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Abstract.

Inspired by the new type of Capelli identity associated with the
regular representation of quaternions obtained by An Huang [6], we
present a more basic type of Capelli identities for reducible modules of
the matrix algebras. As a related subject in view of reducible modules,
we also discuss the Capelli identities associated with group determi-
nants, for which a precise formulation and an answer are given.

§ Introduction

The classical Capelli identity has been investigated from many points
of view and extended to various directions. In this article, we would like
to add one new possibility for some direct generalizations of the very clas-
sical Capelli identity, and beyond. The study started in 2011 January
23, when An Huang, who was a graduating PhD in physics at Berkeley,
contacted the author asking if his Capelli type identities could be new.
His identities [6] are related to the quaternions and the octonions, and
he found them accidentally through his study of quantum field theory.
To tell the truth, at first sight, they did not seem very striking, but
actually revealed a new and potentially big view point. Aside from his
two cases, the division algebras over the reals, similar identities hold for
more fundamental one, the matrix algebra, and also some cases arising
from the multiple of the irreducible representation of the matrix algebra.
The main theme of article is about theses identities.

This direction also suggests and reminds us of other studies of an
old but not published result, e.g. the Capelli identities associated with
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the group determinants. These related subjects are still open for new
investigations.

§1. The classical Capelli identity

Let us first recall the very classical Capelli identity. To make things
simple, we will always work over the complex number field C, unless
otherwise stated. On the matrix space Matm×n = Matm×n(C), the two
general linear groups GLm and GLn act respectively by the left and
right multiplications. The infinitesimal actions of those Lie algebras glm
and gln on the polynomial functions on the Matm×n are described as

ρ(Eij) =
m∑

a=1

xai∂aj , λ(E◦
kl) =

n∑
b=1

xlb∂kb,

where xab are the coordinates of Matn×m and ∂ab =
∂

∂xab
the corre-

sponding partial differential operators, and Eij and E◦
kl are respectively

the standard basis of gln and glm; the indices run over 1 ≤ a, k, l ≤
m; 1 ≤ b, i, j ≤ n.

In the matrix notation with Πij = ρ(Eij) and Π◦
kl = λ(E◦

kl), we can
write these relations as

Π = tXD, tΠ◦ = X tD,

where the entries of Π,Π◦,X,D consist respectively of Πij ,Π
◦
kl, xab, ∂ab

with the indices a, b, i, j, k, l running as above.
The Capelli identities are to describe the polynomial coefficient in-

variant differential operators PD(Matm×n)
GLm×GLn as the represen-

tation of the center of the universal enveloping algebras U (gln) and
U (glm). The typical one is for n = m (square case) is a non-commutative
determinant multiplication formula as follows

det(Π + �n) = det(tX) det(D),

where �n = diag(n − 1, n − 2, · · · , 0) is the diagonal shift, and the de-
terminant in the left-hand side with non-commutative entries means the
‘column’ determinant defined as

detA =
∑

σ∈Sn

sgnσ Aσ(1) 1 · · ·Aσ(n)n,

for A = (Aij)
n
i,j=1. The central element of U (gln) corresponding to the

left-hand side is called the Capelli element

C = det(E + �n),
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as Π = ρ(E). Let u be a formal parameter. We can introduce more
generally

C(u) = det(E + �n + u · 1n),
where 1n is the unit matrix of size n, and expand it in u as

C(u) =
n∑

r=0

(u)r Cn−r

with (u)r = u(u+ 1) · · · (u+ r− 1). These lower order Capelli elements
Ck, also central in U (gln), are indeed to appear in the general Capelli
identities. See [5], [10], [11] for more details. In this article, we will only
be concerned with the ‘highest’ Capelli element Cn but need to use the
element C(u) with the parameter u.

