get

∂k
t b(−∂tt)t

k(u⊗ δ(t− f))

= ∂k
t f

kP (−∂tt)f(u⊗ δ(t− f)) ∈ DX [t∂t]t(u⊗ δ(t− f)).

This completes the proof because there exists c(s) ∈ K[x] such that
∂k
t b(−∂tt)t

k = c(−∂tt). Q.E.D.

Now we obtain an algorithm to determine whether the b-function
exists and to compute it if it does:

Algorithm 4.8 (bu,f (s)). Input: M = DXu = DX/I with a finite
set of generators of I and a non-constant f ∈ K[x].
Output: the b-function bu,f (s) if it exists. ‘No’ if it does not exist.

(1) Compute J ′ := AnnDY (u⊗ δ(t− f)) by using Theorem 4.3.
(2) Compute I ′ = (J ′+DX [s]f)∩K[s] by elimination. If I ′ �= {0},

then there exists bu,f (s). Otherwise, the b-function does not
exist; output ‘No’ and quit.

(3) Compute a set of generators of J := AnnDX [s](u ⊗ fs) by Al-
gorithm 4.6.

(4) Compute I(u, f) = (J + DX [s]f) ∩ K[s] by elimination. Let
bu,f (s) be the monic generator of I(u, f).

Algorithm 4.9 (DX(u⊗ fλ)). Input: M = DXu = DX/I with a
finite set of generators of I, a non-constant f ∈ K[x], and λ ∈ K.
Output: presentation of DX(u⊗ fλ), i.e., AnnDX (u⊗ fλ) if bu,f (s)
exists.
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(1) Compute M(u, f, s) and bu,f (s) by Algorithms 4.6 and 4.8.
Quit if bu,f (s) does not exist.

(2) Let k0 be the maximum nonzero integer, if any, such that
bu,f (λ− k0) = 0. If there is no such k0, then set k0 = 0.

(3) Compute I := AnnDX (u ⊗ fλ−k0) from AnnDX [s](u ⊗ fs) by
substitution s = λ− k0.

(4) Compute the left ideal

I : fk0 := {P ∈ DX | Pfk0 ∈ I}
by an appropriate Gröbner basis. Then one has

I : fk0 = AnnDX (u⊗ fλ).

Example 4.10. Set n = 2, x1 = x, x2 = y, P = x∂2
x + ∂y, and

M = DX/DXP = DXu as in Example 2.2. By Algorithms 4.6 and 4.8
we obtain bu,x(s) = (s+ 1)(s+ 2), bu,y(s) = s+ 1, and

M(u, x, s) := DX [s](u⊗ xs)

= DX [s]/DX [s](x2∂x
2 − 2sx∂x + x∂y + s2 + s),

M(u, y, s) := DX [s](u⊗ ys) = DX [s]/DX [s](xy∂x
2 + y∂y − s).

Example 4.11. Setting n = 2 and x1 = x, x2 = y, let us consider
f(x, y) = x3 − y2 and

Nf = DX [s]fs, M := Nf

(1
6

)
= Nf/

(
s− 1

6

)
Nf .

We have M = DX/I = DXu with u := fs|s=1/6 and

I = AnnDXu = DX(2x∂x + 3y∂y − 1) +DX(2y∂x + 3x2∂y).

Then Algorithm 3.15 shows that M [f−1] is generated by u⊗ f−1 and is
isomorphic to DX/J with

J = AnnDXu⊗ f−1 = DX(2x∂x + 3y∂y + 5) +DX(2y∂x + 3x2∂y).

In fact, M [f−1] is isomorphic to Lf (1/6) = K[x, f−1]f1/6 = DXf−5/6,

and ι(M) to the submodule DXf1/6.
By Algorithm 3.16, we have ι(M) = DX/J0 with the left ideal J0

generated by

2x∂x + 3y∂y − 1, 2y∂x + 3x2∂y, 8∂3
x + 27y∂3

y + 9∂2
y .
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Note that J0 is strictly larger than I because of the last generator.
Algorithm 3.16 also yields presentations of the local cohomology groups

H0
(f)(M) ∼= DX/(DXx+DXy) with (8∂3

x + 27y∂3
y + 9∂2

y)u ←→ 1,

H1
(f)(M) ∼= DX/(DXx+DXy) with [u⊗ f−1] ←→ 1.

The b-function for u and f is

bu,f (s) = (s+ 1)
(
s+

4

3

)(
s+

7

6

)
= bf

(
s+

1

6

)
,

where bf (s) = (s+ 1)(s+ 5/6)(s+ 7/6) is the b-function of f .

Example 4.12. Set n = 2 and x1 = x, x2 = y and consider

M = H1
(xy)(K[x, y]) = DX/(DXxy+DX(x∂x+1)+DY (y∂y+1)) = DXu

with u = [(xy)−1]. Then M [x−1] is generated by u ⊗ 1, and hence
M [−1] = ι(M) and H1

(x)(M) = 0. We have

M [x−1] = DX/(DX(x∂x + 1) +DXy),

H0
(x)(M) ∼= DX/(DXx+DX∂y)

with the correspondence u ⊗ 1 ↔ 1 and yu ↔ 1 respectively. The b-
function of u := [(xy)−1] and x is bu,x(s) = s. The module M(u, x, s)
is

M(u, x, s) = DX [s]/(DX [s](x∂x − s+ 1) +DX [s]y).

Example 4.13. Set n = 3, x1 = x, x2 = y, x3 = z, and
f = x3 − y2z2. Let us consider

M = H1
(xf)(K[x, y]) = DXu (u = [(xf)−1]).

