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Abstract.

In this paper we show how the Cherednik algebra of type Č1C1 ap-
pears naturally as quantisation of the group algebra of the monodromy
group associated to the sixth Painlevé equation. This fact naturally
leads to an embedding of the Cherednik algebra of type Č1C1 into
Mat(2,Tq), i.e. 2× 2 matrices with entries in the quantum torus. For
q = 1 this result is equivalent to say that the Cherednik algebra of type
Č1C1 is Azumaya of degree 2 [31]. By quantising the action of the braid
group and of the Okamoto transformations on the monodromy group
associated to the sixth Painlevé equation we study the automorphisms
of the Cherednik algebra of type Č1C1 and conjecture the existence
of a new automorphism. Inspired by the confluences of the Painlevé
equations, we produce similar embeddings for the confluent Cherednik
algebras HV ,HIV ,HIII ,HII and HI , defined in [27].

§1. Introduction

The Painlevé sixth equation [16, 33, 17] describes the monodromy
preserving deformations of a rank 2 Fuchsian system with four simple
poles a1, a2, a3 and ∞. The solution of this Fuchsian system is in gen-
eral a multi-valued analytic vector–function in the punctured Riemann
sphere P1\{a1, a2, a3,∞} and its multivaluedness is described by the so-
called monodromy group, i.e. a subgroup of SL2(C) generated by the
images M1,M2,M3 of the generators of the fundamental group under
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450 M. Mazzocco

the anti-homomorphism:

ρ : π1

(
P
1\{a1, a2, a3,∞}, λ0

) → SL2(C).

In this paper, we introduce flat coordinates on a large open sub-set
of the set of all possible monodromy groups obtained in this way (see
Theorem 3). We then obtain a quantisation of the group algebra of
the monodromy group by introducing a canonical quantisation for these
flat coordinates. This quantum algebra is isomorphic to the Cherednik
algebra of type Č1C1, i.e. the algebra H generated by four elements
V0, V1, V̌0, V̌1 which satisfy the following relations [7, 32, 30, 34]:

(V0 − k0)(V0 + k−1
0 ) = 0(1)

(V1 − k1)(V1 + k−1
1 ) = 0(2)

(V̌0 − u0)(V̌0 + u−1
0 ) = 0(3)

(V̌1 − u1)(V̌1 + u−1
1 ) = 0(4)

V̌1V1V0V̌0 = q−1/2,(5)

where k0, k1, u0, u1, q ∈ C
�, such that qm �= 1, m ∈ Z>0.

As a consequence we obtain an embedding of the Cherednik algebra
of type Č1C1 into Mat(2,Tq), i.e. 2 × 2 matrices with entries in the
quantum torus:

Theorem 1. The map:

(6) V0 →
(

k0 − k−1
0 − ie−S3 −i e−S3

k−1
0 − k0 + i e−S3 + i eS3 i e−S3

)

(7) V1 →
(

k1 − k−1
1 − i eS2 k1 − k−1

1 − i e−S2 − i eS2

i eS2 i eS2

)

(8) V̌1 →
(

0 − ieS1

i e−S1 u1 − u−1
1

)

(9) V̌0 →
(

u0 0

q
1
2 s − 1

u0

)
,

where S1, S2, S3 satisfy the following commutation relations:

(10) [S1, S2] = [S2, S3] = [S3, S1] = iπ�, u0 = −i e−S1−S2−S3 ,
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for q = e−iπ� and

s = k0e
−S1−S2+k1e

−S1+S3+u1e
S2+S3+i e−S1−S2+S3+i e−S1+S2+S3−u0,

gives and embedding of H into Mat(2,Tq). In particular, the images of

V0, V̌0, V1, V̌1 in GL(2,Tq) satisfy the relations (1, . . . , 4) and (5), in the
quantum ordering is dictated by the matrix product ordering1.

Note that this result was already proved in [27] (using a different
presentation for H). The purpose of the current paper is to explain this
result in the Painlevé context and to draw parallels between the theory
of the Painlevé equations and the theory of the Cherednik algebra of
type Č1C1.

In particular, we prove that all the known automorphisms of the
Cherednik algebra of type Č1C1 are a quantisation of the action of the
braid group on monodromy matrices proposed in [9, 26] to describe the
analytic continuation of the solutions to the sixth Painlevé equation.

