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Remarks on τ -functions for the difference
Painlevé equations of type E8

Masatoshi Noumi

Abstract.

We investigate the structure of τ -functions for the elliptic differ-
ence Painlevé equation of type E8. Introducing the notion of ORG
τ -functions for the E8 lattice, we construct some particular solutions
which are expressed in terms of elliptic hypergeometric integrals. Also,
we discuss how this construction is related to the framework of lattice
τ -functions associated with the configuration of generic nine points in
the projective plane.

§ Introduction

There are several approaches to difference (or discrete) Painlevé
equations associated with the root system of type E8. In the geometric
approach of Sakai [15], there are three discrete Painlevé equations with

affine Weyl group symmetry of type E
(1)
8 , which may be called rational,

trigonometric and elliptic. They are formulated in the language of cer-
tain rational surfaces obtained from P

2 by blowing-up at generic nine
points, and regarded as master families of second order discrete Painlevé
equations. On the other hand, Ohta–Ramani–Grammaticos [11] intro-
duced the elliptic (difference) Painlevé equation of type E8 and its τ -
functions as a discrete system on the root lattice of type E8. Equivalence
of these two approaches has been clarified by Kajiwara et al. [4, 5] in the
framework of the birational affine Weyl group action on the configuration
space of generic nine points in P2 and the associated lattice τ -functions.
Besides these approaches, the elliptic Painlevé equation is interpreted as
the compatibility condition of certain linear difference equations in two
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ways by Rains [14] and by Noumi–Tsujimoto–Yamada [10]. Also, it is
known that the elliptic difference Painlevé equation has particular solu-
tions which are expressible in terms of elliptic hypergeometric functions
as in Kajiwara et al. [4], Rains [12, 14] and Noumi–Tsujimoto–Yamada
[10].

In this paper we introduce the notion of ORG τ -functions, which is a
reformulation of τ -functions associated with the E8 lattice proposed by
Ohta–Ramani–Grammaticos [11]. We fix a realization of the root lattice
P = Q(E8) of type E8 in the 8-dimensional complex vector space V = C

8

endowed with the canonical symmetric bilinear form (·|·) : V × V → C

(Section 1), and take a subset D ⊆ V such that D + Pδ = D, where
δ ∈ C

∗ is a nonzero constant. A function τ(x) defined on D is called
an ORG τ -function if it satisfies a system of non-autonomous Hirota
equations

(0.1) [(b± c|x)]τ(x±aδ)+ [(c±a|x)]τ(x± bδ)+ [(a± b|x)]τ(x± cδ) = 0

for all C3-frames {±a,±b,±c} relative to P (Section 2). Here [z] denotes
any nonzero entire function in z ∈ C which satisfies the three term
relation (2.1), and each double sign in (0.1) indicates the product of two
functions with different signs. When the domain D is a disjoint union

(0.2) Dc =
⊔
n∈Z

Hc+nδ, Hc+nδ =
{
x ∈ V

∣∣ (φ|x) = c+ nδ
}
,

of parallel hyperplanes perpendicular to φ = ( 12 ,
1
2 , . . . ,

1
2 ), each ORG

τ -function τ = τ(x) on Dc (of type E8) is regarded as an infinite chain
of ORG τ -functions τ (n) = τ |Hc+nδ

on Hc+nδ of type E7 (n ∈ Z) (Sec-
tion 3). We say that a meromorphic ORG τ -function τ(x) on Dc is a
hypergeometric τ -function if τ (n)(x) = 0 (n < 0) and τ (0)(x) �≡ 0. Sup-
posing that ω ∈ Ω is a period of [z], consider the case where D = Dω.
In such a case, on the basis of a recursion theorem (Theorem 3.3) one
can show that, if a given pair of functions τ (0)(x) (x ∈ Hω) and τ (1)(x)
(x ∈ Hω+δ) satisfies certain initial conditions, then there exists a unique
hypergeometric τ -function τ(x) (x ∈ Dω) having those τ (0)(x), τ (1)(x)
as the first two components (Theorem 4.2). Furthermore, if one can
specify a gauge factor for τ (1) with respect to a C3-frame of type II1,
then for each n = 0, 1, 2, . . . the nth component τ (n)(x) (x ∈ Hω+nδ)
of the hypergeometric τ -function is expressed in terms of a 2-directional
Casorati determinant with respect to the C3-frame of type II1 (Theorem
4.3). A proof of the recursion theorem (Thoerem 3.3) will be given in
Appendix A.



τ -Functions for the difference Painlevé equations of type E8 3

In the latter half of this paper, we apply our arguments to the
elliptic case for constructing hypergeometric ORG τ -functions which
are expressible in terms of elliptic hypergeometric integrals of Spiri-
donov [16, 17] and Rains [12, 13]. The fundamental elliptic hyperge-
ometric integral is the meromorphic function I(u; p, q) in eight variables
u = (u0, u1, . . . , u7) ∈ (C∗)8 defined by

(0.3) I(u; p, q) =
(p; p)∞(q; q)∞

4π
√−1

∫
C

∏7
k=0 Γ(ukz

±1; p, q)

Γ(z±2; p, q)

dz

z
.

After recalling basic facts concerning elliptic hypergeometric integrals in
Section 5, we present in Section 6 two types of explicit representations
for the W (E7)-invariant hypergeometric ORG τ -functions, one by de-
terminants (Theorem 6.1) and the other by multiple integrals (Theorem
6.2). Theorems 6.1 and 6.2 will be proved in Section 7. In particular we
show there how the 2-directional Casorati determinant gives rise to the
multiple elliptic hypergeometric integral of Rains [13]:

In(u; p, q) =
(p; p)n∞(q; q)n∞
2nn!(2π

√−1)n

·
∫
Cn

n∏
i=1

∏7
k=0 Γ(ukz

±1
i ; p, q)

Γ(z±2
i ; p, q)

∏
1≤i<j≤n

θ(z±1
i z±1

j ; p)
dz1 · · · dzn
z1 · · · zn .

(0.4)

We also give some remarks in Section 8 on variations of hypergeometric
ORG τ -functions obtained by transformations in Theorem 2.3.

In the final section, we discuss how the notion of ORG τ -functions
is related to that of lattice τ -functions as discussed by Kajiwara et al. [5]
in the context of the configuration space of generic nine points in P2.
Some remarks are also given on the similar picture in the case of the
configuration space of generic eight points in P1 × P1 as in Kajiwara–
Noumi–Yamada [6].

On this occasion I would like to give some personal comments on the
position of this paper. The contents of this paper are not completely
new, and many things presented here may be found in the literature.
In fact, in the group of coauthors of [5], basic structures of the ORG
τ -functions were already known around the end of 2004, including the
2-directional Casorati determinant representation of the hypergeometric
τ -functions. (Some part of our discussion is reflected in the work on
Masuda [8].) It was almost at the same time that Rains [12] clarified
that his multiple elliptic hypergeometric integrals (0.4) satisfy certain
quadratic relations of Hirota type that should be understood in the
context of the elliptic Painlevé equation. It took a couple of years,
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however, for us to be able to confirm that the 2-directional Casorati
determinants for a particular choice of C3-frame of type II1 certainly
give rise to the multiple elliptic hypergeometric integrals of Rains. As
to further delay in presenting the detail of such an argument, I apologize
just adding that it requires much more time and effort than might be
imagined to accomplish a satisfactory paper in the language of a cultural
sphere to which its author does not belong.
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§1. E8 lattice and Cl-frames

We begin by recalling some basic facts concerning the root lattice
of type E8.

Let V = C8 = Cv0 ⊕Cv1 ⊕ · · · ⊕Cv7 be the 8-dimensional complex
vector space with canonical basis {v0, v1, . . . , v7}, and (·|·) : V × V → C

the scalar product (symmetric bilinear form) such that (vi|vj) = δij
(i, j ∈ {0, 1, . . . , 7}). Setting
(1.1) φ = ( 12 ,

1
2 , . . . ,

1
2 ) =

1
2 (v0 + v1 + · · ·+ v7) ∈ V,

we realize the root lattice Q(E8) and the root system Δ(E8) of type E8

as
(1.2)
P =

{
a ∈ Z

8∪(φ+Z
8)

∣∣ (φ|a) ∈ Z
} ⊂ V, Δ(E8) =

{
α ∈ P

∣∣ (α|α) = 2
}
,

respectively (see [1] for instance). This set P forms a free Z-module
of rank 8 and the scalar product takes integer values on P . The theta
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series of the lattice P = Q(E8) is given by

(1.3)
∑
a∈P

q(a|a) = 1+240q2+2160q4+6720q6+17520q8+30240q10+· · · ,

and Δ(E8) consists of the following 240 vectors in P :
(1.4)
(1) ±vi ± vj (0 ≤ i < j ≤ 7) · · · (

8
2

) · 4 = 112,

(2) 1
2 (±v0 ± v1 ± · · · ± v7) (even number of − signs) · · · 27 = 128.

In this root system, we take the simple roots
(1.5)
α0 = φ−v0−v1−v2−v3, αj = vj−vj+1 (j = 1, . . . , 6), α7 = v7+v0

corresponding to the Dynkin diagram

(1.6) � � � � � � �

�

α1 α2 α3 α4 α5 α6 α7

α0

so that P = Q(E8) = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα7. (For mutually distinct
i, j ∈ {0, 1, . . . , 7}, (αi|αj) = −1 if the two nodes named αi and αj are
connected by an edge, and (αi|αj) = 0 otherwise.) The vector

(1.7) φ = 3α0 + 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7

is called the highest root with respect to the simple roots α0, α1, . . . , α7.
Note also that the weight lattice P (E8) coincides with the root lattice
Q(E8) in this E8 case.

For each α ∈ V with (α|α) �= 0, we define the reflection rα : V → V
with respect to α by

(1.8) rα(v) = v − (α∨|v)α (v ∈ V ),

where α∨ = 2α/(α|α). The Weyl group W (E8) = 〈rα (α ∈ Δ(E8))〉
of type E8 acts on V as a group of isometries; it stabilizes the root
lattice P = Q(E8) and the root system Δ(E8). We denote by sj = rαj

(j = 0, 1, . . . , 7) the simple reflections. Then, W (E8) = 〈s0, s1, . . . , s7〉 is
the Coxeter group associated with the Dynkin diagram (1.6). This group
is generated by s0, s1, . . . , s7 with fundamental relations s2j = 1 (j =
0, 1, . . . , 7), sisj = sjsi for distinct i, j ∈ {0, 1, . . . , 7} with (αi|αj) = 0
and sisjsi = sjsisj for distinct i, j ∈ {0, 1, . . . , 7} with (αi|αj) = −1.
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In the E8 lattice P = Q(E8), the root lattice Q(E7) and the root
system Δ(E7) of type E7 are realized as

Q(E7) =
{
a ∈ P

∣∣ (φ|a) = 0
}
= Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα6,

Δ(E7) =
{
α ∈ Δ(E8)

∣∣ (φ|α) = 0
}
,

(1.9)

respectively. The root system Δ(E7) consists of the following 126 vec-
tors:
(1.10)

(1) ±(vi − vj) (0 ≤ i < j ≤ 7) · · · (
8
2

) · 2 = 56,

(2) 1
2 (±v0 ± v1 ± · · · ± v7) (four − signs) · · · (

8
4

)
= 70.

The highest root of Δ(E7) with respect to the simple roots α0, α1, . . . , α6

is given by

(1.11) v1 − v0 = 2α0 + 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6.

We denote by W (E7) = 〈rα (α ∈ Δ(E7))〉 = 〈s0, s1, . . . , s6〉 the Weyl
group of type E7. Note that W (E7) contains the symmetric group S8 =
〈rv0−v1 , s1, . . . , s6〉 acting on V through the permutation of v0, v1, . . . , v7,
and is generated by this S8 together with the reflection s0 with respect
to α0 = φ− v0 − v1 − v2 − v3.

In this paper, the following notion of Cl-frames plays a fundamental
role.

Definition 1.1. For l = 1, 2, . . . , 8, a setA = {±a0,±a1, . . . ,±al−1}
of 2l vectors in V is called a Cl-frame (relative to P ), if the following
two conditions are satisfied:

(1) (ai|aj) = δij (0 ≤ i, j < l),

(2) ai ± aj ∈ P (0 ≤ i < j < l), 2ai ∈ P (0 ≤ i < l).

This condition for A = {±a0, . . . ,±al−1} means that the set of 2l2

vectors

(1.12) ΔA(Cl) =
{±ai±aj

∣∣ 0 ≤ i < j < l)
}∪{± 2ai

∣∣ 0 ≤ i < l
} ⊂ P

form a root system of type Cl. For l = 1, 2, . . . , 8, we denote by Cl the
set of all Cl-frames.
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Example 1.2 (Typical examples of C8-frames).

(0) A0 = {±v0,±v1, . . . ,±v7}.
(1) A1 = {±a0,±a1, . . . ,±a7},

a0 = 1
2 (v0 + v1 + v2 + v3), a4 = 1

2 (v4 − v5 − v6 + v7),

a1 = 1
2 (v0 + v1 − v2 − v3), a5 = 1

2 (−v4 + v5 − v6 + v7),

a2 = 1
2 (v0 − v1 + v2 − v3), a6 = 1

2 (−v4 − v5 + v6 + v7),

a3 = 1
2 (v0 − v1 − v2 + v3), a7 = 1

2 (v4 + v5 + v6 + v7).