It is easy to see that

det(tX)−u ρ(C) det(tX)u = det ρ(C(u)),

because det(tX)−u Πij det(tX)u = Πij + u · δij holds; δij being the
Kronecker’s delta. From this and the Capelli identity, we have

det(tX)s det(D)s = det ρ(C(−s+ 1)) · · · det ρ(C(−1)) det ρ(C(0)).

Instead of giving the full proof of this equality, let us demonstrate the
case for s = 2, from which one can easily deduce the inductive process
for more general cases:

det(tX)2 det(D)2 = det(tX) det(tX) det(D) det(D)

= det(tX) det ρ(C(0)) det(D)

= det(tX) det ρ(C(0)) det(tX)−1 det(tX) det(D)

= det ρ(C(−1)) det(tX) det(D)

= det ρ(C(−1)) det ρ(C(0)).

If we introduce
Π(u) = Π + �n + u · 1n,

then the above formula is

det(Π(0)) det(Π(−1)) · · · det(Π(−s+ 1)) = det(tX)s det(D)s.
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§2. The problem

In the setting of the classical Capelli identity (square case), one
may explain the role of coordinates xij as extracted from the matrix
elements of the representation of the algebra A = Matn(C) on V = C

n.
Here V is the (unique) irreducible module of the simple algebra A, and
the determinant is the “reduced norm” of the algebra A. If we replace
the role of the representation V with the regular representation on A
itself, we get the nth power of the determinant as its “norm”, where
n is the rank of A over the ground field C. This is just seen from the
fact that the regular representation of A is the n times multiple of the
irreducible V .

The attempt, as mentioned in the Introduction above, by An Huang
was to get the Capelli identity for the case of the regular representa-
tion of the quaternions (simple algebra over the reals), and of the oc-
tonions (non-associative division ring over the reals). He actually got
the Capelli-type identity as a non-commutative multiplication formula
(with a suitable correction by diagonal shift for the left-hand side) of
the determinant. One would imagine that this kind of Capelli identities
might be deduced from the usual (irreducible) one. But this is not quite
the case: a new point of view appeared in this result.

Let us explain the problem for more basic situation with A = Matn.
When we write σV to denote the matrix expression for the irreducible
representation σ on the vector space V , the r times multiple of σ on
Cr ⊗ V will be written as the Kronecker product 1r ⊗ σV , which looks
like

1r ⊗ σV =

⎡
⎢⎢⎢⎢⎢⎣

σV 0 0 · · · 0
0 σV 0 · · · 0
0 0 σV 0
...

. . .
...

0 0 0 · · · σV

⎤
⎥⎥⎥⎥⎥⎦ .

We remark that Cr is the multiplicity space, and if we exchange the
place of multiplicity space in the tensor multiplication as V ⊗ σ, then
the matrix expression accordingly comes to σV ⊗1r. Let us illustrate the
difference between those two more explicitly for dimV = 2 and r = 2.
Writing

σV =

[
a b
c d

]
,
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we have

12 ⊗ σV =

⎡
⎢⎢⎣
a b 0 0
c d 0 0
0 0 a b
0 0 c d

⎤
⎥⎥⎦ , σV ⊗ 12 =

⎡
⎢⎢⎣
a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎤
⎥⎥⎦ .

In both cases, when a, b, c, d are commutative, the determinants of 12 ⊗
σV and σV ⊗ 12 are just (detσV )

2. This is sort of trivial because two
Kronecker products A⊗B and B ⊗A are similar. But once we transfer
to non-commutative variables from commutative ones, nothing could be
obvious.

To make things more specific, we start from the basic relation

Π = tXD

and form its r times multiple representation:

1r ⊗ Π = (1r ⊗ tX)(1r ⊗D).

In this case, the determinants of the factors in the right-hand side are
respectively (det tX)r and (detD)r, so that the product of these two is
seen to be

det(Π(0)) det(Π(−1)) · · · det(Π(−r + 1))

from the formula at the end of the section 1. This is just an equality of
the invariant differential operators. However, we see that the Π side is
also written as a non-commutative (column) determinant: its just the
determinant of the matrix⎡

⎢⎢⎢⎢⎢⎣

Π(0) 0 0 · · · 0
0 Π(−1) 0 · · · 0
0 0 Π(−2) 0
...