Next we deal with the Okamoto transformations of the sixth Painlevé
equation and their action on the monodromy group. By quantisation we
conjecture the existence of an automorphism of the Cherednik algebra
of type Č1C1 which acts as follows on the parameters:

(u1, u0, k1, k0) →
(

u1√
u1u0k1k0

,
u0√

u1u0k1k0
,

k1√
u1u0k1k0

,
k0√

u1u0k1k0

)

We postpone the computation of the action this automorphism on V0, V1,
V̌0, V̌1 to a subsequent publication.

Finally, in [27], the author introduced confluent versions of the
Cherednik algebra of type Č1C1 by using a concatenation of Whittaker-
type limits similar to those introduced in [8]. In this paper we explain the
origin of these confluent Cherednik algebras from the point of view of the
Painlevé theory. In [6] the confluence scheme of the Painlevé differential
equations was explained in terms of certain geometric operations giving
rise to specific asymptotic limits in the classical coordinates s1, s2, s3
and parameters. Here, we quantise these asymptotic limits to obtain
asymptotic limits for the quantum coordinates S1, S2, S3 and of the pa-
rameters k0, k1, u0, u1 (see Fig. 1). By taking these limits in the matrices
(6), . . . , (9), we produce new matrices which turn out to provide em-
beddings for the confluent Cherednik algebras HV ,HIV ,HIII ,HII and
HI in Mat(2,Tq).

1By this we mean that the product AB of two matrices A,B whose entries
are in Tq is computed by keeping the entries of A on the left matrix of the entries
of B.
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PV I

k0 → ε,

eS3 → 1
ε e

S3

PV PIV

k1 → ε,

eS2 → 1
ε e

S2

PII

u1 → ε,

eS1 → 1
ε e

S1

PI
eS3 → 1

ε e
S3

eS3 → 1
ε e

S3

PIII PIIID7

k1 → ε, u1 → εu1

eS1 → eS1

ε , eS2 → εeS2

PIIID8

u1 → ε,

eS1 → eS1

ε , eS2 → εeS2

Fig. 1. The [6] confluence scheme for the Painlevé equations
denoted here by PV I, PV , PIV , PIII, PIIID7 ,
PIIID8 , PII, PI and the corresponding rescaling
of the quantum shifted shear coordinates S1, S2, S3

such that lim�→0 Si = si +
pi
2
, i = 1, 2, 3.

§2. Flat coordinates for the monodromy group of the sixth
Painlevé equation

2.1. Sixth Painlevé equation as isomonodromic deforma-
tion equation

We start by recalling without proof some very well known facts
about the sixth Painlevé equation and its relation to the monodromy
preserving deformations equations [22, 29].

The sixth Painlevé equation [16, 33, 17],

ytt =
1

2

(
1

y
+

1

y − 1
+

1

y − t

)
y2t −

(
1

t
+

1

t− 1
+

1

y − t

)
yt +

+
y(y − 1)(y − t)

t2(t− 1)2

[
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

]
,(11)

describes the monodromy preserving deformations of a rank 2 meromor-
phic connection over P1 with four simple poles a1, a2, a3 and ∞ (for
example we may choose a1 = 0, a2 = t, a3 = 1):

(12)
dΦ

dλ
=

3∑
k=1

Ak(t)

λ− ak
Φ,
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where2

eigen(Ai) = ±θi
2
, for i = 1, 2, 3, A∞ := −A1 −A2 −A3(13)

A∞ =

(
θ∞
2 0

0 − θ∞
2

)
,(14)

and the parameters θi, i = 1, 2, 3,∞ are related to the PVI parameters
by

α =
(θ∞ − 1)2

2
, β = −θ21

2
, γ =

θ23
2
, δ =

1− θ22
2

.

The precise dependence of the matrices A1, A2, A3 on the PVI solution
y(t) and its first derivative yt(t) can be found in [29].

The solution Φ(λ) of the system (12) is a multi-valued analytic
function in the punctured Riemann sphere P1 \ {a1, a2, a3,∞} and its
multivaluedness is described by the so-called monodromy matrices, i.e.
the images of the generators of the fundamental group under the anti-
homomorphism

ρ : π1

(
P
1\{a1, a2, a3,∞}, λ0

) → SL2(C).

In this paper we fix the base point λ0 at infinity and the generators of
the fundamental group to be l1, l2, l3, where each li, i = 1, 2, 3, encircles
only the pole ai once and l1, l2, l3 are oriented in such a way that

(15) M1M2M3M∞ = 11,

where M∞ = exp(2πiA∞).

