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Abstract.

‘We present a survey on the developments related to Grobner bases,
and show explicit examples in CoCoA.

The CoCoA project dates back to 1987: its aim was to create a
“mathematician”-friendly computational laboratory for studying Com-
mutative Algebra, most especially Grobner bases. Always maintaining
this “friendly” tradition, the project has grown and evolved, and the
software has been completely rewritten.

CoCoA offers Grobner bases for all levels of interest: from the
basic, explicit call in the interactive system CoCoA-5 [5], to problem-
specific optimized implementations, to the computer—computer com-
munication with the open source C++ software library, CoCoALib [4],
or the prototype OpenMath-based server.

The openness and clean design of CoCoALib and CoCoA-5 are
intended to offer different levels of usage, and to encourage external
contributions.

§1. Introduction

The CoCoA project traces its origins back to 1987 under the lead
of Prof. L. Robbiano: the aim was to create a software laboratory for
studying Commutative Algebra and especially Grobner bases, which is
welcoming even to mathematicians who are wary of new-fangled com-
puters.
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Since then the realm of applicability of Grobner bases has continu-
ally expanded, so researchers interested in using them now come from a
broad palette of subject areas ranging from the theoretical to quite prac-
tical topics. So there are still “pure” mathematicians as at the outset,
but now also “programming” mathematicians, and statisticians, com-
puter scientists, and so on. Another factor crucial in making Grébner
bases relevant to practical problems is the interim progress in computer
hardware and software techniques.

The CoCoA project has evolved considerably from its original form,
and the software has been rewritten: it now comes in the form of the very
flexible software combination CoCoA-5/CoCoALib, while maintaining
its tradition of being user-friendly so it offers Grébner bases for all levels
of interest and programming ability — a Grébner basis for everyone!
This means that the “CoCoA experience” covers a wide range: from the
basic, explicit call in the interactive system CoCoA-5 [5] (see Section 2),
to functions which use Grébuner bases implicitly (see Sections 3 and 4),
to problem-specific optimized implementations (see Sections 5, 6 and 7),
to the computer—computer communication with the open source C++
software library, CoCoALib [4], or with the prototype OpenMath-based
server (see Section 8).

The importance that Grobner bases have acquired derives from the
fact that they enable or facilitate so many other computational mathe-
matical results. A natural consequence is that a Grobner basis is almost
never the final answer that is sought, but just a stepping stone on the
way to the goal, e.g. a Hilbert series or a primary decomposition. In
this paper we concentrate on those computations in CoCoA which are
directly related to Grobner bases, illustrating the wide range of applica-
tions which have evolved over the last 50 years, and providing (explicitly
or implicitly) Grobner bases for everyone.

1.1. What is new in CoCoA-57 And what is not?

CoCoA-4 was widely appreciated for its ease of use, and the natu-
ralness of its interactive language. However, it did have limitations, and
several “grey areas”. We designed the new CoCoA-5 language to strike
a balance between backward-compatibility (to avoid alienating existing
CoCoA-4 users) and greater expressibility with a richer and more solid
mathematical basis (eliminating those “grey areas”).

So, what’s not new? Superficially the new CoCoA-5 language and
system closely resemble CoCoA-4 because we kept it largely backward
compatible. At the same time CoCoA-5 improves upon the underlying
mathematical structure and robustness of the old system. We are very
aware that a number of CoCoA users are mathematicians with only
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limited programming experience, for whom learning CoCoA was a “big
investment” ; and who are reluctant to make another such investment —
that is why we wanted to make the passage to CoCoA-5 as painless as
possible.

So, if almost nothing has changed, what is new? The clearly de-
fined semantics of the CoCoA-5 new language make it both more robust
and more flexible; it provides greater expressibility and a more solid
mathematical basis. In particular, it offers full flexibility for the field
of coefficients: e.g. Z/(p) with large p, fraction fields and algebraic ex-
tensions (see Section 2.2), and even heuristically verified floating point
arithmetics with rational reconstruction (see Section 7.1).

However, under the surface, the change is radical since its mathe-
matical core, CoCoALib, has been rewritten from scratch, to be faster,
cleaner and more powerful than the old system, and also to be used as
a C++ library.

1.2. How Do CoCoALib and CoCoA-5 differ?
The glib answer is: As little as possible!

One important idea behind the designs of CoCoALib and CoCoA-5
is that of making it easy to take a prototype implementation in CoCoA-5
and translate it into C++ using CoCoALib. We intend to facilitate the
“translation” step as much as possible.

CoCoALib [4, 1], the C++ library, contains practically all the math-
ematical knowledge and ability whereas CoCoA-5 [5] offers convenient,
interactive access to CoCoALib’s capabilities. Most functions are acces-
sible from both, and have identical names and behaviour (see Section 8).

More precisely, CoCoA-5 is an interactive, interpreted environment
which makes it better suited to “rapid prototyping” than the relatively
rigid, statically typed regime of C++. To keep it simple to learn,
CoCoA-5 has only a few data types: for instance, a power-product in
CoCoA-5 is represented as a monic polynomial with a single term, i.e. it
is a ring element (of a polynomial ring). In contrast, in CoCoALib
there is a dedicated class, PPMonoidElem, which directly represents each
power-product, and allows efficient operations on the values (e.g. with-
out the overhead of the superfluous coefficients present in the simplistic
approach of CoCoA-5).