The localizations M [x−1] and M [f−1] are given by

M [x−1] = DX(u⊗ 1)

= DX/(DXf +DX(2x∂x + 3z∂z + 8) +DX(y∂y − z∂z),

M [f−1] = DX(u⊗ 1)

= DX/(DXx+DX(y∂y + 2) +DX(z∂z + 2).

In particular, we have H1
(x)(M) = H1

(f)(M) = 0. The zeroth cohomology
groups are

H0
(x)(M) ∼= DX/(DXx+DX∂y +DX∂z)
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with the correspondence fu ↔ 1, and H0
(f)(M) ∼= DX/I with the corre-

spondence (y∂y + 2)u ↔ 1, where I is the left ideal generated by

f2, y∂y − z∂z, 2x∂x + 3z∂z + 8, x3∂y − z3y∂z − 4z2y,

f∂z − 4zy2, x3∂2
y − z4∂2

z − 6z3∂z − 4z2,

8z2y∂3
x + (27z2∂2

z + 81z∂z + 24)∂y.

We also have

M(u, x, s) = DX [s]/(DX [s]f +DX [s](2x∂x + 3y∂y − 2s+ 8)

+DX [s](y∂y − z∂z)),

M(u, f, s) = DX [s]/(DX [s]x+DX [s](y∂y − 2s− 2)

+DX [s](y∂y − z∂z)).

The corresponding b-functions are

bu,x(s) = s2
(
s− 3

2

)2

, bu,f (s) = s2
(
s− 1

2

)2

.

§5. Length and multiplicity of D-modules

W set X = Kn as in the preceding sections. First let us recall basic
facts about the length and the multiplicity of a left DX -module following
J. Bernstein ([3],[4]). Let M be a finitely generated left DX -module. A
composition series of M of length k is a sequence

M = M0 � M1 � · · · � Mk = 0

of left Dn-submodules such that Mi/Mi−1 is a nonzero simple left DX -
module (i.e. having no proper left DX -submodule other than 0) for
i = 1, . . . k. The length of M , which we denote by lengthM , is the
least length of composition series (if any) of M . If there is no compo-
sition series, the length of M is defined to be infinite. The length is
additive in the sense that if

0 −→ N −→ M −→ L −→ 0

is an exact sequence of leftDX -modules of finite length, then lengthM =
lengthN + lengthL holds.

For each integer k, set

Fk(DX) =

{ ∑
|α|+|β|≤k

aαβx
α∂β | aαβ ∈ K

}
.
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In particular, we have Fk(DX) = 0 for k < 0 and F0(DX) = K. The
filtration {Fk(DX)}k∈Z is called the Bernstein filtration on DX .

LetM be a finitely generated leftDX -module. A family {Fk(M)}k∈Z

of K-subspaces of M is called a Bernstein filtration on M if it satisfies

(1) Fk(M) ⊂ Fk+1(M) (∀k ∈ Z),
⋃

k∈Z Fk(M) = M ,
(2) Fj(DX)Fk(M) ⊂ Fj+k(M) (∀j, k ∈ Z).

Moreover, {Fk(M)} is called a good Bernstein filtration if there exist
ui ∈ Fki(M) (i = 1, . . . ,m) such that

Fk(M) = Fk−k1(DX)u1 + · · ·+ Fk−km(DX)um (∀k ∈ Z).

If {Fk(M)} is a good Bernstein filtration, then each Fk(M) is a finite
dimensional vector space over K and Fk(M) = 0 for k � 0 (see e.g., 2.3
of [18]).

Let {Fk(M)} be a good Bernstein filtration on M . Then there exists
a polynomial p(T ) = cdT

d + cd−1T
d−1 + · · ·+ c0 ∈ Q[T ] such that

dimK Fk(M) = p(k) (k � 0)

and d!cd is a positive integer. We call p(T ) the Hilbert polynomial of M
with respect to the filtration {Fk(M)}. The leading term of p(T ) does
not depend on the choice of a good Bernstein filtration {Fk(M)}. The
degree d of the Hilbert polynomial p(T ) is called the dimension of M
and denoted dimM . The multiplicity of M , denoted multM is defined
to be the positive integer d!cd. The dimension and the multiplicity are
invariants of a finitely generated left DX -module.

If M �= 0, then the dimension of M is not less than n (Bernstein’s
inequality). By definition, M is holonomic if M = 0 or dimM = n. If
M is a holonomic left DX -module, we have an inequality lengthM ≤
multM and hence M is of finite length in particular. Moreover, the
multiplicity is additive for holonomic left DX -modules.

We can compute the dimension and the multiplicity of a given
finitely generated (not necessarily holonomic) DX -module by using a
Gröbner basis with respect to a term order compatible with the Bernstein
filtration.

Example 5.1. Let M be the DX -module with X = K2 defined in
Example 4.11. We get exact sequences

0 −→ H0
(f)(M) −→ M −→ ι(M) −→ 0,

0 −→ H0
(f)(M) −→ M −→ M [f−1] −→ H1

(f)(M) −→ 0
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with H0
(f)(M) ∼= H2

(x,y)(K[x, y]) ∼= H1
(f)(M). We have

multM = multM [f−1] = 6, mult ι(M) = 5,

multH0
(f)(M) = multH1

(f)(M) = 1.

The following two propositions are easy and should be well-known.

Proposition 5.2. Let f be a non-constant polynomial in x1, . . . , xn.
Then the multiplicity of K[x, f−1] is at most (deg f + 1)n, where deg f
stands for the total degree of f .