2.2. Riemann-Hilbert correspondence and PVI monodromy
manifold

Let us denote by F(θ1, θ2, θ3, θ∞) the moduli space of rank 2 mero-
morphic connection over P

1 with four simple poles a1, a2, a3,∞ of the
form (12). Let M(G1, G2, G3, G∞) denote the moduli of monodromy
representations ρ up to Jordan equivalence, with the local monodromy
data of Gi’s prescribed by

Gi := Tr(Mi) = 2 cos(πθi), i = 1, 2, 3,∞.

2For simplicity sake, we are recalling here the main facts about the isomon-
odromic approach in the case when the parameters θ1, θ2, θ3 and θ∞ are not
integers. This is just a technical restriction, all the results proved in the paper
are actually valid also when we lift such restriction.
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Then the Riemann-Hilbert correspondence

F(θ1, θ2, θ3, θ∞)/Γ → M(G1, G2, G3, G∞)/GL2(C),

where Γ is the gauge group [2], is defined by associating to each Fuchsian
system its monodromy representation class. The representation space
M(G1, G2, G3, G∞)/GL2(C) is realised as an affine cubic surface (see
[21])

(16) G2
12+G2

23+G2
31+G12G23G31−ω3G12−ω1G23−ω2G31+ω∞ = 0,

where G12, G23, G31 defined as:

Gij = Tr (MiMj) , i, j = 1, 2, 3,

and

ωij := GiGj +GkG∞, k �= i, j,

ω∞ = G2
0 +G2

t +G2
1 +G2

∞ +G0GtG1G∞ − 4.

This cubic surface is called monodromy manifold of the sixth Painlevé
equation and it is equipped with the following Poisson bracket:

{G12, G23} = G12G23 + 2G31 − ω2

{G23, G31} = G23G31 + 2G12 − ω3(17)

{G31, G12} = G31G12 + 2G23 − ω1

In [20], Iwasaki proved that the triple (G12, G23, G31) satisfying the cubic
relation (16) provides a set of coordinates on a large open subset S ⊂
M(G1, G2, G3, G∞). In the following sub-section, we restrict to such
open set.

2.3. Teichmüller theory of the 4-holed Riemann sphere

The real slice of moduli space F(θ1, θ2, θ3, θ∞) of rank 2 meromor-
phic connections over P

1 with four simple poles a1, a2, a3,∞ can be
obtained as a quotient of the Teichmüller space of the 4–holed Riemann
sphere by the mapping class group. This fact allowed us to use the com-
binatorial description of the Teichmüller space of the 4–holed Riemann
sphere in terms of fat-graphs to produce a good parameterisation of the
monodromy manifold of PVI [4]. In this sub-section we recall the main
ingredients of this construction.

We recall that according to Fock [13] [14], the fat graph associated
to a Riemann surface Σg,n of genus g and with n holes is a connected
three–valent graph drawn without self-intersections on Σg,n with a pre-
scribed cyclic ordering of labelled edges entering each vertex; it must be
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Fig. 2. The fat graph of the 4 holed Riemann sphere. The
dashed geodesic corresponds to G12.

a maximal graph in the sense that its complement on the Riemann sur-
face is a set of disjoint polygons (faces), each polygon containing exactly
one hole (and becoming simply connected after gluing this hole). In the
case of a Riemann sphere Σ0,4 with 4 holes, the fat–graph is represented
in Fig.2 (the fourth hole is the outside of the graph).

The geodesic length functions, which are traces of hyperbolic ele-
ments in the Fuchsian group Δg,n such that in Poincaré uniformisation:

Σg,n ∼ H/Δg,n,

are obtained by decomposing each hyperbolic matrix γ ∈ Δg,n into a
product of the so–called right, left and edge matrices: [13] [14]

R :=

(
1 1
−1 0

)
, L :=

(
0 1
−1 −1

)
,

Esi :=

(
0 − exp

(
si
2

)
exp

(− si
2

)
0

)
.(18)

Let us consider the closed geodesics γij encircling the i-th and j-th holes
without self intersections (for example γ12 is drawn in Fig.1), then their
geodesic length functions can be obtained as:

G23 = −Tr (REs2REp2REs2REs3REp3REs3R) ,

G31 = −Tr (LEs3REp3REs3REs1REp1REs1) ,(19)

G12 = −Tr (Es1REp1REs1REs2REp2REs2L) ,
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which leads to:3

G23 = −es2+s3 − e−s2−s3 − e−s2+s3 −G2e
s3 −G3e

−s2

G31 = −es3+s1 − e−s3−s1 − e−s3+s1 −G3e
s1 −G1e

−s3 ,(20)

G12 = −es1+s2 − e−s1−s2 − e−s1+s2 −G1e
s2 −G2e

−s1

where
Gi = e

pi
2 + e−

pi
2 , i = 1, 2, 3,

and
G∞ = es1+s2+s3 + e−s1−s2−s3 .