(2) A2 = {±a0,±a1, . . . ,±a7},
a0 = 1

2 (φ+ v0 − v7), a7 = 1
2 (φ− v0 + v7),

aj = vj +
1
2 (v0 + v7 − φ) (j = 1, . . . , 6).

In the following, we denote by N(v) = (v|v) the square norm of
v ∈ V , and by ϕ(v) = (φ|v) the scalar product of v with φ. Also, for a
subset S ⊆ V given, we use the notations
(1.13)
SN=k =

{
v ∈ S

∣∣ (v|v) = k
}
, Sϕ=k =

{
v ∈ S

∣∣ (φ|v) = k
}

(k ∈ C)

to refer to the level sets of N and ϕ respectively.
Note that each Cl-frame (l = 1, 2, . . . , 8) is formed by vectors in

( 12P )N=1 = 1
2 (PN=4). The set PN=4 of all vectors in P with square

norm 4 consists of the following 2160 vectors that are classified into
three groups under the action of the symmetric group S8:
(1.14)
(0) ±2v0 · · · 8 · 2 = 16,

(1) ±v0 ± v1 ± v2 ± v3 · · · (
8
4

) · 24 = 1120,

(2) 1
2 (±3v0 ± v1 ± · · · ± v7) (odd number of − signs) · · · 8 · 27 = 1024.

The Weyl group W (E8) acts on PN=4 transitively. In fact we have
PN=4∩P+ = {φ−v0+v1}, where P+ =

{
v ∈ P

∣∣ (αj |v) ≥ 0(0 ≤ j ≤ 7)
}

stands for the cone of dominant integral weights. It turns out that the
stabilizer of φ− v0 + v1 is W (D7) and that

(1.15) PN=4
∼← W (E8)/W (D7), |PN=4| = |W (E8)/W (D7)| = 2160.

The following two propositions can be verified directly on the basis of
this transitive action of W (E8) on PN=4.

Proposition 1.3.

(1) For each a ∈ ( 12P )N=1, there exists a unique C8-frame containing a.
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(2) The set ( 12P )N=1 is the disjoint union of all C8-frames: ( 12P )N=1 =⊔
A∈C8

A.

(3) The number of C8-frames is given by |C8| = 2160/16 = 135. �

Proposition 1.4. Fix a positive integer l ∈ {1, . . . , 8}.
(1) The Weyl group W (E8) acts transitively on the set Cl of all Cl-
frames.

(2) Each Cl-frame is contained in a unique C8-frame.

(3) The number of Cl-frames is given by |Cl| = 135 · (8l). �

§2. ORG τ-functions

In this section we introduce the notion of ORG τ -functions, which
is a reformulation of τ -functions associated with the E8 lattice proposed
by Ohta–Ramani–Grammaticos [11].

We fix once for all a nonzero entire function [z] in z ∈ C satisfying
the three-term relation

(2.1) [β±γ][z±α]+[γ±α][z±β]+[α±β][z±γ] = 0 (z, α, β, γ ∈ C).

Throughout this paper, we use the abbreviation [α±β] = [α+β][α−β]
with a double sign indicating the product of two factors. From (2.1)
it follows that that [z] is an odd function ([−z] = −[z], [0] = 0). We
remark that the three-term relation (2.1) can be written alternatively as

(2.2) [z±α][w±β]− [z±β][w±α] = [z±w][α±β] (z, w, α, β ∈ C),

or

(2.3)
[z ± α]

[z ± β]
− [w ± α]

[w ± β]
=

[z ± w][α± β]

[z ± β][w ± β]
(z, w, α, β ∈ C).

It is known that the functional equation (2.1) for [z] implies that the
set of zeros Ω =

{
ω ∈ C

∣∣ [ω] = 0
}
form a closed discrete subgroup of

the additive group C. Furthermore, such a function [z] belongs to one of
the following three classes, rational, trigonometric or elliptic, according
to the rank of Ω ([19]):
(2.4)
(0) rational : [z] = e(c0z

2 + c1) z (Ω = 0),
(1) trigonometric : [z] = e(c0z

2 + c1) sin(πz/ω1) (Ω = Zω1),
(2) elliptic : [z] = e(c0z

2 + c1)σ(z|Ω) (Ω = Zω1 ⊕ Zω2),

where e(z) = e2π
√−1z, and c0, c1 ∈ C. In the elliptic case, Ω is generated

by complex numbers ω1, ω2 which are linearly independent over R, and
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σ(z|Ω) stands for the Weierstrass sigma function associated with the
period lattice Ω = Zω1 ⊕ Zω2. In the trigonometric and elliptic cases,
[z] is quasi-periodic with respect to Ω in the following sense:

(2.5) [z + ω] = εωe(ηω(z +
ω
2 ))[z] (ω ∈ Ω),

where ηω ∈ C (ω ∈ Ω) are constants such that ηω+ω′ = ηω +ηω′ (ω, ω′ ∈
Ω), and εω = +1 or −1 according as ω ∈ 2Ω or ω �∈ 2Ω.

In what follows we fix a nonzero constant δ ∈ C such that Zδ ∩Ω =
{0}. Let D be a subset of V = C8 stable under the translation by Pδ,
namely D + Pδ = D.

Definition 2.1. A function τ(x) defined over D is called an ORG
τ -function if it satisfies the non-autonomous Hirota equations
(2.6)
H(a, b, c) : [(b±c|x)]τ(x±aδ)+[(c±a|x)]τ(x±bδ)+[(a±b|x)]τ(x±cδ) = 0

for all C3-frames {±a,±b,±c} relative to P .

A C3-frame {±a,±b,±c} defines an octahedron in V of which the
twelve edges and the three diagonals are vectors in the E8 lattice P .
Hence, if one of the six vertices {x ± aδ, x ± bδ, x ± cδ} belongs to D,
the other five belong to D as well by the property of a C3-frame. Also,
by Proposition 1.4 the number of C3-frames is |C3| = 135 · (83) = 7560.
Hence, the equation to be satisfied by an ORG τ -function is a system of
7560 non-autonomous Hirota equations, which we call the ORG system
of type E8. (A bilinear equation of the form (2.6) is also called a Hirota-
Miwa equation.)

In Definition 2.1, as the independent variables of τ(x) one can take
both discrete and continuous variables. The two extreme cases of the
domain D are:

(2.7) (1) D = v + Pδ (fully discrete), (2) D = V (fully continuous).

There are intermediate cases where D is a disjoint union of a countable
family of affine subspaces. In such cases, we assume that τ(x) is a
holomorphic (or meromorphic) function on D.

Proposition 2.2. For any constant c ∈ C, the entire function

(2.8) τ(x) = [ 1
2δ (x|x) + c] (x ∈ V )

is an ORG τ -function on V .
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x+ aδ

x− aδ

x+ bδx− bδ

x+ cδ

x− cδ

x

[(b± c|x)]τ(x± aδ) + [(c± a|x)]τ(x± bδ) + [(a± b|x)]τ(x± cδ) = 0

Fig. 1. Non-autonomous Hirota equation

Proof. Noting that τ(x± aδ) = [ 1
2δ (x|x) + δ

2 + c± (a|x)], set

(2.9) z = 1
2δ (x|x) + δ

2 + c, α = (a|x), β = (b|x), γ = (c|x).
Then the Hirota equation H(a, b, c) reduces to the functional equation
(2.1). Q.E.D.

The ORG τ -function (2.8) can be regarded as the canonical solution of
the ORG system. We give below some remarks on transformations of
an ORG τ -function.

Theorem 2.3. Let D be a subset of V with D+Pδ = D, and τ(x)
an ORG τ -function on D.
(1) (Multiplication by an exponential function ) For any constants k, c ∈
C, any vector v ∈ V and ε = ±1, the function

(2.10) τ̃(x) = e
(
k(x|x) + (v|x) + c

)
τ(εx) (x ∈ εD)

is an ORG τ -function on εD.
(2) (Transformation by W (E8) ) For any w ∈ W (E8), the function w.τ
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defined by

(2.11) (w.τ)(x) = τ(w−1.x) (x ∈ w.D)

is an ORG τ -function on w.D.
(3) (Translation by a period ) For any period ω ∈ Ω and any v ∈ P , the
function τ̃ defined by

τ̃(x) = e(S(x; v, ω))τ(x− vω) (x ∈ D + vω),

S(x; v, ω) = ηω

2δ2 (v|x)(x|x− vω),
(2.12)

is an ORG τ -function on D + vω.

Proof. Since Statements (1) and (2) are straightforward, we give a
proof of (3) only. Set y = x− vω ∈ D so that

(2.13) [(b± c|x)]τ̃(x± aδ) = [(b± c|y+ vω)]e(S(x± aδ; v, ω))τ(y± aδ).

Since

[(b+ c|y + vω)] = [(b+ c|y) + (b+ c|v)ω]
= ε(b+c|v)ωe(ηω(b+ c|v)(b+ c|y + v ω

2 ))[(b+ c|y)],

(2.14)

we have

[(b± c|y + vω)]

= ε(b+c|v)ωε(b−c|v)ω[(b± c|y)]e (2ηω((b|v)b+ (c|v)c|y + v ω
2 )
)

= ε(b+c|v)ωε(b−c|v)ω[(b± c|y)]e (2ηω((b|v)b+ (c|v)c|x− v ω
2 )
)
.

(2.15)

On the other hand,

S(x+ aδ; v, w) + S(x− aδ; v, w)

= ηω

δ2 (v|x)
(
(v|x− vω) + δ2

)
+ 2ηω(a|v)(a|x− v ω

2 ).
(2.16)

This implies

[(b± c|x)]τ̃(x± aδ)

= ε(b+c|v)ωε(b−c|v)ω[(b± c|y)]τ(y ± aδ)e
(
ηω

δ2 (v|x)((v|x− vω) + δ2)
)

· e(2ηω((a|v)a+ (b|v)b+ (c|v)c|x− v ω
2 )
)
.

(2.17)

Hence, validity of the Hirota equation for τ̃(x) reduces to proving

(2.18) ε(b+c|v)ωε(b−c|v)ω = ε(c+a|v)ωε(c−a|v)ω = ε(a+b|v)ωε(a−b|v)ω.
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Since this holds trivially for ω ∈ 2Ω, we assume ω /∈ 2Ω. In view of
the transitive action of W (E8) on C3, we may assume {±a,±b,±c} =
{±v0,±v1,±v2}. Then, for distinct i, j ∈ {0, 1, 2}, we have

(2.19)
v ∈ Z

8 =⇒ (vi + vj |v) ≡ (vi − vj |v) mod 2,

v ∈ φ+ Z
8 =⇒ (vi + vj |v) �≡ (vi − vj |v) mod 2.

Since

(2.20) εkωεlω =

{
+1 (k ≡ l mod 2),

−1 (k �≡ l mod 2)

for ω /∈ 2Ω, ε(vi+vj |v)ωε(vi−vj |v)ω takes the value +1 or −1 according as

v ∈ P belongs to Z
8 or φ + Z

8, regardless of the choice of the pair i, j.
This completes the proof of (3). Q.E.D.

We remark that the composition of two translations of (3) by aω
and by b ω for a, b ∈ P and ω ∈ Ω results essentially in the same trans-
formation as the translation by (a+ b)ω. In fact we have

e(S(x; b ω)e(S(x− b ω; a, ω))τ(x− (a+ b)ω)

= e(k(x|x) + (v|x) + c)S(x; a+ b, ω)τ(x− (a+ b)ω)
(2.21)

for some k, c ∈ C and v ∈ V .

§3. E8 τ-function as an infinite chain of E7 τ-functions

Recall that the root lattice Q(E7) of type E7 is the orthogonal com-
plement of φ in P = Q(E8). In what follows, we denote by

(3.1) Hκ =
{
x ∈ V

∣∣ (φ|x) = κ
}

(κ ∈ C)

the hyperplanes in V defined as the level sets of ϕ = (φ|·). Fixing a
constant c ∈ C, we now consider the case where the domain D of an
ORG τ -function is a disjoint union of parallel hyperplanes

(3.2) Dc =
⊔
n∈Z

Hc+nδ.

Note that each component Hc+nδ (n ∈ Z) is invariant under the action
of W (E7) and the translation by Q(E7)δ, and that the whole set D is
invariant under the translation by Q(E8)δ. In this situation, we regard a
function τ(x) on Dc as an infinite family of functions τ (n)(x) on Hc+nδ

(n ∈ Z) defined by restriction as τ (n) = τ
∣∣
Hc+nδ

for n ∈ Z. In order
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to investigate the system of Hirota equations for τ (n)(x) (n ∈ Z), we
classify them under the action of the Weyl group W (E7).

For a Cl-frameA = {±a0, . . . ,±al−1} given, we consider themultiset

(3.3) ϕ(A) = {±ϕ(a0), . . . ,±ϕ(al−1)},
where ϕ(v) = (φ|v) (v ∈ V ). As to the three C8-frames of Example 1.2,
we have

(3.4) ϕ(A0) = {(± 1
2 )

8}, ϕ(A1) = ϕ(A2) = {(±1)2, 012}.
Here the symbol cn (resp. (±c)n) indicates that c appears (resp. both
+c and −c appear) with multiplicity n in the multiset. We say that
a C8-frame is of type I if ϕ(A) = {(± 1

2 )
8}, and of type II if ϕ(A) =

{(±1)2, 012}.