Proof. Let d be the degree of f . Then

Fk(K[x, f−1]) :=

{
a

fk+1
| a ∈ K[x1, . . . , xn], deg a ≤ (d+ 1)k

}

for k ∈ Z constitute a (not necessarily good) Bernstein filtration on
K[x, f−1], which is finitely generated over Dn. Since

dimK Fk(K[x, f−1]) =

(
n+ (d+ 1)k

n

)
,

we have dimK[x, f−1] = n and multM ≤ (d+ 1)n. Q.E.D.

Proposition 5.3. Let n = 1 and f ∈ K[x] = K[x1] be non-constant
square free. Then one has multK[x, f−1] = deg f + 1.

Proof. Set M := H1
(f)(K[x]). Then M is isomorphic to DX/DXf

since f is square-free. Hence

Fk(M) := Fk(D1)[f
−1] ∼= Fk(D1)/Fk−d(D1)f

with d := deg f constitute a good Bernstein filtration on M . Since

dimFk(M) = dimFk(D1)− dimFk−d(D1)

=

(
k + 2

2

)
−
(
k − d+ 2

2

)
= dk − 1

2
d(d− 3)

holds for k ≥ d, the multiplicity of M is d. Q.E.D.

We shall give two examples in two variables.

Proposition 5.4. Set X = K2 and write x1 = x, x2 = y. Set
f = xm + yl with positive integers l,m. Then the multiplicity of
K[x, y, f−1] equals 2max{l,m}.
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Proof. We may assume m ≤ l. Set M := H1
(f)(K[x, y]). Since the

b-function bf (s) of f does not have any negative integer ≤ −2 as a root
(see e.g., 6.4 of [14]), M is generated by u := [f−1] ∈ M over DX . The
annihilator AnnDXu is generated by

f, E := lx∂x +my∂y +ml, P := lyl−1∂x −mxm−1∂y

(see also 6.4 of [14]). A Gröbner basis of AnnD[f−1] with respect to
a total-degree reverse lexicographic order ≺ such that x � y � ξ � η
is G = {f,E, P}, where ξ and η are the commutative variables corre-
sponding to ∂x and ∂y respectively. In fact, in case m < l the S-pairs
(see Chapter 3 of [18]) are divisible by G:

sp≺(f,E) = lx∂xf − ylE = xmE −my∂yf,

sp≺(f, P ) = l∂xf − yP = xm−1E, sp≺(E,P ) = yl−1E − xP = m∂yf.

The initial monomials of the Gröbner basis G are in≺(f) = yl,
in≺(E) = xξ, in≺(P ) = yl−1ξ. Hence for k ≥ l we obtain

dimK Fk(DX)/(AnnDX [f−1] ∩ Fk(DX))

= �({xiyjξμην | i+ j + μ+ ν ≤ k} \ 〈yl, xξ, yl−1ξ〉)
= �{xiyjην | i+ j + ν ≤ k, j ≤ l − 1}
+ �{yjξμην | j + μ+ ν ≤ k, j ≤ l − 2, μ ≥ 1}

=
l−1∑
j=0

(
2 + k − j

2

)
+

l−2∑
j=0

(
2 + k − j − 1

2

)
=

2l − 1

2
k2 + · · · .

On the other hand, in case m = l we have

sp≺(f,E) = l∂xf − xl−1E = yP,

sp≺(f, P ) = lyl−1∂xf − xlP = ylP + lxl−1∂yf

sp≺(E,P ) = yl−1E − xP = l∂yf.
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The initial monomials are in≺(f) = xl, in≺(E) = xξ, in≺(P ) = yl−1ξ.
(Note that yl−1ξ � xl−1η holds.) Hence for k ≥ l we obtain

dimK Fk(DX)/(AnnDX [f−1] ∩ Fk(DX))

= �({xiyjξμην | i+ j + μ+ ν ≤ k} \ 〈xl, xξ, yl−1ξ〉)
= �{xiyjην | i+ j + ν ≤ k, i ≤ l − 1}
+ �{yjξμην | j + μ+ ν ≤ k, j ≤ l − 2, μ ≥ 1}

=
l−1∑
i=0

(
2 + k − i

2

)
+

l−2∑
j=0

(
2 + k − j − 1

2

)
=

2l − 1

2
k2 + · · · .

Hence the multiplicity of M is 2l − 1 in both cases. This proves the
assertion. Q.E.D.

Proposition 5.5. Set X = K2 with x1 = x and x2 = y. Set
f = xm + yl + 1 with positive integers l,m. Then the multiplicity of
K[x, y, f−1] equals lm+ |l −m|+ 1.

Proof. We may assume m ≤ l. Set M := H1
(f)(K[x, y]). Since the

curve f = 0 is non-singular, the b-function is bf (s) = s + 1. Hence M
is generated by u := [f−1]. The annihilator AnnDXu is generated by f
and P := lyl−1∂x −mxm−1∂y since f = 0 is non-singular.

In case l = m, G = {f, P} is a Gröbner basis of AnnDX [f−1] with
respect to a total-degree reverse lexicographic order ≺ such that x �
y � ξ � η. In fact, we have

sp≺(f, P ) = lyl−1∂xf − xlP = lyl−1∂xf + xlP.

Since in≺(f) = xl and in≺(P ) = yl−1ξ, we have for k ≥ 2l

dimK Fk(DX)/(AnnDX [f−1] ∩ Fk(DX))

= �({xiyjξμην | i+ j + μ+ ν ≤ N} \ 〈xl, yl−1ξ〉)
= �{xiyjην | i+ j + ν ≤ k, i ≤ l − 1}
+ �{xiyjξμην | i+ j + μ+ ν ≤ k, i ≤ l − 1, 0 ≤ j ≤ l − 2, μ ≥ 1}

=
l−1∑
i=0

(
2 + k − i

2

)
+

l−1∑
i=0

l−2∑
j=0

(
2 + k − i− j − 1

2

)
=

l2

2
k2 + · · · .

