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Selected topics on toric varieties
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Abstract.

This article is based on a series of lectures on toric varieties given
at RIMS, Kyoto. We start by introducing toric varieties, their basic
properties and later pass to more advanced topics relating mostly to
combinatorics.

§1. Introduction

There are now many great texts about or strongly related to toric
varieties, both classical or new, compact or detailed - just to mention
a few: [25, 32, 68, 76, 13]. This is not surprising - toric geometry is a
beautiful topic. No matter if you are a student or a professor, working
in algebra, geometry or combinatorics, pure or applied mathematics you
can always find in it some new theorems, useful methods, astonishing re-
lations. Still, it is absolutely impossible to compete with the texts above
neither in scope, level of exposition nor accuracy. We present a review on
toric geometry based on ten lectures given at Kyoto University, divided
into two parts. The first part is the classical, basic introduction to toric
varieties. Our point of view on toric varieties here, is as images of mono-
mial maps. Thus, we relax the normality assumption, but consider vari-
eties as embedded. We hope that this part is completely self-contained
- proofs are at least sketched and a motivated reader should be able
to reconstruct all details. Further, such an approach should allow the
reader not familiar with toric geometry to realize that he encountered
toric varieties before.

The second part deals with slightly more advanced topics. These
were chosen very subjectively according to interests of the author. We
start by recalling the theory of divisors on toric varieties in Section 6
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and their cohomology in Section 7. Then we present basic results on
Gröbner degenerations and relations to triangulations of polytopes in
Section 8, based on beautiful theory by Bernd Sturmfels [76]. In these
three sections our aim completely changes. We do not present proofs,
but focus on methods and examples.

In Section 9 we present toric varieties coming from cuts of a graph.
Here, our aim was to prove that a conjecture of Sturmfels and Sullivant
implies the famous four color theorem, cf. Proposition 9.4. This fact is
known to experts and the original proof is due to David Speyer - however
so far was not published.

In Section 10 we present relations of matroids, toric varieties and
orbits in Grassmannian. Our focus in on famous White’s conjecture and
finiteness results related to it.

Mathematical biology provides a source of interesting toric varieties
in the case of the so-called phylogenetic statistical models. Such a model
can be studied as an algebraic variety by solving the polynomial equa-
tions which hold among its marginal probability functions in the ap-
propriate field (e.g. R or C). An interesting subclass of these models
are the group-based models discussed in Section 11; for each choice of
finite graph Γ (viewed as the underlying topological structure of the
phylogeny) and finite group G there is a well-defined toric ideal IΓ,G
and affine semigroup MΓ,G. We describe basic toric constructions and
known results in this area.

In section 12 we very briefly recall the construction of Cox rings and
present results of Brown, Buczyński and Kędzierski on their relations to
rational maps of varieties.

In the last section 13 we present some examples related to questions
about depth and inner projections of toric varieties.

Throughout the text the reader may find various open problems and
conjectures, explicit computations in Macaulay2 [36], relying on Nor-
maliz [16] and 4ti2 [84]. Another great platform for toric computations
is Polymake [33]. Further algorithms (e.g. for toric Gröbner basis) are
present in CoCoA [17, 50, 5].

There are a lot of very interesting, important topics that we do not
address and it is impossible even to list all of those. Let us just mention
a few (that we regret most to omit): higher complexity T -varieties [1],
many relations to combinatorics, such as e.g. binomial edge ideals [70],
toric vector bundles [49, 72], relations to tropical geometry [59, Chapter
6] and secant varieties [67].



Toric varieties 209

§ Acknowledgements

I would like to thank very much Takayuki Hibi and Hiraku Nakajima
for providing great working conditions at RIMS, Kyoto. I am grateful to
Seth Sullivant and David Speyer for sharing the proof of Proposition 9.4
(the idea is originally due to David Speyer). I express my gratitude to
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Part 1. Introduction to toric varieties - basic definitions

§2. The Torus

In algebraic geometry we study an (affine) algebraic varietyX, using
(locally) rational functions on it - these form a ring RX .

Example 2.1 (Polynomials and Monomials). Consider the affine
space Cn. The associated ring of polynomial functions is C[x1, . . . , xn].
We represent a polynomial as:

P =
∑

(a1,...,an)∈Nn

λ(a1,...,an)x
a1
1 · · · xan

n ,

with only finitely many λ(a1,...,an) �= 0. When a = (a1, . . . , an) ∈ Nn

we use a multi-index notation xa := xa1
1 · · ·xan

n . Such an expression is
called a monomial.

The main object of these lectures is the complex torus T = (C∗)n,
with the structure of the group given by coordinatewise multiplication.
On T we have more functions than on the affine space: for a ∈ Nn we
allow xa in the denominator.

Definition 2.2 (Laurent polynomial). We define the ring
C[x1, x

−1
1 , . . . , xn, x

−1
n ] consisting of Laurent polynomials:

P =
∑

(a1,...,an)∈Zn

λ(a1,...,an)x
a1
1 · · · xan

n ,

with finitely many λ(a1,...,an) �= 0. We use the same multi-index notation
as in Example 2.1.
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This is an example of a more general construction of localization
that is an algebraic analogue of removing closed, codimension one sets
from an affine algebraic variety [2].

Given a map of algebraic varieties f : X → Y we obtain an asso-
ciated map f∗ from functions on Y to functions of X (by composition
with Y → C) [37]. Our first aim is to study algebraic maps (C∗)n → C∗.
These correspond to maps of rings C[x, x−1] → C[x1, x

−1
1 , . . . , xn, x

−1
n ].

Proposition 2.3. Every algebraic map (C∗)n → C∗ is given by λxa

for λ ∈ C∗ and a ∈ Zn.

Proof. Fix a lexicographic order on Laurent monomials. For any
Laurent polynomial P we denote LT (P ) its leading term and ST (P )
its smallest term. Consider the ring morphism associated to the given
map. Suppose x → Q and x−1 → S. As xx−1 = 1 = QS we see that
LT (S)LT (Q) = 1 = ST (S)ST (Q). Hence, LT (Q) = ST (Q). Q.E.D.

Corollary 2.4. Any algebraic map (C∗)n → (C∗)m is given by
(λ1x

a1 , . . . , λmxam) for λ1, . . . , λm ∈ C∗ and a1, . . . , am ∈ Zn. If in
addition the map is a group morphism then it is given by Laurent mono-
mials.

Definition 2.5 (Characters, Lattice M). Algebraic group homo-
morphisms T → C∗ are called characters. They form a lattice1MT � Zn,
with the addition induced from the group structure on C∗. Explicitly,
given χ1 : T → C∗ and χ2 : T → C∗ we define

χ1 + χ2 : T � t → χ1(t)χ2(t) ∈ C∗.

Example 2.6. Consider two characters (C∗)2 → C∗:

(x, y) → x2y, (x, y) → y−3.

The first one is identified with (2, 1) ∈ Z2 � MT and the second one
with (0,−3). Their sum is the character (x, y) → x2y−2 corresponding
to (2,−2) ∈ Z2.

Definition 2.7 (One-parameter subgroups, Lattice N). Algebraic
group homomorphisms C∗ → T are called one-parameter subgroups.
They form a lattice NT � Zn, with the addition induced from the group
structure on T .

1Throughout the text by a lattice we mean a finitely generated free abelian
group, i.e. a group isomorphic to some (Zn,+).
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The similarities in Definitions 2.5 and 2.7 are not accidental. The
two lattices are dual, i.e. M = HomZ(N,Z) and N = HomZ(M,Z). In
other words, there is a natural pairing M×N → Z. Indeed, given a map
m : T → C∗ and n : C∗ → T we may compose them obtaining C∗ → C∗

that, by Proposition 2.3 is represented by an integer.

Exercise 2.8. Check that using the identifications M � Zn and
N � Zn the pairing is given by the usual scalar product.

The construction below associates to any monoid M a ring C[M]
known as a monoid algebra. As a vector space over C the basis of C[M]
is given by the elements of M. The multiplication in C[M] is induced
from the monoid action.

Example 2.9. Consider two monoids: M1 = (Zn
+,+),M2 = (Zn,+).

By identifying xa1
1 · · ·xan

n with (a1, . . . , an) we see that:

C[M1] = C[x1, . . . , xn], C[M2] = C[x1, x
−1
1 , . . . , xn, x

−1
n ].

Hence, M1 corresponds to the affine space and M2 to the torus T . More
canonically, noticing that elements of the monoid induce functions on the
associated variety, we get that the ring of functions on T equals C[MT ].

A map of two tori f : T1 → T2 corresponds to a map C[MT2 ] →
C[MT1 ]. By Corollary 2.4 group morphisms f between two tori corre-

spond to lattice maps f̂ : MT2 → MT1 or equivalently NT1 → NT2 .

Definition 2.10 (Saturated sublattice, saturation). A sublattice
M ′ ⊂ M is called saturated if for every m ∈ M if km ∈ M ′ for some
positive integer k, then m ∈ M ′.

For any sublattice M ′ ⊂ M we define its saturation by :

{m : there is a positive integer k such that km ∈ M ′}.
Example 2.11. A sublattice {(a, a) : a ∈ Z} ⊂ Z2 is saturated. A

sublattice {2a : a ∈ Z} ⊂ Z is not saturated.

Exercise 2.12.

(i) Prove that M ′ ⊂ M is saturated if and only if there exists a
lattice M1 and a lattice map M → M1 with kernel M ′.

(ii) Show that a saturation of a sublattice is also a sublattice.

In algebraic geometry, just as we study varieties through function
on them, we understand a point of a variety by evaluating functions on
it. Hence, to x ∈ X we associate a map RX → C from the ring of
functions on X, that sends f → f(x). One of the fundamental theorems
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of algebraic geometry, Hilbert’s Nullstellensatz asserts that we can go
the other way round: given a (nonzero) ring morphism RX → C we can
find the (unique) corresponding point x ∈ X.

Example 2.13. Given a point (a1, . . . , an) ∈ Cn the corresponding
morphism C[x1, . . . , xn] → C sends xi → ai.

For a point t ∈ T we have a morphism ft : C[M ] → C. Note that
each element of M is not in the kernel (as ft(−m) is the inverse of
ft(m)). Hence, points t ∈ T correspond to group morphisms M → C∗.
In coordinates, a point (t1, . . . , tn) corresponds to a map that assigns
Zn � (a1, . . . , an) →

∏n
i=1 t

ai
i ∈ C∗.

Proposition 2.14. Given a group morphism of tori f : T1 → T2

the image equals a subtorus T ′ ⊂ T2. We have a canonical isomorphism

MT ′ = MT2/ ker f̂ .

Proof. Consider a subtorus T ′ ⊂ T2 with the embedding given by

the map MT2 → MT2/ ker f̂ . Our aim is to prove that T ′ = Im f .
Consider a point of t ∈ T2 represented by a map ft : MT2 → C∗.