(3.5) C8-frame of type I

�
ϕ

C8-frame of type II

Proposition 3.1. Any C8-frame is either of type I or of type II.
Furthermore, these two types give the decomposition of the set C8 of all
C8-frames into W (E7)-orbits :

C8 = C8,I � C8,II, |C8,I| = 72, |C8,II| = 63;

C8,I = W (E7)A0, C8,II = W (E7)A1 = W (E7)A2.
(3.6)

In order to analyze theW (E7)-orbits in C8, we first decompose PN=4

into W (E7)-orbits. As a result, PN=4 decomposes into the form
(3.7)
PN=4 = PN=4,ϕ=2 � PN=4,ϕ=1 � PN=4,ϕ=0 � PN=4,ϕ=−1 � PN=4,ϕ=−2,

and each level set of ϕ forms a single W (E7)-orbit. The five W (E7)-
orbits are described as follows.
(3.8)

ϕ 2 1 0 −1 −2

representative φ−v0+v1 φ−2v0 φ−2v0−v6−v7 −2v0 −φ−v0+v1

stabilizer W (D6) W (A6) W (D5 ×A1) W (A6) W (D6)

cardinality 126 576 756 576 126
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The “representative” indicates a unique vector v in the orbit such that
(αj |v) ≥ 0 (j = 0, 1, . . . , 6). According to this decomposition of PN=4,
( 12P )N=1 = 1

2 (PN=4) decomposes into the five W (E7)-orbits with ϕ =

1, 1
2 , 0,− 1

2 ,−1. Proposition 3.1 follows from the fact that 1
2φ−v0 and v0

belong to C8-frames of type I, and 1
2 (φ−v0+v1),

1
2 (φ−v6−v7)−v0, and

1
2 (−φ− v0 + v1) to those of type II. Note that, among the 63 C8-frames
of type II, 35 are obtained from A1, and 28 from A2 of Example 1.2 by
the action of the symmetric group S8 ⊂ W (E7).

We remark that in any C8-frame {±a0,±a1, . . . ,±a7} with

(3.9) (I) : (φ|aj) = 1
2 (j = 0, 1, . . . , 7),

we have 1
2 (a0+a1+· · ·+a7) = φ. Also, in any C8-frame {±a0,±a1, . . . ,±a7}

with

(3.10) (II) : (φ|a0) = (φ|a7) = 1, (φ|aj) = 0 (j = 1, . . . , 6),

we have a0 + a7 = φ. Since these statements are W (E7)-invariant, by
Proposition 3.1 we have only to check the cases of A0 and A1 of Example
1.2, respectively.

By Proposition 1.4, each C3-frame is contained in a unique C8-frame.
Hence, by Proposition 3.1 we obtain the following classification of C3-
frames.

Proposition 3.2. The set C3 of all C3-frames decomposes into four
W (E7)-orbits :

(3.11) C3 = C3,I � C3,II0 � C3,II1 � C3,II2 .
These four W (E7)-orbits are characterized as follows.

(3.12)

type I II0 II1 II2

ϕ (± 1
2 )

3 06 (±1) 04 (±1)2 02

cardinality 56 · 72 20 · 63 30 · 63 6 · 63
According to the four types of C3-frames, the Hirota equations for

τ (n)(x) are classified as follows. For each C3-frame {±a0,±a1,±a2} of
type I with

(3.13) (I) : (φ|a0) = (φ|a1) = (φ|a2) = 1
2 ,

the Hirota equation H(a0, a1, a2) takes the form

(I)n+1/2 : [(a1 ± a2|x)]τ (n)(x−a0δ)τ
(n+1)(x+a0δ)

+ [(a2 ± a0|x)]τ (n)(x−a1δ)τ
(n+1)(x+a1δ)

+ [(a0 ± a1|x)]τ (n)(x−a2δ)τ
(n+1)(x+a2δ) = 0

(3.14)
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����
����

(I)

��������� ���

(II0)

��������� ���

(II1)

�
��

	
		

	
		

�
��

(II2)�


 


ϕ

56 · 72 = 4032 20 · 63 = 1260 30 · 63 = 1890 6 · 63 = 378

Fig. 2. Four types of 7560 C3-frames

for x ∈ Hc+(n+1/2)δ. This bilinear equation describes the relation-

ship (Bäcklund transformation) between the two τ -functions τ (n)(x) and
τ (n+1)(x) on Hc+nδ and Hc+(n+1)δ, respectively. When {±a0,±a1,±a2}
is C3-frame of type II0, II1, II2, we choose a0, a1, a2 so that

(II0) : (φ|a0) = (φ|a1) = (φ|a2) = 0,

(II1) : (φ|a0) = 1, (φ|a1) = (φ|a2) = 0,

(II2) : (φ|a0) = (φ|a1) = 1, (φ|a2) = 0.

(3.15)

Then the corresponding Hirota equations are given by

(II0)n : [(a1 ± a2|x)]τ (n)(x± a0δ) + [(a2 ± a0|x)]τ (n)(x± a1δ)

+ [(a0 ± a1|x)]τ (n)(x± a2δ) = 0,

(II1)n : [(a1 ± a2|x)]τ (n−1)(x− a0δ)τ
(n+1)(x+ a0δ)

= [(a0 ± a2|x)]τ (n)(x± a1δ)− [(a0 ± a1|x)]τ (n)(x± a2δ),

(II2)n : [(a1 ± a2|x)]τ (n−1)(x− a0δ)τ
(n+1)(x+ a0δ)

− [(a0 ± a2|x)]τ (n−1)(x− a1δ)τ
(n+1)(x+ a1δ)

= [(a1 ± a0|x)]τ (n)(x± a2δ)

(3.16)

for x ∈ Hc+nδ. Note that the Hirota equation of type (II0)n is an
equation for τ (n)(x) on Hc+nδ only, while those of types (II1)n and (II2)n
are equations among the three τ -functions τ (n−1)(x), τ (n)(x), τ (n+1)(x).
A bilinear equation of type (II1)n can be regarded as a discrete version
of the Toda equation.

For each n ∈ Z, the system of 1260 Hirota equations (II0)n for
τ (n)(x) on Hc+nδ can be regarded as an ORG system of type E7. In this
way, the whole ORG system of type E8 for τ(x) on Dc can be regarded
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as an infinite chain of ORG systems of type E7 for τ (n)(x) on Hc+nδ

(n ∈ Z).

Theorem 3.3. For an integer n ∈ Z, let τ (n−1)(x) and τ (n)(x) be
meromorphic functions on Hc+(n−1)δ and Hc+nδ, respectively. Suppose

that τ (n−1)(x) �≡ 0 and that the following two conditions are satisfied :

(A1): τ (n−1)(x) and τ (n)(x) satisfy all the bilinear equations of type
(I)n−1/2.

(A2): τ (n)(x) satisfies all the bilinear equations of type (II0)n.

Then there exists a unique meromorphic function τ (n+1)(x) on Hc+(n+1)δ

such that

(B): τ (n−1)(x), τ (n)(x), τ (n+1)(x) satisfy all the bilinear equations
of type (II1)n.

Furthermore, this τ (n+1)(x) satisfies the following conditions :

(C1): τ (n−1)(x), τ (n)(x), τ (n+1)(x) satisfy all the bilinear equations
of type (II2)n.

(C2): τ (n)(x), τ (n+1)(x) satisfy all the bilinear equations of type
(I)n+1/2.

(C3): τ (n+1)(x) satisfies all the bilinear equations of type (II0)n+1.

This theorem can be proved essentially by the same argument as
that of Masuda [8, Section 3]. For completeness, we include a proof of
Theorem 3.3 in Appendix A.

§4. Hypergeometric ORG τ-functions

Keeping the notations in the previous section, we consider an ORG
τ -function τ = τ(x) on

(4.1) Dc =
⊔
n∈Z

Hc+nδ, Hc+nδ =
{
x ∈ V

∣∣ (φ|x) = c+ nδ
}

(n ∈ Z),

where c ∈ C. For each n ∈ Z we denote by τ (n) = τ
∣∣
Hc+nδ

the restriction

of τ to Hc+nδ.

Definition 4.1. A meromorphic ORG τ -function τ(x) on Dc is
called a hypergeometric τ -function if τ (n)(x) = 0 for n < 0, and τ (0)(x) �≡
0.

We now apply Theorem 3.3 for constructing hypergeometric τ -func-
tions. Since τ (−1)(x) = 0 (x ∈ Hc−δ), for any C8-frame {±a0, . . . ,±a7}
of type II with

(4.2) (φ|a0) = (φ|a7) = 1, (φ|ai) = 0 (i = 1, . . . , 6),
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τ (0)(x) (x ∈ Hc) must satisfy the following three types of equations:

(II2)0 : [(a0 ± a7|x)]τ (0)(x± aiδ) = 0,

(II1)0 : [(ar ± aj |x)]τ (0)(x± aiδ) = [(ar ± ai|x)]τ (0)(x± ajδ),

(II0)0 : [(aj ± ak|x)]τ (0)(x± aiδ) + [(ak ± ai|x)]τ (0)(x± ajδ)

+ [(ai ± aj |x)]τ (0)(x± akδ) = 0,

(4.3)

where r = 0, 7 and i, j, k ∈ {1, . . . , 6}. Noting that a0 + a7 = φ, in order
to fulfill (II2)0 for any C8-frame of type II, we consider the case where
c = ω ∈ Ω is a period of [z], so that [(a0 + a7|x)] = [(φ|x)] = [ω] = 0.
Equations of type (II0)0 follow from those of type (II0)1. In fact, since

(4.4) τ (0)(x± ajδ) =
[(a0 ± aj |x)]
[(a0 ± ak|x)]τ

(0)(x± akδ)

for any distinct j, k ∈ {1, . . . , 6}, equations (II0)0 reduce to the func-
tional equation (2.1) of [z].

Theorem 4.2. Let ω ∈ Ω be a period of the function [z]. Let
τ (0)(x) and τ (1)(x) be nonzero meromorphic functions on Hω and Hω+δ,
respectively. Suppose that

(4.5)
τ (0)(x± a1δ)

τ (0)(x± a2δ)
=

[(a0 ± a1|x)]
[(a0 ± a2|x)] (x ∈ Hω)

for any C3-frame {±a0,±a1,±a2} of type II1 with (φ|a0) = 1, and

[(a1 ± a2|x)]τ (0)(x− a0δ)τ
(1)(x+ a0δ)

+ [(a2 ± a0|x)]τ (0)(x− a1δ)τ
(1)(x+ a1δ)

+ [(a0 ± a1|x)]τ (0)(x− a2δ)τ
(1)(x+ a2δ) = 0 (x ∈ Hω+δ/2)

(4.6)

for any C3-frame {±a0,±a1,±a2} with (φ|a0) = (φ|a1) = (φ|a2) = 1
2 .

Then there exists a unique hypergeometric τ -function τ = τ(x) on Dω

such that τ (n)(x) = 0 for n < 0 and

(4.7) τ (0)(x) = τ(x) (x ∈ Hω), τ (1)(x) = τ(x) (x ∈ Hω+δ).

Proof. We apply Theorem 3.3 to nonzero meromorphic functions
τ (n−1)(x), τ (n)(x) on Hω+(n−1)δ, Hc+nδ, for constructing τ (n+1)(x) on
Hω+(n+1)δ recursively for n = 1, 2, . . .. At each step, we need to show

that the meromorphic function τ (n+1)(x) determined by Theorem 3.3 is
not identically zero. If τ (n+1)(x) ≡ 0, the bilinear equations (II2)n imply

(4.8) [(a0 ± a1|x)]τ (n)(x± a2δ) = 0 (x ∈ Hω+nδ)
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Fig. 3. 2-Directional Casorati determinants

for any C3-frame {±a0,±a1,±a2} of type II2 with (φ|a0) = (φ|a1) = 1,
(φ|a2) = 0. Since a0 + a1 = φ, [(a0 + a1|x)] = [ω + nδ] �= 0. Also, since
[(a0 − a1|x)] �≡ 0, we have τ (n)(x ± a2δ) = 0 and hence τ (n)(x) ≡ 0 on
Hω+nδ, contrarily to the hypothesis. Q.E.D.

We now fix a C3-frame {±a0,±a1,±a2} of type II1 with (φ|a0) = 1,
(φ|a1) = (φ|a2) = 0. Then the τ -functions τ (n) on Hω+nδ for n = 2, 3, . . .
are uniquely determined by the bilinear equations

(II1)n : [(a1 ± a2|x)]τ (n−1)(x− a0δ)τ
(n+1)(x+ a0δ)

= [(a0 ± a2|x)]τ (n)(x± a1δ)− [(a0 ± a1|x)]τ (n)(x± a2δ)

(4.9)

of Toda type. From this recursive structure, it follows that the τ -
functions τ (n)(x) are expressed in terms of 2-directional Casorati de-
terminants.

Theorem 4.3. Under the assumption of Theorem 4.2, suppose that
τ (1)(x) on Hω+δ is expressed in the form τ (1)(x) = g(1)(x)ψ(x) with a
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nonzero meromorphic function g(1)(x) such that

(4.10)
g(1)(x± a1δ)

g(1)(x± a2δ)
=

[(a0 ± a1|x)]
[(a0 ± a2|x)] (x ∈ Hω+δ).

for a C3-frame {±a0,±a1,±a2} of type II1 with (φ|a0) = 1, (φ|a1) =
(φ|a2) = 0. Then the components τ (n)(x) of the hypergeometric τ -
function τ(x) are expressed as follows in terms of 2-directional Casorati
determinants :

τ (n)(x) = g(n)(x)K(n)(x),

K(n)(x) = det
(
ψ
(n)
ij (x)

)n
i,j=1

(x ∈ Hω+nδ)
(4.11)

for n = 0, 1, 2, . . ., where

(4.12) ψ
(n)
ij (x) = ψ(x− (n− 1)a0δ + (n+ 1− i− j)a1δ + (j − i)a2δ)

for i, j = 1, . . . , n. The gauge factors g(n)(x) are determined inductively
from g(0)(x) = τ (0)(x) and g(1)(x) by

(4.13)
g(n−1)(x− a0δ)g

(n+1)(x+ a0δ)

g(n)(x± a1δ)
=

[(a0 ± a2|x)]
[(a1 ± a2|x)] (x ∈ Hω+nδ)

for n = 1, 2, . . ..