In case m < l, the Gröbner basis of AnnD[f−1] with respect to the same
order as above is G = {f, P,Q} with

Q := l(xm + 1)∂x +mxm−1y∂y +mlxm−1.
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In fact, we have

sp≺(f, P ) = l∂xf − yP = Q,

sp≺(f,Q) = lxm∂xf − ylQ = −mxm−1y∂yf − yP + xmQ,

sp≺(P,Q) = xmP − yl−1Q = −mxm−1∂yf − P.

Since in≺(f) = yl, in≺(P ) = yl−1ξ, in≺(Q) = xmξ, we have for k ≥ l+m,

dimK Fk(DX)/(AnnDX [f−1] ∩ Fk(DX))

= �({xiyjξμην | i+ j + μ+ ν ≤ k} \ 〈yl, yl−1ξ, xmξ〉)
= �{xiyjην | i+ j + ν ≤ k, i ≤ l − 1}
+ �{xiyjξμην | i+ j + μ+ ν ≤ k, i ≤ m− 1, j ≤ l − 2, μ ≥ 1}

=
l−1∑
i=0

(
2 + k − i

2

)
+

m−1∑
i=0

l−2∑
j=0

(
2 + k − i− j − 1

2

)

=
l +m(l − 1)

2
k2 + · · · .

Hence the multiplicity of M is l +m(l − 1) = ml + l −m. Q.E.D.

Now let us resume the study on M(u, f, s) for a DX -module M =
DXu and a polynomial f . As in the preceding section, set Y = X ×K
and Z = {(x, t) ∈ Y | t = f(x)}.

Lemma 5.6. Let M = DXu be a left DX-module generated by u.
For any λ ∈ K, the endomorphism of M(u, f, s) defined by s − λ is
injective. Hence the sequence

0 −→ M(u, f, s)
s−λ−→ M(u, f, s) −→ M(u, f, λ) −→ 0

of left DX-modules is exact.

Proof. We may assume that M is f -saturated as was seen in the
previous section. The homomorphism ψ : M ⊗K[x] BZ|Y → M ⊗K[x] Lf

is injective by Lemma 4.4.
Hence we have only to show that s − λ = −∂tt − λ is an injective

endomorphism of M ⊗K[x] BZ|Y . Let

v =
k∑

j=0

vj ⊗ δ(j)(t− f)
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be an arbitrary element of M ⊗K[x]BZ|Y with k ∈ N and vj ∈ M . Then
one has

(s− λ)v = −
k∑

j=0

vj ⊗ (t∂t + λ+ 1)δ(j)(t− f)

= −
k∑

j=0

vj ⊗ (fδ(j+1)(t− f) + (λ− j)δ(j)(t− f))

= −λv0 ⊗ δ(t− f)−
k∑

j=1

(fvj−1 + (λ− j)vj)⊗ δ(j)(t− f)

− fvk ⊗ δ(k+1)(t− f).

Thus (s− λ)v = 0 is equivalent to

λv0 = fvk = fvj−1 + (λ− j)vj = 0 (1 ≤ j ≤ k),

which implies vk = vk−1 = · · · = v0 = 0 sinceM is f -saturated. Q.E.D.

Theorem 5.7. Let f ∈ K[x] be a non-constant polynomial with K
being algebraically closed. Let M = DXu be a left DX-module generated
by u which is holonomic on Xf := {x ∈ X | f(x) �= 0}. Then M(u, f, λ)
and M(u, f, s)/tM(u, f, s) are holonomic DX-modules for any λ ∈ K.

Proof. Since M(u, f, s) = ι(M)(ι(u), f, s), we may assume M to be
a nonzero holonomic DX -module and f -saturated replacing M by ι(M).
Set

N := M ⊗K[x] BZ|Y , Fk(N) := Fk(DY )δ(t− f(x)) (k ∈ Z).

Since N is holonomic, there exists a polynomial p(k) of degree n + 1
such that p(k) = dimK Fk(N) for any sufficiently large k. Let us define
a filtration Fk(DX [s]) on the ring DX [s] by

Fk(DX [s]) =
{∑
α,β,j

aα,β,jx
α∂β

x s
j | |α|+ |β|+ 2j ≤ k

}
.

Set
Fk(M(u, f, s)) := Fk(DX [s])(u⊗ fs) (k ∈ Z).

Applying a well-known fact in commutative algebra (see e.g., Theorem
4.4.3 in [7]) to the graded module gr(M(u, f, s)) over the graded ring
gr(DX [s]), we can show that there exist two polynomials q1(k) and q2(k)
of the same degree d such that

dimK F2k(M(u, f, s)) = q1(2k), dimK F2k+1(M(u, f, s)) = q2(2k + 1)
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for any sufficiently large k. We have d ≤ n + 1 since Fk(M(u, f, s))
is contained in ψ(Fk(N)) and ψ is an injective homomorphism from
M ⊗K[x] BZ|Y to M ⊗K[x] Lf .

Set M = M(u, f, s)/tM(u, f, s) and

Fk(M) = Fk(M(u, f, s))/(tM(u, f, s) ∩ Fk(M(u, f, s)).

Then {Fk(M)} is a Bernstein filtration on the left DX -module M (i.e.,
the action of s being ignored) although we do not know at this stage
whether M is finitely generated over DX or not.