We have to show that ft factors through f̂ if and only if t ∈ T ′, i.e. if
and only if ker f̂ ⊂ f−1

t (1). The implication ⇒ is straightforward.
For the other implication consider the injective morphism i : MT ′ =

MT2/ ker f̂ → MT1 . It is enough to show that any morphism MT ′ → C∗

factors through i. This follows from the fact that C∗ is a divisible group,
i.e. an injective Z module. More directly, in this case, we can extend
the morphism to the saturation of i(MT ′), one element by one (i.e. the
basis) and then extend to the whole MT ′ . Q.E.D.

Exercise 2.15. Show that the ideal (or even vector space) of equa-

tions vanishing on the image of T1 is generated by {χ− 1 : χ ∈ ker f̂}.
Dictionary about torus:

geometry algebra combinatorics
torus T algebra C[MT ] lattice MT

point of T surjective ring morphism C[MT ] → C group morphism MT → C∗

algebraic group morphism
T1 → T2 special ring map C[MT2 ] → C[MT1 ] lattice map MT2 → MT1

image of such morphism kernel of the map encoded by kernel

The following theorem is the cornerstone of toric geometry (and
representation theory). Recall that a representation of a group G on a
vector space V is a group morphism G → GL(V ). In other words, each
element of G provides a linear transformation of V (in a compatible
way). In this lectures we additionally assume that G and the morphism
G → GL(V ) are algebraic.
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Theorem 2.16. Each representation of a torus T acting on V in-
duces a decomposition V =

⊕
i Vi, where for each Vi there exists m ∈ M

such that for any t ∈ T and v ∈ Vi we have t(v) = m(t)v, i.e. T acts on
Vi by rescaling the vectors, with different weight for different i.

Proof. Consider a map T → GL(V ). It is represented by:

f : t →
∑
m∈M

m(t)Am,

where Am is just a square matrix of scalars. By f(t1t2) = f(t1)f(t2)
we obtain Am1Am2 = 0 for m1 �= m2 and A2

m = Am. As f(1) = id, we
obtain that x =

∑
Amx. Hence V =

⊕
ImAm and on the image of Am

the torus acts by scaling by the character m. Q.E.D.

§3. Affine Toric Varieties and Cones

Definition 3.1 (Affine Toric Variety). An affine toric variety is the
closure in Cm of the map T → (C∗)m ⊂ Cm, where the first one is given
by group morphism. Equivalently : it is a closure of a subtorus of (C∗)m

or a closure of an image of a Laurent monomial map. In particular, the
affine toric variety can be identified with a set of m points S ⊂ MT .

Example 3.2. Consider a map C∗ → C2 given by t → (t2, t3). The
associated toric variety is a cusp – the zero locus of x3 − y2. The two
points representing this toric variety are {2, 3} ⊂ Z.

Remark 3.3. The definition of (affine) toric variety is often dif-
ferent in other sources and requires the variety to be normal.

Theorem 3.4. Let S̃ be the monoid generated by S in M . The
toric variety X associated to S is isomorphic to SpecC[S̃]. The ideal of

X ⊂ Cm is linearly spanned by such binomials yb11 . . . ybmm − yc11 . . . ycmm
that

∑
bisi =

∑
cisi in M , for bi, ci ∈ N.

Proof. It is enough to provide the stated description of the ideal.
It is straightforward that binomials of the given form belong to the

ideal.
Consider any f(y) in the ideal. We will prove that f(y) is a linear

combination of binomials of the given form, inductively on the number
of monomials appearing (with nonzero coefficients) in f . If there are no
monomials (i.e. f = 0), the statement is obvious.

Choose a monomial m appearing in f . If we substitute yi → xai ,
where ai represent characters from S, we know that f is zero, as it
vanishes on the image. In particular, after the substitution for m (that
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will remain a monomial, but now in x), the obtained monomial must
cancel with some other monomial. This other monomial must come from
m′ appearing in f . But the fact that after the substitution they cancel,
is equivalent to m−m′ being the binomial of the given form. Hence, we
may subtract this binomial (with appropriate coefficient), reducing the
number of monomials appearing in f . Q.E.D.

Remark 3.5. The proof of the Theorem 3.4 does not depend on the
field. In fact, the binomials that generate the ideal of X do not depend
on the field, cf. Lemma 10.25.

Theorem 3.6. An affine variety on which the torus T acts and has
a dense orbit is an affine toric variety.

Proof. The algebra RX of the variety embeds into C[M ] as the
morphism t → tx is dominant for (general) x ∈ X. We claim that RX is
linearly spanned by elements of M . Indeed, consider any g ∈ RX . The
torus acts on RX , in particular on g. Consider the (finite dimensional)
vector space spanned by all Tg. By Theorem 2.16 all characters χi

appearing in g =
∑

i ciχi (with nonzero coefficients) must belong to
RX .

As RX is finitely generated, the monoid of characters S̃ in RX is
finitely generated, with generators providing the embedding in the affine
space.

It is worth noticing that the dense torus orbit must be in fact also
a torus. Q.E.D.

The following definition extends Definition 2.10 to monoids.

Definition 3.7 (Saturated monoid). A monoid S̃ ⊂ M is saturated

(in M) if and only if km ∈ S̃ for some k ∈ N+, m ∈ M implies m ∈ S̃.

We now introduce a quite subtle notion of normality.

Definition 3.8 (Integrally closed, Normal). We say that a ring
A ⊂ B is integrally closed in B if for any monic (i.e. with the leading
coefficient equal to 1) polynomial f ∈ A[x] if for some b ∈ B we have
f(b) = 0 then b ∈ A.

We say that an integral ring A is normal if it is integrally closed in
its ring of fractions.

At this point the definition of normality may look artificial. It turns
out that when a ring RX is normal then the variety X is not ‘too sin-
gular’. In particular, if X is smooth then RX is normal. Normality
turns out to play a crucial role in many branches of mathematics. Be-
low we will see it appears naturally in toric geometry. Later, we will
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point out connections to the properties of divisors and finally we will
show relations e.g. to matroid theory.

Definition 3.9 (Cone). By a cone C in a lattice M (resp. vector
space V over R or Q) we mean a subset containing 0 and closed under
any nonnegative linear combinations :

If
∑

λici ∈ M for λi ∈ R+, ci ∈ C then
∑

λici ∈ C.
A cone is called polyhedral if it is finitely generated (using non-

negative linear combinations) and rational if its generators are lattice
points.

Note that positive even integers do not form a cone in Z but they
do form a cone in 2Z.

Theorem 3.10. The affine toric variety X is normal if and only if
the associated monoid S̃ is saturated in the lattice that it spans.

A saturated monoid is a cone. Every finitely generated cone is
finitely generated as a monoid.

Proof. First let us prove that if X is normal then S̃ is saturated.
Consider any point kc ∈ S̃. We want to prove that c ∈ S̃. Let M be
the lattice spanned by S̃. To improve notation, for m ∈ M let χm be a
corresponding character. Consider a polynomial f(X) = Xk − χkc with
coefficients in the algebra of X. Due to the normality of X we know
that χc is also in the algebra. Hence c ∈ S̃.

It remains to prove that if S̃ is saturated, then C[S̃] is normal. First

note that the quotient field of C[S̃] is equal to the quotient field of C[M ].
As the torus is smooth, its algebra is normal. (One can also prove it
by noticing that its algebra is a UFD - as it is a localization of the
polynomial ring.) Consider any monic polynomial f ∈ C[S̃][x]. Suppose
that g is in the quotient field and satisfies the equation f(g) = 0. From
the normality of C[M ] we know that g ∈ C[M ]. We can act on the
equation f(g) by any point t of the torus T . The action of t on f gives

a monic polynomial with coefficients in C[C̃]. Hence the action of T on

g gives polynomials that are in the normalization of C[S̃]. Considering
the action of T on the space of such polynomials, by Theorem 2.16, we
conclude that all the characters-monomials appearing in g with nonzero
coefficient must be in the normalization of C[S̃]. Thus we can assume
that g ∈ M . Suppose that f is of degree d. Notice that f(g) = 0

implies that dg = d′g+ c0 for some integer 0 ≤ d′ < d and c0 ∈ S̃, as the
character χdg must reduce with some other character. Thus (d−d′)g ∈ S̃

and by normality g ∈ S̃.
For the cone: generators of the monoid belong to the {∑λivi : 0 ≤

λi ≤ 1}, where vi are generators of the cone. Q.E.D.
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Hence, we have an equivalence of affine normal toric varieties with the
torus C[M ] action and (finitely generated, full dimensional) cones in M .

Example 3.11. If we consider all lattice points (a, b) ∈ N2 such

that a ≤ b
√
2 then we obtain a monoid that is not finitely generated.

Example 3.12.

(i) Looking at Example 3.2 we see that the monoid spanned by
{2, 3}:
• as a group spans Z,
• is not saturated as 2 · 1 = 2.
Indeed, a normal variety is smooth in codimension one (i.e. the
singular locus must have codimension at least two). Our va-
riety is a curve, hence is normal if and only if it is smooth.
Note that 0 is the singular point of the cusp.

(ii) We already know that the positive orthant gives rise to the
affine space and whole lattice M to the torus.

(iii) Consider the cone generated (as a cone) by (1, 0), (1, 2). There
is one more monoid generator : (1, 1). Hence, our variety is
realized as (the closure of ) the monomial map:

(t1, t2) → (t1, t1t2, t1t
2
2).

We have an integral linear relation: (1, 0) + (1, 2) = 2 · (1, 1)
(all other are generated by this one). Hence, the ring of our
variety is : C[x, y, z]/(xz − y2).

Exercise 3.13. Prove that each finitely generated cone has a unique,
finite minimal set of generators.

Hint : consider all elements that do not have a (nontrivial) presen-
tation c = c1 + c2.

Note that we do not have to choose the minimal set of generators of
the cone. Continuing Example 3.12 point iii) we may consider a fourth
generator, e.g. (2, 3) = (1, 2) + (1, 1). This provides an embedding in
a four dimensional affine space and an isomorphic ring with a different
presentation:

C[x, y, z, t]/(xz − y2, t− yz).

Example 3.14.

(i) The map given by all monomials of degree r (in n variables)
is called the r-th Veronese. The associated monoid consists
of all points in the positive quadrant with sum divisible by r.
Question: Is this toric variety normal?
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(ii) Consider k groups of (distinct) variables, the i-th group con-
sisting of ai variables. The map given by all monomials (of
degree k) that are of degree one with respect to each group is
called the Segre map.

Both of the above examples are usually considered in projective set-
ting - we will be coming back to them.

Exercise 3.15. Consider the map (x, y) → (x2, y2). What is the
associated toric variety? Is it normal?

Dictionary about affine toric varieties:
geometry algebra combinatorics

affine toric variety prime binomial ideal f.g. submonoid in a lattice
point surjective morphism to C semigroup map S → (C, ·)
normal normal ring cone

toric embedding special monomial map choice of generators of the monoid
hypersurfaces that contain defining ideal integral relations among generators

§4. Projective Toric Varieties

Definition 4.1 (Projective Toric Variety). A projective toric vari-
ety is the closure in Pm of the map T → (C∗)m ⊂ Pm, where the first
one is given by a group morphism and the inclusion can be regarded as
the locus of points with nonzero coordinates.