Due to the classical result that each conjugacy class in the fundamental
group P

1\{a1, a2, a3,∞} can be represented by a unique closed geodesic,
we can make the following identification:

(21) Gij := Tr (MiMj) ,

and indeed it is a straightforward computation to show thatG12, G23, G31

defined as in (20) indeed lie on the cubic (16).
Moreover, the Poisson algebra structure (17) is induced by the Poisson

algebras of geodesic length functions constructed in [3] by postulating
the Poisson relations on the level of the shear coordinates sα of the
Teichmüller space. In our case these are:

{s1, s2} = {s2, s3} = {s3, s1} = 1,

while the perimeters p1, p2, p3 are assumed to be Casimirs.
Since the parameterisation (20) is analytic in s1, s2, s3, we can com-

plexify s1, s2, s3 and G1, G2, G3, G∞ to claim that s1, s2, s3 ∈ C provide
a system of flat coordinates on the Friecke cubic (16).

2.4. Parameterisation of the monodromy group

In the case of monodromy matrices, Korotkin and Samtleben in [25]
proposed an r-matrix structure of the Fock–Rosly type [15] which did not
however satisfy Jacobi relations on monodromy matrices themselves but
became consistent on the level of adjoint invariant elements. Therefore
the problem of quantising the monodromy group remained open.

3Note that for simplicity we have actually shifted the shear coordinates
si → si +

pi
2
, i = 1, 2, 3
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In this section we show that thanks to the identification (21), we
can impose

M1 = Es1REp1REs1 ,

M2 = −REs2REp2REs2L,(22)

M3 = −LEs3REp3REs3R,

so that s1, s2, s3 ∈ C provide a system of flat coordinates on the mon-
odromy group, rather than only the monodromy manifold. This will
allow as to quantise as we shall see in subsection 3.

Theorem 2. Given any quadruple of diagonalisable matrices M1,M2,
M3,M∞ ∈ SL2(C), such that M1M2M3M∞ = I, the group 〈M1,M2,M3〉
is irreducible and none of the matrices M1,M2,M3,M∞ is a multiple of
the identity, we can find s1, s2, s3, p1, p2, p3 ∈ C such that the following
relations hold true (up to global conjugation and cyclic permutation):

M1 =

(
0 −es1

e−s1 −e
p1
2 − e−

p1
2

)
,

M2 =

( −e
p2
2 − e−

p2
2 − es2 −e

p2
2 − e−

p2
2 − es2 − e−s2

es2 es2

)
,

M3 =

( −e
p3
2 − e−

p3
2 − e−s3 −e−s3

e
p3
2 + e−

p3
2 + e−s3 + e−s3 e−s3

)
,

M∞ =

( −e−s1−s2−s3 0
s∞ −es1+s2+s3

)
,

where

s∞=
(
e

p3
2 +e−

p3
2

)
e−s1−s2+

(
e

p2
2 +e−

p2
2

)
e−s1+s3+

(
e

p1
2 +e−

p1
2

)
es2+s3

+ e−s1−s2−s3 + e−s1−s2+s3 + e−s1+s2+s3 .

Note that in this parameterisation

eigen(Mj)=−e±
pj
2 , j=1, 2, 3, so that Tr(Mi)=Gi=e

pi
2 +e−

pi
2 , i=1, 2, 3,

andM∞ = (M1M2M3)
−1

is not diagonal but has eigenvalues e±(s1+s2+s3).

§3. Quantisation

In [5] the proper quantum ordering for a special class of geodesic
functions corresponding to geodesics going around exactly two holes was
constructed and it was proved that for each such geodesic, the matrix
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entries of the corresponding element in the Fuchsian group satisfy a
deformed version of the quantum universal enveloping algebra Uq(sl2)
relations.