Lemma 4.4. The gauge factors g(n)(x) (x ∈ Hω+nδ) defined by
(4.13) satisfy

(4.14)
g(n)(x± a1δ)

g(n)(x± a2δ)
=

[(a0 ± a1|x)]
[(a0 ± a2|x)] (n = 0, 1, 2, . . .).

Proof. Formulas (4.14) for n = 0, 1 are included in the assumption
for g(0)(x) = τ (0)(x) and g(1)(x). For n = 1, 2, . . ., we show inductively
that g(n+1)(x) defined by (4.13) satisfies this condition. From (4.14) for
g(n)(x), we have

g(n+1)(x+ a0δ) =
[(a0 ± a2|x)]
[(a1 ± a2|x)]

g(n)(x± a1δ)

g(n−1)(x− a0δ)

=
[(a0 ± a1|x)]
[(a1 ± a2|x)]

g(n)(x± a2δ)

g(n−1)(x− a0δ)

(4.15)

and hence

g(n+1)(x) =
[(a0 ± a2|x)− δ]

[(a1 ± a2|x)]
g(n)(x− a0δ ± a1δ)

g(n−1)(x− 2a0δ)

=
[(a0 ± a1|x)− δ]

[(a1 ± a2|x)]
g(n)(x− a0δ ± a2δ)

g(n−1)(x− 2a0δ)
.

(4.16)
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From these two expressions of g(n+1)(x) we obtain

g(n+1)(x± a2δ) =
[(a0 ± a2|x)][(a0 ± a2|x)−2δ]

[(a1 ± a2|x)± δ]

g(n)(x−a0δ ± a1δ ± a2δ)

g(n−1)(x− 2a0δ ± a2δ)

g(n+1)(x± a1δ) =
[(a0 ± a1|x)][(a0 ± a1|x)−2δ]

[(a1 ± a2|x)± δ]

g(n)(x−a0δ ± a1δ ± a2δ)

g(n−1)(x− 2a0δ ± a1δ)
.

(4.17)

Then by (4.14) for g(n−1)(x) we obtain

g(n+1)(x± a1δ)

g(n+1)(x± a2δ)
=

[(a0 ± a1|x)][(a0 ± a1|x)− 2δ]

[(a0 ± a2|x)][(a0 ± a2|x)− 2δ]

g(n−1)(x− 2a0δ ± a2δ)

g(n−1)(x− 2a0δ ± a1δ)

=
[(a0 ± a1|x)]
[(a0 ± a2|x)]

(4.18)

as desired. Q.E.D.

Proof of Theorem 4.3. Using the gauge factors g(n)(x) defined as
above, we set

(4.19) τ (0)(x) = g(0)(x), τ (1)(x) = g(1)(x)ψ(x),

and define K(n)(x) by

(4.20) τ (n)(x) = g(n)(x)K(n)(x) (n = 0, 1, 2, . . .).

Then the bilinear equation (4.9) is written as

[(a1 ± a2|x)]g(n−1)(x− a0δ)g
(n+1)(x+ a0δ)

·K(n−1)(x− a0δ)K
(n+1)(x+ a0δ)

= [(a0 ± a2|x)]g(n)(x± a1δ)K
(n)(x± a1δ)

− [(a0 ± a1|x)]g(n)(x± a2δ)K
(n)(x± a2δ).

(4.21)

By Lemma 4.4, we have

[(a1 ± a2|x)]g(n−1)(x− a0δ)g
(n+1)(x+ a0δ)

= [(a0 ± a2|x)]g(n)(x± a1δ) = [(a0 ± a1|x)]g(n)(x± a2δ).
(4.22)

Therefore, the main factors K(n)(x) are determined by

(4.23) K(n−1)(x−a0δ)K
(n+1)(x+a0δ) = K(n)(x±a1δ)−K(n)(x±a2δ)
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for n = 1, 2, . . . starting fromK(0)(x) = 1, K(1)(x) = ψ(x). For example,
we have

K(2)(x+ a0δ)=ψ(x± a1δ)−ψ(x± a2δ)=det

[
ψ(x+ a1δ) ψ(x+ a2δ)

ψ(x− a2δ) ψ(x− a1δ)

]
,

K(3)(x+ 2a0δ)

= det

⎡⎢⎣ ψ(x+ 2a1δ) ψ(x+ a1δ + a2δ) ψ(x+ 2a2δ)

ψ(x+ a1δ − a2δ) ψ(x) ψ(x− a1δ + a2δ)

ψ(x− 2a2δ) ψ(x− a1δ − a2δ) ψ(x− 2a1δ)

⎤⎥⎦ .

(4.24)

In general, this recurrence (4.23) for K(n)(x) is solved by the Lewis
Carroll formula for the Casorati determinants with respect to the two
directions a1 + a2 and a1 − a2. Namely, for n = 1, 2, . . ., we have
(4.25)

K(n)(x+ (n− 1)a0δ) = det
(
ψ(x+ (n+ 1− i− j)a1δ + (j − i)a2δ)

)n
i,j=1

with the vectors vij = (n + 1 − i − j)a1 + (j − i)a2 (i, j = 1, . . . , n)
arranged as follows.

(4.26)

••
•

•

•
•

•

•
•

••
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

a1

a2
v11

v21

v31

v41

v12

v13

v14

This implies the expression (4.11) for K(n)(x). Q.E.D.

§5. Elliptic hypergeometric integrals

In this section, we recall fundamental facts concerning the elliptic
hypergeometric integrals of Spiridonov [16, 17] and Rains [12, 13].
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Fixing two bases p, q ∈ C∗ = C\{0} with |p| < 1, |q| < 1, we use the
multiplicative notations

(5.1) θ(z; p) = (z; p)∞(p/z; p)∞, (z; p)∞ =
∞∏
i=0

(1− piz),

for the Jacobi theta function, and

(5.2) Γ(z; p, q) =
(pq/z; p, q)∞
(z; p, q)∞

, (z; p, q)∞ =
∞∏

i,j=0

(1− piqjz)

for the Ruijsenaars elliptic gamma function. These functions satisfy the
functional equations

θ(pz; p) = −z−1θ(z; p), θ(p/z; p) = θ(z; p),

Γ(qz; p, q) = θ(z; p)Γ(z; p, q), Γ(pq/u; p, q) = Γ(u; p, q)−1.
(5.3)

The multiplicative theta function θ(z; p) satisfies the three-term relation
(5.4)
c θ(bc±1; p)θ(az±1; p)+a θ(ca±1; p)θ(bz±1; p)+b θ(ab±1; p)θ(cz±1; p) = 0,

corresponding to (2.1). Here we have used the abbreviation θ(ab±1; p) =
θ(ab; p)θ(ab−1; p) to refer to the product of two factors with different
signs. Note also that
(5.5)

1

Γ(z±1; p, q)
= (1− z±1)(pz±1; p)∞(qz±1; q)∞ = −z−1θ(z; p)θ(z; q).

Following Spiridonov [16, 17], we consider the elliptic hypergeomet-
ric integral I(u; p, q) in eight variables u = (u0, u1, . . . , u7) defined by

(5.6) I(u; p, q) =
(p; p)∞(q; q)∞

4π
√−1

∫
C

∏7
k=0 Γ(ukz

±1; p, q)

Γ(z±2; p, q)

dz

z
.

Here we assume that u = (u0, u1, . . . , u7) is generic in the sense that
ukul /∈ p−Nq−N for any k, l ∈ {0, 1, . . . , 7} (N = {0, 1, 2, . . .}). This
condition is equivalent to saying that the two sets

S0 =
{
piqjuk

∣∣ i, j ∈ N, k ∈ {0, 1, . . . , 7}},
S∞ =

{
p−iq−ju−1

k

∣∣ i, j ∈ N, k ∈ {0, 1, . . . , 7}}(5.7)

of possible poles of the integrand are disjoint. For the contour C we take
a homology cycle in C∗\(S0 ∪ S∞) such that n(C, a) = 1 for all a ∈ S0

and n(C, a) = 0 for all a ∈ S∞, where n(C; a) stands for the winding
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number of C around z = a. Note also that, if |uk| < 1 (k = 0, 1, . . . , 7),
one can take the unit circle |z| = 1 oriented positively as the cycle C.

The following transformation formulas are due to Spiridonov [16]
and Rains [13].

Theorem 5.1. Suppose that the parameters u = (u0, u1, . . . , u7)
satisfy the balancing condition u0u1 · · ·u7 = p2q2. Then the following
transformation formulas hold :

(1) I(u; p, q) = I(ũ; p, q)
∏

0≤i<j≤3

Γ(uiuj ; p, q)
∏

4≤i<j≤7

Γ(uiuj ; p, q),

ũ = (ũ0, ũ1, . . . , ũ7), ũi =

{
ui

√
pq/u0u1u2u3 (i = 0, 1, 2, 3),

ui

√
pq/u4u5u6u7 (i = 4, 5, 6, 7),

(5.8)

and

(2) I(u; p, q) = I(û; p, q)
∏

0≤i<j≤7

Γ(uiuj ; p, q),

û = (û0, . . . , û7), ûi =
√
pq/ui (i = 0, 1, . . . , 7).

(5.9)

Note that, if the parameters u = (u0, u1, . . . , u7) satisfy u0u1 · · ·u7 =

p2q2 and |uk| = |pq| 14 (k = 0, 1, . . . , 7), then both ũ and û satisfy the
two conditions as well.

Taking another base r ∈ C
∗ with |r| < 1, we set

(5.10) Ψ(u; p, q, r) = I(u; p, q)
∏

0≤i<j≤7

Γ(uiuj ; p, q, r),

where

Γ(z; p, q, r) = (z; p, q, r)∞(pqr/z; p, q, r)∞,

(z; p, q, r)∞ =
∞∏

i,j,k=0

(1− piqjrkz).
(5.11)

Note that
(5.12)
Γ(rz; p, q, r) = Γ(z; p, q)Γ(z; p, q, r), Γ(pqr/z; p, q, r) = Γ(z; p, q, r).

Proposition 5.2. Under the condition u0u1 · · ·u7 = p2q2, the func-
tion Ψ(u; p, q, r) defined by (5.10) is invariant with respect to the trans-
formations u → ũ and u → û.
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Proof. When {i, j, k, l} = {0, 1, 2, 3} or {4, 5, 6, 7}, one has

Γ(ũiũj ; p, q, r) = Γ(pq/ukul; p, q, r) = Γ(rukul; p, q, r)

= Γ(uk, ul; p, q)Γ(ukul; p, q, r).
(5.13)

Also, for distinct i, j ∈ {0, 1, . . . , 7},
Γ(ûiûj ; p, q, r) = Γ(pq/uiuj ; p, q, r) = Γ(ruiuj ; p, q, r)

= Γ(ruiuj ; p, q)Γ(uiuj ; p, q, r).
(5.14)

Using these formulas, Theorem 5.1 can be reformulated as

(5.15) Ψ(u; p, q, r) = Ψ(ũ; p, q, r) = Ψ(û; p, q, r)

under the condition u0u1 · · ·u7 = p2q2. Q.E.D.

Returning to the elliptic hypergeometric integral (5.6), we notice
that the integrand

(5.16) H(z, u; p, q) =

∏7
k=0 Γ(ukz

±1; p, q)

Γ(z±2; p, q)

satisfies

(5.17) Tq,uk
H(z, u; p, q) = θ(ukz

±1; p)H(z, u; p, q)

with respect to the q-shift operator Tq,uk
in uk (k ∈ {0, 1, . . . , 7}):

(5.18) Tq,uk
f(u0, u1, . . . , u7) = f(u0, . . . , quk, . . . , u7).

Hence, by the functional equation (5.4) we have

(
ukθ(uju

±1
k ; p)Tq,ui + uiθ(uku

±1
i ; p)Tq,uj + ujθ(uiu

±1
j p)Tq,uk

)
H(z, u; p, q)

= 0

(5.19)

for any triple i, j, k ∈ {0, 1, . . . , 7}. Passing to the integral, we obtain the
following contiguity relations for the elliptic hypergeometric integral.

Proposition 5.3. The elliptic hypergeometric integral (5.6) satis-
fies the three-term relation

(
ukθ(uju

±1
k ; p)Tq,ui + uiθ(uku

±1
i ; p)Tq,uj + ujθ(uiu

±1
j ; p)Tq,uk

)
I(u; p, q)

= 0

(5.20)

for any triple i, j, k ∈ {0, 1, . . . , 7}.
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It is known that the elliptic hypergeometric integral I(u; p, q) of (5.6)
gives rise to terminating elliptic hypergeometric series in the special cases
where pq/ukul = p−Mq−N for distinct k, l ∈ {0, 1, . . . , 7} and M,N ∈ N

(see for example Komori [7]). Here we give a remark on the case where
pq/u0u7 = q−N for simplicity. We use the notation of very well-poised
elliptic hypergeometric series

12V11(a0; a1, . . . , a7; q, p) =
∞∑
k=0

θ(q2ka0; p)

θ(a0; p)

(
7∏

i=0

θ(ai; p; q)k
θ(qa0/ai; p; q)k

)
qk,

θ(z; p; q)k =
Γ(qkz; p, q)

Γ(z; p, q)
= θ(z; p)θ(qz; p) · · · θ(qk−1z; p) (k = 0, 1, 2, . . .),

(5.21)

assuming that ai ∈ pZq−N for some i ∈ {0, 1, . . . , 7} and N = 0, 1, 2, . . ..