Equivalently : it is a closure of a subtorus of (C∗)m or a closure of
an image of a Laurent monomial map in a projective space.

Remark 4.2. As the points in Pm are regarded up to scalar as m+1-
tuples of complex numbers, the projective toric variety can be described
as a closure of the map given by m+ 1 characters.

Note that if m1, . . . ,mm+1 are monomials parameterizing the pro-
jective toric variety X, it is easy, using an additional variable x0, to
parameterize the affine cone over X:

(x0, . . . , xn) → (x0m1, . . . , x0mm+1) ∈ Am+1.

Hence, it is ‘better’ to represent mi not in the lattice Zn, but Zn+1, by
the inclusion Zn � m → (m, 1) ∈ Zn+1.

Definition 4.3 (Normal polytope). A lattice polytope (i.e. a poly-
tope whose vertices are lattice points) P ⊂ MR is called normal (in the
lattice M) if and only if for any k ∈ N all lattice points in kP are sums
of k (not necessary distinct) lattice points of P .

Definition 4.4 (Projective normality). A projective algebraic vari-
ety is called projectively normal if and only if the affine cone over it is
normal.
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Thus, by Theorem 3.10 we obtain the following.

Theorem 4.5. A projective toric variety is projectively normal if
and only if the associated parameterizing monomials S ∈ Zn+1 =< S >
(at height one) generate (as a monoid) all lattice points in the cone
generated by them.

In the situation of the theorem above the lattice points must be all
lattice points of a convex polytope, but this is not enough!

Exercise 4.6. Show that a projective toric variety is projectively
normal if and only if the associated polytope is normal.

A set of points (usually integral points in a polytope) S ⊂ Zm define
a projective toric variety, with a projective embedding in a projective
space with a distinguished torus T ′. The dense torus orbit is the inter-
section of T ′ with the variety. Notice that coordinates of the ambient
projective space correspond to the points in S. Hence, to choose an
affine open chart we have to choose one point and ‘set it equal to one’.
This corresponds to dividing parameterizing monomials by the chosen
one and division corresponds to shifting (subtracting the chosen point).
In such a way we obtain the open affine toric variety.

Definition 4.7 (Very ample polytope). A lattice polytope P ⊂ MR

is called very ample (in the lattice M) if and only if all lattice points in
kP are sums of k (not necessary distinct) lattice points of P for k large
enough.

Theorem 4.8. A set of lattice points in a polytope defines a normal
projective toric variety if and only if the polytope is very ample (in the
lattice it spans).

The proof follows from the exercise below.

Exercise 4.9. Suppose that P is a lattice polytope that spans a
lattice M . Show that the following are equivalent :

• P is very ample,
• for any lattice point m ∈ P the monoid spanned by P −m is

saturated,
• for any vertex m of P the monoid spanned by P −m is satu-

rated.

Exercise 4.10.

• Show that the unit r-dimensional simplex corresponds to Pr.

• The map Pr → P(
d+r
r−1) given by all monomials of degree d

is called the Veronese embedding. What is the corresponding
polytope?
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• The map P(V1)× · · · × P(Vn) → P(V1 ⊗ · · · ⊗ Vn) defined by

[v1]× · · · × [vn] → [v1 ⊗ · · · ⊗ vn]

is called the Segre embedding. What is the corresponding poly-
tope?

• What are the defining equations in the two examples above?
Are the varieties projectively normal?

Example 4.11.

• The set {0, 1, 3, 4} ⊂ Z defines a smooth projective toric vari-
ety that is not projectively normal.

• The 3-dimensional polytope with vertices

(0, 0, 0), (0, 0,−1), (0, 1, 0), (0, 1,−1), (1, 0, 0), (1, 0,−1), (1, 1, 3), (1, 1, 4)

is very ample, but not normal.

Definition 4.12 (Smooth polytope). An n-dimensional lattice poly-
tope P is smooth if

• for any vertex v, there are exactly n edges adjacent to v with
lattice points nearest to v denoted by v1, . . . , vn and

• the vectors v−v1, . . . , v−vn form a basis of the lattice spanned
by P .

Remark 4.13. A lattice polytope P defines a smooth projective toric
variety if and only if P is smooth.

Below we present a famous, central conjecture in toric geometry.
The first part is due to Oda and the second to Bogvad.

Conjecture 4.14. A smooth polytope is normal. The associated
toric variety is defined by quadrics.

Proposition 4.15. The degree of a projective toric variety X rep-
resented by a very ample polytope P spanning a lattice M equals the
(normalized) volume of P .

Remark 4.16. The function n → |nP ∩M | is a polynomial known
as the Ehrhart polynomial.

Proof. By definition, the degree of X is (up to 1
(dimP )! ) the coeffi-

cient of the leading term of the Hilbert polynomial (that to n associates
the dimension of degree n part of RX). However, this space is spanned
by lattice points in nP .

To estimate the number of lattice points in nP and relate it to a
volume we cover/inscribe in P small cubes Ci. The statement relating
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the volume of a cube Ci with the estimate of the degree of the function
n → |nCi ∩M | easily reduces to one dimension and is an easy exercise.

Q.E.D.

Let us return to an affine covering of the toric variety defined by P .

Exercise 4.17. Suppose a set of characters S defines a projective
toric variety XS. Show that, under this embedding, XS is covered by
principal affine subsets corresponding to vertices of the convex hull (in
MR) of S.

The previous exercise shows that the monoids generated by S−v are
of particular interest. When S is formed by lattice points of a polytope
these monoids are cones precisely when the polytope is very ample.

4.1. General Toric Varieties

We briefly describe general toric varieties, that do not have to be
affine or projective. This is a classical topic, central in toric geometry,
well-described in many books and articles. However, in this review,
general toric varieties are a side topic - we focus our interest on projective
ones.

Definition 4.18 (Fan). A (finite) collection of (rational, polyhedral)
cones in (a vector space over) a lattice N is called a fan if it is closed
under taking faces and intersections.

Definition 4.19 (Dual cone). Fix a cone σ ⊂ M (resp. MR). We
define the dual cone σ∨ ⊂ N = M∗ (resp. NR) consisting of those ele-
ments n such that for any m ∈ σ we have (n,m) ≥ 0.

If we look at the family of cones P − v (where v runs over vertices
of P ) in M we do not see any structure.

Exercise 4.20. Show that (P −v)∨ (together with their faces) form
a fan covering whole N .

Fans covering N are called complete. Not every complete fan comes
from a polytope P , as we will see in Section 6. However, there is a general
construction that to a fan Σ in N associates a normal toric variety X(σ).
The idea is to glue together the affine toric varieties SpecC[σ∨] for all
σ ∈ Σ. Precisely, consider the cones σ3 = σ1 ∩ σ2. We have induced
open embeddings SpecC[σ∨

3 ] → SpecC[σ∨
i ] for i = 1, 2 that allow the

gluing. This gives a normal algebraic variety with an action of the torus
SpecC[N∨] with a dense orbit.

Conversely, given a normal algebraic variety with an action of a
torus T and a dense orbit one can prove that it is represented by a
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fan. The easy part of the proof is to consider torus invariant affine
open subvarieties and show that they glue in a good way. However,
the nontrivial part of the theorem relies on the fact that torus invariant
affine subvarieties cover the whole variety. This is a theorem of Sumihiro
[81, 46].

§5. Affine Toric Varieties - combinatorics and algebra

5.1. Orbit-Cone correspondence

For an affine toric variety corresponding to a cone C the faces of
C correspond to orbits of the torus acting on it. Let us present this
correspondence in details. We fix a finitely generated monoid C in a
lattice M and its generators χ1, . . . , χk ∈ C. We know that:

• the dense torus orbit of X contains precisely those points that
have all coordinates different from zero,

• the character lattice of the torus acting on X is equal to the
sublattice of M spanned by C.

We will generalize this to other orbits.

Theorem 5.1. Assume that C is a cone. Each orbit will be in-
dexed by a face F of the cone. The face F distinguishes a subset IF of
indices from {1, . . . , k} such that i ∈ I if and only if χi ∈ F . The orbit
corresponding to F can be characterized as follows:

1) the orbit contains precisely those points that have got coordinates
corresponding to i ∈ IF different from zero and all other equal to
zero,

2) the orbit is a torus with a character lattice spanned by elements of
F ,

3) the closure of the orbit is a toric variety given by the cone F ,
4) each point of the orbit is a projection of the dense torus orbit onto

the subspace spanned by basis elements indexed by indices from IF ,
5) the inclusion of the orbit in the variety is given by a morphism of

algebras C[C] → C[F ]. This morphism is an identity on F ⊂ C[C]
and zero on C \ F .

Note that each orbit will contain a unique distinguished point given by
the projection of the point (1, . . . , 1) ∈ Ck.

Proof. As in case of the torus we can identify the points of X with
monoid morphisms C → (C, ·).

Point 1): Fix any point x ∈ X. Note that for any c1, c2 ∈ C if
(c1 + c2)(x) �= 0 then c1(x), c2(x) �= 0. Hence, the characters χ ∈ C
such that χ(x) �= 0 must form a face F of C. Thus x distinguishes
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a subset of indices IF ⊂ {1, . . . , k}. Of course the set of points with
nonzero coordinates indexed by IF and other coordinates equal to zero
in X is invariant with respect to the action of the torus acting on X.
So to prove 1) it is enough to prove that all these points are in one
orbit. The point x represents a morphism C → (C, ·) that is nonzero
on F and zero on C \ F . Consider the restriction of this morphism
to F . As it is nonzero it can be extended to a morphism M ′ → C∗,
where M ′ is a sublattice generated by F . Next, as M ′ is saturated, we
can extend this morphism to the lattice M generated by C. Thus we
obtain a morphism f : M → C∗ that agrees with the one representing
x on F . Note that f represents a point p in the dense torus orbit of
X. By the action of p−1 on x we obtain a point given by a morphism
that associates one to elements from F and zero to elements from C \F .
Thus we have proved 1). Moreover, we showed that each orbit contains
the distinguished point.

Point 2) follows, as morphisms that are nonzero on F and zero on
C \ F are identified with morphisms from M ′ to C∗.

Point 3): We already know that the orbit is a torus with the lattice
generated by F . This torus is the image of the torus SpecC[M ] in Ck by
characters from IF and all other coordinates equal to zero. We see that
the orbit corresponding to F is contained in the affine space spanned by
basis elements indexed by indices in IF . In fact, by construction it is
the image of SpecC[M ] by characters χi, such that i ∈ IF . The closure
of this torus is exactly given by SpecC[F ], as generators of the monoid
C contained in F are generators of F .

Point 4) is obvious, as the point p constructed in the first part of
the proof projects to x.

Point 5) is a consequence of the other points. Q.E.D.

Looking at a cone over a polytope we see that orbits correspond to
faces of polytope (the whole polytope to the dense torus orbits, facets to
torus invariant Weil divisors,. . . , vertices to torus invariant points - the
containment of closures of torus orbits is as you can see on the polytope).