Since t : M(u, f, s) → M(u, f, s) is injective, we have

dimK Fk(M) = dimK Fk(M(u, f, s))

− dimK(tM(u, f, s) ∩ Fk(M(u, f, s))

≤ dimK Fk(M(u, f, s))− dimK t2Fk−2(M(u, f, s))

= dimK Fk(M(u, f, s))− dimK Fk−2(M(u, f, s))

=

{
q1(k)− q1(k − 2) if k � 0 is even,
q2(k)− q2(k − 2) if k � 0 is odd.

Since the degree of qi(k)−qi(k−2) (i = 1, 2) is d−1 ≤ n, this inequality
implies that an arbitrary finitely generated DX -submodule of M is holo-
nomic and its multiplicity is bounded in terms of the leading coefficients
of q1(k) and q2(k). Hence we conclude that M itself is holonomic.

We can prove the holonomicity of M(u, f, λ) in the same way re-
placing t2 by s − λ. This fact is a special case of Theorem 6.10 in
[18]. Q.E.D.

The first statement of the following theorem is given in 6.5 of [14]
for the case M = K[x] and u = 1.

Theorem 5.8. Let M = DXu be a DX-module generated by u
and f ∈ K[x] be a non-constant polynomial. Assume that the b-function
bu,f (s) exists. For λ ∈ K let ϕλ : M(u, f, λ+1) → M(u, f, λ) be the DX-
homomorphism induced by t, which sends (u⊗fs)|s=λ+1 to (fu⊗fs)|s=λ.

(1) ϕλ is an isomorphism if and only if bu,f (λ) �= 0.
(2) Assume that M is holonomic on Xf with K being algebraically

closed. Then one has

multM(u, f, λ+ k) = multM(u, f, λ),

lengthM(u, f, λ+ k) = lengthM(u, f, λ)

for any λ ∈ K and any integer k. In particular, one has

multM [f−1] = multM(u, f, k), lengthM [f−1] = lengthM(u, f, k)
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for any integer k.

Proof. There exists a commutative diagram

0

��
0

��

0

��

K0(λ)

��
0 �� M(u, f, s)

t ��

s−λ−1

��

M(u, f, s) ��

s−λ

��

M ��

s−λ

��

0

0 �� M(u, f, s)
t ��

��

M(u, f, s) ��

��

M ��

��

0

M(u, f, λ+ 1)
ϕλ ��

��

M(u, f, λ) ��

��

K1(λ)

��
0 0 0

with M = M(u, f, s)/tM(u, f, s) and some left DX -modules K0(λ),
K1(λ), where the three vertical sequences and the upper two horizontal
sequences are exact in view of Lemma 5.6. Hence by the snake lemma
we obtain an exact sequence

(3) 0 −→ K0(λ) −→ M(u, f, λ+ 1)
ϕλ−→ M(u, f, λ) −→ K1(λ) −→ 0

of left DX -modules.
(1) Assume bu,f (λ) �= 0. Then there exist a(s), c(s) ∈ K[s] such that

a(s)(s− λ) + c(s)bu,f (s) = 1. Hence for any Q(s) ∈ DX [s],

Q(s)(u⊗ fs) = Q(s)c(s)bu,f (s)(u⊗ fs) + (s− λ)Q(s)a(s)(u⊗ fs)

belongs to tM(u, f, s)+(s−λ)M(u, f, s). If (s−λ)Q(s)(u⊗fs) belongs
to tM(u, f, s), then Q(s)(u⊗fs) also belongs to tM(u, f, s). Hence s−λ
is an automorphism of M.

Conversely, assume that s− λ is an automorphism of M. Then the
minimal polynomial bu,f (s) of s on this module cannot be a multiple
of s − λ. Summing up we have shown that bu,f (λ) �= 0 if and only if
K0(λ) = K1(λ) = 0. In view of the exact sequence (3), this is also
equivalent to ϕλ being an isomorphism.
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(2) We may assume that M is a holonomic DX -module and that M
is f -saturated replacing M by ι(M). Since M is holonomic by Theorem
5.7, the length (and the multiplicity) of K0(λ) and the length (and the
multiplicity respectively) of K1(λ) are the same in view of the rightmost
vertical exact sequence. Combined with this fact the exact sequence (3)
proves the statement (2). Q.E.D.

This theorem provides us with an algorithm to compute the multi-
plicity of M [f−1] without any information on bu,f (s); we have only to
compute a Gröbner basis, e.g., of M(u, f, 0) with respect to a term order
compatible with the Bernstein filtration.

Theorem 5.9. Let M = DXu be a DX-module generated by u and
f ∈ K[x] be a non-constant polynomial with K being algebraically closed.
Assume that M is holonomic on Xf . Then the homomorphism ρ̃λ :
M(u, f, λ) → DX(u⊗fλ) is an isomorphism if and only if bu,f (λ−k) �= 0
for any positive integer k.

Proof. If bu,f (λ − k) �= 0 for any positive integer k, then ρ̃λ is an
isomorphism by virtue of Proposition 2.6. Now suppose bu,f (λ− k) = 0
holds for some positive integer k and let k0 be the maximum among
such k. Then Proposition 2.6 and Lemma 2.7 imply that ρ̃λ−k0 is an
isomorphism and that DX(u ⊗ fλ−k0+1) � DX(u ⊗ fλ−k0). Hence by
(2) of Theorem 5.8 we have

lengthM(u, f, λ) = lengthM(u, f, λ− k0) = lengthDX(u⊗ fλ−k0)

> lengthDX(u⊗ fλ−k0+1) ≥ lengthDX(u⊗ fλ).

Thus ρ̃λ is not an isomorphism. Q.E.D.

Corollary 5.10. Under the same assumptions as in Theorem 5.9,
M(u, f, λ) is f -saturated if and only if bu,f (λ − k) �= 0 for any positive
integer k. In general, ι(M(u, f, λ)) is isomorphic to DX(u⊗ fλ).