Proposition 5.4. Under the balancing condition u0u1 · · ·u7 = q2,
we assume either q/u0ui = q−N for some i ∈ {1, . . . , 6} or q/u0u7 =
pq−N , where N = 0, 1, 2, . . .. Then we have

I(pu0, u1, . . . , u6, pu7; p, q)

=
∏

1≤k<l≤6

Γ(ukul; p, q)
Γ(q2/u2

0; p, q)Γ(u0/u7; p, q)∏6
k=1 Γ(qui/u0; p, q)Γ(q/uiu7; p, q)

· 12V11(q/u
2
0; q/u0u1, . . . , q/u0u6, q/u0u7; q, p).

(5.22)

Sketch of proof. Under the balancing condition u0u1 · · ·u7 = p2q2,
we set t = (t0, t1, . . . , t7), ti =

√
pq/ui (i = 0, 1, . . . , 7), so that

(5.23)

I(u; p, q) = I(t; p, q)
∏

0≤k<l≤7

Γ(ukul; p, q) =
I(t; p, q)∏

0≤k<l≤7 Γ(tktl; p, q)
.

We investigate the behavior of the both sides in the limit as pq/u0u7 →
q−N , namely, t0t7 → q−N . In this limit u7 → pq1+N/u0, t7 → q−N/t0,
the integral I(u; p, q) on the left-hand side has a finite limit, while
I(t; p, q) gives rise to singularities due to pinching of the contour at

(5.24) qkt7 → q−N+k/t0, q−kt−1
7 → qN−kt0 (k = 0, 1, . . . , N).
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By the residue calculus around these points, we can compute the limit

lim
t7→q−N t0

I(t; p, q)∏
0≤k<l≤7 Γ(tktl; p, q)

=
1∏

0≤i<j≤6 Γ(titj ; p, q)

N−1∏
ν=0

∏6
i=1 θ(q

−N+νti/t0; p)

θ(q−N+ν/t20; p)

· 12V11(pt
2
0; t0t1, . . . , t0t6, pq

−N ; q, p).

(5.25)

Hence, under the conditions u0u1 · · ·u7 = p2q2 and pq/u0u7 = q−N , we
obtain

I(u; p, q) = Γ(p2q2/u2
0; p, q)

7∏
i=1

Γ(u0/ui; p, q)
∏

1≤i<j≤7

Γ(uiuj ; p, q)

· 12V11(p
2q/u2

0; pq/u0u1, . . . , pq/u0u6, p
2q/u0u7; q, p).

(5.26)

Noting that 12V11(a0; a1, . . . , a7; q, p) is invariant under the p-shift oper-
ator Tp,aiT

−1
p,aj

for distinct i, j ∈ {1, . . . , 7}, we see that the same for-

mula (5.26) holds if we replace the condition “pq/u0u7 = q−N” by
“pq/u0ui = q−N for some i ∈ {1, . . . , 6}”. Then, replacing u0, u7 by
pu0, pu7 respectively, we obtain (5.22). Q.E.D.

§6. W (E7)-invariant hypergeometric τ-function

In the following, we present an explicit hypergeometric τ -function for
the ORG system of type E8 in terms of elliptic hypergeometric integrals.

We denote by x = (x0, x1, . . . , x7) the canonical coordinates of V =
C

8 so that
(6.1)
x = (x0, x1, . . . , x7) = x0v0 + · · ·+ x7v7; xi = (vi|x) (i = 0, 1, . . . , 7).

Note that the highest root φ = 1
2 (v0+v1+· · ·+v7) of Δ(E8) corresponds

to the linear function

(6.2) (φ|x) = 1
2 (x0 + x1 + · · ·+ x7).

We relate the additive coordinates x = (x0, x1, . . . , x7) and the multi-

plicative coordinates u = (u0, u1, . . . , u7) through ui = e(xi) = e2π
√−1xi

(i = 0, 1, . . . , 7). We also use the notation of exponential functions

(6.3) uλ = e((λ|x)) (λ ∈ P ),
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so that uvi = ui (i = 0, 1, . . . , 7) and uφ = (u0u1 · · ·u7)
1
2 .

We now consider the case where the fundamental function [ζ] (ζ ∈ C)
is quasi-periodic with respect to the Ω = Z1 ⊕ Z�, Im (�) > 0, and is
expressed as

(6.4) [ζ] = z−
1
2 θ(z; p), z = e(ζ)

with base p = e(�), |p| < 1. This function has the quasi-periodicity

(6.5) [ζ + 1] = −[ζ], [ζ +�] = −e(−ζ − �
2 )[ζ]

and hence η1 = 0, η� = −1. Note also that

(6.6) [α± β] = a−1θ(ab±1; p) (a = e(α), b = e(β)),

and that the three-term relation (5.4) for θ(z; p) corresponds to (2.1) for
[ζ]. As to the constant δ ∈ C, we assume Im (δ) > 0, and set q = e(δ)
so that |q| < 1.

As in Section 1, we take the simple roots

(6.7) α0 = φ− v0 − v1 − v2 − v3, αj = vj − vj+1 (j = 1, . . . , 6)

for the root system Δ(E7). Since v1− v0 is the highest root, we see that
the Weyl group W (E7) is generated by S8 = 〈rvj−vj+1(j = 0, 1, . . . , 6)〉
and the reflection s0 = rα0 by α0 = rφ−v0−v1−v2−v3 . The symmet-
ric group S8 acts on the coordinates x = (x0, x1, . . . , x7) and u =
(u0, u1, . . . , u7) through the permutation of indices, while s0 acts on
the additive coordinates as

(6.8) s0(xi) =

{
xi +

1
2 ((φ|x)− x0 − x1 − x2 − x3) (i = 0, 1, 2, 3),

xi +
1
2 ((φ|x)− x4 − x5 − x6 − x7) (i = 4, 5, 6, 7),

and on the multiplicative coordinates u0, u1, . . . , u7 as

(6.9) s0(ui) =

{
ui(u

φ/u0u1u2u3)
1
2 (i = 0, 1, 2, 3),

ui(u
φ/u4u5u6u7)

1
2 (i = 4, 5, 6, 7).

We now restrict the coordinates xi and ui to the level set

(6.10) Hκ =
{
x ∈ V

∣∣ (φ|x) = 1
2 (x0 + x1 + · · ·+ x7) = κ

}
(κ ∈ C)

so that uφ = (u0u1 · · ·u7)
1
2 = e(κ). Then the action of s0 is given by

(6.11) s0(xi) =

{
xi +

1
2 (κ− x0 − x1 − x2 − x3) (i = 0, 1, 2, 3),

xi +
1
2 (κ− x4 − x5 − x6 − x7) (i = 4, 5, 6, 7).
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and by

(6.12) s0(ui) =

{
ui

√
e(κ)/u0u1u2u3 (i = 0, 1, 2, 3),

ui

√
e(κ)/u4u5u6u7 (i = 4, 5, 6, 7).

respectively. Suppose κ = � + δ so that e(κ) = e(� + δ) = pq. In this
case, we have u0u1 · · ·u7 = p2q2 on H�+δ, and the action of s0 coincides
with the transformation ui → ũi in (5.8). Proposition 5.2 thus implies
that the function

(6.13) Ψ(u; p, q, r) = I(u; p, q)
∏

0≤k<l≤7

Γ(ukul; p, q, r)

regarded as a function on H�+δ, u
φ = pq, is invariant under the ac-

tion of s0. Since Ψ(u; p, q, r) is manifestly symmetric with respect to
u = (u0, u1, . . . , u7), we see that Ψ(u; p, q, r) is a W (E7)-invariant mero-
morphic function on H�+δ. We remark that the transformation ui → ûi

in (5.9) coincides with the action of

(6.14) w = r07r12r34r56r0127r0347r0567 ∈ W (E7),

where rij = rvi−vj and rijkl = rφ−vi−vj−vk−vl
. This means that the

transformation formula (2) of Theorem 5.1 follows from (1).

We rewrite the contiguity relations of (5.20) as

u−1
j θ(uju

±1
k ; p)u−1

i Tq,uiI(u; p, q) + u−1
k θ(uku

±1
i ; p)u−1

j Tq,ujI(u; p, q)

+ u−1
i θ(uiu

±1
j ; p)u−1

k Tq,uk
I(u; p, q) = 0.

(6.15)

Since u−1
i θ(uiu

±1
j ; p) = [xi ± xj ], this means that

[xj ± xk]u
−1
i Tq,uiI(u; p, q) + [xk ± xi]u

−1
j Tq,ujI(u; p, q)

+ [xi ± xj ]u
−1
k Tq,uk

I(u; p, q) = 0.
(6.16)

In view of this formula, we set

(6.17) J(x) = e(−Q(x))I(u; p, q), Q(x) = 1
2δ (x|x).

Note that

(6.18) Q(x+ aδ) = Q(x) + (a|x) + 1
2 (a|a)δ

for any a ∈ P . Since

(6.19) Q(x+ viδ) = Q(x) + (vi|x) + 1
2δ = Q(x) + xi +

1
2δ
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we have
(6.20)

J(x+ viδ) = e(−Q(x)) q−
1
2u−1

i Tq,uiI(u; p, q) (i ∈ {0, 1, . . . , 7}).
Hence by (6.16) we obtain the three-term relations

(6.21) [xj±xk]J(x+viδ)+[xk±xi]J(x+vjδ)+[xi±xj ]J(x+vkδ) = 0,

namely
(6.22)
[(vj±vk|x)]J(x+viδ)+[(vk±vi|x)]J(x+vjδ)+[(vi±vj |x)]J(x+vkδ) = 0

for any triple i, j, k ∈ {0, 1, . . . , 7}.
On the basis of these observations, we construct a hypergeometric

τ -function on

(6.23) D� =
⊔
n∈Z

H�+nδ ⊂ V

with the initial level c = �. For this purpose we introduce the holomor-
phic function

(6.24) F(x) =
∏

0≤i<j≤7

Γ(uiuj ; p, q, q) (x ∈ V ).

Theorem 6.1. There exists a unique hypergeometric τ -function
τ(x) on D� such that τ (n)(x) = 0 (n < 0) and

τ (0)(x) = F(x+ φδ) =
∏

0≤i<j≤7

Γ(quiuj ; p, q, q) (x ∈ H�),

τ (1)(x) = F(x)J(x)

= e(−Q(x))I(u; p, q)
∏

0≤i<j≤7

Γ(uiuj ; p, q, q) (x ∈ H�+δ).

(6.25)

Furthermore τ(x) is a W (E7)-invariant meromorphic function on D�.

Proof. We need to show that τ (0)(x) and τ (1)(x) satisfy the two
conditions of Theorem 4.2. We first show that τ (0)(x) (x ∈ H�) is
W (E7)-invariant. Since the S8-invariance is manifest, we have only to
show that it is invariant under the action of s0. Noting that

(6.26) s0(uiuj) =

⎧⎪⎨⎪⎩
p/ukul ({i, j, k, l} = {0, 1, 2, 3}),
uiuj (i ∈ {0, 1, 2, 3}, j ∈ {4, 5, 6, 7}),
p/ukul ({i, j, k, l} = {4, 5, 6, 7})
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for x ∈ H�, we have

(6.27) s0
(
Γ(quiuj ; p, q, q)

)
= Γ(pq/ukul; p, q, q) = Γ(qukul; p, q, q)

for {i, j, k, l} = {0, 1, 2, 3} or {4, 5, 6, 7}. Since Γ(uiuj ; p, q, q) is s0-

invariant for i ∈ {0, 1, 2, 3}, j ∈ {4, 5, 6, 7}, we have s0(τ
(0)(x)) =

τ (0)(x). We now verify that our τ (0)(x) satisfy the condition (4.5) for
any C3-frame {±a0,±a1,±a2} of type II1 as in (3.15). Since the C3-
frames of type II1 form a single W (E7)-orbit, by the W (E7)-invariance
of τ (0)(x) we may take

a0 = 1
2 (v0 + v1 + v2 + v3),

a1 = 1
2 (v0 + v1 − v2 − v3), a2 = 1

2 (v0 − v1 + v2 − v3)
(6.28)

so that

{a0 ± a1} = {v0 + v1, v2 + v3}, {a0 ± a2} = {v0 + v2, v1 + v3}.
(6.29)

In this case one can directly check

τ (0)(x± a1δ)

τ (0)(x± a2δ)
=

θ(u0u1; p)θ(u2u3; p)

θ(u0u2; p)θ(u1u3; p)
=

[x0 + x1][x2 + x3]

[x0 + x2][x1 + x3]

=
[(a0 ± a1|x)]
[(a0 ± a2|x)] .