In this section we use the same quantum ordering for quantising
matrix elements of the monodromy group.

In [4], the quantum Painlevé cubic can be obtained by introducing
the Hermitian operators S1, S2, S3 subject to the commutation inherited
from the Poisson bracket of si:

[Si, Si+1] = iπ�{si, si+1} = iπ�, i = 1, 2, 3, i+ 3 ≡ i,

while the central elements, i.e. perimeters p1, p2, p3 and S1 + S2 + S3

remain non–deformed, so that the constants ω
(d)
i remain non-deformed

[4].
The Hermitian operators G�

23, G
�
31, G

�
12 corresponding to G23, G31,

G12 are introduced as follows: consider the classical expressions for G23,
G31, G12 is terms of s1, s2, s3 and p1, p2, p3. Write each product of expo-
nential terms as the exponential of the sum of the exponents and replace
those exponents by their quantum version, for example the classical G23

is
G23 = −es2+s3 − e−s2−s3 − e−s2+s3 −G2e

s3 −G3e
−s2 ,

and its quantum version is defined as

G�

23 = −eS2+S3 − e−S2−S3 − e−S2+S3 −G2e
S3 −G3e

−S2 .

Then G�
23, G

�
31, G

�
12 satisfy the following quantum algebra [4]:

q−1/2G�

12G
�

23 − q1/2G�

23G
�

12 = (q−1 − q)G�

13 + (q−1/2 − q1/2)ω2

q−1/2G�

23G
�

13 − q1/2G�

13G
�

23 = (q−1 − q)G�

12 + (q−1/2 − q1/2)ω3(23)

q−1/2G�

13G
�

12 − q1/2G�

12G
�

13 = (q−1 − q)G�

23 + (q−1/2 − q1/2)ω1

and satisfy the following quantum cubic relations:

C� = q−1/2G�

12G
�

23G
�

13 − q−1
(
G�

12

)2 − q
(
G�

23

)2 − q−1
(
G�

13

)2
−q−1/2ω3G

�

12 − q1/2ω1G
�

23 − q−1/2ω2G
�

13,(24)

where C� is a central element is the quantum algebra (23).
We now quantise the monodromy matrices in the same way:
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Theorem 3. The following matrices

M�

1 =

(
0 −eS1

e−S1 −e
p1
2 − e−

p1
2

)
,

M�

2 =

( −e
p2
2 − e−

p2
2 − eS2 −e

p2
2 − e−

p2
2 − eS2 − e−S2

eS2 eS2

)
,

M�

3 =

( −e
p3
2 − e−

p3
2 − e−S3 −e−S3

e
p3
2 + e−

p3
2 + e−S3 + e−S3 e−S3

)
,

M�

∞ =

( −e−S1−S2−S3 0
s�∞ −eS1+S2+S3

)
,

where

s�∞=
(
e

p3
2 +e−

p3
2

)
e−S1−S2+

(
e

p2
2 +e−

p2
2

)
e−S1+S3+

(
e

p1
2 +e−

p1
2

)
eS2+S3

+ e−S1−S2−S3 + e−S1−S2+S3 + e−S1+S2+S3 ,

are elements of SL(2,Tq) and satisfy the following relations :

(M�

1 + e
p1
2 I)(M�

1 + e
−p1
2 I) = 0,

(M�

2 + e
p2
2 I)(M�

2 + e
−p2
2 I) = 0,

(M�

3 + e
p2
2 I)(M�

3 + e
−p3
2 I) = 0,

(M�

∞ + eS1+S2+S3I)(M�

∞ + e−S1−S2−S3I) = 0,

M�

∞M�

1M
�

2M
�

3 = q−
1
2 I,(25)

where I is the 2× 2 identity matrix.