Proof. We may assume M to be f -saturated. First note that
M ⊗K[x] Lf (λ) is f -saturated for any λ ∈ K since it is isomorphic

to M [f−1] as K[x]-module. Hence M(u, f, λ) ∼= DX(u ⊗ fλ) is also
f -saturated under the assumption on bu,f (s).

Now assume bu,f (λ− k) = 0 for some positive integer k. Then ρ̃λ is
not injective. Thus there exists P ∈ DX such that P ((u⊗ fs)|s=λ) �= 0
but P (u⊗ fλ) = 0. There exist Pj ∈ DX and k, l ∈ N such that

P (u⊗ fs) =
k∑

j=0

(Pju)⊗ (s− λ)jfs−l.
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Then the equality P (u⊗uλ) = 0 means P0u = 0. Hence by Lemma 2.5,
there exist Q(s) ∈ DX [s] and m ∈ N such that

P (u⊗ fs) = (s− λ)Q(s)(u⊗ fs−m).

Take a sufficiently large l ∈ N so that f lQ(s)f−m belongs to DX [s].
Then we have

f lP (u⊗ fs) = (s− λ)(f lQ(s)f−m)(u⊗ fs),

and consequently f lP ((u ⊗ fs)|s=λ) = 0. Hence M(u, f, λ) is not f -
saturated. The last statement also follows from this argument. Q.E.D.

Example 5.11. Set n = 2 and write x1 = x, x2 = y. Let u be
the residue class of 1 in M = DX/I with I being the left ideal of DX

generated by two operators

P1 = x(1− x)∂x
2 + y(1− x)∂x∂y, P2 = y(1− y)∂y

2 + x(1− y)∂x∂y.

This is Appell’s hypergeometric system F1 with all parameters equal to
zero. The singular locus of M is a line arrangement defined by

f := x(x− 1)y(y − 1)(x− y) = 0.

Let ι : M → M [f−1] be the canonical homomorphism. Then M [f−1] is
generated by f−2ι(u) and ι(M) is given by

ι(M) = DXι(u)

= DX/(DX∂x∂y +DX((1− x)∂x
2 − ∂x) +DX((1− y)∂y

2 − ∂y)).

The b-function with respect to u and f is

bu,f (s) = (s+ 1)3(s+ 2)2
(
s+

2

3

)2(
s+

4

3

)2(
s+

5

3

)
.

As to multiplicities we have

multM = 10, mult ι(M) = 5, multM [f−1] = 36,

multH1
(f)(M) = 31, multH0

(f)(M) = 5.



Localization of D-modules 391

The characteristic varieties are

Char(M) = {(x, y; ξ, η) | x = y = 0} ∪ {x = y = 1} ∪ {x = η = 0}
∪ {x− 1 = η = 0} ∪ {y = ξ = 0} ∪ {y − 1 = ξ = 0}
∪ {x− y = ξ + η = 0} ∪ {ξ = η = 0},

Char(ι(M)) = {x− 1 = η = 0} ∪ {y − 1 = ξ = 0} ∪ {ξ = η = 0},
Char(M [f−1]) = {x = y = 0} ∪ {x− 1 = y = 0} ∪ {x = y − 1 = 0}

∪ {x = y = 1} ∪ {x = η = 0} ∪ {x− 1 = η = 0}
∪ {y = ξ = 0} ∪ {y − 1 = ξ = 0} ∪ {x− y = ξ + η = 0}
∪ {ξ = η = 0},

Char(H1
(f)(M)) = {x = y = 0} ∪ {x− 1 = y = 0} ∪ {x = y − 1 = 0}

∪ {x = y = 1} ∪ {x = η = 0} ∪ {x− 1 = η = 0}
∪ {y = ξ = 0} ∪ {y − 1 = ξ = 0} ∪ {x− y = ξ + η = 0},

Char(H0
(f)(M)) = {x = y = 0} ∪ {x = y = 1} ∪ {x = η = 0}

∪ {y = ξ = 0} ∪ {x− y = ξ + η = 0}.

Example 5.12. Set X = K4 and consider the A-hypergeometric

system associated with the matrix A =

(
1 1 1 1
0 1 3 4

)
, which is taken

from Example 4.3.9 of [23]. It is the left DX -module MA(b1, b2) =
DX/HA(b1, b2) with the left ideal HA(b1, b2) of DX generated by oper-
ators

x1∂1 + x2∂2 + x3∂3 + x4∂4 − b1, x2∂2 + 3x3∂3 + 4x4∂4 − b2,

∂2∂
2
4 − ∂3

3 , ∂1∂4 − ∂2∂3, ∂2
2∂4 − ∂1∂

2
3 , ∂2

1∂3 − ∂3
2

with parameters b1, b2 ∈ K. Computing a Gröbner basis of the left ideal
of DX [b1, b2] (i.e., regarding b1 and b2 as indeterminates) generated by
these operators with respect to a term order ≺ such that

|α|+ |β| < |α′|+ |β′| ⇒ bi1b
j
2x

α∂β
x ≺ bk1b

l
2x

α′
∂β′
x

and that bi1b
j
2 � xα∂β

x for any i, j, α, β, we can verify that the multiplicity
of MA(b1, b2) is 16 unless b1 = 1 and b2 = 2, while the multiplicity of
MA(1, 2) is 17. A similar phenomenon with respect to the holonomic
rank was shown in [23].
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On the other hand, the characteristic variety of MA(b1, b2) does not
depend on b1, b2 and its singular locus is the zero set of

g(x) = x1x4(256x
3
1x

3
4 + (−192x2

1x2x3 − 27x4
2)x

2
4

− 6x1x
2
2x

2
3x4 − 27x2

1x
4
3 − 4x3

2x
3
3).