Programming with CoCoALib does tend to be more onerous than
with CoCoA-5, largely because of C++’s demanding, rigid rules. How-
ever, the reward is greater flexibility and typically faster computation
(sometimes much faster). Also, of course, those who want to use Co-
CoALib’s abilities in their own C++ program necessarily have to use
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CoCoALib. This is why our goal is that everything which can be com-
puted in CoCoA-5 should be just as readily computable with CoCoALib.
Currently a few CoCoA-5 functions are still implemented in CoCoA-5
packages, but these are being steadily translated into C++. (We don’t
say which ones, because the list is constantly shrinking)

§2. Grobner Bases with Ease

The simplest cases of Grobner bases are for ideals in Q[zy,. .., x,)
or Z/(p)[x1,...,x,] with p a prime. These are also the easiest cases to
give to CoCoA. Here is an example:

/*%/ use QQIx,y,zl; // or ZZ/(2)[x,y,2];

/**/ 1 := ideal(x"3+3, y-x"2, 2z-x-y);

/**/ GBasis(I);

[x +y -z, 72 -3%y +3xz, y*z -3%y +3%z +3, 272 -4xy +3%z +6]

An essential ingredient in the definition of a Grobner basis is the
term-ordering: i.e. a total ordering on the power-products which respects
multiplication, and where 1 is the smallest power-product.

In the example above the term-ordering was not explicitly indicated,
so CoCoA assumes StdDegRevLex (with the common convention that
the indeterminates generating the polynomial ring were given in de-
creasing order). In many computer algebra systems this is the default
term-ordering because it generally gives the best performance and most
compact answer. Another well-known family of orderings is lex (short
for “lexicographic”). A lex Grobmner basis of a zero dimensional ideal
in normal position has a particular shape which is theoretically useful
for solving polynomial systems (see, for example, the Kreuzer—Robbiano
book [20], Sec. 3.7). However its practical usefulness is limited by the
fact that lex bases tend to be particularly big and ugly, and are fre-
quently rather costly to compute.

There are various other gradings and orderings which are useful
for studying specific problems: for instance, an important family are the
elimination orderings which are used implicitly in Section 5. CoCoA also
offers a fully general, matrix-based implementation of term-orderings
(see Sections 3 and 5).

In CoCoA the term-ordering is specified at the same time as the
polynomial ring; Grobner bases of all ideals in that polynomial ring
will automatically be computed with respect to that ordering. Thus,
in CoCoA the term-ordering is an intrinsic property of each polynomial
ring. This means that Q|x,y, z] with lex is regarded as a different ring
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from Q|x,y, z] with StdDegRevLex. Here is an example of computing a
lex Grobner basis.

/*%*/ use QQ[x,y,z], lex; // specify ordering together with ring

/**%/ 1 := ideal(x"3 +3, y-x"2, z-x-y);

/**/ ReducedGBasis(I); // basis is wrt lexz ordering

[x +(1/4)%z"2 +(-1/4)*z +3/2, y +(-1/4)*z"2 +(-3/4)*z -3/2,
z"3 +9%z -6]

In the last example above we used the command ReducedGBasis which
computes a reduced Grobner basis: namely a “cleaned up” basis with
only non-redundant, monic, fully reduced elements — it is unique (up
to the order of its elements).

2.1. Verbosity and interruption

Sometimes it is handy to know what is happening inside a running
function. For example, a Groébner basis computation may be taking
a long time, and we would like to know whether it is likely far from
finishing, and if so, interrupt it.

A new feature in CoCoA-5.2.0 is the ability to set the verbosity level;
there is also a companion function which tells you the current level.

/*%/ SetVerbosityLevel(100);
/*%/ VerbosityLevel();
100

This is a global setting, and higher verbosity levels trigger the print-
ing of increasing amounts of internal “progress information” in several
functions (both in CoCoA-5 and in CoCoALib).

For instance, the lowest level giving information on the progress of
Grobner bases is 100; every time a new polynomial is found, a line like
this is printed:
myDoGBasis[1]: New poly in GB: len(GB) = 10 len(pairs) = 6

By setting the verbosity level before starting some hard Grébner
basis computations, one may see that the number of pairs yet to be
processed is unfeasibly high. The user may then choose to interrupt the
computation by typing Ctrl-C: the computation will be interrupted as
soon as the reduction of the current S-polynomial terminates.

This interruption cancels the incomplete Grobner basis computa-
tion, and returns the computer to the state it was in just before the
Grobner basis computation was begun (thanks to the clean, exception-
safe design of CoCoALib).

Besides GBasis, verbose information can be produced by numerous
functions: see, for instance, Sections 3 and 4. Indeed, the number of
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functions (both in CoCoALib and CoCoA-5) which respond to the ver-
bosity setting is steadily increasing — details are in the documentation
(type “?verbose”). Similarly the number of interruptible CoCoALib
functions is gradually increasing; in any case, all interpreted CoCoA-5
functions can be interrupted.

2.2. More rings of coefficients

The easy examples above show the definition of polynomial rings
with rational coefficients, but the choice of coefficients in CoCoA is quite
wide. For example, coefficients in a finite field Z/(p):

/**/ use ZZ/(10°29 + 319) [x];
/**/ ReducedGBasis(ideal (3*x-1));
[x -33333333333333333333333333440]

Or coefficients in algebraic extension fields:

/*%/ use R ::= QQ[il;

/*x/ K := R/ideal(i"2 +1);

/**/ use Klx,y,z];

/*%/ T := ideal(i*x"3 -z, x"2%y~3 -ixy*z"2);

/**/ ReducedGBasis(I);

[x73 +(L)*z, x"2%y"3 +(-1)*y*z"2, y 3%z +xxy*z"2]

/*%/ use R ::= QQ[sqrt2, sqrt3];

/*%/ K := R/ideal(sqrt2°2 -2, sqrt3°2 -3);

/*%/ IsField(X);

true

/**/ use K[x,y,z];

/#%/ 1T := ideal(sqrt3*x~2 -y, x*y -sqrt2+z);

/**/ ReducedGBasis(I);

[gxy +(-sqrt2)*z, x72 +((-1/3)*sqrt3)*y, y 2 +(-sqrt2*sqrt3)*x*z]

Or coefficients in a fraction field:

/**/ use QQab ::= QQ[a,b];

/*%/ K := NewFractionField(QQab);

/*%/ use K[x,y,zl;

/**/ 1 := ideal(x"3 -a*z, x"2%y~3 -b*y*z"2);

/**/ ReducedGBasis(I);

[x73 -—a*z, x"2%y~3 -bxy*z"2, y 3%z +(-b/a)*x*y*z"2]

One should note that in this last example K is actually the field
Q(a, b) with no specialization of a,b € Q. So the Grébner basis produced
represents the generic case, meaning that every algebraic expression
in a,b which is not identically zero is considered to be non-zero. The
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problem of considering all possible specializations of the parameters is
known as comprehensive Grobner basis, and is not (yet) implemented in
CoCoA.