5.2. Toric ideals

We now characterize ideals I ⊂ C[x1, . . . , xn] that define toric vari-
eties under a toric embedding.

Theorem 5.2. The ideal I defines an affine variety that is a closure
of a subtorus in Cn if and only if I is a binomial (i.e. generated by
binomials) prime ideal.

Proof. In Theorem 3.4 we proved the forward implication.
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Suppose I is prime and binomial. As (1, . . . , 1) ∈ V (I) we see that
the intersection X0 := V (I) ∩ (C∗)n is a nonempty variety and hence
dense in V (I). Note that a restriction of a binomial to (C∗)n is (up to
invertible element) of the form m− 1, where m is a character. As X0 is
reduced and irreducible the set M ′ := {m : m − 1 ∈ I(X0)} is a satu-
rated sublattice of a lattice M(C∗)n . The map C[x±1

1 , . . . , x±1
n ]/I(X0) →

C[M(C∗)n/M
′] is an isomorphism. Hence, X0 is a subtorus and V (I) and

its closure is a toric variety. Q.E.D.

Remark 5.3. In general, it can be very hard to say if I defines a
toric variety (with a different embedding). In particular, there exists a
smooth hypersurface H in C5 given by x+ x2y+ z2 + t3. It is a product
of C and a so-called the Koras-Russel cubic. It is an open problem if
it is isomorphic with C4. Further, it is not known if there exists an
automorphism of C5 that would linearize H.

Part 2. Topics on Toric Varieties

§6. Divisors

6.1. Weil Divisors

Given any variety X one may consider the set of all irreducible
codimension one subvarieties and the free abelian group D(X) generated
by it. An integral combination of such subvarieties is called a Weil
divisor. This group is far too large, thus one regards it modulo an
equivalence relation. From now on assume X is regular in codimension
one, i.e. the codimension of the singular locus is at least two (e.g. X is
normal). In such a case to a rational function f on X we can associate
a divisor div(f) ∈ D(X) - see e.g. [37, Chapter 6].

Definition 6.1 (Class group). The class group Cl(X) is defined as
D(X) modulo the subgroup generated by all div(f).

Let X be a normal toric variety defined by a fan Σ (we may think
Σ is a normal fan of a polytope - for a general construction we refer to
[25]). The beautiful thing is that to compute Cl(X) we do not have to
consider all divisors (just those invariant by the torus action) and not
all rational functions (just characters of the torus).

Precisely we recall that rays in Σ correspond to codimension 1 orbits
of the torus (hence their closures are codimension one torus invariant
subvarieties). For a ray u ∈ Σ1 we abuse the notation and denote
also by u the first nonzero lattice point on that ray. We note that
for m ∈ M we have a pairing 〈m,u〉 that is equal to zero if and only
if m does not vanishes or have a pole on the variety Du associated to
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u (think e.g. in terms of the coordinates as in Chapter 5.1). Indeed,
div(m) =

∑
u∈Σ1

〈m,u〉Du.

Theorem 6.2. We have an exact sequence:

M →
⊕
u∈Σ1

ZDu → Cl(X) → 0.

Example 6.3.

(i) As Pn corresponds to a simplex the rays of the normal fan
are e1, . . . , en,−e1 − · · · − en ∈ N . The exact sequence above
becomes:

0 → Zn → Zn+1 → Z → 0.

(ii) As P1×P1 corresponds to a square the rays of the normal fan
are e1,−e1, e2,−e2. The exact sequence becomes :

0 → Z2 → Z4 → Z2 → 0.

(iii) (Rational normal scroll, Hirzebruch surface) Consider a poly-
tope that is the convex hull of 0, f1, f2, rf1 + f2. It has four
facets corresponding to four rays in the dual fan e1, e2, −e2,
−e1 + re2. We obtain Cl(X) = Z2.

(iv) Consider the cone generated by f1, f1 + f2, f1 +2f2. The dual
cone has ray generators e2, 2e1 − e2. We obtain:

0 → Z2 → Z2 → Z/2Z → 0.

6.2. Cartier divisors

A Cartier divisor is represented by a(n open) covering Ui of X and
rational functions fi such that fi/fj is well defined and nonzero on
Ui∩Uj . More formally it is a global section of the quotient sheaf of (the
sheaf of) invertible rational functions modulo (the sheaf of) invertible
regular functions. Again we consider them modulo divisors given by one
rational function (and the covering consisting just of X). The quotient
is the Picard group Pic(X) of X.

As before, for toric varieties we only have to consider Ui affine toric
(hence represented by cones) and rational functions fi given by charac-
ters of the torus.

Theorem 6.4. Let Σ be a fan in which each cone is contained in a
full dimensional cone. Consider T -invariant Cartier divisors CDivT (X)
given by :
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• A continuous, locally linear function represented by mσ ∈ M
for each maximal dimensional cone σ ∈ Σ.

We have an exact sequence:

M → CDivT (X) → Pic(X) → 0.

(Without the assumption that maximal cones are full dimensional the
exact sequence also holds, but we must define CDivT taking into account
that mσ is a class in M/(σ⊥).)

Exercise 6.5. Compute the Picard group in cases 1)-3) from Ex-
ample 6.3. Can you see a general theorem here?

What happens in case 4)?

In general on a normal variety there is an injection Pic(X) → Cl(X).
In toric case, we just evaluate the continuous linear function on the ray
generators.

Let us now determine the global sections of a line bundle associated
to a Cartier divisor D represented by a piecewise linear function f on a
fan Σ. As everything is torus equivariant, the sections will be spanned
by characters. Let us fix a character m ∈ M . We ask when χm ∈ O(D).
Let us fix a maximal cone σ ∈ Σ. Here D is represented by a rational
function mσ ∈ M . Hence, we ask when the product (that is the sum in
the lattice) m+mσ is well-defined on SpecC[σ∨]. This is clearly if and
only if m+mσ ∈ σ∨.

Caution: there are different conventions about signs of f , mσ etc.

Theorem 6.6. The global sections of O(D) are spanned by such m
that m+ f is nonnegative of |Σ|. Given a Weil divisor

∑
u∈Σ1

auDu we
define a polyhedron:

PD := {m ∈ MQ : 〈m,u〉 ≥ −au for all u ∈ Σ1}
From now on suppose Σ is a fan with all maximal cones full dimen-

sional.

Definition 6.7 (Convex, strictly convex). We say that a piecewise
linear function h represented by mσ on cone σ ∈ Σ is convex if each
mσ ≤ h (as functions on |Σ|). We say it is strictly convex if the in-
equality is strict outside σ.

Theorem 6.8. A Cartier divisor D represented by a function f is:

(i) globally generated if and only if h is convex,
(ii) ample if and only if h is strictly convex,
(iii) very ample if and only if h is strictly convex and PD is very

ample.
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Proof. 1) and 3) follow by local affine analysis. 2) is a consequence
of 3). Q.E.D.

§7. Cohomology

We start with general remarks on cohomology of line bundles on
toric varieties. Let Σ be a fan in NR = Rn with rays r1, . . . , rs. For a
Weil divisor D =

∑s
i=1 aiDi and m ∈ M we define

CD,m := ∪σ∈ΣConv(ri : ri ∈ σ, 〈m, ri〉 < −ai).

For a Cartier divisor Dh represented by a (piece-wise linear) function h
and m ∈ M we define

CDh,m := {u ∈ |Σ| : 〈m,u〉 < h(u)}.
Proposition 7.1 ([25] Section 9.1). Note that for a Weil or Cartier

torus invariant divisor D, each cohomology is M graded. We have:

Hp(XΣ,O(D))m � H̃p−1(CD,m) for a Weil divisor D,

Hp(XΣ, Dh)m = H̃p−1(CDh,m) for a Cartier divisor Dh,

where H̃ is the reduced cohomology.

There is an ‘Alexander dual’ method of computing the cohomology.
Assume Σ is complete and smooth. For I ⊂ {1, . . . ,m} let CI be the
simplicial complex generated by sets J ⊂ I such that {ri : i ∈ J} form a
cone in Σ. For a = (ai : i = 1, . . . ,m) let us define Supp(a) := C{i:ai≥0}.

Proposition 7.2 ([9]). The cohomology Hj(XΣ, L) is isomorphic to
the direct sum over all a = (ai : i = 1, . . . , s) such that O(

∑s
i=1 aiDri) =

L of the (n−1−j)-th reduced homology of the simplicial complex Supp(a).

To compare Proposition 7.1 and 7.2, let us first look at H0(XΣ,OD).
We assume that Σ is a smooth, complete fan and D =

∑s
i=1 aiDi. We

recall that in this case the basis vectors of H0(XΣ,OD) correspond to
lattice points inside

PD := {m ∈ MQ : 〈m,u〉 ≥ −au for all u ∈ Σ1}.
In particular,

dimH0(XΣ,OD)m =

{
1 if m ∈ PD

0 if m �∈ PD.
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Referring to Proposition 7.1 we have:

m ∈ PD ⇔ 〈m,u〉 ≥ −au for all u ∈ Σ1 ⇔ 〈m,u〉 < −au for none u ∈ Σ1

⇔ CD,m is empty ⇔ H̃−1(CD,m) = 1 ⇔ H̃−1(CD,m) �= 0.

Referring to Proposition 7.1 we have:

m ∈ PD ⇔ 〈m,u〉+ au ≥ 0 for all u ∈ Σ1 ⇔
Supp((〈m,u〉+ au)u) = C{1,...,m} ⇔

Hn(Supp((〈m,u〉+ au)u)) �= 0 ⇔ D + div(m) contributes 1 to

the sum in Propostion 7.2

Example 7.3. Let X = Pn, i.e. the fan Σ has rays e1, . . . , en,−e1−
· · ·−en. Let us compute Hp(X,O(kDe1)). (As all divisors Dei are equiv-
alent this covers all the cases). We need to consider all decompositions :∑

aiDi � kDe1 , which is equivalent to
∑

ai = k. Note that if there
exists aj1 ≥ 0 and aj2 < 0, then Supp(a) is a nonempty simplex. Hence,
all its reduced homology vanish.

Suppose k ≥ 0. Then we cannot have all ai negative, thus we can
assume they are all greater or equal to 0. For each such a, the simplicial
complex Supp(a) is an n-sphere. Hence, the only nonvanishing homology
is the n-th one (equal to one), which corresponds to the 0-th cohomology
of the divisor. Thus Hp(Pn,O(kDe1)) = 0 for k ≥ 0 and p �= 0. For

p = 0 we need to count the possible decompositions
∑n+1

i=1 ai = k for

ai ≥ 0. Clearly there are
(
k+n
n

)
of those. It is worth noting that they

naturally correspond to monomials of degree k in n + 1 variables - the
usual description of the basis of sections.

Suppose k < 0. Now, we only have to consider decompositions with
ai < 0. In particular, if −n− 1 < k then all cohomology vanish. As the
empty simplicial complex has only −1-st reduced homology nonzero (its
dimension is equal to 1 in that case) we see that Hp(Pn,O(kDe1)) = 0
for k < 0 and p �= n. For p = n we need to count the number of
decompositions

∑n+1
i=1 ai = k with ai < 0. Clearly there are

(−k−1
n

)
such

possibilities.