This theorem shows that we can interpret the Cherednik algebra
as quantisation of the group algebra of the monodromy group of the
sixth Painlevé equation, in fact the matrices defined by (6), (7), (8), (9)
are simply obtained as iM�

3 , iM
�
2 , iM

�
1 and iM�

∞ respectively so that
Theorem 1 can be stated as follows:

Theorem 4. The map:

(26) V0 → iM�

3 , V1 → iM�

2 , V̌1 → iM�

1 , V̌0 → iM�

∞,

where M�
1 ,M

�
2 ,M

�
3 ,M

�
∞ are defined as in (25), gives and embedding of

H into Mat(2,Tq). In other words, the matrices iM�
3 , iM

�
2 , iM

�
1 and

iM�
∞ in GL(2,Tq) satisfy the relations (1,2,3) and (4), in which the

quantum ordering is dictated by the matrix product ordering and

u1 = −ie−
p1
2 , k0 = −ie−

p3
2 , k1 = −ie−

p2
2 , u0 = −ie−S1−S2−S3 .
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Proof of Theorem 1. To prove this theorem, we use the fact that the
algebras H is the algebra generated by five elements T±1,X±1, Y ±1 with
the following relations:

XW = WX = 1,(27)

Y Z = ZY = 1,(28)

XT + abT−1W + a+ b = 0,(29)

ZT +
q

cd
T−1Y + 1 +

q

cd
= 0,(30)

(T + ab)(T + 1) = 0,(31)

Y X = − q

ab
T 2XY − q

(
1

a
+

1

b

)
TY −

(
1 +

cd

q

)
TX + (c+ d)T,(32)

where

a = −u1

k1
, b = u1k1, c = −√

q
k0
u0

, d =
√
qu0k0,

and
X =

√
qV0V̌0, Y = k0u1V̌1V0, T = u1V̌1,

and viceversa

V̌1 =
1

u1
T, V0 =

1

k0
T−1Y, V̌0 =

k0√
q
Y −1TX, V1 =

1

u1
TX−1.

We then use Theorem 5.2 from [27] to prove formulae (6,7,8,9). �
Q.E.D.

§4. Classical limit of the automorphisms of the Cherednik
algebra

In [9] the following action of the braid group on monodromy matrices
was proposed to describe the analytic continuation of solutions to the
sixth Painlevé equation:

β1(M1,M2,M3,M∞) = (M1M2M
−1
1 ,M1,M3,M∞),

β2(M1,M2,M3,M∞) = (M1,M2M3M
−1
2 ,M2,M∞).(33)

In [26], this action was expended by adding the following involution:

(34) r(M1,M2,M3,M∞) = (M−1
3 ,M−1

2 ,M−1
1 ,M−1

∞ ).

In this section we prove that this extended braid group action gives rise
to the automorphisms of the Cherednik algebra of type Č1C1 which were



Embedding of the rank 1 DAHA into Mat(2,Tq) 461

studied in [30, 34]. Here we list them as they appear in [31]:

σ(V̌1, V1, V0, V̌0) = (V0, V1, V
−1
1 V̌1V1, V0V̌0V

−1
0 ),(35)

τ(V̌1, V1, V0, V̌0) = (V̌1, V1, V0V̌0V
−1
0 , V0)(36)

η(V̌1, V1, V0, V̌0) = (V −1
1 V̌ −1

1 V1, V
−1
1 , V −1

0 , V0V̌
−1
0 V −1

0 ),(37)

π(V̌1, V1, V0, V̌0) = (V̌0, V̌1, V1, V0).(38)

Indeed by quantising (33) and (34) we obtain

β�

1 (V̌1, V1, V0, V̌0) = (V̌1V1V̌1
−1

, V̌1, V0, V̌0),

β�

2 (V̌1, V1, V0, V̌0) = (V̌1, V1V0V
−1
1 , V1, V̌0),

r�(V̌1, V1, V0, V̌0) = (V −1
0 , V −1

1 , V̌1
−1

, V̌ −1
0 ).

It is not hard to check that σ = β�
2β

�
1β

�
2 , τ = π2β�

1π
−2 and η =

r�β�
2β

�
1β

�
2 , so that we can claim that the automorphisms of the Chered-

nik algebra of type Č1C1 are indeed the quantisation of the extended
modular group action described in [9, 26].

The Painlevé sixth equation admits also an affine group of bi-rational
transformations as described in table 1:

θ1 θ2 θ3 θ∞ y t

w1 −θ1 θ2 θ3 θ∞ y t
w2 θ1 −θ2 θ3 θ∞ y t
w3 θ1 θ2 −θ3 θ∞ y t
w∞ θ1 θ2 θ3 2− θ∞ y t
wρ θ1 + ρ θ2 + ρ θ3 + ρ θ∞ + ρ y + ρ

p t

r1 θ∞ − 1 θ3 θ2 θ1 + 1 t/y t

r2 θ3 θ∞ − 1 θ1 θ2 + 1 t(y−1)
y−t t

r3 θ2 θ1 θ∞ − 1 θ3 + 1 y−t
y−1 t

π13 θ3 θ2 θ1 θ∞ 1− y 1− t
π1∞ θ∞ − 1 θ2 θ3 θ1 + 1 1/y 1/t

π12 θ2 θ1 θ3 θ∞ t−y
t−1

t
t−1

Table 1: Bi-rational transformations for Painlevé VI,
ρ = 2−θ1−θ2−θ3−θ∞

2 .