. . .
...

0 0 0 · · · Π(−r + 1)

⎤
⎥⎥⎥⎥⎥⎦ .

The proof is quite obvious, because, this matrix is a block diagonal one.
We may remark that this is

1r ⊗Π+ diag(�n, �n − 1n, · · · , �n − (r − 1)1n),

a simple correction of 1r ⊗ Π by diagonal shift. This may be called a
trivial Capelli identity for the r multiple of the irreducible module Cn.

So far, nothing is interesting nor striking. But when we transfer
from the equality 1r ⊗ Π = (1r ⊗ tX)(1r ⊗ D) to its ‘flip’ Π ⊗ 1r =
(tX ⊗ 1r)(D ⊗ 1r), the situation can drastically change.
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Problem: For the multiplication of the matrix

Π⊗ 1r = (tX ⊗ 1r)(D ⊗ 1r),

does the multiplication formula of the column determinant with suitable
correction for the left-hand side, preferably by a diagonal shift?

The answer is actually ‘yes’. We may call this result by the name of
a non-trivial Capelli identity for the r multiple of the irreducible module
Cn. To be more precise, the diagonal shift will be the re-ordering of

diag(�n, �n − 1n, · · · , �n − (r − 1)1n)

appearing in the formula into

diag(�r + (n− r)1r, �r + (n− r − 1)1r, · · · , �r + (n− r − (n− 1))1r).

In other words, the numbers are just the ‘contents’

0 −1 · · · −r + 1
1 0 · · · −r + 2
...

...
...

...
...

...
...

...
n− 1 n− 2 · · · n− r

filled in the rectangular Young diagram (rn) to read off lexicographically,
on one hand vertical first, and on the other hand horizontal first.

For example, in case n = 2, r = 2, the diag(1, 0, 0 − 1) is both for
12 ⊗Π and Π⊗ 12. But the equality

det(12 ⊗ Π+ diag(1, 0, 0,−1)) = det(Π⊗ 12 + diag(1, 0, 0,−1))

is not obvious. We will show this later. Also for n = 2, r = 3,
the diagonal shift diag(1, 0, 0,−1,−1,−2) is for 13 ⊗ Π and the
diag(1, 0,−1, 0,−1,−2) is for Π ⊗ 13. For n = 3, r = 2, the
diag(2, 1, 0, 1, 0,−1) is for 12 ⊗ Π and the diag(2, 1, 1, 0, 0,−1) is for
Π ⊗ 12. In general, for the case n = r, i.e, the regular representa-
tion case, the correction for the determinant with the diagonal shifts in
both 1n ⊗Π and Π⊗ 1n are the same.

§3. About the proof

For the proof, we utilize the exterior algebra as for the classical
Capelli identities. We need r copies of the anti-commuting variables.
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First consider the exterior algebra

Λr
n = Λ(epq; 1 ≤ p ≤ r, 1 ≤ q ≤ n)

of rn generators with the commutation relations

epqekl + eklepq = 0.

We work on the algebra

A = Λr
n ⊗ PD(Matn),

the ring of polynomial coefficient differential operators on the matrix
space extended by the anti-commuting formal variables. Let us put

ζpi =

n∑
a=1

epaΠai

and also, with parameter u,

ζpi(u) =
n∑

a=1

epa(Πai + uδai) = ζpi + u epi.

We have the following commutation relations among these elements.

Commutation relations: For any parameter u and v, we have

ζpi(u) ζqj(v) + ζqj(v) ζpi(u) = ζpj(w)eqi + ζqi(w)epj

with arbitrary w independent of u and v. Notice that the left-hand side
is the anti-commutator [ ζpi(u), ζqj(v) ]+ of the two elements.