(6.30)

We next verify that τ (0)(x) and τ (1)(x) satisfy (4.6) for any C3-
frame {±a0,±a1,±a2} with (φ|ai) = 1

2 (i = 0, 1, 2). Since τ (1)(x) =
e(−Q(x))Ψ(u; p, q, q) is W (E7)-invariant, we have only to check (4.6)
for {±a0,±a1,±a2} = {±v0,±v1,±v2}, namely,

[x1 ± x2]τ
(0)(x− v0δ)τ

(1)(x+ v0δ) + [x2 ± x0]τ
(0)(x− v1δ)τ

(1)(x+ v1δ)

+ [x0 ± x1]τ
(0)(x− v2δ)τ

(1)(x+ v2δ) = 0.

(6.31)

Since

(6.32) F(x+ φδ − vkδ)F(x+ vkδ) = F(x+ φδ)F(x),

we have

τ (0)(x− vkδ)τ
(1)(x+ vkδ) = F(x+ φδ − vkδ)F(x+ vkδ)J(x+ vkδ)

= F(x+ φδ)F(x)J(x+ vkδ)

(6.33)



τ -Functions for the difference Painlevé equations of type E8 31

for each k = 0, 1, . . . , 7. Hence the three-term relations (6.21) for J(x)
imply

[xj ± xk]τ
(0)(x− viδ)τ

(1)(x+ viδ) + [xk ± xi]τ
(0)(x− vjδ)τ

(1)(x+ vjδ)

+ [xi ± xj ]τ
(0)(x− vkδ)τ

(1)(x+ vjδ) = 0

(6.34)

for any tripe i, j, k ∈ {0, 1, . . . , 7}. The W (E7)-invariance of τ(x) on D�

follows from the uniqueness of τ(x) and the W (E7)-invariance of τ
(0)(x)

and τ (1)(x). Q.E.D.

We next investigate the determinant formula of Theorem 4.3 for the
hypergeometric τ -function of Theorem 6.1 with initial condition

τ (0)(x) =
∏

0≤i<j≤7

Γ(quiuj ; p, q, q) (x ∈ H�),

τ (1)(x) = e(−Q(x)) I(u; p, q)
∏

0≤i<j≤7

Γ(uiuj ; p, q, q) (x ∈ H�+δ).

(6.35)

For the recursive construction of τ (n)(x) (x ∈ H�+nδ) for n = 2, 3, . . .,
we use the C8-frame A1 = {±a0,±a1, . . . ,±a7} of type II of Example
1.2, where

(6.36)

a0 = 1
2 (v0 + v1 + v2 + v3), a4 = 1

2 (v4 − v5 − v6 + v7),

a1 = 1
2 (v0 + v1 − v2 − v3), a5 = 1

2 (−v4 + v5 − v6 + v7).

a2 = 1
2 (v0 − v1 + v2 − v3), a6 = 1

2 (−v4 − v5 + v6 + v7),

a3 = 1
2 (v0 − v1 − v2 + v3), a7 = 1

2 (v4 + v5 + v6 + v7).

Note here that (φ|a0) = (φ|a7) = 1, (φ|ai) = 0 (i = 1, . . . , 6) and
a0 + a7 = φ. This C8-frame A1 contains the following 30 C3-frame of
type II1:

(6.37) {±a0,±ai,±aj}, {±a7,±ai,±aj} (1 ≤ i < j ≤ 6).

Since

(6.38) α0 = φ− v0 − v1 − v2 − v3 = a7 − a0,

we have

(6.39) s0(a0) = a7, s0(a7) = a0, s0(ai) = ai (i = 1, . . . , 6).

This means that the C3-frames {±a0,±ai,±aj} and {±a7,±ai,±aj} are
transformed to each other by s0. To fix the idea, we consider below the
cases of C3-frames {±a0,±a1,±a2} and {±a7,±a1,±a2}.
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Theorem 6.2 (Determinant formula). The W (E7)-invariant hyper-
geometric τ -function of Theorem 6.1 is expressed in terms of 2-directional
Casorati determinants as

(6.40) τ (n)(x) = g(n)(x) det
(
ψ
(n)
ij (x)

)n
i,j=1

(x ∈ H�+nδ)

for n = 0, 1, 2, . . ., where the gauge factors g(n)(x) and the matrix ele-

ments ψ
(n)
ij (x) are given as follows according to the C3-frame of type II1

chosen for the recurrence.
(1) Case of the C3-frame {±a0,±a1,±a2} :

g(n)(x) =
p(

n
2)e(−nQ(x))

d(n)(x)∏
0≤i<j≤3

or 4≤i<j≤7

Γ(quiuj ; p, q, q)
∏

0≤i≤3
4≤j≤7

Γ(q1−nuiuj ; p, q, q),

d(n)(x) = q2(
3
2)(pq/u0u1)

(n2)
n∏

k=1

θ(q1−nu0u3; p; q)k−1θ(q
k−nu0/u3; p; q)k−1,

·
n∏

k=1

θ(q1−nu1u2; p; q)k−1θ(q
k−nu1/u2; p; q)k−1,

ψ
(n)
ij (x) = I(qn−it0, q

n−jt1, q
j−1t2, q

i−1t3, t4, t5, t6, t7; p, q),

tk =

{
uk

√
pq/u0u1u2u3 (k = 0, 1, 2, 3),

uk

√
pq/u4u5u6u7 (k = 4, 5, 6, 7).

(6.41)

(2) Case of the C3-frame {±a7,±a1,±a2} :

g(n)(x) =
p(

n
2)e(−nQ(x))

d(n)(x)

∏
0≤i<j≤7

Γ(q1−nuiuj ; p, q, q),

d(n)(x) = q−(
n+1
3 )(u2u3)

(n2)
n∏

k=1

θ(q1−ku0u3; p; q)k−1θ(q
k−nu0/u3; p; q)k−1

·
n∏

k=1

θ(q1−ku1u2; p; q)k−1θ(q
k−nu1/u2; p; q)k−1,

ψ
(n)
ij (x) = I(qn−it0, q

n−jt1, q
1−jt2, q

1−it3, t4, t5, t6, t7; p, q),

tk = q
1
2 (1−n)uk.

(6.42)
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Rewriting the 2-directional Casorati determinants above, we ob-
tain expressions of the W (E7)-invariant hypergeometric τ -function in
terms of multiple elliptic hypergeometric integrals. For the variables
t = (t0, t1, . . . , t7), we consider the multiple integrals as in Rains [12, 13]:

In(t; p, q) = In(t0, t1, . . . , t7; p, q)

=
(p; p)n∞(q; q)n∞
2nn!(2π

√−1)n

∫
Cn

n∏
i=1

∏7
k=0 Γ(tkz

±1
i ; p, q)

Γ(z±2
i ; p, q)

·
∏

1≤i<j≤n

θ(z±1
i z±1

j ; p)
dz1 · · · dzn
z1 · · · zn .

(6.43)

We remark that In(t; p, q) is a special case (with s = q) of the BCn

elliptic hypergeometric integral

(p; p)n∞(q; q)n∞
2nn!(2π

√−1)n

∫
Cn

n∏
i=1

∏7
k=0 Γ(tkz

±1
i ; p, q)

Γ(z±2
i ; p, q)

·
∏

1≤i<j≤n

Γ(sz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

dz1 · · · dzn
z1 · · · zn

(6.44)

of type II.

Theorem 6.3 (Multiple integral representation). The W (E7)-
invariant hypergeometric τ -function of Theorem 6.1 is expressed as fol-
lows in terms of multiple elliptic hypergeometric integrals :

τ (n)(x) = p(
n
2)e(−nQ(x)) In(q

1
2 (1−n)u; p, q)

∏
0≤i<j≤7

Γ(q1−nuiuj ; p, q, q)

= p(
n
2)e(−nQ(x)) In(ũ; p, q)∏

0≤i<j≤3
or 4≤i<j≤7

Γ(quiuj ; p, q, q)
∏

0≤i≤3
4≤j≤7

Γ(q1−nuiuj ; p, q, q)

(x ∈ H�+nδ, n = 0, 1, 2, . . .),

(6.45)

where

(6.46) ũk =

{
uk

√
pq/u0u1u2u3 (k = 0, 1, 2, 3),

uk

√
pq/u4u5u6u7 (k = 4, 5, 6, 7).

Theorems 6.2 and 6.3 will be proved in the next section.
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We remark here that the equality of two expressions in (6.45) implies
the transformation formula
(6.47)

In(t; p, q) = In(t̃; p, q)
∏

0≤i<j≤3

Γ(qntitj ; p, q, q)

Γ(titj ; p, q, q)

∏
4≤i<j≤7

Γ(qntitj ; p, q, q)

Γ(titj ; p, q, q)

for the hypergeometric integral In(t; p, q) on H�+(2−n)δ (t0t1 · · · t7 =

p2q4−2n), where
(6.48)

t̃ = (t̃0, t̃1, . . . , t̃7), t̃k = s0(tk) =

{
tk
√
pq2−n/t0t1t2t3 (k = 0, 1, 2, 3),

tk
√
pq2−n/t4t5t6t7 (k = 4, 5, 6, 7).

This is a special case of a transformation formula of Rains [13]. Note
also, that the meromorphic function

(6.49) Ψn(t; p, q) = In(t; p, q)
∏

0≤i<j≤7

Γ(titj ; p, q, q)

on H�+(2−n)δ is W (E7)-invariant. The invariance of Ψn(t; p, q) with
respect to w of (6.14) gives rise to the transformation formula

In(t; p, q) = In(t̂; p, q)
∏

0≤i<j≤7

Γ(qntitj ; p, q, q)

Γ(titj ; p, q, q)

t̂ = (t̂0, t̂1, . . . , t̂7), t̂k = w(tk) =
√
pq2−n/tk (k = 0, 1, . . . , 7)

(6.50)

under the condition t0t1 · · · t7 = p2q4−2n.
Applying this transformation formula, we obtain another expression

of τ(x) of Theorem 6.3:

τ (n)(x) = p(
n
2)e(−nQ(x)) In(

√
pqu−1; p, q)

∏
0≤i<j≤7

Γ(quiuj ; p, q, q)

= p(
n
2)e(−nQ(x)) In(

√
pqu−1; p, q)

∏
0≤i<j≤7

Γ(pq/uiuj ; p, q, q).

(6.51)

In the notation of (6.49), theW (E7)-invariant hypergeometric τ -function
is expressed as

τ (n)(x) = p(
n
2)e(−nQ(x))Ψn(q

1
2 (1−n)u; p, q)

= p(
n
2)e(−nQ(x))Ψn(p

1
2 q

1
2 u−1; p, q)

(6.52)

for x ∈ H�+nδ (n = 0, 1, 2, . . .).
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§7. Proof of Theorems 6.2 and 6.3

In this section we prove Theorems 6.2 and 6.3 simultaneously.

We take the C3-frame {±a0,±a1,±a2} of type II1 as in (6.36) for
constructing τ (n)(x) n = 2, 3, . . .. In this case, we have

{a0 ± a1} = {v0 + v1, v2 + v3}, {a0 ± a2} = {v0 + v2, v1 + v3}
{a1 ± a2} = {v0 − v3, v1 − v2}.(7.1)

Hence, in order to apply Theorem 4.3, we need to decompose τ (1)(x)
into the product

(7.2) τ (1)(x) = g(1)(x)ψ(x) (x ∈ H�+δ)

with a gauge factor satisfying
(7.3)

g(1)(x± a1δ)

g(1)(x± a2δ)
=

[(a0 ± a1|x)]
[(a0 ± a2|x)] =

θ(u0u1; p)θ(u2u3; p)

θ(u0u2; p)θ(u1u3; p)
(x ∈ H�+δ).

Then the gauge factors g(n)(x) n = 2, 3, . . . are determined by the re-
currence formula

g(n−1)(x− a0δ)g
(n+1)(x+ a0δ)

g(n)(x± a1δ)
=

[(a0 ± a2|x)]
[(a1 ± a2|x)]

=
θ(u0u2; p)θ(u1u3; p)

u2u3θ(u0/u3; p)θ(u1/u2; p)

(7.4)

for n = 1, 2, . . . starting from g(0)(x) = τ (0)(x) and g(1)(x).
For this purpose, using the transformation formula (1) of Theorem

5.1, we rewrite τ (1)(x) as

τ (1)(x) = e(−Q(x)) I(ũ; p, q)
∏

0≤i<j≤7

Γ(uiuj ; p, q, q)
∏

0≤i<j≤3
or 4≤i<j≤7

Γ(uiuj ; p, q)

= e(−Q(x)) I(ũ; p, q)
∏

0≤i<j≤3
or 4≤i<j≤7

Γ(quiuj ; p, q, q)
∏

0≤i≤3
4≤j≤7

Γ(uiuj ; p, q, q),

(7.5)

where
(7.6)

ũ = (ũ0, ũ1, . . . , ũ7), ũi =

{
ui

√
pq/u0u1u2u3 (i = 0, 1, 2, 3),

ui

√
pq/u4u5u6u7 (i = 4, 5, 6, 7),
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and set

g(1)(x) = e(−Q(x))
∏

0≤i<j≤3
or 4≤i<j≤7

Γ(quiuj ; p, q, q)
∏

0≤i≤3,4≤j≤7

Γ(uiuj ; p, q),

ψ(x) = I(ũ; p, q) (x ∈ H�+δ).

(7.7)

Then one can directly verify that g(1)(x) satisfies the condition (7.3).
For the moment we set t = (t0, t1, . . . , t7), ti = ũi (i = 0, 1, . . . , 7), so
that ψ(x) = I(t; p, q).