Example 7.4. Consider the Hirzebruch surface X with the fan
given by e1, e2,−e1 + 2e2,−e2. As an example let us compute
H2(X,O(−3De1 −5De2)). As before, (and always) nonvanishing top co-
homology corresponds to nonvanishing −1-st reduced homology, i.e. empty
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simplex. In other words the dimension of the cohomology equals the num-
ber of solutions to the diophantine system of equations:

c1 + c3 + 2c4 = −5

c2 + c4 = −3

with ci < 0. (This system corresponds to c1De1 + c2De2 + c3D−e1+2e2 +
c4D−e4 � −5De1 − 3De2 .) There are two such solutions.

For more relations among simplicial complexes, techniques of count-
ing homology and cohomology of line bundles we refer to [54, Section
3.2].

§8. Gröbner basis and triangulations of polytopes

Definition 8.1 (Term order). An order < on monomials or equiv-
alently on Nn is called a term order if 0 is the unique minimal element
and a < b implies a+ c < b+ c for any a, b, c ∈ Nn.

Definition 8.2 (Initial ideal, Gröbner basis). For a fixed term order
< we define in<(f) to be the unique, largest monomial appearing in f
(with nonzero coefficient). For an ideal I we define:

in<(I) :=< in<(f) : f ∈ I > .

Caution: it is not enough to take initial forms of (any) generators of I
to obtain all generators of in<(I).

A set of generators G of I is called a Gröbner basis (with respect to
<) if and only if

in<(I) :=< in<(f) : f ∈ G > .

A Gröbner basis is called minimal if G is minimal with respect to
inclusion (among sets satisfying equality above). It is called reduced if
for any g′ ∈ G no monomial in g′ is divisible by in<(g) for some g ∈ G.

For any ideal I and order < finite Gröbner basis exists. Further
minimal, reduced Gröbner basis is unique (up to scaling).

Most important examples of term orders are weight orders <ω asso-
ciated to ω ∈ Rn

≥0. Namely we say that a ≤ b if and only if a ·w ≤ b ·w.
(to make it a total order either we need ω to be irrational or we fix

another order < as a tie breaker)
Caution: not every term order is a weight order.

Proposition 8.3 (Proposition 1.11 [76]). For any term order <
and any ideal I there exists a non-negative integer vector ω ∈ Nn such
that in<ω(I) = in<(I).
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Remark 8.4. Geometrically the variety defined by in<(I) is a de-
generation of the variety defined by I. In particular, the most important
algebraic invariants (like degree or dimension) remain the same. This
fact is used in algebraic software in order to compute such invariants –
notice that for generic ω the initial ideal will be monomial.

For I ⊂ C[x1, . . . , xn] and a fixed term order < we consider a simpli-
cial complex Δ<(I) on {1, . . . , n} such that f = {i1, . . . , ik} is a face of

Δ<(I) if and only if
∏k

j=1 xij is not in the radical of in<(I). Recall that
toric ideals are in variables that have natural interpretation as lattice
points. Suppose that our toric variety is defined by a lattice polytope
P . Our plan is to realize Δ<(I) as a ‘subdivision’ of P . Let P be a d−1
dimensional lattice polytope in Rd−1 × {1} ⊂ Rd.

Definition 8.5 (Regular triangulation). Given a subset of lattice
points P = {p1, . . . , pn} and ω ∈ Rn we define a subdivision Δω by :

f = {pi1 , . . . , pik} is a face of Δω if any only if there exists c ∈ Rd

such that:
pj · c = ωj if j ∈ {i1, . . . , ik} and

pj · c < ωj if j �∈ {i1, . . . , ik}.
A generic ω defines a triangulation Δω and any such triangulation is
called regular.

Remark 8.6. One should imagine a two dimensional polytope P
and the heights wi above pi as points in the third dimension. The linear
forms c are obtained by putting a sheet of paper from below and stopping
at some heights. (If ω is generic such a sheet of paper will touch exactly
three points. These are the triangles (after projecting back to P ) of the
triangulation Δω.)

Remark 8.7. Not any triangulation is regular [76, Example 8.2].

Definition 8.8 (Secondary fan). The regular triangulations in Def-
inition 8.5 depend on ω. However, the set of ω ∈ Rn that give rise to
the same regular triangulation is a cone. These cone form a complete
fan in Rn called the secondary fan.

Theorem 8.9 (Theorem 8.3 [76]). Δ<ω(IP ) = Δω

Corollary 8.10.

Rad(inω(IP )) =< xb : b is a minimal nonface of Δω >

=
⋂

σ∈Δω

< xi : i �∈ σ >
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What is the multiplicity of a prime ideal in inω(IP )?

Theorem 8.11 (Theorem 8.8 [76]). For σ ∈ Δω of dimension d−1
the normalized volume of σ equals the multiplicity of the prime ideal
< xi : i �∈ σ > in inω(IP ).

Corollary 8.12 (Corollary 8.9 [76]). The initial ideal inω(IP ) is
square-free if and only if the corresponding regular triangulation is uni-
modular.

§9. Cuts and Splits

Let G = (V,E) be a graph. Following [78] we consider two polyno-
mial rings:

C[q] := C[qA|B : A ∪B = V,A ∩B = ∅],
C[s, t] := C[sij , tij : {i, j} ∈ E].

In the first ring the variables correspond to partitions of V , in the second
to each edge we associate two variables. For a given partition A|B we
define a subset Cut(A|B) ⊂ E of cut edges by:

Cut(A|B) := {{i, j} ∈ E : i ∈ A, j ∈ B or j ∈ A, i ∈ B}.
There is a natural monomial map:

C[q] → C[s, t], qA|B →
∏

{i,j}∈Cut(A|B)

sij
∏

{i,j}∈E\Cut(A|B)

tij .

As the map is monomial its kernel IG is a prime binomial ideal, and as
the monomials are homogeneous, so is IG.

Sturmfels and Sullivant posed several conjectures how combinatorics
of G relates to algebraic properties of C[q]/IG. In spite of progress on
this topic [29] many still remain open.

Conjecture 9.1 ([78], Conjecture 3.7). C[q]/IG is normal if and
only if G is free of K5 minors.

By [69] we know that the class of graphs for which C[q]/IG is normal
is minor closed. Moreover, C[q]/IK5 is not normal. We will now show
how Conjecture 9.1 implies the famous four color theorem. Originally
the idea is due to David Speyer. First we need some results on the
polytope representing the toric variety. It is called the cut polytope. Its
vertices can be described as indicator vectors on the set of edges of G,
corresponding to cut edges, for any partition of vertices. From now one
we assume that G is a graph without K5 minor. We have the following
theorem due to Seymour.
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Theorem 9.2 ([74], [4], Corollary 3.10). Let PG ⊂ {1} × Q|E| ⊂
Q|E|+1 be the cut polytope. For any edge e ∈ E we denote by xe the
corresponding coordinate in Q|E| and by x0 the first coordinate. The
cone over the polytope PG is defined by the following inequalities :

0 ≤ xe ≤ x0, for each edge e that does not belong to a triangle,∑
e∈F

xe ≤ (|F |−1)x0+
∑

e∈C\F
xe, for any cordless cycle C,F ⊂ C, |F | odd.

Lemma 9.3. The point p = (3, 2, . . . , 2) ∈ Z|E|+1 belongs to the
lattice spanned by PG and to the cone over this polytope.

Proof. Summing up all points corresponding to partitions {v}|V \
{v} we obtain the point (|V |, 2, . . . , 2). As the partition ∅|V corresponds
to (1, 0, . . . , 0) we see that p indeed is in the lattice spanned by PG. It
is straightforward to check that p satisfies the inequalities in Theorem
9.2. Q.E.D.

Proposition 9.4. Conjecture 9.1 implies the four color theorem.

Proof. Consider p from Lemma 9.3. If PG is normal, then p =
p1 + p2 + p3, where pi corresponds to a partition Ai|Bi. Hence, we have
three partitions, such that any edge belongs to precisely two of them.
We define four subsets of V :

(i) (A1 ∩A2 ∩A3) ∪ (B1 ∩B2 ∩B3),
(ii) (A1 ∩A2 ∩B3) ∪ (B1 ∩B2 ∩A3),
(iii) (A1 ∩B2 ∩A3) ∪ (B1 ∩A2 ∩B3),
(iv) (B1 ∩A2 ∩A3) ∪ (A1 ∩B2 ∩B3).

Clearly, these subsets define a partition of V , i.e. are disjoint and every
vertex belongs to one of them. We now prove that this is a proper
coloring. As the choice between Ai and Bi was arbitrary, it is enough to
prove there are no edges among vertices in (A1 ∩A2 ∩A3)∪ (B1 ∩B2 ∩
B3). Indeed, if both vertices of such edge e belonged to A1 ∩ A2 ∩ A3

or B1 ∩ B2 ∩ B3 then xe(p) = 0. However, if one vertex belongs to
A1∩A2∩A3 and the other to B1∩B2∩B3 then xe(p) = 3. This finishes
the proof. Q.E.D.

Remark 9.5. We showed that Conjecture 9.1 implies four colorabil-
ity of any graph without K5 minor. This apparently stronger statement
was in fact classically known to be equivalent to the four color theorem
and is a special case of a more general Hadwiger conjecture.

Remark 9.6. In the same way one can show that a 4-coloring of G
induces a decomposition of p = p1 + p2 + p3. The three partitions come
from dividing the four colors into two groups of two colors.
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§10. Toric varieties and matroids

Let M be a matroid on a ground set E with the set of bases B ⊂
P(E) (the reader is referred to [71] for background of matroid theory).
Let SM := C[yB : B ∈ B] be a polynomial ring. Let ϕM be the C-
homomorphism:

ϕM : SM � yB →
∏
e∈B

xe ∈ C[xe : e ∈ E].

The toric ideal of a matroid M , denoted by IM , is the kernel of the map
ϕM .

Theorem 10.1 ([82]). The ideal IM defines a normal toric variety.

We recall the following theorem.

Theorem 10.2 ([76] Theorem 13.14). The toric ideal IP associated
to a normal polytope P is generated in degree at most dimP .

As a corollary of Theorem 10.1 and 10.2 we obtain the following.

Corollary 10.3. For any matroid M on the ground set E the toric
ideal IE is generated in degree at most |E|.

A result of Gijswijt and Regts strengthens Theorem 10.1.

Theorem 10.4 ([35]). (Poly)Matroid base polytope (associated to
the monomials defining φM ) has an Integer Caratheodory Property. That
is, if PM is a matroid base polytope, then every integer vector in kPM is
a positive, integral sum of affinely independent integer vectors from PM

with coefficients summing up to k. In particular, Caratheodory rank of
PM is as low as possible, it is equal to the dimension of PM plus 1.

10.1. Representable matroid

This subsection is not needed in what follows. However, it provides
additional motivation to study V (IM ) from the point of view of alge-
braic geometry. Let M be a representable matroid realized by vectors
v1, . . . , vk spanning a d-dimensional vector space V . We have a natural
map Ck � ei → vi ∈ V with kernel K ∈ G(k − d, k). Note, that on Ck

acts a k-dimensional torus T inducing an action on the Grassmannian
G(k − d, k).