From this we see the two typical commutation relations, which are
essentially the same as in the proof for the classical Capelli identities as
follows:

(1) For the case p = q, we see

ζpi(u) ζpj(u− 1) + ζpj(u) ζpi(u− 1) = 0.

(2) For the case i = j, we see

ζpi(u) ζqi(u− 1) + ζqi(u) ζpi(u− 1) = 0.

(3) As the corollaries of these two, we have

ζpi(u) ζpi(u− 1) = 0.
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Instead of giving the proof for the general case, we show only for
the simplest case r = 2, n = 2. The product

ζ11(1) ζ12(0) ζ21(0) ζ22(−1)

gives us e11e12e21e22 det(Π(0)) det(Π(−1)), because

ζ11(1) ζ12(0) = e11e12 det(Π(0))

and
ζ21(0) ζ22(−1) = e21e22 det(Π(−1)).

This order of product is thus for

det(12 ⊗Π+ diag(1, 0, 0,−1)).

To get
det(Π⊗ 12 + diag(1, 0, 0,−1),

we need to make the product (up to the signature)

ζ11(1) ζ21(0) ζ12(0) ζ22(−1).

Our goal for this minimal non-trivial case, we have only to change the
order in the middle. By the commutation relation above, we see

ζ12(0) ζ21(0) = −ζ21(0) ζ12(0) + ζ11(w)e22 + ζ22(w)e11

for any w, so that

ζ11(1) ζ12(0) ζ21(0) ζ22(−1) =− ζ11(1) ζ21(0) ζ12(0) ζ22(−1)

+ ζ11(1) ζ11(w) e22 ζ22(−1)

+ ζ11(1) ζ22(w) e11 ζ22(−1).

Then putting w = 0, we get the vanishing factors ζ11(1) ζ11(0) and
ζ22(0) ζ22(−1). in the second and the the third terms respectively. Thus
we obtain

ζ11(1) ζ12(0) ζ21(0) ζ22(−1) = −ζ11(1) ζ21(0) ζ12(0) ζ22(−1)

as desired.
The general case needs much more intricate manipulations of com-

mutation relations. Cancellation of the terms yielded by the exchanges
of elements could be tricky. We will omit the details about them here.

We remark here that the commutation relations above have some
similarity with those used in the paper [13] on the Koszul complex, in
which both commuting and anti-commuting formal variables are utilized.
There some difference operator plays some roles, which we may expect
to work well also in our cases.
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§4. Some related studies — Capelli type identity for group
determinant

The starting fact was brought by Dr. An Huang for the case of the
regular representations of quaternions (and of octonions) [6]. Inspired
by his results, we can make more general problems in this direction
such as “Capelli type identities” for (semi-)simple algebras (over “any”
ground fields). As we treat non-commutative variables, the choice, even
their order of arrangement in the matrix (for the determinant) are by
no means obvious for any good formulations.

The matrix case and quaternion case, we could make use of some
distinguished basis of the algebra, and the column determinant suffices
for the good identities. For this point, we should say we are lucky
enough.

This formulation reminds us of other old but not published study of
my own on Capelli type identities for group determinant. Let us explain
about it.

Let G be a finite group of order n. For a function ϕ on G, we
associate an n× n matrix R(ϕ) as follows:

R(ϕ) = (ϕ(gh−1))g,h∈G.

This is a matrix expression of the regular representation of G. For the
functions ϕ,ψ, we define their convolution product by

(ϕ ∗ ψ)(g) =
∑
k∈G

ϕ(gk−1)ψ(k).

Then it is easy to see

R(ϕ ∗ ψ) = R(ϕ)R(ψ).

The values of those functions are not necessarily supposed to be commu-
tative, but are allowed to be in a non-commutative (associative) algebra.
The operation on function

ϕ̌(g) = ϕ(g−1)

is corresponding to the transposition for R, i.e.,

R(ϕ̌) = tR(ϕ).