We note that w1, w2, w3, w∞ have no effect on the monodromy ma-
trices and therefore on the generators of H, while r1, r2, r3 act as com-
binations of cyclic permutations and the transformation r, while the
permutations π13, π1∞, π12 correspond to a combination of braids. The
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only transformation which does not have a simple explanation in terms
of monodromy matrices M1,M2,M3,M∞ is wρ, which was explained in
terms of isomonodromic deformations of a 3× 3 linear system with one
irregular singularity and one simple pole in [28]. On the parameters
(u1, u0, k1, k0) this transformation acts as follows:

(u1, u0, k1, k0) →
(

u1√
u1u0k1k0

,
u0√

u1u0k1k0
,

k1√
u1u0k1k0

,
k0√

u1u0k1k0

)

We postpone the computation of the action this automorphism on V0, V1,
V̌0, V̌1 to a subsequent publication, this will involve a quantum version
of the middle convolution operation discussed in [12].

§5. Embedding of the confluent Cherednik algebras into
Mat(2,Tq)

The confluent limits of the Cherednik algebra of type Č1C1 were
introduced in [27], in terms of a different presentation which is equivalent
to the following (see Theorem 3.2 in [27]):

Definition 5.1. Let k1, u0, u1, q ∈ C�, such that qm �= 1, m ∈
Z>0. The confluent Cherednik algebras HV ,HIV ,HIII ,HII ,HI are the
algebras generated by four elements V0, V1, V̌0, V̌1 satisfying the following
relations respectively:

• HV :

V 2
0 + V0 = 0,(39)

(V1 − k1)(V1 + k−1
1 ) = 0,(40)

V̌0
2
+ u−1

0 V̌0 = 0,(41)

(V̌1 − u1)(V̌1 + u−1
1 ) = 0,(42)

q1/2V̌1V1V0 = V̌0 + u−1
0 ,(43)

q1/2V̌0V̌1V1 = V0 + 1.(44)

• HIV :

V 2
0 + V0 = 0,(45)

V 2
1 + V1 = 0,(46)

V̌0
2
+

1

u0
V̌0 = 0,(47)

(V̌1 − u1)(V̌1 + u−1
1 ) = 0,(48)

q1/2V̌1V1V0 = V̌0 + u−1
0 ,(49)

V̌0V̌1V1 = 0,(50)

V0V̌0 = 0.(51)
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• HIII :

V 2
0 = 0,(52)

(V1 − k1)(V1 + k−1
1 ) = 0,(53)

V̌0
2
+

1√
q
V̌0 = 0,(54)

(V̌1 − u1)(V̌1 + u−1
1 ) = 0,(55)

q1/2V̌1V1V0 = V̌0 +
1√
q

(56)

q1/2V̌0V̌1V1 = V0.(57)

• HII :

V 2
0 + V0 = 0,(58)

V 2
1 = 0,(59)

V̌0
2
+ V̌0 = 0,(60)

(V̌1 − u1)(V̌1 + u−1
1 ) = 0,(61)

q1/2V̌1V1V0 = V̌0 + 1,(62)

V̌0V̌1V1 = 0,(63)

V0V̌0 = 0.(64)

• HI :

V 2
0 + V0 = 0,(65)

V 2
1 = 0,(66)

V̌0
2
+ V̌0 = 0,(67)

V̌1
2
+ V̌1 = 0,(68)

q1/2V̌1V1V0 = V̌0 + 1,(69)

V̌0V̌1 = 0,(70)

V0V̌0 = 0.(71)

All these algebras HV ,HIV ,HIII ,HII ,HI admit embeddings in
Mat(2,Tq) (see Theorems 5.2, 5.3, 5.4, 5.5 and 5.5 in [27]). Here we re-

port these embeddings for the generators V̌1, V1, V0, V̌0 in order to clarify
the confluence scheme in accordance with Figure 1. Note that in Figure
1, we also have the algebras HD7