Theorem 10.5. [34] The toric variety V (IM∗) is isomorphic to the
closure of the orbit G ·K in G(k − d, k).

Proof. Let f1, . . . , fk−d be the basis of K. Let Mk be a (k− d)× k
matrix with i-th row corresponding to fi. A given Pluücker coordinate
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(ea1 ∧ · · · ∧ eak−d
)∗(f1 ∧ · · · ∧ fk−d) of K equals the maximal minor of

Mk distinguished by the columns {a1, . . . , ak−d}. Further, the torus T
acts on ea1 ∧ · · · ∧ eak−d

with weight corresponding to a lattice point in

Zk that has coordinates indexed by ai equal to 1 and all other equal to
0. Hence:

• the polytope PM∗ has lattice points corresponding to indicator
vectors of complements of bases of M ,

• the polytope of the toric variety T ·K has lattice points cor-
responding to indicator vectors of subsets of k− d columns of
Mk giving a nonzero minor.

Thus, it remains to show that a given minor of Mk is nonzero if an only
if the corresponding vectors vi form a complement of a basis of V . Fix
a set S = {a1, . . . , ak−d} ⊂ {1, . . . , k} and denote its complement by S′.
We have following equivalences:

{vi}i∈S is a complement of a basis of V ⇔ {vi}i∈S′ is a basis of V ⇔
{fj}j=1,...,k−d∪{ei}i∈S′ is a basis of Ck ⇔ the minor ofMk distinguished
by S is nonzero. Q.E.D.

Remark 10.6. If we fix a basis of the space V we obtain a matrix
representation of vi which distinguishes a point in G(d, k). The closure
of the torus orbit of this point is isomorphic to V (IM ).

10.2. Open problems

Let us present the major open problems concerning toric ideals as-
sociated to matroids.

Conjecture 10.7 (Weak White’s conjecture [83]). For any matroid
M the ideal IM is generated by quadrics.

We say that yB1yB2 −yB3yB4 for Bi ∈ B is a symmetric exchange if
B3 = (B1\{b1})∪{b2} and B4 = (B2\{b2})∪{b1} for some b1 ∈ B1\B2,
b2 ∈ B2 \B1 (see [56] for other exchange properties).

Conjecture 10.8 (White’s conjecture [83]). For any matroid M
the ideal IM is generated by symmetric exchanges.

However, even the following is open.

Conjecture 10.9. Every quadric in IM is a linear combination of
symmetric exchanges.

In view of Theorem 10.5 the following turns out to be a very impor-
tant open problem, that is weaker than White’s conjecture.

Conjecture 10.10. For any representable matroid M , the ideal IM
is generated by quadrics.
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Herzog and Hibi write, that they ‘cannot escape from the tempta-
tion’ to ask the following, stronger questions.

Question 10.11 ([38]). Let M be a discrete (poly)matroid.

(i) Does the toric ideal IM possess a quadratic Gröbner basis?
(ii) Is the base ring C[yB : B ∈ B]/IM Koszul?

A positive answer to the first question would imply the following
conjecture, that is a strengthening of Theorem 10.4.

Conjecture 10.12. For any matroid M the basis polytope PM has
a unimodular triangulation.

A k-matroid is a matroid whose ground set can be partitioned into
k pairwise disjoint bases. We call a basis of a k-matroid complementary
if its complement can be partitioned into k − 1 pairwise disjoint bases.
The basis graph of a matroid is a graph with vertices corresponding to
bases and an edge between two bases that differ by a pair of elements.
The complementary basis graph of a k-matroid is the restriction of its
basis graph to complementary bases.

Conjecture 10.13. [57] Complementary basis graph of a k-matroid
is connected.

Notice that Conjecture 10.13 for k = 2 coincides with Conjecture
10.9 in a non-commutative setting.

Remark 10.14. For a 2-matroid it is not known even if some an-
tipodal bases B1, B2 (that is, bases such that B1 � B2 = E) are always
connected in the complementary basis graph. Positive answer would im-
ply that commutative and non-commutative settings of Conjecture 10.9
are equivalent.

Conjecture 10.15. [57] Let k ≥ 2, and let M be a matroid of rank
r on the ground set E of size kr+1. Suppose x, y ∈ E are two elements
such that both sets E \ x and E \ y can be partitioned into k pairwise
disjoint bases. Then there exist partitions of E \ x and E \ y into k
pairwise disjoint bases which share a common basis.

If k ≥ 2r−1 + 1, then the above Conjecture 10.15 holds [57].

Proposition 10.16. [57] White’s Conjecture 10.8 implies Conjec-
ture 10.13.
Conjunction of Conjectures 10.13 and 10.15 implies White’s Conjecture
10.8.
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10.3. Known facts

Several special cases of Conjecture 10.8 are known.

Theorem 10.17. Conjecture 10.8 holds for graphic [6], sparse paving
[8], strongly base orderable [55], and rank ≤ 3 [45] matroids.

Further, the classes of matroids for which the toric ideal is generated
by quadrics and that has quadratic Gröbner bases, is closed under series
and parallel extensions, series and parallel connections, and 2-sums [75].

Further, partial results are known in general. Let JM ⊂ IM be the
ideal generated by symmetric exchanges. Let m ⊂ SM be the irrelevant
ideal, i.e. the maximal ideal generated by all the variables.

Theorem 10.18. [55] For any matroid M , we have JM : m∞ = IM .
That is, ProjSM/JM is equal to ProjSM/IM . In particular, Conjecture
10.8 holds on set-theoretic level.

We can rephrase the above by saying that homogeneous components
of the ideals IM and JM of a matroid M , are equal starting from some
degree f(M). Even more is known.

Theorem 10.19. [57] Homogeneous components of ideals IM , JM
of a matroid M of rank r, are equal starting from degree f(r) depending
only on r.

It follows that checking if White’s Conjecture 10.8 is true for ma-
troids of a fixed rank is a decidable (finite) problem.

The first question of Herzog and Hibi 10.11 is already difficult for
special classes of matroids. For uniform matroids, it was proved by
Sturmfels [76]. Later, it was extended to base-sortable matroids by
Blum [7] and further by Herzog, Hibi and Vladoiu [39]. Schweig [73]
proved it for lattice path matroids. The only general result concerning
Gröbner bases of toric ideals of matroids is the following.

Theorem 10.20. [58] The toric ideal of a matroid of rank r posesses
a Gröbner basis of degree at most (r + 4)!.

Conca [23] proved that the answer to the second Question 10.11 is
positive for transversal polymatroids.

10.4. Matroids and finite characteristics

The original idea to look at implications of Theorem 10.18 in case
of finite characteristics and pureness is due to Matteo Varbaro.

Definition 10.21 (Pure, F-pure [43]). A morphism of rings R → S
is called pure if for any R-module M the map M � m → m⊗1 ∈ M⊗RS
is injective.
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If R is an algebra over a field k of characteristic p we say that R is
F-pure if the Frobenius morphism R � r → rp ∈ R is pure.

Lemma 10.22. If a k-algebra R is F-pure, then it is reduced.

Proof. Take M = R in Definition 10.21. For any a ∈ N and for
any r ∈ R we have:

ra → ra ⊗ 1 = 1⊗ rpa.

Thus, we have ra �= 0 ⇒ rpa �= 0, which proves the lemma. Q.E.D.

Proposition 10.23. Let C be a cone in a lattice M . Then k[C] is
F-pure.

Proof. The proof is a combination of the following three facts:

(i) A (Lauarent) polynomial ring over k is F-pure (more generally
a Noetherian regular k-algebra) [43, Proposition 5.14].

(ii) If S if F-pure and S = R⊕M as R modules for some R module
M then R is F pure [31, Proposition 1.3].

(iii) One can realize C = Zr ×C ′, where C ′ = Zm
+ ∩H and H is a

linear subspace. In particular, the ring C[C ′] as a module is a
factor of C[Zm

+ ] [13, p. 63].

Q.E.D.

Theorem 10.24. For any matroid M the following are equivalent :

(i) IM is generated by symmetric exchanges (White’s conjecture
holds),

(ii) JM is saturated with respect to m,
(iii) JM is prime,
(iv) JM is primary,
(v) SM/JM is an integral domain,
(vi) SM/JM is reduced,
(vii) The localisation (SM/JM )m is reduced,
(viii) SM/JM is F-pure over some field k of finite characteristic,
(ix) SM/JM is F-pure over any field k of finite characteristic,
(x) The localisation (SM/JM )m is F-pure over some/any field.

Proof. Equivalences i) − vii) are direct consequences of Theorem
10.18.

For a fixed field k point i) implies viii) by a combination of Theorem
4.5 and Proposition 10.23 (recall that a toric algebra is normal if the
corresponding monoid is a cone - Theorem 3.10).

The equivalence of local and global case follows from [31, Proposition
1.3].

Point viii) implies vi) by Lemma 10.22.
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It remains to show that viii) is equivalent to ix) or in other words
that White’s conjecture does not depend on the underlying field. More
general statement is explained in Lemma 10.25. Q.E.D.

Lemma 10.25. Consider a finite set of characters S ⊂ M � Zn

generating a monoid S̃. Suppose for some field k the kernel Ik of the
map:

k[x1, . . . , xn] → k[S̃]

is generated by binomials B = {m1 −m′
1, . . . ,ml −m′

l}. Then the same
binomials generate the toric ideal Ik′ associated to S over any other field
k′.

Proof. Reasoning as in Theorem 3.4 we see that the binomials in
the toric ideal do not depend on the field and simply correspond to
integral relations among lattice points in S. Further, the ideal is always
spanned by such binomials. Thus we only need to show the following:

Any binomial m−m′ ∈ Ik′ is equal to
∑

j nj(mij −m′
ij
), where nj

are monomials and mij −m′
ij
∈ B.

We know that m − m′ =
∑

λjmj(mij − m′
ij
) for some λj ∈ k∗.

By definition, say that the monomial mjmij is equivalent to mjm
′
ij
. We

generate the equivalence relation and we want to prove that m is equiva-
lent tom′. We may subdivide the terms in

∑
λjmj(mij−m′

ij
) according

to the equivalence class they belong to. Consider all terms in the same
class as m. This is a sum of monomials with some coefficients, one of
which is m with coefficient one. However, the sum of these coefficients
needs to be 0 and the only other monomial with nonzero coefficient that
may appear is m′. Q.E.D.

Let us restate a criterion of F-pureness due to Fedder. For an ideal I we
let I [p] be the ideal generated by {ip : i ∈ I}.

Theorem 10.26 (Proposition 1.3 and 1.7 [31]). Let J be a homo-
geneous ideal in a polynomial ring S over k of characteristic p. Then
S/J is F-pure if and only if J [p] : J �⊂ m[p].

Corollary 10.27. White’s conjecture 10.8 holds if and only if there

exists f �∈ m[p] such that for any symmetric exchange g we have gf ∈ J
[p]
M .