Another family of computationally interesting rings in CoCoA is
given by NewRingTwinFloat (BitPrec). These will be presented in de-
tail in Sections 4 and 7.1.

§3. Universal Grébner bases and Grobner fans

There is a notion of universal Grébner basis which is a Grobner
basis for every term-ordering. The CoCoA function “UniversalGBasis”
will compute one such basis; this function is based on the computation
of the Grobner fan (a richer structure, described below) which gives all
possible reduced Groébner bases: we can take the union of all of them to
produce the universal basis.

The following example shows that the maximal minors of a 3 x 4
matrix of indeterminates form a universal Grobner basis of the ideal
they generate:

/**/ use R ::= QQ[a,b,c,d,e,f,g,h,i,j,k,1];
/*%/ 1 := ideal (minors(mat([[a,b,c,d],[e,f,g,h],[i,j,k,11]1),3));
/**/ indent (UniversalGBasis(I));
[
d*g*j -cxh*j —dkfrk +bkhkk +ckf*l —brgrl,
d*g*i —ckxh*i -dxexk +axhxk +ckxexl -axgxl,
dxfxi -bxh*i -d¥e*j +axh*j +bkxexl -axfx],
cxf*xi —-bkxgki -cxexj +axgxj +bkexk -axfxk
]
/**/ EqSet (-1*gens(I), ReducedGBasis(I));
true

The Grobner fan of an ideal was defined by Mora and Robbiano in
1988 ([22]): it is a (finite) fan of polyhedral cones indexing the reduced
Grobner bases of the ideal. This has been implemented by Jensen in his
software Gfan ([19]) which he has recently linked into CoCoA; we note
that CoCoA’s fully general approach to representing term-orderings was
essential in making this integration possible.

The Grobner fan is useful because several well-known theoretical
applications of Grobner bases rely on the existence of a Grébner basis of
an ideal with prescribed properties, such as having a certain cardinality,
or comprising polynomials of a specified degree, or all squarefree. For
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example, if an ideal I € K[xy,...,x,] has a Grébner basis for some term-
ordering comprising just quadrics, then the algebra K|xy,...,x,]/I is
Koszul.

The function GroebnerFanIdeals(I) computes all reduced Grobner
bases of the ideal I. We have chosen to express the result as a list of
ideals, each generated by one of the various possible reduced Grébner
bases: the ideals are all “the same” but belong to different polynomial
rings (remember that the term-ordering is an intrinsic property of the
polynomial ring). An advantage of this approach is that further com-
putation with any of these ideals automatically takes place in the corre-
sponding polynomial ring equipped with an appropriate term-ordering.
Furthermore, each of these ideals already knows its own reduced Grobner
basis, whose value is thus immediately available (i.e. without any com-
putation).

The following ideal, Example 3.9 from Sturmfels’s book [23], has
360 distinct reduced Grébner bases:

/**/ use R ::= QQ[a,b,c];

/*x/ 1 := ideal(a"5+b~3+c”2-1, a"2+b"2+c-1, a"6+b"5+c~3-1);
/*%/ L. := GroebnerFanIdeals(I);

/**/ len(L);

360

Since the computation easily becomes very cumbersome, it is inter-
esting to see how it is progressing; for example, after setting the verbosity
level to 10 (see Section 2.1), a * is printed every time a new Grobner
basis is added to the list (for more information see the manual by typing
“?GroebnerFan”):

/#*/ use QQlx,y,z];

/*%/ 1 := ideal(x"3 +x*y -z, x"2 -y*z);

/*%/ SetVerbosityLevel(10);

/*%/ GF := GroebnerFanIdeals(I);

Kok ok ok ok ok ok ok

/*%/ indent (GF) ;

[ ideal(x"2 -y*z, x*¥y*z +x*y -z, y 2%z"2 +y 2%z -x*z),
ideal(x72 -y*z, x*z -y 2%z72 -y~2%z, y 3%z"2 +xxy +y 3%z -z),
ideal (x72 -y*z, x*z -y 2%z72 -y~2%z, x*y +y " 3%z72 +y~3%z -z,

y3%z73 +2%y"3%z"2 +y 3%z -z72),
ideal(y*z -x"2, x73 +x*y -z),
ideal(x*y +x°3 -z, y*z -x"2, x"3%z -z"2 +x73),
ideal(x*y -z +x"3, y*z -x"2, z"2 -x"3%z -x73),
ideal(z -x*y -x"3, =x*y~2 +x"3*xy -x"2),
ideal(z -x"3 -x*y, x"3%y +x*y~2 -x72) ]



Grobner bases in CoCoA and CoCoALib 9

Storing all the possible different (reduced) Grobner bases is prac-
ticable only for small examples; larger ideals may have thousands or
even millions of different Grébner bases. Often we are interested only in
those bases satisfying a certain property. So CoCoA offers the function
CallOnGroebnerFanIdeals which calls a given function on each of the
Grobner fan ideals successively without storing them all in a big list
(which may not even fit in the computer’s memory!). Using this CoCoA
function needs a little technical ability, but makes it possible to tackle
larger computations.