We now compute the determinant

K(n)(x) = det
(
ψ
(n)
ij (x)

)n
i,j=1

, ψ
(n)
ij (x) = ψ(x+ v

(n)
ij δ),

v
(n)
ij = (1− n)a0 + (n+ 1− i− j)a1 + (j − i)a2

= (1− i, 1− j, j − n, i− n, 0, 0, 0, 0).

(7.8)

Noting that the multiplicative coordinates of x+ v
(n)
ij δ are given by

(7.9) (q1−iu0, q
1−ju1, q

j−nu2, q
i−nu3, u4, u5, u6),

we obtain

(7.10) ψ
(n)
ij (x) = I(qn−it0, q

n−jt1, q
j−1t2, q

i−1t3, t4, t5, t6, t7; p, q).

Hence ψ
(n)
ij (x) is expressed as

ψ
(n)
ij (x) = κ

∫
C

h(z)fi(z)gj(z)
dz

z
, κ =

(p; p)∞(q; q)∞
4π

√−1
,

h(z) =

∏7
k=0 Γ(tkz

±1; p, q)

Γ(z±2; p, q)
,

fi(z) = θ(t0z
±1; p; q)n−i θ(t3z

±1; p; q)i−1,

gj(z) = θ(t1z
±1; p; q)n−j θ(t2z

±1; p; q)j−1,

(7.11)

for i, j = 1, 2, . . . , n, where θ(z; p; q)k = θ(z; p)θ(qz; p) · · · θ(qk−1z; p)

(k = 0, 1, 2, . . .). We rewrite the determinantK(n)(x) = det
(
ψ
(n)
ij (x)

)n
i,j=1
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as

K(n)(x) =
1

n!

∑
σ,τ∈Sn

sgn(σ)sgn(τ)
n∏

k=1

ψ
(n)
σ(k),τ(k)(x)

=
κn

n!

∑
σ,τ∈Sn

sgn(σ)sgn(τ)

∫
Cn

n∏
k=1

h(zk)fσ(k)(zk)gσ(k)(zk)
dz1 · · · dzn
z1 · · · zn

=
κn

n!

∫
Cn

h(z1) · · · h(zn) det(fi(zj))ni,j=1 det(gi(zj))
n
i,j=1

dz1 · · · dzn
z1 · · · zn .

(7.12)

Then the determinants det(fj(zi))
n
i,j=1, det(gj(zi))

n
i,j=1 can be evaluated

by means of Warnaar’s elliptic extension of the Krattenthaler determi-
nant [18] (see also [9]).

Lemma 7.1 (Warnaar [18]). For a set of complex variables
(z1, . . . , zn) and two parameters a, b, one has

det
(
θ(az±1

i ; p; q)j−1θ(bz
±1
i ; p; q)n−j

)n
i,j=1

= q(
n
3)a(

n
2)

n∏
k=1

θ(b(qk−1a)±1; p; q)n−k

∏
1≤i<j≤n

z−1
i θ(ziz

±
j ; p).

(7.13)

Sketch of proof. The left-hand side is invariant under the inver-
sion zi → z−1

i for each i = 1, . . . , n, and alternating with respect to

(z1, . . . , zn). Hence it is divisible by
∏

1≤i<j≤n z
−1
i θ(ziz

±
j ; p). Also, the

ratio of these two functions is elliptic with respect to the additive vari-
able ζi with zi = e(ζi) for each i = 1, . . . , n, and hence is constant.
The constant on the right-hand side is determined by the substitution
zi = qi−1a (i = 1, . . . , n) which makes the matrix on the left-hand side
lower triangular. Q.E.D.

We thus obtain

(7.14) K(n)(x) = det
(
ψ
(n)
ij (x)

)n
i,j=1

= d(n)(x) In(t; p, q)

where
(7.15)

In(t; p, q) =
(p; p)n∞(q; q)n∞
2nn!(2π

√−1)n

∫
Cn

n∏
i=1

h(zi)
∏

1≤i<j≤n

θ(z±1
i z±1

j ; p)
dz1 · · · dzn
z1 · · · zn ,
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and

d(n)(x) = q2(
n
3)(t2t3)

(n2)
n∏

k=1

θ(t0(q
k−1t3)

±1; p; q)n−kθ(t1(q
k−1t2)

±1; p; q)n−k

= q2(
n
3)(pq/u0u1)

(n2)∏
(i,j)=(0,3),(1,2)

n∏
k=1

θ(q1−nuiuj ; p; q)k−1θ(q
k−nui/uk; p; q)k−1.

(7.16)

Finally we determine the gauge factors g(n)(x) n = 2, 3, . . .. We set

(7.17) G(n)(x) =
∏

0≤i<j≤3
or 4≤i<j≤7

Γ(quiuj ; p, q, q)
∏

0≤i≤3
4≤j≤7

Γ(q1−nuiuj ; p, q, q),

so that g(0)(x) = G(0)(x), g(1)(x) = e(−Q(x))G(1)(x). By a direct com-
putation, we see that G(n)(x) satisfy the recurrence formula
(7.18)
G(n−1)(x−a0δ)G(n+1)(x+a0δ)

G(n)(x± a1δ)
= θ(u0u2; p)θ(u0u3; p)θ(u1u2; p)θ(u1u3; p).

If we set g(n)(x) = G(n)(x)c(n)(x), the recurrence formula to be satisfied
by c(n)(x) is given by

(7.19)
c(n−1)(x− a0δ)c

(n+1)(x+ a0δ)

c(n)(x± a1δ)
=

1

u2u3θ(u0u
±1
3 ; p)θ(u1u

±1
2 ; p)

with the initial conditions c(0)(x) = 1, c(1)(x) = e(−Q(x)). On the other
hand, one can verify that the functions d(n)(x), which appeared in the
evaluation of the determinant K(n)(x), satisfy
(7.20)

d(n−1)(x− a0δ)d
(n+1)(x+ a0δ)

d(n)(x± a1δ)2
= (p/u0u1)θ(u0u

±1
3 ; p)θ(u1u

±1
2 ; p).

If we set c(n)(x) = e(n)(x)/d(n)(x), the recurrence formula for e(n)(x) is
determined as

e(n−1)(x− a0δ)e
(n+1)(x+ a0δ)

e(n)(x± a1δ)
= p/u0u1u2u3 = pe(−2(a0|x)).(7.21)

With the initial conditions e(0)(x) = 1, e(1)(x) = e(−Q(x)), this recur-
rence is solved as

(7.22) e(n)(x) = p(
n
2)e(−nQ(x)) (n = 0, 1, 2, . . .).



τ -Functions for the difference Painlevé equations of type E8 39

Hence the gauge factors g(n)(x) are determined as

g(n)(x) =
p(

n
2)e(−nQ(x))

d(n)(x)
G(n)(x) (n = 0, 1, 2, . . .).(7.23)

Since K(n)(x) = d(n)(x)In(t; p, q) with t = ũ as in (7.6), we also obtain

τ (n)(x) =
p(

n
2)e(−nQ(x))

d(n)(x)
G(n)(x) det

(
ψ
(n)
ij (x)

)n
i,j=1

= p(
n
2)e(−nQ(x))G(n)(x)In(ũ; p, q).

(7.24)

This proves Theorem 6.2, (1) and the second equality of Theorem 6.3.

We already know by Theorem 6.1 that τ (n)(x) (x ∈ H�+nδ) are
W (E7)-invariant for all n = 0, 1, 2, . . .. Namely w(τ (n)(x)) = τ (n)(x)
for any w ∈ W (E7). This means that, for each w ∈ W (E7), τ

(n)(x)
(x ∈ H�+nδ) has a determinant formula

(7.25) τ (n)(x) =
p(

n
2)e(−nQ(x))

γ(n)(x)
F (n)(x) det

(
ϕ
(n)
ij (x)

)n
i,j=1

and a multiple integral representation

(7.26) τ (n)(x) = p(
n
2)e(−nQ(x))F (n)(x)In(t; p, q),

where γ(n), F (n), ϕ
(n)
ij (i, j = 1, . . . , n) and tk (k = 0, 1, . . . , 7) are spec-

ified by applying w to the functions d(n), G(n), ψ
(n)
ij and ũk on H�+nδ,

respectively. When w = s0, by the transformation

(7.27) s0(ui) =

{
ui

√
pqn/u0u1u2u3 (i = 0, 1, 2, 3),

ui

√
pqn/u4u5u6u7 (i = 4, 5, 6, 7),

we obtain

γ(n)(x) = s0(d
(n)(x))

= q2(
n
3)(q1−nu2u3)

(n2)∏
(i,j)=(0,3),(1,2)

n∏
k=1

θ(pq/uiuj ; p; q)k−1θ(q
k−nui/uj ; p; q)k−1

= q−(
n+1
3 )(u2u3)

(n2)∏
(i,j)=(0,3),(1,2)

n∏
k=1

θ(q1−kuiuj ; p; q)k−1θ(q
k−nui/uj ; p; q)k−1

(7.28)
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and

F (n)(x) = s0(G(n)(x)) =
∏

0≤i<j≤n

Γ(q1−nuiuj ; p, q),

ϕ
(n)
ij (x) = s0(ψ

(n)
ij (x)) = I(qn−it0, q

n−jt1, q
j−1t2, q

i−1t3, t4, t5, t6, t7; p, q),

tk = q
1
2 (1−n)uk.

(7.29)

Formulas (7.25) and (7.26) for this case w = s0 give Theorem 6.2, (2)
and the first equality of Theorem 6.3.

§8. Transformation of hypergeometric τ-functions

From the W (E7)-invariant hypergeometric τ -function on D� dis-
cussed above, one can construct a class of τ -functions of hypergeometric
type by the transformations in Theorem 2.3. In this section we give
some remarks on this class of ORG τ -functions.

In what follows, for a root α ∈ Δ(E8) and a constant κ ∈ C, we
denote by

(8.1) Hα,κ =
{
x ∈ V

∣∣ (α|x) = κ
}

the hyperplane of level κ with respect to α. We consider a meromorphic
function τ(x) on the disjoint union of parallel hyperplanes

(8.2) Dα,κ =
⊔
n∈Z

Hα,κ+nδ ⊂ V.

Denoting by τ (n)(x) the restriction of τ(x) to the nth hyperplane Hκ+nδ,
we say that an ORG τ -function τ(x) on Dα,κ is a hypergeometric τ -

function of direction α with initial level κ if τ (n)(x) = 0 for n < 0 and
τ (0)(x) �≡ 0.

In what follows, we use the notation

(8.3) Ψn(t; p, q) = In(t; p, q)
∏

0≤i<j≤7

Γ(titj ; p, q, q).

As we have seen in (6.50), this function satisfies

(8.4) Ψn(t; p, q) = Ψn(p
1
2 q

1
2 (2−n)t−1; p, q)

under the balancing condition t0t1 · · · t7 = p2q4−2n.
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Theorem 8.1. With respect to the directions ±φ and the initial
levels ±� (e(�) = p), the following four functions are W (E7)-invariant
hypergeometric τ -functions.

(0) τ++(x) on Dφ,� =
⊔

n∈Z
Hφ,�+nδ :

τ
(n)
++(x) = p(

n
2)e(−nQ(x))Ψn(q

1
2 (1−n)u; p, q)

= p(
n
2)e(−nQ(x))Ψn(p

1
2 q

1
2u−1; p, q).

(8.5)

(1) τ+−(x) on Dφ,−� =
⊔

n∈Z
Hφ,−�+nδ :

(8.6) τ
(n)
+−(x) = Ψn(p

1
2 q

1
2 (1−n)u; p, q) = Ψn(q

1
2u−1; p, q).

(2) τ−+(x) on D−φ,� =
⊔

n∈Z
H−φ,�+nδ =

⊔
n∈Z

Hφ,−�−nδ :

τ
(n)
−+(x) = p(

n
2)e(−nQ(x))Ψn(p

1
2 q

1
2u; p, q)

= p(
n
2)e(−nQ(x))Ψn(q

1
2 (1−n)u−1; p, q).

(8.7)

(3) τ−−(x) on D−φ,−� =
⊔

n∈Z
H−φ,−�+nδ =

⊔
n∈Z

Hφ,�−nδ :

(8.8) τ
(n)
−−(x) = Ψn(q

1
2 u; p, q) = Ψn(p

1
2 q

1
2 (1−n)u−1; p, q).

Proof. The function τ++(x) is the W (E8)-invariant hypergeomet-
ric τ -function of direction φ with initial level � discussed in previous
sections. We apply the translation by −φ� to τ(x) = τ++(x) as in
Theorem 2.3, (3) to construct a τ -function

τ̃(x) = e(S(x;−φ,�))τ(x+ φ�)(8.9)

on Dφ,� − φ� = Dφ,−�. We look at the prefactor of τ̃ (n)(x) (x ∈
Hφ,−�+nδ):
(8.10)

e(S(x;−φ,�))p(
n
2)e(−nQ(x)) = e(S(x;−φ,�))e(−nQ(x) +

(
n
2

)
�).