Further, we may (but do not have to) assume that we work over the field
Z2, i.e. p = 2 and f is homogeneous of degree equal to the number of
bases of the matroid. In such a case f �∈ m[p] translates to f being a
sum of monomials one of which is a (squarefree) product of all variables
in SM .
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We note that in case k = Z2 the polynomial f distinguishes some
multisets of bases - it would be great to understand combinatorial mean-
ing of those. In each particular case of M we can compute (examples
of) f .

Example 10.28. The grading below encodes a uniform rank two
matroid on a ground set with four elements. First we compute the toric
ideal in Macaulay2.

loadPackage,"Normaliz"

loadPackage("MonomialAlgebras",

Configuration=>{"Use4ti2"=>true})

L={{1,1,0,0},{1,0,1,0},{1,0,0,1},

{0,1,1,0},{0,1,0,1},{0,0,1,1}};

d=#L;

R=ZZ/2[a_1..a_d,Degrees=>L]

J=binomialIdeal R; m=ideal(gens R);

We now check Fedder’s criterion.

Jp=0; mp=0;

for i from 0 to ((numgens J)-1) do

{Jp=Jp+ideal( ((gens J)_i_0)^2)}

for i from 0 to ((numgens m)-1) do

{mp=mp+ideal( ((gens m)_i_0)^2)}

isSubset(Jp:J,mp)

Q=R/mp;

Red=sub(Jp:J,Q)

The answer the program gives is:

f = a2a3a4a5 + a1a3a4a6 + a1a2a5a6.

Below we present the example of a graphic matroid corresponding to
a square with one diagonal.

L={{1,1,1,0,0},{1,1,0,1,0},{1,0,1,1,0},{0,1,1,1,0},

{1,0,1,0,1},{0,1,0,1,1},{1,0,0,1,1},{0,1,1,0,1}};

d=#L;

R=ZZ/2[a_1..a_d,Degrees=>L]

J=binomialIdeal R; m=ideal(gens R);

Jp=0; mp=0;

for i from 0 to ((numgens J)-1) do

{Jp=Jp+ideal( ((gens J)_i_0)^2)}

for i from 0 to ((numgens m)-1) do

{mp=mp+ideal( ((gens m)_i_0)^2)}

isSubset(Jp:J,mp)
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Q=R/mp;

Red=sub(Jp:J,Q)

Here:

f = a1a4a5a6a7 + a2a3a5a6a8 + a2a4a5a7a8 + a1a3a6a7a8.

One of the problems that we encountered is that f may be not
uniquely specified (e.g. in Example 10.28 one can multiply f by a vari-
able). Further, it is hard to see a general pattern for f .

§11. Toric varieties and phylogenetics

In this section we present a construction of a family of toric varieties.
It is inspired by phylogenetics - a science that aims at reconstruction of
the history of evolution. The basic statistical picture is as follows. We
start from a (usually large) family of parameters that correspond to
various probabilities of mutations (and probability distribution of the
common ancestor). These parameters are unknown. However, if we
knew them then we could answer questions of type:

‘(On a given position in DNA string) what is the probability that a
human has C, a gorilla has C and a guenon has A?’

Here, we represent DNA as strings of characters: A,C,G, T . Thus,
we obtain a map m from the parameter space to the space of joint
probability distributions of states of species that we consider. The latter
is a huge space! The states are indexed by a choice of a letter for each
species we consider - the dimension is 4 to the power equal to the number
of species. Note that there is a distinguished point P in this space:
going through whole DNA sequences (that are very long) biologists and
statisticians can count the number of times they encounter C for human,
C for gorilla and A for guenon etc. In other words, we are getting a(n
approximation) of the probability distribution on the (joint) states of
the species.

What are the main questions that we would like to answer?

• Does the point P belong to the image of m? (If the answer is
no, then it means that some of our assumptions are wrong in
the statistical model we have chosen.)

• Can we identify the parameters m−1(P )?

Let us focus on the first question. First, we notice that in most interest-
ing examples the map m is algebraic. The approach algebraic geometry
proposes is to consider the defining equations of the Zariski closure X
of the image of m.
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The algebraic variety X we obtain depends on the statistical model
we choose, i.e. what we assume on the parameters. The most ‘uni-
versal’ is the General Markov Model that leads to secant varieties of
Segre products. Let us discus a different class of so-called group-based
models. Their biological motivation comes from the observation that
there are certain symmetries among probabilities of mutations. These
symmetries can be encoded by the group action. For example the fa-
mous Kimura 3-parameter model [48] relies on the fact that {A,C,G, T}
is naturally divided into two subsets: purines {A,G} and pyrimidines
{C, T}. In mathematical language the group Z2 × Z2 naturally acts on
{A,C,G, T} and this influences the geometry of the variety X for the
3-Kimura model.

11.1. Construction for group-based models

In general to determine the variety X we need a tree T (that deter-
mines how species mutated) and a model (in our case determined by a
finite abelian group G). Here, we do not present the general construc-
tion referring to [77, 30, 64]. On the other hand, we describe in detail
the toric structure of the variety X in case when it is a so-called star
or claw-tree K1,n, i.e. a tree with one inner vertex and n leaves. The
general case may be also obtained by toric fiber product [80]. As we will
see many conjectures address the case of K1,n.

Definition 11.1 (Flow [63], [19]). Let G be a finite abelian group
and n ∈ N. A flow is a sequence of n elements of G summing up to
0 ∈ G, the neutral element of G. The set of flows is equipped with a
group structure via the coordinatewise action. The group of flows G is
(non-canonically) isomorphic to Gn−1.

Definition 11.2 (Polytope PG,n, [66], [77]). Consider the lattice

M ∼= Z|G| with a basis corresponding to elements of G. Consider Mn

with the basis e(i,g) indexed by pairs (i, g) ∈ [n] × G. We define an

injective map of sets : G → Mn, by (g1, . . . , gn) �−→ ∑n
i=1 e(i,gi). The

image of this map defines the vertices of the polytope PG,n.

Example 11.3 ([65]). For G = (Z2,+) and n = 3, we have four
flows:

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) ∈ Z2 × Z2 × Z2.

Hence, the polytope PZ2,3 has the following four vertices corresponding
to the flows above:

(1, 0, 1, 0, 1, 0), (1, 0, 0, 1, 0, 1), (0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0) ∈ Z2×Z2×Z2,

where (1, 0) ∈ Z2 corresponds to 0 ∈ Z2 and (0, 1) ∈ Z2 corresponds to
1 ∈ Z2.
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A more sophisticated example is presented in [61, Example 4.1]. It
turns out that the phylogenetic variety X - for group based models - is
toric and corresponds to the polytope PG,n. We already know by Theo-
rem 3.4 that binomials in the toric ideal correspond to integral relations
among lattice points. However, for group based models it is easier to
work with flows. Binomials may be identified with a pair of tables of the
same size T0 and T1 of elements of G, regarded up to row permutation.
Each row of such tables has to be a flow. The identification is as follows.
Every binomial is a pair of monomials; the variables in such monomials
correspond to flows, given by a collection of n elements in G. Every
monomial is viewed as a table, whose rows are the variables appearing
in the monomial; the number of rows of the corresponding table is the
degree of the monomial. Consequently, a binomial is identified with the
pair of tables encoding the two monomials respectively.

For a finite abelian group G and the graph K1,n the associated
toric variety (represented by the polytope PG,n) will be denoted by
X(G,K1,n). A binomial belongs to I(X(G,K1,n)) if and only if the
two tables are compatible, i.e. for each i, the i-th column of T0 and the
i-th column of T1 are equal as multisets.

In order to generate a binomial – represented by a pair of tables T0,
T1 – by binomials of degree at most d we are allowed to select a subset
of rows in T0 of cardinality at most d and replace it with a compatible
set of rows, repeating this procedure until both tables are equal.

Example 11.4 ([65]). For G = (Z2,+) and n = 6 consider the
following two compatible tables:

T0 =

⎡
⎣1 1 1 1 1 1
0 0 0 0 0 0
1 1 0 0 0 0

⎤
⎦ and T1 =

⎡
⎣0 1 0 1 0 0
1 0 1 0 0 0
1 1 0 0 1 1

⎤
⎦ .

Note that the red subtable of T0 is compatible with the table

T ′ =
[
0 1 0 1 0 0
1 0 1 0 1 1

]
.

Hence, we may exchange them obtaining :

T̃0 =

⎡
⎣0 1 0 1 0 0
1 0 1 0 1 1
1 1 0 0 0 0

⎤
⎦ .
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Note that T0 and T̃0 are compatible. Now, the brown subtable of T̃0 is
compatible with the table

T ′′ =
[
1 0 1 0 0 0
1 1 0 0 1 1

]
.

Finally, we exchange them obtaining T1. Hence we have a sequence of
tables T0 � T̃0 � T1. More specifically, we started from a degree three
binomial given by the pair T0, T1 and we generated it using degree two
binomials of degree two.

Definition 11.5 (Phylogenetic complexity [77]). Let K1,n be the
star with n leaves, and let φ(G,n) be the maximal degree of a generator in
a minimal generating set of I(X(G,K1,n)). We define the phylogenetic
complexity φ(G) of G to be supn∈N φ(G,n).

A new package to deal with phylogenetic group-based models ap-
peared recently [3] for Macaulay2. The software to generate polytopes
PG,n is presented in [27].

11.2. Further properties of group-based models

In studying group-based models, Buczyńska and Wieśniewksi [19],
[18] made the startling observation that in the caseG = Z/2Z the Hilbert
function of the affine semigroup algebra C[MΓ,G] associated to a graph
Γ (with respect to an appropriate grading) only depends on the number
of leaves n and the first Betti number g of Γ. The explanation for this
phenomenon was provided by Sturmfels and Xu [79] and Manon [60],
where it was shown that the phylogenetic statistical models MΓ,Z/2Z are
closely related to the Wess-Zumino-Witten (WZW) model of conformal
field theory, and the moduli space MC,�p(SL2(k)) of rank 2 vector bun-
dles on an n-marked algebraic curve (C, �p) of genus g. In particular,
the total coordinate ring VC,�p(SL2(k)) of this space, which is known to
be a direct sum of the so-called conformal blocks of the WZW model,
is shown to carry a flat degeneration to each affine semigroup algebra
k[MΓ,Z/2Z]. Flat degeneration preserves Hilbert polynomials, explaining
the coincidence among the k[MΓ,Z/2Z].

Kubjas [51] and Donten-Bury [27] showed that Hilbert functions no
longer agree for various other finite abelian groups G, so the existence
of a common flat deformation cannot hold for the phylogenetic group-
based models in general. However, Kubjas and Manon [52] have shown
that a generalization of the relationship to the WZW model of confor-
mal field theory and the moduli of vector bundles holds for the cyclic
groups Z/mZ. In particular, these group-based models are related to
the corresponding moduli spaces for the algebraic group SLm(k).
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To sum up, group-based models:

(i) can be regarded as basic combinatorial objects encoding a
structure of a finite abelian group,

(ii) first appeared in phylogenetics,
(iii) are important also in other fields, such as conformal field the-

ory.