In the following example we see explicitly that CoCoA represents
some term-orderings via matrices of integers. Indeed, each such matrix
is the only information necessary to be able to recalculate the corre-
sponding reduced Grébner basis (in this example, those having 3 ele-
ments). See Section 5 for an example of how to ask CoCoA to compute
a Grobner basis with a term-ordering given by a matrix.

define PrintIfGBHasLen3(I)
if len(GBasis(I))=3 then
println OrdMat (Ring0f (I));
indent (ReducedGBasis(I));
endif;
enddefine;

/*%/ use R ::= QQ[a,b,cl];
/*%/ I := ideal(a"5+b~3+c”2-1, b~2+a"2+c-1, c~3+a~6+b~5-1);
/*%/ CallOnGroebnerFanIdeals(I, PrintIfGBHasLen3);
matrix(ZZ,

[es, 7, 71,

[3, 6, 8],

[0, o, -111)
[b~2+c+a~2-1,

a”“b+c"2-bxc-a”2xb+b-1,

c~3+b*c"2+2%a"2*b*c+a 4*b-axc”2+axb*c+a”3*¥b-2*b*c-2%a~2*b-a*b+b+a-1]
matrix(ZZ,

[[6, 7, 141,

[6, 5, 151,

[o, o, -111)
[c+b~2+a~2-1,

-b"6-3*a”"2*¥b"4-3%a"4*b"2+b"5+3%b"4+6%a" 2*xb"2+3*a"~4-3*b"2-3*%a" 2,
a”~5+b~4+2*a”~2%b"2+a"4+b"3-2*b"2-2*a"~ 2]
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84. Leading Term Ideals and “gin”

Let P = K[z1,...,z,] be a polynomial ring over a field K, and let
o be a term-ordering on the power-products in P. Let I be an ideal
in P then we define its leading term ideal with respect to o, written
LT,(I), to be the ideal generated by the leading power-products of all
non-zero polynomials in [; some authors use the name “initial ideal”
for this notion. A generating set for LT, (I) may easily be obtained:
we compute a reduced o-Grobner basis for I then collect the o-leading
terms of the elements of the basis. Remarkably LT, (I) captures some
interesting “combinatorial” information about the original polynomial
ideal I: for instance, its Hilbert series. Hence in CoCoA calling LT (I)
or HilbertSeries (P/I) actually contains a “hidden” call to GBasis(I).

/*%/ use P ::= QQlx,y,z];

/#%/ 1T 1= ideal(y~20 -x"4*xz"16, x"12%z"3 -y~ 13%z"2);
/*%/ LT(1);

ideal(y~13%z"2, y~20, x"12xy"7*z"3, x"24xz74)

/*x/ HilbertSeries(P/I);

(1 + 2%t + 3%t72 + 4%t"3 + 5*t"4 + 6%t"5 + 7*t"6 + 8*t"7 + 9*t~8 + 10*t"~9
+ 11%t710 + 12%t~11 + 13%t~12 + 14xt~13 + 15%t~14 + 15xt~15 + 15*t~16

+ 15%t717 + 15%t718 + 15%t~19 + 14xt720 + 13*t~21 + 12%t"22 + 11%t~23

+ 10%t724 + 9%t~25 + 8%t"26 + T*t"27 + 6%t728 + 5¥t"29 + 4*%t~30 + 3*t"31
+ 2%t~32 + t°33) / (1-t)

A more sophisticated tool in Commutative Algebra is the generic
initial ideal of a polynomial ideal I. This is useful because it encodes
more geometrical properties of I into a monomial ideal. It is defined
as gin, (I) = LT,(y(I)) where v is a generic change of coordinates,
i.e.y(x;) = Y0, aij x; in K(ag;)[x1, ..., z,]. And here we have to admit
that the acronym gin sounds nicer than gLT'!

The definition of gin suggests an obvious algorithm for computing it
(see Section 2.2 for an example with generic coefficients). However, even
knowing that it is enough to consider a triangular change of coordinates
y(x;) = >, a;jx;, it quickly becomes apparent that the coefficients
in K(a;;) grow to unwieldy sizes except for the very simplest cases;
so the obvious approach is utterly hopeless. Instead we can pick an
explicit, random change of coordinates ¥, and then compute LT, (5([));
the coordinate changes for which gin (I) = LT, (§(I)) form a non-empty
Zariski-open set. This approach can be used when K is infinite: if the
coefficients for the random change of coordinates are chosen from a large
set then LT, (3(I)) will indeed be gin, (I) with high probability. This is
what CoCoA does.
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While choosing random changes of coordinates with large coefficients
increases the probability of getting the correct result, it also tends to pro-
duce large coefficients in the transformed polynomials. In the example
below the original polynomials have very small coefficients, but there is
a coefficient with almost 50 digits in the transformed polynomials:

/**%/ use P ::= QQ[x,y,z];
/*%/ T := ideal(y~20 -x"5*z"6, x"2%z"3 -y*z~2);
/**/ L := [sum([ random(-500,500)*indet(P,j) | j in 1..3]1)
| i in 1..3];
/*%/ L
[-414*x +341xy -141%z, -318xx +389%y +178%z, -498%x +498*y +28%z]
/*%/ gamma := PolyAlgebraHom(P, P, L);
/*%/ GI := ideal(apply(gamma, gens(I))); GI;
ideal (111825899364055159629646472958188266490923110629376%x720 +. ..,
-21168433004832*x"5 +98376968843712*%x"4xy - ...)

With coefficients like that, computing the Grobner basis of the trans-
formed ideal over the rationals would be quite expensive! Thus, one
needs to strike a balance between picking coefficients from a wide range,
so the transformation is “generic enough”, but not so wide that there is
excessive growth in the coefficients of transformed ideal generators.

To avoid the costs of computing with large coefficients, the imple-
mentation for computing gin in CoCoA uses a special representation for
rational coefficients, namely twin-floats (see Section 7.1). The Grobner
basis of the twin-float transformed ideal will have only approximate twin-
float coefficients, but this does not matter because we need only the
leading power-products of the polynomials in the basis.

Twin-float numbers have fixed-precision (so do not grow in size the
way rational numbers do), and employ heuristics to verify the correctness
of results. This allows the implementation to make random coefficient
choices from a wide range (in fact, integers between —10° and 10°)
without paying the price for calculating with transformed polynomials
having cumbersome rational coefficients. If the initially chosen precision
for the twin-floats is too low, this will be signalled; and the computation
will be automatically restarted with a higher precision.