Now, for each element g ∈ G, consider the indeterminate xg, and also
the corresponding partial differential operator ∂g. Let A = PD [Cn] be
the ring of polynomial coefficient differential operators on C

n for which
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the xg’s are the standard coordinates. In what follows, the functions on
G are to take values in A . Furthermore, we define

Πg =
∑
a∈G

xag−1 ∂a,

a kind of polarization operators, which are similar but different from
Πij ’s introduced in section 1, so that we use a slightly modified notation
as Πg’s. We now have three A -valued functions

x̌ ; g �→ xg−1 , ∂ : g �→ ∂g, Π : g �→ Πg,

and, by definition,
Π = x̌ ∗ ∂,

so that
R(Π) = tR(x)R(∂).

We see this looks like the basic relation for the infinitesimal action of
gln on the matrix space. It is natural to raise the following questions:

Problems:
(1) Describe the relation among the determinants of those three

matrices.
(2) Express the differential operator det tR(x) detR(∂) in terms of

Πg’s.

In the problem (1), the meaning of the determinant for R(Π) is not clear,
so that question is more or less vague. However, in case G is abelian,
since entries in each matrices are commutative, there are nothing to be
worried about. The result in this case is

Theorem 1: Suppose G to be abelian, then we have

detR(Π) = det tR(x) detR(∂).

Note that contrary to the classical Capelli identity, no correction (for
example by diagonal shift) in the left-hand side is needed. Although the
result looks like the multiplication formula for the commutative entries,
it is not quite obvious, because xg’s and ∂g’s do not commute.

We should remark that the Capelli identity for the group determi-
nant treats highly reducible case. If the regular representation on C[G]
is decomposed into irreducibles in the form

C
n = C[G] �

⊕
ρ∈Ĝ

dρ Vρ,
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where Ĝ is the set of equivalence classes of irreducible G-modules, and Vρ

is the representation space of ρ and dρ its degree (= dimC Vρ), the Fourier
transform of the functions x, ∂,Π give us quite the same situation for
the classical Capelli identity, and also with the multiplicity dρ, the case
we treated above in this paper. The (operator valued) Fourier transform
of a function ϕ is defined as

ρ(ϕ) =
∑
g∈G

ϕ(g)ρ(g) ∈ A ⊗ End(Vρ),

for an irreducible representation ρ. Then just like the regular represen-
tation, we have

ρ(Π) = ρ(x̌) ρ(∂),

and this is quite the same as the classical situation. The Capelli element
associated to ρ is defined as

Cρ = det(ρ(Π) + ερ �dρ)

with ερ = n/dρ. More generally, we introduce the Capelli element with
parameter shift as

Cρ(u) = det(ρ(Π) + ερ(u+ �dρ)).

Furthermore, a sort of factorial power for Cρ is defined as

C(s)
ρ (u) = Cρ(u)Cρ(u− 1) · · ·Cρ(u− s+ 1).

Under these notations, we have an answer for the Problem (2) as

Theorem 2: For a general G, we have

det tR(x) detR(∂) =
∏
ρ∈Ĝ

C(dρ)
ρ (0).

In the formula here, the right-hand side is not expressed as a single
determinant using the original matrix R(Π). It should be too good to
be true if the right-hand side could be expressed in a form det(R(Π)+�),
because we see no natural order in arranging the elements g ∈ G. Also,
we cannot tell what kind of non-commutative determinant would fit for
this right-hand side.

These problems are already in the author’s mind around 2000, but
any essential progress has not been made since then. With the mo-
tivation for the reducible Capelli identities dealt in the first part of
this article, we may formulate more general problem like “the Capelli
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identity associated with (semi-)simple algebras (over any field)”, where
the choice for the natural base could be more specific. For example,
the quaternion algebra (over the reals) has a privileged basis 1, i, j, k,
which are “group-like” and something similar to the generators of group
algebra, but might have more natural meaning for the Capelli identities.

There seems more problems to solve still for reducible modules.