For example, the b-functions of u := 1 ∈ MA(1, 2) and x1 is bu,x1(s) =
s(s + 1)(s + 2), while the b-functions of v := 1 ∈ MA(0, 0) and x1 is
bv,x1(s) = (s+ 1)2. Algorithm 3.16 ensures that MA(0, 0) and MA(1, 2)
are x1- and x4-saturated. The computation of the localization with
respect to g is intractable.

§6. Hyperplane arrangements

Let us prove a formula on the multiplicity and the length of the
local cohomology H1

(f)(K[x]) or the localization K[x, f−1] of the poly-

nomial ring when f defines a hyperplane arrangement in the affine space
X = Kn. We set R = K[x] in what follows.

The length of such modules was studied e.g., in [1], [27]. The char-
acteristic cycle of the local cohomology with respect to an arrangement
of linear subvarieties was studied in [2]. Although not explicitly stated,
Corollary 1.3 of [2] should yield main results of this section. Nero Budur
informed the author that Theorem 6.4 below follows from results in Sec-
tion 1.7 of [8]. We give an elementary direct proof with a hope to make
both the statement and the proof more accessible.

Lemma 6.1. Let h0 = h0(x) ∈ K[x] be a linear polynomial and I
be an ideal of R = K[x]. Let R′ := R/Rh0 be the affine ring associated
with the hyperplane h0(x) = 0 and set I ′ = (I + Rh0)/Rh0. Then we
have

lengthHi
I+Rh0

(R) = lengthHi−1
I′ (R′),

multHi
I+Rh0

(R) = multHi−1
I′ (R′)

for any integer i.

Proof. Since Hi
Rh0

(R) = 0 for i �= 1, there is an isomorphism

Hi
I+Rh0

(R) ∼= Hi−1
I+Rh0

(H1
Rh0

(R)).

We may assume by an affine coordinate transformation, which pre-
serves the Bernstein filtration, that h0(x) = xn. Then we may regard
R′ = K[x1, . . . , xn−1] and have an isomorphism

H1
Rh0

(R) ∼= R′ ⊗K H1
(xn)

(K[xn]),
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where the tensor product on the right-hand side is a left module over
Dn = Dn−1 ⊗K D1 with D1 being the ring of differential operators in
the variable xn.

Let {f1, . . . , fr} be a set of generators of I. We may assume that
f1, . . . , fr belong to R′. (We replace fi with its homomorphic image in
R′.) Then for 0 ≤ i1 < · · · < ik ≤ r with k ∈ N, the localization by
fi1 · · · fik yields

(H1
Rh0

(R))fi1 ···fik := H1
Rh0

(R)[(fi1 · · · fik)−1]

= R′
fi1 ···fik ⊗K H1

(xn)
(K[xn]).

On the other hand, we have

(H1
Rh0

(R))xn := H1
Rh0

(R)[x−1
n ] = R′ ⊗K (H1

(xn)
(K[xn]))xn = 0.

Hence Hi−1
I+Rh0

(H1
Rh0

(R)) is the (i−1)-th cohomology group of the Čech
complex

0 −→ R′ ⊗K H1
(xn)

(K[xn]) −→
⊕

1≤i≤r

R′
fi ⊗K H1

(xn)
(K[xn])

−→
⊕

1≤i1<i2≤r

R′
fi1fi2

⊗K H1
(xn)

(K[xn]) −→

· · · −→ R′
f1···fr ⊗K H1

(xn)
(K[xn]) −→ 0,

which is isomorphic to Hi−1
I′ (R′) ⊗K H1

(xn)
(K[xn]) (see e.g., Theorem

7.13 in [11]). This implies

Hi
I+Rh0

(R) ∼= Hi−1
I′ (R′)⊗K H1

(xn)
(K[xn])

∼= Hi−1
I′ (R′)⊗K (D1/D1xn)

∼= (Dn/Dnxn)⊗Dn−1 H
i−1
I′ (R′),

where Dn/Dnxn is regarded as a (Dn, Dn−1)-bimodule. The rightmost
term is the D-module theoretic direct image of Hi−1

I′ (R′) with respect
to the inclusion H0 := {x ∈ X | xn = 0} → X. In view of Kashiwara’s
equivalence in the category of algebraic D-modules (see e.g., Theorem
7.11 of [6] or Theorem 1.6.1 of [10]), there is a one-to-one correspondence
between the Dn−1-submodules M of Hi−1

I′ (R′) and the Dn-submodules
M ⊗K H1

(xn)
(K[xn]) of H

i
I+Rh0

(R). This implies

lengthHi
I+Rh0

(R) = lengthHi−1
I′ (R′).
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Next, let us show

multHi
I+Rh0

(R) = multHi−1
I′ (R′).

Let {Fk} be a good Bernstein filtration on Hi−1
I′ (R′) and set m =

multHi−1
I′ (R′). Then there exists a polynomial p(k) and k1 ∈ Z such

that

dimK Fk = p(k) =
m

(n− 1)!
kn−1 + (terms with degree < n− 1)

holds for k ≥ k1. Define a filtration {Gk} on Hi−1
I′ (R′)⊗K H1

(xn)
(K[xn])

by

Gk :=
k∑

j=0

Fj⊗K(K[x−1
n ]+· · ·+K[x−(k−j)−1

n ]) =
k⊕

j=0

Fj⊗KK[x−(k−j)−1
n ],

where K[x−j
n ] denotes the K-space spanned by the residue class of x−j

n .
It is easy to see that {Gk} is a good Bernstein filtration. Hence we have

dimK Gk =
k∑

j=0

dimK Fj =

k1−1∑
j=0

dimK Fj +
k∑

j=k1

p(j).