CoCoA’s function gin does all this behind the scenes. Moreover,
it verifies the result by trying a second random change of coordinates,
and checking it gets the same leading term ideal. If the results differ,
CoCoA repeatedly tries further random changes of coordinates until
it gets the same answer twice in succession — though we have never
seen the verification fail when picking random coefficients in the range
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(—10%,10%). The internal workings can be seen via printed messages
with the appropriate verbosity level (see Section 2.1).

/**/ SetVerbosityLevel(50);
/*x/ J = gin(I);
RandIdeal: change coord = [
-7426%x,
695955*x +168758x*y,
-239080*x +304634*y +480790%*z

]
TryPrecisions: -- trying with FloatPrecision 64
TryPrecisions: -- trying with FloatPrecision 128

RandIdeal: change coord = [
-499447%x,
~732749%x -840921%y,
-466314*x -691911*y +554086%*z
]

TryPrecisions: -- trying with FloatPrecision 128

/*%/ J;
ideal(x"5, =x"4xy~16, x"3*y~18, x"2%y~20, =x*y~22, y~24)

Since the gin ideal with respect to the ordering StdDegRevLex has
many interesting properties, CoCoA offers the function rgin which com-
putes it, independently of the term ordering inherent in the polynomial
ring.

§5. Elimination and related functions

Elimination means: given an ideal I € K[ty,...,ts, @1,...,%y], find
a set of generators of the ideal INK[x1, ..., x,] where the indeterminates
{t1,...,ts} have been “eliminated”. Elimination is a central topic in
Computational Commutative Algebra (see for example the text book by
Kreuzer and Robbiano [20], Sec. 3.4) and its applications are countless.

Given its usefulness, elimination is an operation offered in almost
all Computer Algebra Systems. In general, such elimination functions
internally compute a Grobner basis with respect to an elimination
ordering for the subset of indeterminates to be eliminated: with such
an ordering the subset of polynomials in the Grébner basis whose leading
terms are not divisible by any of the ¢; are exactly the generators we
seek for the ideal I N K[z1,. .., x,].

In the example below we see the process we described and compare
it with the actual output of CoCoA’s own function elim. Note that in
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both cases the generators are not minimal, but they are indeed a Grobner
basis of the elimination ideal (wrt the restriction of the elimination term-
ordering used).

/*%/ M := ElimMat([1], 4); M;

matrix(ZZ,
(f1, o, o, 0,
(1, 1, 1, 11,

[0, 0, o, -11,
o, o, -1, 011

/*%/ P := NewPolyRing(QQ, "t, x,y,z", M, 0); // 0: no grading
/**/ use P;

/**/ 1 := ideal(x-t, y-t~2, z-t"3);

/*%/ GBasis(I);

[t -x, x"2 -y, =x*y -z, y 2 -xxz]

/*x/ elim([t], ID;

ideal(x"2 -y, =x*y -z, y 2 -x%*z)

/**/ MinSubset0fGens (ideal(x"2 -y, =x*y -z, y 2 -x*z));

[x"2 -y, =xxy -z]

The simple example above shows a particular application of elim:
finding the presentation of an algebra K|[fi, ..., f,] ~ K[x1,...,x,]/1.
More precisely, let f1,..., fn € K|[t1,...,ts], where {t1,...,ts} is another
set of indeterminates (viewed as parameters) and consider the K-algebra
homomorphism

¢: Klxy,...,xn] — K[t1,...,ts] given by @; — f; fori=1,...,n

Its kernel is a prime ideal; the general problem of implicitization (for a
polynomial parametrization) is to find a set of generators for this ideal.

The Grébner basis elimination technique consists of defining the
ideal J = (x1 — f1,...,%n — fn) in the ring K[t1,..., ts,21,...,2,] and
eliminating all the parameters t;, as we saw in the example.

Unfortunately this extraordinarily elegant tool often turns out to be
quite inefficient, resulting in long and costly computations. In the next
two subsections we see that knowing how to exploit special properties
of a given class of examples can make a huge difference.

5.1. Toric

If the algebra we want to present is generated by power-products
then the elimination can be computed by the CoCoA function toric;
toric ideals are prime and generated by binomials.

We consider Q[t, t?,¢%] again, and also Q[t3,t,%]:
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/**/ use QQ[x,y,2];
/*%/ toric(RowMat([1,2,3]1)); // just the list of exponents
ideal(-x"2 +y, x"3 -z)

/#x/ use QQlx,y,z];
/*%/ toric(RowMat([3,4,5]));
ideal(y"2 -x*z, x"3 -y*z, XxX"2%y -z"2)

With a very slightly more challenging example we can clearly mea-
sure the advantage in using the specialized function “toric” over the
general function “elim”:

/*x/ use R ::= Z2Z/(2)[x[1..6], s,t,u,v];

/*x/ L := [s*u~20, s*u~30, s*t~20*%v, txv"20, s*t*u*v, st 2*u];

/*%/ ExpL := mat([[ 1, 1, 1, 0, 1, 1],
[ o, 0, 20, 1, 1, 2],
[20, 30, 0, 0, 1, 11,
[o, o, 1, 20, 1, 01D;

/*%/ 1 := ideal([x[i] - L[i] | i in 1..6]1);

/**/ t0 := CpuTime(); IE := elim([s,t,u,v], I); TimeFrom(tO);
9.274

/*%/ t0 := CpuTime(); IT := toric(ExpL); TimeFrom(tO);

0.032

The CoCoA function toric employs a non-deterministic algorithm:
so the actual set of ideal generators produced might vary.

For further details on the algorithms implemented in CoCoA see
Bigatti, La Scala, Robbiano [14]. That article describes three different
algorithms; the default one in CoCoA is EATI (Elimination Algorithm
for Toric Ideals).