Below we present a table with known facts about generators of
ideals for phylogenetic group-based models.

Group-based Models
Polynomials defin-
ing:

Z2 Z3 Z2 × Z2 G

Generators of the
ideal

Degree 2
[77]

Degree 3 [65] Conjecture [77,
Conjecture 30]

Finite [66], Degree ≤ |G| [77,
Conjecture 29]

Projective scheme Degree 3 [26] Degree 4 [62] Finite [62]
Set-theoretically Finite [28]
On a Zariski open
subset

Degree 4 [63] Degree ≤ |G| [22, 21]

11.3. Open problems

Here we present the main open problems concerning group-based
models. Everything is stated in purely toric/combinatorial language.
We start from the central conjecture in this context.

Conjecture 11.6 ([77, Conjecture 29]). For any finite abelian group
G, φ(G) ≤ |G|.

It seems crucial to first understand the simplest tree K1,3.

Conjecture 11.7. For any finite abelian group G, φ(G, 3) ≤ |G|.
The results of [66] imply that for finite abelian group G the function

φ(G, ·) is eventually constant. The ensuing results would be a desired
strengthening.

Conjecture 11.8 ([62, Conjecture 9.3]). We have φ(G,n + 1) =
max(2, φ(G,n)).

We are grateful to Seth Sullivant for noticing that this is equivalent
to φ(G, ·) being constant, apart from the case when G = Z2 and n = 3,
when the associated variety is the whole projective space.

Conjecture 11.9. For any finite (not necessarily abelian) group G,
φ(G) is finite.

Conjecture 11.8 also implies the following.

Conjecture 11.10 ([77, Conjecture 30]). The phylogenetic com-
plexity of G = Z2 × Z2 is 4.
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§12. Maps of Toric Varieties and Cox Rings

Throughout the review we did not mention many important topic,
among those Cox rings. In this section we very briefly present the general
construction and relations to morphisms.

Local coordinate rings are not always very convenient to work with,
especially, when we want to investigate the global properties of the va-
riety. Consider the projective space Pn of dimension n. It is glued out
of n + 1 affine spaces of dimension n, so to obtain the description of
(for example) a coherent sheaf on the projective space one needs the
information about n+1 modules over polynomial rings, and a care must
be taken to glue the modules accordingly. Instead, one may view the
projective space globally:

Pn = (An+1 \ {0})/C∗.

There are three essential ingredients in this global description. Firstly,
there is An+1, an affine space. Secondly, we remove a relatively small
subset of the affine space, in this case just one point {0}. Thirdly, we
divide by an action of an algebraic group C∗, the multiplicative group
of the base field C. The homogeneous coordinate ring of the projective
space incorporates all these three ingredients. We just take the polyno-
mial coordinate ring of An+1; all objects (for example modules or ideals)
that are supported in {0} are irrelevant, and, in particular, if two ob-
ject differ only at {0}, then they correspond to the same object on the
projective space; all objects must be invariant with respect to the group
action, in other words homogeneous.

The Cox rings have been first introduced for toric varieties [24], and
then generalised to normal varieties with finitely generated divisor class
group Cl(X):

S[X] :=
⊕

[D]∈Cl(X)

H0(OX(D)).

A careful choice of the representatives D in each element of Cl(X)
must be made in order to obtain a well defined ring structure on S[X].
Varieties, for which the Cox ring is finitely generated are called Mori
Dream Spaces (MDS) [44]. The same varieties arise naturally in Mori
theory and Minimal Model Program, as particularly elegant examples
illustrating the theory. S[X] is always graded by Cl(X). The main point
is that for a MDS there exists a codimension at least 2 subvariety Z of
SpecS[X], such that:

X = (SpecS[X] \ Z)/GX
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where GX = Hom(Cl(X),C∗) is the group acting on SpecS[X], corre-
sponding to the grading by Cl(X). This naturally corresponds to the
three ingredients of the homogeneous coordinate ring of the projective
space. Analogously to the projective case, many global objects on X can
be expressed in terms of the Cox ring and vice versa, taking in account
the homogeneity and relevance. The Cox ring (as well as its grading
and the irrelevant ideal B = I(Z) defining Z) are defined intrinsically,
so they do not depend on any embedding or any other choices. Thus it
is very convenient to study global and intrinsic properties of X.

Affine and projective spaces and normal toric varieties are Mori
Dream Spaces. In these cases, the Cox ring is always a polynomial ring,
but the grading vary. In fact, the property that S[X] is a polynomial
ring characterises toric varieties, see [47] for a recent treatment of this
characterisation.

By definition, an algebraic morphism of two affine varieties ϕ : X →
Y is a geometric interpretation of an algebra morphism ϕ∗ : B → A of
their affine coordinate rings. Here X = SpecA and Y = SpecB. If X =
Pm and Y = Pn instead, and A � C[x0, . . . , xm] and B � C[y0, . . . , yn]
are their homogeneous coordinate rings, then any algebraic morphism
ϕ : Pm → Pn is determined a morphism B → A satisfying the usual
homogeneity and base point freeness conditions. Rational maps between
affine varieties or projective spaces have similar interpretations in terms
of the fields of fractions of coordinate rings.

Theorem 12.1 ([10], [20]). Suppose X and Y are Mori Dream
Spaces, and ϕ : X ��� Y is a rational map. Then there exists a descrip-
tion of ϕ in terms of Cox coordinates, that is a multi-valued map

Φ: SpecS[X] ����
��
SpecS[Y ]

such that for all points x ∈ X and ξ such that πX(ξ) = x and ϕ is
regular at x, the composition πY (Φ(ξ)) is a single point ϕ(x) ∈ Y .

The notion of multi-valued map is modeled on the case of projective
space, but may involve roots of homogeneous functions if the target is
singular. Just as in the case of projective space, the map must satisfy
homogeneity, and relevance condition. The theorem is effective in the
sense, that the proof shows how to construct the description.

Similar statement for regular maps between Q-factorial Mori Dream
Spaces was obtained by Andreas Hochenegger and Elena Martinengo
[41]. Their approach is to use the language of Mori Dream stacks [40].
They use the technique of root constructions, which is parallel to the
multi-valued maps.
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§13. Examples

Toric varieties provide very fruitful examples. This section is moti-
vated by questions of Sijong Kwak: what happens to the depth under
inner projection of a projective variety X? Here, inner projection means
a projection from a point x ∈ X. We will denote the (closure of) the im-
age of the projection by Xx. We start by recalling the following general
result.

Theorem 13.1 ([53] Theorem 4.1). If X is defined by quadrics and
x is a smooth point of X then depths of X and Xx are equal.

The following observation was pointed out by Greg Blekherman.

Example 13.2. In general, the depth may go up under projections
from general (in particular, smooth) points. Indeed, if we consider any
non aCM variety X we may project it, until it becomes a hypersurfece.
In particular, it becomes a complete intersection, hence aCM, hence of
maximal depth.

Before we pass to constructing toric examples we note that inner
projections in toric geometry were investigated for many years. The
seminal work of Bruns and Gubeladze [12, 15] lead to many interest-
ing examples, disproving important conjectures on characterizations of
normal polytopes. From a combinatorial point of view projecting from
a torus invariant point corresponding to a vertex v of a lattice poly-
tope P corresponds to considering a toric variety given by lattice points
in P distinct from P . The study when such polytopes remain normal,
i.e. when the projected variety is projectively normal, were crucial in
[12]. Further examples of projectively normal toric varieties that do not
come from projections of projectively normal toric varieties were found
in [14]. Projective normality of toric varieties is related to depth as
follows.

Theorem 13.3 (Hochster [42]). A projectively normal toric variety
is aCM.

Example 13.4. Consider a toric hypersurface X corresponding to
lattice points (0, 0, 0), (0, 1, 0), (0, 0, 1), (3, 1, 1), (4, 1, 1). The Macaulay2
code below verifies that it is aCM and not normal.

loadPackage "Depth"

loadPackage "Normaliz"

loadPackage("MonomialAlgebras",

Configuration=>{"Use4ti2"=>true})

L={{1,0,0,0},{1,0,1,0},{1,0,0,1},{1,4,1,1},{1,3,1,1}}
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R=QQ[a_1..a_5,Degrees=>L]

J1=binomialIdeal R

depth (R/J1)==(dim J1)

isNormal (R/J1)

The reason is that the singular locus is of codimension one.

Example 13.5 (The depth may go down under projection from a
generic (in particular smooth) point). We start with a normal (aCM )
projective toric variety defined below.

L={{1,0,0,0},{1,0,1,0},{1,0,0,1},{1,4,1,1},

{1,3,1,1},{1,2,1,1},{1,-1,0,0}}

R=QQ[a_1..a_7,Degrees=>L]

J2=binomialIdeal R

isNormal (R/J2)

depth (R/J2)==(dim J2)

We now project from the point (1, . . . , 1) that belongs to the dense torus
orbit.

JJ=sub(J2,{a_2=>a_2+a_1,a_3=>a_3+a_1,a_4=>a_4+a_1,

a_5=>a_5+a_1,a_6=>a_6+a_1,a_7=>a_7+a_1})

JS=eliminate(JJ,a_1);

W=QQ[a_1..a_7]

M=sub(JS,W)+ideal(a_1)

depth (W/M)==(dim M)

In a similar way one can construct examples projecting from singular
points.

Remark 13.6. It is not possible to project a nonprojectively nor-
mal toric variety from a (torus invariant) smooth point and obtain a
projectively normal variety (as union of normal polytopes is normal).

We note that the discussion on projections nicely ties with the con-
jectures of Bogvad and Oda.

Conjecture 13.7. A smooth polytope is normal. The associated
toric variety is defined by quadrics.

Proposition 13.8. Conjecture 13.7 implies that for a smooth poly-
tope P any projection from a torus invariant point remains projectively
normal. Further, if we know for a smooth polytope P that there exists
a projection from a torus invariant point, that is (projectively) normal,
then P is normal.

Proof. The second statement follows by Remark 13.7. The first
statement is based on [11, Theorem 5.1] and [64, Section 11]. Let Q
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be the convex hull of lattice points in P distinct from a vertex v. Let

q ∈ kQ. We know that q =
∑k

i=1 pi for lattice points pi ∈ P . Let
v1, . . . , vn be the first lattice points on edges of P adjacent to v. The only
problem is, if some pi = v. But then there must exist pj �= v, v1, . . . , vn.
Note that as v − vi is a lattice basis we may always find m ∈ Z+ such
that mv + pj =

∑
vi, where the sum is over any indices (with possible

repetitions) 1 ≤ i ≤ n. The only way the above relation is generated by
quadrics is, if v + pj = a + b for some lattice points a, b ∈ P . Thus as
long as in the decomposition of q the vertex v appears we may change
the decomposition in such a way that its multiplicity goes down. This
proves normality of Q. Q.E.D.

The previous proposition ties with the general Theorem 13.1. Indeed, if
P is defined by quadrics and normal, then it is aCM and we know that
the projection is also aCM.
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