III and HD8

III for which we don’t have a
Noumi Stokman [30] representation and for which we can’t prove the
embedding into Mat(2,Tq), so that the geometric explanation behind
these algebras remains conjectural.
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Theorem 5. The map:

(72) V0 →
( −1 0

1 + i eS3 0

)

(73) V1 →
(

k1 − k−1
1 − i eS2 k1 − k−1

1 − i e−S2 − i eS2

i eS2 i eS2

)

(74) V̌1 →
(

0 − ieS1

i e−S1 u1 − u−1
1

)

(75) V̌0 →
(

0 0

q
1
2 s − 1

u0

)
,

where

s = e−S1−S2 +

(
1

k1
− k1

)
e−S1+S3 +

(
1

u1
− u1

)
eS2+S3 + i e−S1−S2+S3

+ i e−S1+S2+S3 .

gives and embedding of HV into Mat(2,Tq). The images of V0, V̌0, V1, V̌1

in Mat(2,Tq) satisfy the relations (39), (40), (41), (42), (43), (44) in
which the quantum ordering is dictated by the matrix product ordering.

Theorem 6. The map:

(76) V0 →
( −1 0

1 + i eS3 0

)

(77) V1 →
( −1− i eS2 −1− i eS2

i eS2 i eS2

)

(78) V̌1 →
(

0 − ieS1

i e−S1 u1 − u−1
1

)

(79) V̌0 →
(

0 0

q
1
2 s − 1

u0

)
,

where

s = e−S1+S3 +

(
1

u1
− u1

)
eS2+S3 + i e−S1+S2+S3 .
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gives and embedding of HIV into Mat(2,Tq). The images of V0, V̌0, V1, V̌1

in Mat(2,Tq) satisfy the relations (45), (46), (47), (48), (49), (51) in
which the quantum ordering is dictated by the matrix product ordering.

Theorem 7. The map:

(80) V0 →
(

0 0
i eS3 0

)

(81) V1 →
(

k1 − k−1
1 − i eS2 k1 − k−1

1 − i e−S2 − i eS2

i eS2 i eS2

)

(82) V̌1 →
(

0 − ieS1

i e−S1 u1 − u−1
1

)

(83) V̌0 →
(

0 0

q
1
2 s −1

)
,

where

s = e−S1−S2 +

(
1

k1
− k1

)
e−S1+S3 +

(
1

u1
− u1

)
eS2+S3 + i e−S1−S2+S3

+ i e−S1+S2+S3 .

gives and embedding of HIII into Mat(2,Tq). The images of V0, V̌0, V1, V̌1

in Mat(2,Tq) satisfy the relations (52), (53), (54), (55), (56), (57), in
which the quantum ordering is dictated by the matrix product ordering.

Theorem 8. The map:

(84) V0 →
( −1 0

1 + i eS3 0

)

(85) V1 →
( −i eS2 −i eS2

i eS2 i eS2

)

(86) V̌1 →
(

0 − ieS1

0 −1

)

(87) V̌0 →
(

0 0

i
√
qe−S1eS2eS3 −√

q
(
u1 − 1

u1

)
eS2eS3 1

)
,
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gives and embedding of HII into Mat(2,Tq). The images of V0, V̌0, V1, V̌1

in Mat(2,Tq) satisfy the relations (58), (59), (60), (62), (63), (64), in
which the quantum ordering is dictated by the matrix product ordering.

Theorem 9. The map:

(88) V0 →
( −1 0

1 + i eS3 0

)

(89) V1 →
( −i eS2 −i eS2

i eS2 i eS2

)

(90) V̌1 →
(

0 − ieS1

0 −1

)

(91) V̌0 →
(

0 0

q
1
2 eS2eS3 1

)
,

gives and embedding of HI into Mat(2,Tq). The images of V0, V̌0, V1, V̌1

in Mat(2,Tq) satisfy the relations (65), (66), (67), (68), (69), (71), in
which the quantum ordering is dictated by the matrix product ordering.

Proof. The proof of this Theorem is very similar to the proof if
Theorem 8, and is therefore omitted. Q.E.D.

Acknowledgements. The author is specially grateful to P. Etingof, T.
Koornwinder, M. Noumi and J. Stokman for interesting discussions on
this subject.
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J. Geom. Phys. 85 (2014), 124–163.

[27] Mazzocco M., Confluences of the Painlevé equations, Cherednik algebras
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