For more details on the specific function toric type 7toric into
CoCoA (or read the PDF manual, or the html manual on the web-site).

5.2. Implicitization of hypersurfaces

As mentioned earlier elimination provides a general solution to the
implicitization problem, but this solution is more elegant than practi-
cal. We can do rather better in the special case of implicitization of a
hypersurface. One immediate feature is that the result is just a single
polynomial since the eliminated ideal must be principal.

It is well-known that Buchberger’s algorithm usually works better
with homogeneous ideals (though there are sporadic exceptions). Yet
the very construction of the eliminating ideal J = (x1 — f1,..., 2y — fn)
looks intrinsically non-homogeneous.
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But with a little, well-guided effort we can transform the problem
into the calculation of a Grobner basis of a homogeneous ideal: we
take a new indeterminate (say h) and use it to homogenize each f; to
produce F;. Now we can work with the ideal J' = (z1 —Fi,..., 2z, —F),)
made homogeneous by giving weights to the x; indeterminates: we set
deg(x;) = deg(f;) for each i.

Since we are in the special case of a hypersurface, it can be shown
that the (non-zero) polynomial of lowest degree in J' N K{z1,..., Ty, h)
is unique up to scalar multiples; its dehomogenization is then the poly-
nomial we seek! We get two advantages from the homogeneous ideal J':
we gain efficiency by using Buchberger’s algorithm degree-by-degree,
and we can stop as soon as the first basis polynomial is found — most
probably there will still be many pairs to process. See Abbott, Bigatti,
Robbiano [7] for all details and proofs, and also how to “correctly ho-
mogenize” parametrizations defined by rational functions.

/*x/ use P ::= QQ[s,t, x,y,z];
/*%/ elim([s,t], ideal(x-s"2, y-s*t, z-t"2) );
ideal(y~2 -x*z)

/*x/ use R ::= QQ[s,t];

/¥x/ P 1= QQlx,y,2z];

/*%/ ImplicitHypersurface(P, [s"2, sxt, t~2], "ElimTH");
ideal(y"2 -x*z)

In the same paper we describe another algorithm which uses a com-
pletely different technique, a variant of the Buchberger-Moller algorithm
(see Section 6), based on linear algebra. It is well-suited to low degree
hypersurfaces.

/**/ ImplicitHypersurface(P, [s"2, s*t, t72], "Direct");
ideal(y"2 -x*z)

For the case of rational coefficients, we use a modular approach in
both algorithms: we compute the result modulo several primes, combine
these using Chinese Remaindering, and finally reconstruct the rational
coefficients of the answer using the fault-tolerant rational reconstruction
described in Section 7.2.

5.3. MinPoly

Another popular application of elimination is for finding univariate
polynomials in an ideal. If I C P = K[xy,...,2,] is a 0-dimensional
ideal, then we know that I'N K[z;] is a principal ideal generated by some
univariate polynomial g;(x;) # 0 which can be obtained by eliminating
all z; with j # 4. These polynomials are used in several operations,
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such as computing the radical of a zero-dimensional ideal, or solving
polynomial systems (see [21] and [8]).

This idea generalizes in a natural way to the following problem. Let
I C P be a 0-dimensional ideal, and let f be any polynomial in P, find
wyr.1(z) € K[z], the minimal polynomial of f € P/I, or equivalently, the
univariate monic polynomial of minimum degree whose evaluation at f
yields an element of I. The corresponding algorithms have been recently
implemented in CoCoA:

/**/ use P ::= QQ[x,y,z];

/**x/ L = [ x72-272, (y-3)*(y+2)*(y~3-2), z"3-1];
/*xx/ T ideal(L);

/*x/ IsZeroDim(I) ;

true

/**/ MinPolyQuot(x, I, x); -- 3rd arg is the indet for the answer
x"6 -1

/*%/ £ 1= x -2%y +3%z;

/**/ t0 := CpuTime(); MP := MinPolyQuot(f, I, x); TimeFrom(tO);
0.036

/**/ MP;

X730 +12*%x729 -84*x728 -1544%x727 +384*x726 +62688*%x"25 +119168*x"24 -629760%x"23 -4664832*x"22
-33803264*x"21 +107753472%x~20 +1318662144*x~19 -3480064000%x~18 -20059865088*x~17
+151993466880*x~16 -50058002432*x~15 -1931977162752*x~14 +9312278544384*x~13 +1002303913984*x"12
-113944836440064%x~11 +553708192530432*x"10 +720752546414592*x~9 -6749908862238720%x"8
+4995175176732672*x~7 +33972228030726144*x"6 +22154393721765888*x"5 -21399162914340864*x"4
-112685231584051200%x"3 +3245139849904128+%x~2 -3103199770705920*x -16498446852685824

Needless to say, even in this small example, the standard elimination

approach is considerably slower:

/*%/ use Paux ::= QQ[x,y,z, aux];

/*%/ phi := PolyAlgebraHom(P, Paux, [x,y,z]);

/*%/ J := ideal(apply(phi,L)) + ideal(aux - phi(f));

/**/ t0 := CpuTime(); JE := elim([x,y,z], J); TimeFrom(t0);
1.850

As we did for hypersurface implicitization (in Section 5.2), when
computing with rational coefficients we use a modular approach and the
fault-tolerant rational reconstruction described in Section 7.2.