By the assumption, there exists a polynomial q(k) of degree ≤ n − 2
such that

p(j) =
m

(n− 1)!
j(j + 1) · · · (j + n− 2) + q(j).

Since

k∑
j=k1

j(j + 1) · · · (j + n− 2)

=
1

n
{k(k + 1) · · · (k + n− 1)− (k1 − 1)k1 · · · (k1 + n− 2)},

we have

dimK Gk =
m

n!
kn + (terms with degree < n) (∀k ≥ k1).

Thus we also have multHi
I+Rxn

(R) = m. This completes the proof.
Q.E.D.
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Theorem 6.2. Let f ∈ K[x] be a multiple of essentially distinct
linear polynomials and A be the hyperplane arrangement in X = Kn

defined by f . Let H0 be an element of A. Set A′ := A \ {H0} and let
f ′ be the product of the defining polynomials of hyperplanes belonging to
A′. Let us regard

A′′ := {H ∩H0 | H ∈ A′, H ∩H0 �= ∅}
as a hyperplane arrangement in the affine space H0. Let R′ = R/Rh0 be
the affine ring of H0, where h0 is a polynomial of first degree defining H0.
Let f ′′ ∈ R′ be the product of the defining polynomials of the elements
of A′′. (Set f ′′ = 1 if A′′ = ∅.) Then one has

lengthH1
(f)(R) = lengthH1

(f ′)(R) + lengthH1
(f ′′)(R

′) + 1,

multH1
(f)(R) = multH1

(f ′)(R) + multH1
(f ′′)(R

′) + 1.

Proof. By the Mayer-Vietoris exact sequence (see e.g., Theorem
15.1 in [11]), we get an exact sequence

0 −→ H1
(f ′)(R)⊕H1

(h0)
(R) −→ H1

(f)(R) −→ H2
(f ′)+(h0)

(R) −→ 0

of holonomic left Dn-modules because H1
(f ′)+(h0)

(R) = 0. Since the

length and the multiplicity of H1
(h0)

(R) are both one, it follows that

lengthH1
(f)(R) = lengthH1

(f ′)(R) + lengthH2
(f ′)+(h0)

(R) + 1,

multH1
(f)(R) = multH1

(f ′)(R) + multH2
(f ′)+(h0)

(R) + 1.(4)

Since (f ′′) = R′f ′′ ∼= (Rf ′ +Rh0)/Rh0, Lemma 6.1 implies

multH2
(f ′)+(h0)

(R) = multH1
(f ′′)(R

′),

lengthH2
(f ′)+(h0)

(R) = lengthH1
(f ′′)(R

′).

This completes the proof in view of (4). Q.E.D.

Corollary 6.3. lengthH1
(f)(R) = multH1

(f)(R).

Proof. This can be easily proved by induction on �A by using The-
orem 6.2. Q.E.D.

The intersection poset L(A) is the set of the non-empty intersections
of elements of A including X. For Y,Z ∈ L(A), the Möbius function
μ(Y,Z) is defined recursively by

μ(Y,Z) =

⎧⎪⎪⎨
⎪⎪⎩

−
∑

Z�W⊂Y

μ(Y,W ) if Z � Y

1 if Z = Y
0 otherwise.
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Set μ(Y ) = μ(X,Y ). Then (−1)codimXμ(X) is positive (see e.g. The-
orem 2.47 of [22]). The Poincaré polynomial of the arrangement A is
defined by

π(A, t) =
∑

Y ∈L(A)

μ(Y )(−t)codim Y .

Theorem 6.4. Let A be a hyperplane arrangement in X = Kn

defined by a polynomial f ∈ R = K[x]. Then the length of H1
(f)(R) is

π(A, 1)− 1.

Proof. Let H0 be an element of A defined by a first degree polyno-
mial h0. Let us prove the equality by induction on �A. Since H(h0)(R)
is a simple left Dn-module and π({H0}, t) = t+ 1, the equality holds if
A = {H0}. Let A′, A′′ be as in the proof of Theorem 6.2.

By the induction hypothesis, we have

lengthH1
(f ′)(R) = π(A′, 1)− 1, lengthH1

(f ′′)(R
′) = π(A′′, 1)− 1.

Hence by Theorem 6.2 we get

lengthH1
(f)(R) = lengthH1

(f ′)(R) + lengthH1
(f ′′)(R

′) + 1

= π(A′, 1) + π(A′′, 1)− 1.

On the other hand, π(A, t) = π(A′, t)+tπ(A′′, t) holds (see e.g., Theorem
2.56 of [22]). Thus we get

lengthH1
(f)(R) = π(A′, 1) + π(A′′, 1)− 1 = π(A, 1)− 1.

This completes the proof. Q.E.D.

Corollary 6.5. Let A be a hyperplane arrangement in X = Kn

defined by a polynomial f ∈ R = K[x]. Then the length of R[f−1] is
π(A, 1).

Actual computation can be done effectively by using the recursive
formula of Theorem 6.2. For example, we have π(A, t) = (2t+1)(3t+1)
and hence π(A, 1) = 12 if f = xy(x− 1)(y − 1)(x− y) with X = K2. If

f = xyz(x+ y)(x− y)(x+ z)(x− z)(y + z)(y − z)

with X = K3, then we have π(A, t) = (t+ 1)(3t+ 1)(5t+ 1) and hence
π(A, 1) = 48. For these relatively small examples, direct computation
of the local cohomology group is also possible.
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