§ Appendix: Sketch of the proof for Theorem 2

We recall some fundamental facts as preliminaries. Let us start with
the irreducible decomposition of the regular representation of the finite
group G in a slightly different form:

CG �
⊕
ρ∈Ĝ

End(Vρ),

where the left-hand side is the group algebra of G. This isomorphism
is not only between the vector spaces but (1) as G × G modules, and
also (2) as C algebras. The transition from the left to the right is just
the Fourier transform explained above. There is one more view point
to look at this isomorphism. In both spaces, there are sort of canonical
linear forms. On the group algebra CG, we have the ‘co-unit’ ε (the
evaluation at the unit 1G) defined as

ε(g) =

{
1 (g = 1G),

0 otherwise.

On the space End(Vρ), we have the trace τρ. The relation between
those linear forms via the above isomorphism is given by the Plancherel
formula for G:

ε =
∑
ρ∈Ĝ

dρ
n

τρ.

The dual of this takes form of the Schur orthogonality for the matrix
elements. For the vectors u ∈ Vρ, λ ∈ V ∗

ρ , we put

ρu,λ(g) = 〈λ, ρ(g)u〉.
Here 〈 , 〉 means the canonical pairing of Vρ and its dual V ∗

ρ . The Schur
orthogonality relations are

∑
g∈G

ρu,λ(g)σv,μ(g
−1) =

⎧⎪⎪⎨
⎪⎪⎩

0 (ρ �∼ σ),

n

dρ
〈λ, v〉 〈μ, u〉 (ρ = σ).
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Now, let us return to our main concern, the commutation relations
for the non-commutative matrix elements of ρ(x̌), ρ(∂), and ρ(Π). By
the Schur orthogonality, we see first

[ ρu,λ(∂), ρv,μ(x̌) ] =
∑

g,h∈G

[
∂g ρu,λ(g), xh ρv,μ(h

−1)
]

=
∑

g,h∈G

[ ∂g, xh ] ρu,λ(g) ρv,μ(h
−1)

=
∑

g,h∈G

δg,h ρu,λ(g) ρv,μ(h
−1)

=
∑
g∈G

ρu,λ(g) ρv,μ(g
−1) =

n

dρ
〈λ, v〉 〈μ, u〉

.

Quite the same computations, based also on the Schur orthogonality,
give us the matrix elements ρu,λ(∂) and σv,μ(x̌) commute when ρ and σ
are not equivalent.

For the representation space Vρ, take a linear basis (also its dual
basis) indexed by the letters i, j etc. Then the above commutation
relations read

[ ρij(∂), ρkl(x̌) ] =
n

dρ
δil δjk.

This means that the matrix elements for the irreducible ρ, the matrix
elements of ρ(∂) and the transposed of ρ(x̌) are the “dual” in the sense
that they have the canonical commutation relations with the coupling
constant ερ = n/dρ. The matrix composition ρ(Π) = ρ(x̌) ρ(∂) tells us
that the elements ρij(Π)’s behave like the usual polarization operators
Πij in the section 1, only with the correction of coupling constant ερ
instead of 1.

The rest of the details are quite parallel to the known process, as,
for example found in [14] (see also the section 3 in this article). To
be more precise, using the exterior algebra Λρ with dρ anti-commuting
generators, we put

ξi =

dρ∑
a=1

ea ρai(x̌),

ζj =

dρ∑
i=1

ξi ρij(∂) =

dρ∑
a=1

ea ρaj(Π).
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Also with the parameter u, we define

ζj(u) = ζj + ερ u ej =

dρ∑
a=1

ea (ρaj(Π) + ερ u δaj).

Then the following commutation relations are proved:

ζq(u+ 1)ξi + ξiζq(u) = 0.

With these relations, the computation of the product

ζ1(dρ − 1) ζ2(dρ − 2) · · · ζdρ(0)

gives us the desired Capelli identity on the space Vρ.
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[ 1 ] A. Capelli, Über die Zurückführung der Cayley’schen Operation Ω auf
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