The good computational speed of MinPolyQuot is the key point
for a new algorithm for computing the primary decomposition of zero-
dimensional ideals. See [8] for details on the algorithms for MinPolyQuot
and some interesting applications.
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/#*/ PD := PrimaryDecomposition0(I);
/*%/ indent ([IdealOfGBasis(Qi) | Qi in PD]);
[

ideal(y +2, x +1, z -1),
ideal(y -3, x +1, z -1),
ideal(x +1, =z -1, y~3 -2),
ideal(y +2, x -1, z -1),
ideal(y -3, x -1, =z -1),
ideal(x -1, =z -1, y°3 -2),

ideal(y +2, z"2 +z +1, x +z),
ideal(y -3, 272 +z +1, x +z),
ideal(z"2 -x +1, y~3 -2, x +z),
ideal(y +2, 2z°2 +z +1, x -z),
ideal(y -3, z°2 +z +1, x -z),
ideal(z"2 +x +1, y~3 -2, x -z)

§6. Ideals of Points, 0-Dimensional Schemes

Let X be a non-empty, finite set of points in K", then the set of
all polynomials in K[xy,...,2,] which vanish at all points in X is an
ideal, I'y. One reason this ideal is interesting is because it captures the
“ambiguity” present in a polynomial function which has been interpo-
lated from its values at the points of X. How best to compute a set of
generators for Iy, or a Grobner basis, knowing just the points X7

If X contains a single point (ay,...,a,) then we can write down im-
mediately a Grobner basis, namely [z —ay, ..., 2, — a,]. If X contains
several points we could just intersect the ideals for each single point,
and these intersections may be determined via Grébner basis computa-
tions; while fully effective and mathematically elegant this approach is
computationally disappointing.

A far more efficient method is the Buchberger-Moller algorithm [15].
Somewhat astonishingly it uses just simple linear algebra to determine
the Grobner basis. In [6] there is a detailed complexity analysis of the
original algorithm, and also an extension to the projective case. It
was later further generalized to zero-dimensional schemes [12], where
it turned out that it also incorporates the well-known FGLM algorithm
for “changing term-ordering” of a Grobuner basis (see [17]).

Much as we have seen in the previous sections for computing with
rational coefficients, the Buchberger-Moller algorithm also benefits from
a modular approach, and naturally the CoCoA implementation uses this
technique.

/x%/ P = QQlx,yl;

/**/ points := mat([[10, 0], [-10, O], [0, 10], [0, -10],
[z, 71, -7, -711, [7, -71, [-7, 711);

/*%/ indent (IdealOfPoints(P, points));
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ideal(
x"2xy +(49/51)*y~3 +(-4900/51) *y,
x"3 +(51/49) *xxy~2 -100%*x,
yo4 +(-2499/2)%x"2 +(-2699/2)*y"2 +124950,
xxy"3 —49%xxy )

The use of simple linear algebra in the Buchberger-Moller algorithm
makes it a good candidate for identifying “almost-vanishing” polynomi-
als for sets of approrimate points: for instance, the points in the example
above “almost lie on” a circle of radius 9.95 centred on the origin, though
we cannot tell this from the exact Grobner basis.

In fact, the notion of Grébner basis does not generalize well to an
“approximate context” because the algebraic structure of a Grobner ba-
sis is determined by Zariski-closed conditions (i.e. the structure is valid
when certain polynomials vanish); instead, the notion of a Border Basis
is better suited since the validity of its structure depends on a Zariski-
open condition (i.e. provided a certain polynomial does not vanish). So
long as the approximate points are not too few nor too imprecise the
NBM (Numerical Buchberger-Méller) algorithm can compute at least a
partial Border Basis, and this should identify any “approximate polyno-
mial conditions” which the points almost satisfy (see Abbott, Fassino,
Torrente [11] and Fassino [16]). We can ask CoCoA to allow a certain
approximation on the coordinates of the points:

/*%/ epsilon := [0.1, 0.1]; // coord approzimation 0.1
/**/ APO1 := ApproxPointsNBM(P, mat(points), mat([epsilon]));
/#*/ indent (APO1.AlmostVanishing) ;
[
x"2 +(4999/5001)*y~2 -165000/1667, // almost a circle
X*ky "3 —49%x*y,
y°5 -149%y~3 +4900%y
]

/*%/ epsilon := [0.01, 0.01]; // approzimation 0.01 for each coord
/*%/ AP001 := ApproxPointsNBM(P, mat(points), mat([epsilon]));
/*%/ indent (APOO1.AlmostVanishing); // not "epsilon-near” a conic
[

x~2%y +(49/51)*y~3 +(-4900/51) *y,

x"3 +(51/49) *xxy~2 -100%*x,

y74 +(-2499/2)*x"2 +(-2699/2)*y 2 +124950,

X*ky T3 —49%x*ky
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§7. Grobner bases and rational coefficients

It is well known that computations with coefficients in QQ can often
be very costly in terms of both time and space. For Grébner bases
over Q we are free to multiply the polynomials by any non-zero rational;
so we can clear denominators and remove integer content. Avoiding
rational arithmetic this way does yield some benefit, but is not wholly
satisfactory.

Sometimes the Grobner basis has complicated coefficients (i.e. we
mean big numerators and denominators), but more often the coefficients
in the answer are reasonably sized, while the computation to obtain
them involved far more complicated coefficients: this problem is known
as intermediate coefficient swell.

The phenomenon of coefficient swell is endemic in computer algebra,
and many techniques have been investigated to tackle this problem. We
illustrate two techniques used in CoCoA.

7.1. TwinFloat

CoCoA offers floating-point arithmetic with a heuristic verification
of correctness: the aim is to offer a good compromise between the speed
of floating-point computation and the reliability of exact rational arith-
metic — for a fuller description see the article [2]. Normally a twin-float
computation will produce either a good approximation to the correct
result or an indication of failure; strictly, there is a very small chance of
getting a wrong result, but this never happens in practice.

To perform a computation with twin-floats the user must first spec-
ify the required precision; CoCoA will then perform the computation
checking heuristically that the result of every twin-float operation has
at least that precision. If the check fails then CoCoA signals an “in-
sufficient precision” error; the user may then restart the computation
specifying a higher precision. Although twin-float values are, by defini-
tion, approximate, all input values are assumed to be exact (so they can
be converted to a twin-float of any precision).

It is also possible to convert a twin-float value to an exact rational
number. Like all other twin-float operations, this conversion may fail
because of “insufficient precision”. Printing out a twin-float value au-
tomatically attempts conversion to a rational as rationals are easier to
read and comprehend in the context of exact computations.

/*%/ RR16 := NewRingTwinFloat(16);

/*%/ use RR16_X ::= RR16[x,y,z];

/*%/ £ := 12345678%x+1/456789;

/*%/ £ // both coeffs are printed as rationals
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12345678*x +1/456789

/*¥x/ £ x 10°3;  // first coeff is printed in "floating-point"
0.12345678*10"11*x +1000/456789

/**x/ £ % 10°5;  // both coeffs are printed in "floating-point”
0.12345678%10713*x +0.2189194573

Twin-floats include a (heuristically verified) test for zero; this means
it is possible to compute Grobner bases with twin-float coefficients. One
reason for wanting to do this is that often the computation of a Grébner
basis over the rationals involves “complicated fractions” (i.e. whose nu-
merator and denominator have many digits), and arithmetic with such
complicated values can quickly become very costly. In contrast, with
twin-floats the arithmetic has fixed cost (dependent on the precision
chosen, of course). These characteristics are exploited in CoCoA for the
computation of the gin, described in Section 4.

7.2. (Fault-tolerant) Rational reconstruction

A widely used technique for avoiding intermediate coefficient swell
is to perform the computation modulo one or more prime numbers, and
then lift /reconstruct the final result over Q. We call this the modular
approach. There are two general classes of method: Hensel Lifting
and Chinese Remaindering, the first is not universally applicable but
does work well for polynomial gcd and factorization, while the second is
widely applicable and works well in most other contexts.

The modular approach has been successfully used in numerous con-
texts, here are a few examples: polynomial factorization [24], determi-
nant of integer matrices [10], ideals of points (see Section 6), impliciti-
zation (see Section 5.2), and minimal polynomial (see Section 5.3).

In any specific application there are two important aspects which
must be addressed before a modular approach can be adopted, and there
is no universal technique for addressing these issues:

e knowing how many different primes to consider to guarantee
the result (i.e. find a realistic bound for the size of coefficients
in the answer);

e handling bad primes: namely those whose related computation
follows a different route, yielding an answer with the wrong
“shape” (i.e. which is not the modular reduction of the correct,
non-modular result).

In the context of Grobner bases we do not have good, general so-
lutions to either of these issues. One of the first successes in applying
modular techniques to certain instances of Grébner basis computation
appeared in [13]. Finding good ways to employ a modular approach for
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general Grobner bases is still an active area. CoCoA does not currently
use a modular approach for general Grobner basis computations.

A vital complement to the modular computation is the reconstruc-
tion of the final, rational answer from the modular images. CoCoA offers
functions for

e combining two residue-modulus pairs into a single “combined”
residue-modulus pair (using the Chinese Remainder Theorem);
e determining a “simple” rational number corresponding to a
residue-modulus pair; this is called rational reconstruction.

Correct reconstruction can still be achieved even in the presence of a
few “faulty residues” (see [3]); this fault-tolerance was exploited in the
functions for hypersurface implicitization (see Section 5.2) and minimal
polynomials (see Section 5.3).

Here we see how two modular images can be combined in CoCoA
(using “CRTPoly”), and then the correct rational result is reconstructed
from the combined residue-modulus pair (using “RatReconstructPoly”).

/**/ P1 ::= 77/(123457) [x];

/**/ P2 ::= 77/(234571) [x];

/*%/ RingElem(P1, "3*x/11-1/5"); // modular image in P1
22447*xx -49383

/**/ RingElem(P2, "3%x/11-1/5"); // modular image %in P2
-42649xx +46914

/*%/ use P ::= QQ[x];
/*%/ combined := CRTPoly(22447*x -49383, 123457,

-42649%x +46914, 234571);
/**/ combined; // in P
record[modulus:=28959431947, residue:=13163378158%x-11583772779]
/*%/ RatReconstructPoly(combined.residue, combined.modulus);
(3/11)*x -1/5

88. Grobner bases in C++ with CoCoALib

As mentioned in Section 1.2, our aim is to make computation using
CoCoALib as easy as using CoCoA-5. To illustrate this, here is the first
example from Section 2 but in C++:

ring P = NewPolyRing(RingQQ(), symbols("x,y,z"));
ideal I = ideal(RingElem(P, "x"3+3"),

RingElem(P, "y-x"2"),

RingElem(P, "z-x-y") );
cout << GBasis(I);
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In comparison to CoCoA-5, this C++ code is more cumbersome and
involved, though we maintain that it is still reasonably comprehensible
(once you know that cout << is the C++ command for printing).

We have designed CoCoA-5 and CoCoALib together with the aim
of making it easy to develop a prototype implementation in CoCoA-5,
and then convert the code into C++. To facilitate this conversion we
have used the same function names in both CoCoA-5 and CoCoALib,
whenever possible, and we have preferred using traditional “functional”
syntax in CoCoALib over object oriented “method dispatch” syntax
(e.g. GBasis(I) rather than I.GBasis()). This means that most of the
CoCoA-5 examples given here require only minor changes to become
equivalent C++ code for use with CoCoALib.

To maintain the “friendly” tradition of CoCoA software for mathe-
maticians, and to extend it to “mathematical programmers”, our design
of CoCoAlLib follows these aims:

e Designed to be easy and natural to use
e Motto: “No nasty surprises” (e.g. avoid ambiguities)
e Execution speed is good
o Well-documented, including many example programs
Free and open source C++ code (GPL3 licence)
e Source code is clean and portable (currently C++03)
e Design respects the underlying mathematical structures
(using C++ inheritance, no templates)
e Robust exception-safe, thread-safe

89. Conclusion

The CoCoA software aims to make it easy for everyone to use
Grobner bases, whether directly or indirectly through some other func-
tion. The CoCoA-5 system is designed to be welcoming to those with
little computer programming experience, while the CoCoALib library
aims to make it easy for experienced programmers to use Grobner bases
in their own programs.

We hope this helps everyone to have their Grobner basis!
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