Noting that η� = −1 in this case, we compute

S(x;−φ,�) = 1
2δ2 (φ|x)(x|x+ φ�) = 1

2δ2 (φ|x)(x|x) + �
2δ2 (φ|x)2

= n
2δ (x|x) + n2

2 � − �
2δ2 (x|x)− n

2
�2

δ + �3

2δ2 .
(8.11)

for (φ|x) = −� + nδ. Combining this with

(8.12) −nQ(x+ φ�) = − n
2δ (x+ φ�|x+ φ�) = − n

2δ (x|x)− n2�,
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we obtain

S(x;−φ,�)− nQ(x) +
(
n
2

)
� = − �

2δ2 (x|x)− n�(�+δ)
2δ + �3

2δ2

= − �
2δ2 (x|x)− �(�+δ)

2δ2 (φ|x)− �2

2δ

(8.13)

by n = ((φ|x) + �)/δ. Hence the prefactor (8.10) for τ̃ (n)(x) is deter-
mined as

(8.14) e
(− �

2δ2 (x|x)− ω(ω+δ)
2δ2 (φ|x)− ω2

2δ

)
.

This factor does not effect on the Hirota equations, and can be elim-
inated by Theorem 2.3, (1). We thus obtain the τ -function τ+−(x)
of (8.6) by replacing e(x) = u in the last two factors of τ++(x) with

e(x + φω) = pφu = p
1
2u. The other two functions τ−+(x) and τ−−(x)

are obtained by replacing x in τ++(x) and τ+−(x) with −x, respec-
tively. Q.E.D.

We now apply Theorem 2.3, (3) for constructing hypergeometric τ -
functions with initial level 0. Let a ∈ P be a vector with (φ|a) = 1, so
that

(8.15) Dφ,−� + a� = Dφ,0 =
⊔
n∈Z

Hφ,nδ.

Then, from

(8.16) τ
(n)
+−(x) = Ψn(p

1
2 q

1
2 (1−n)u; p, q) = Ψn(q

1
2u−1; p, q)

we obtain a hypergeometric τ -function

τa(x) = e(S(x; a,�))τ+−(x− a�)

= e(S(x; a,�))Ψn(p
−ap

1
2 q

1
2 (1−n)u; p, q)

= e(S(x; a,�))Ψn(p
aq

1
2 u−1; p, q)

(8.17)

on Dφ,0, where

(8.18) S(x; a,�) = − 1
2δ2 (a|x)(x|x− a�).

When a ∈ Δ(E8), namely (a|a) = 2, there are 56 choices of a with
(φ|a) = 1:

(8.19) a = vk + vl, φ− vk − vl (0 ≤ k < l ≤ 7).

Those τ -functions τa(x) on Dφ,0 correspond to the 56 hypergeometric
τ -functions in the trigonometric case studied by Masuda [8].
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In general, let ω = k + l� ∈ Ω (k, l ∈ Z) a period, and take two
vectors a, b ∈ P with (φ|a) = k, (φ|b) = l + 1. Then

(8.20) e(S(x; b,�))τ+−(x− a− b�)

is a hypergeometric τ -function on Dφ,ω. Furthermore, let α ∈ Δ(E8) be
an arbitrary root of the root system of type E8, and choose a w ∈ W (E8)
such that α = w.φ. Then
(8.21)
w(e(S(x; b,�))τ+−(x−a−b�)) = e(S(w−1.x; b,�))τ+−(w−1.x−a−b�)

provides a hypergeometric τ -function on Dα,ω in the direction α with
initial level ω.

§9. Relation to the framework of point configurations

In this section, we give some remarks on how ORG τ -functions are
related to the notion of lattice τ -functions associated with the configu-
ration of generic nine points in P

2.

9.1. Realization of the affine root system E
(1)
8

We first recall from [5] the realization of the affine root system of

type E
(1)
8 in the context of the configuration of generic nine points in

P2 (see also Dolgachev-Ortland [2]). We consider the 10-dimensional
complex vector space

(9.1) h = h3,9 = Ce0 ⊕ Ce1 ⊕ · · · ⊕ Ce9

with basis {e0, e1, . . . , e9}, and define a scalar product (nondegenerate
symmetric C-bilinear form) (·|·) : h× h → C by

(9.2)
(e0|e0) = −1, (ej |ej) = 1 (j ∈ {1, . . . , 9}),

(ei|ej) = 0 (i, j ∈ {0, 1, . . . , 9}; i �= j).

This vector space is regarded as the complexification of the lattice

L = L3,9 = Ze0 ⊕ Ze1 ⊕ Ze2 ⊕ · · · ⊕ Ze9 ⊂ h = h3,9(9.3)

endowed with the symmetric Z-bilinear form (·|·) : L × L → Z. In geo-
metric terms, L = L3,9 is the Picard lattice associated with the blowup of
P2 at generic nine points p1, . . . , p9. The vectors e0 and e1, . . . , e9 denote
the class of lines in P

2 and those of exceptional divisors corresponding
to p1, . . . , p9 respectively, and the scalar product (·|·) on L represents
the intersection form of divisor classes multiplied by −1.
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The root lattice of type E
(1)
8 is realized as

(9.4) Q(E
(1)
8 ) = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα8 ⊂ L,

where the simple roots α0, α1, . . . , α8 ∈ h are defined by

(9.5) α0 = e0 − e1 − e2 − e3, αj = ej − ej+1 (j = 1, . . . , 8)

with Dynkin diagram

(9.6) � � � � � � � �

�

α1 α2 α3 α4 α5 α6 α7 α8

α0

(These αj are called the coroots hj in [5]). Note also that

c = 3e0 − e1 − · · · − e9

= 3α0 + 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8 ∈ Q(E
(1)
8 )

(9.7)

satisfies (c|αj) = 0 for j = 0, 1, . . . , 8. Denoting by h∗ = HomC(h,C)
the dual space of h, we take the linear functions εj = (ej | ·) ∈ h∗

(j = 0, 1, . . . , 9) so that h∗ = Cε0 ⊕ Cε1 ⊕ · · · ⊕ Cε9, and regard
ε = (ε0; ε1, . . . , ε9) as the canonical coordinates for h. We often identify

h∗ with h through the isomorphism ν : h
∼→ h∗ defined by ν(h) = (h| ·)

(h ∈ h), and denote the induced scalar product by the same symbol (·|·).
When we regard the simple roots as C-linear functions on h, they are ex-
pressed as ν(α0) = ε0−ε1−ε2−ε3 and ν(αj) = εj−εj+1 (j = 1, . . . , 8).
Setting δ = (c| ·) = 3ε0 − ε1 − · · · − ε9 ∈ h∗, we regard below this null
root δ ∈ h∗ as the scaling unit for difference equations.

The root lattice of type E8 is specified as Q(E8) = Zα0 ⊕ Zα1 ⊕
· · · ⊕ Zα7 ⊂ Q(E

(1)
8 ). The vector space h is decomposed accordingly as

(9.8) h =
◦
h⊕Cc⊕Cd,

◦
h = Cα0 ⊕Cα1 ⊕ · · · ⊕Cα7, d = −e9 − 1

2c,

where

(9.9) (c|h) = 0, (d|h) = 0 (h ∈
◦
h); (c|c) = 0, (c|d) = 1, (d|d) = 0.

The 8-dimensional subspace
◦
h ⊂ h can be identified with the vector space

V = C8 that we have used throughout this paper for the realization of the

root lattice P = Q(E8). Noting that
◦
h =

{
h ∈ h

∣∣ (c|h) = 0, (d|h) = 0
}
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and Q(E8) = L ∩
◦
h, we define the orthonormal basis {v0, v1, . . . , v7} for

◦
h by

(9.10) vj = ej − 1
2 (e0 − e9) +

1
2c (j = 1, . . . , 8), v0 = −v8.

Then the highest root and the simple roots of type E8 are expressed as

φ = 1
2 (v0 + v1 + · · ·+ v7) = c− α8,

α0 = φ− v0 − v1 − v2 − v3, αj = vj − vj+1 (j = 1, . . . , 7)
(9.11)

respectively, which recovers the situation of Section 1. In what follows,

we identify
◦
h with V through this orthonormal basis {v0, v1, . . . , v7}.

The corresponding C-linear functions xj = (vj | ·) ∈ h∗ are realized as

(9.12) xj = εj − 1
2 (ε0 − ε9) +

1
2δ (j = 1, . . . , 8), x0 = −x8.

For each α ∈ h with (α|α) �= 0, the reflection rα : h → h with respect
to α is defined in the standard way by

(9.13) rα(h) = h− (α∨|h)α (h ∈ h), α∨ = 2α/(α|α).

The affine Weyl group W (E
(1)
8 ) = 〈s0, s1, . . . , s8〉 of type E

(1)
8 (Coxeter

group associated with diagram (9.6)) then acts faithfully on h through
the simple reflections sj = rαj (j = 0, 1, . . . .8). We remark that this
group contains the symmetric group S9 = 〈s1, . . . , s8〉 as a subgroup

which permutes e1, . . . , e9. The affine Weyl group W (E
(1)
8 ) also acts on

the dual space h∗ through sj = rαj : h∗ → h∗ defined in the same way

as (9.13). These actions of W (E
(1)
8 ) on h and h∗ leave the two scalar

products invariant. Note also that c ∈ h and δ ∈ h∗ are invariant under

the action of W (E
(1)
8 ).

Setting h0 =
{
α ∈ h

∣∣ (c|α) = 0
}
, for each α ∈ h0 we define the Kac

translation ([3]) Tα : h → h with respect to α by

(9.14) Tα(h) = h+ (c|h)α− (
1
2 (α|α)(c|h) + (α|h))c (h ∈ h).

It is directly verified that these C-linear transformations Tα ∈ GL(h)
(α ∈ h0) satisfy
(9.15)

(1) (Tα(h)|Tα(h
′)) = (h|h′) (α ∈ h0; h, h′ ∈ h),

(2) TαTβ = TβTα = Tα+β (α, β ∈ h0), Tkc = idh (k ∈ C),

(3) wTαw
−1 = Tw.α (α ∈ h0, w ∈ W (E

(1)
8 ).
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Note also that

(9.16) Tα(h) = h− (α|h)c (h ∈ h, (c|h) = 0), Tα(c) = c

for any α ∈ h0. For a Z-submodule Q of h0 given, we denote by T (Q) ⊂
GL(h) the abelian subgroup of Kac translations Tα (α ∈ Q). We remark
that, if α ∈ h0 and (α|α) �= 0, then the Kac translation Tα is expressed in
the form Tα = rc−α∨rα∨ as a product of two reflections. This implies in
particular that the Kac translations Tαj (j = 0, 1, . . . , 8) by simple roots

belong to the affine Weyl group W (E
(1)
8 ) = 〈s0, s1, . . . , s8〉 ⊂ GL(h). It

is known ([3]) in fact that W (E
(1)
8 ) splits into the semidirect product

(9.17) W (E
(1)
8 ) = T (Q(E8))�W (E8), W (E8) = 〈s0, s1, . . . , s7〉.

We remark here that the linear action of W (E
(1)
8 ) on h extends to a big-

ger group T (h0)W (E
(1)
8 ) = T (V ) �W (E8) including the abelian group

T (V ) of Kac translations with respect to V = C ⊗Z Q(E8). Note that

T (V ) �W (E8) acts also on h∗ so that ν : h
∼→ h∗ intertwines its linear

actions on h and h∗.

Before proceeding further, we clarify how the linear actions of Kac
translations on h are related to the affine-linear actions of parallel trans-
lations on V . Note first that, for each κ ∈ C, the hyperplane

(9.18) hκ =
{
h ∈ h

∣∣ (c|h) = κ
} ⊂ h

is stable by W (E
(1)
8 ) and by T (h0). On this hyperplane hκ of level κ, the

null root δ = (c|·) ∈ h∗ is identified with the constant function δ = κ.
For each (μ, κ) ∈ C×C∗, we define a quadratic mapping γ(μ,κ) : V → hκ
by

(9.19) γ(μ,κ)(x) = Tκ−1x(κd)−μc = x− ( 1
2κ (x|x)+μ)c+κd (x ∈ V ).

These mappings γ(μ,κ) induce the parametrization γκ : V × C
∼→ hκ :

(x;μ) �→ γ(μ,κ)(x) of hκ for each κ ∈ C
∗, as well as the isomorphism

γ : V × C× C
∗ ∼→ h\h0 of affine varieties such that

(9.20) γ(x;μ, κ) = x− ( 1
2κ (x|x) + μ)c+ κd (x ∈ V, μ ∈ C, κ ∈ C

∗).

Furthermore, this isomorphism is equivariant with respect to the action
of the group T (V )�W (E8) on V × C× C

∗ specified by

(9.21) Tvw.(x;μ, κ) = (w.x+ κv;μ, κ) (v ∈ V,w ∈ W (E8)).
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Through this isomorphism, the coordinates (x;μ, κ) = (x0, x1, . . . , x7;μ, κ)
for V × C × C

∗ and ε = (ε0; ε1, . . . , ε9) for h\h0 are transformed into
each other through

xj = εj − 1
2 (ε0 − ε9) +

1
2δ (j = 1, . . . , 8), x0 = −x8,

μ = − 1
2δ (ε|ε), κ = δ,

(9.22)

where (ε|ε) = −ε20 + ε21 + · · ·+ ε29, and by

ε0 = 2x0 − 2(φ|x) + 3( 1
2κ (x|x) + μ+ 1

2κ),

εj = xj + x0 − (φ|x) + 1
2κ (x|x) + μ+ 1

2κ (j = 1, . . . , 7),

ε8 = −(φ|x) + 1
2κ (x|x) + μ+ 1

2κ, ε9 = 1
2κ (x|x) + μ− 1

2κ,

(9.23)

where (φ|x) = 1
2 (x0 + x1 + · · ·+ x7), (x|x) = x2

0 + x2
1 + · · ·+ x2

7.

9.2. Lattice τ-functions vs. ORG τ-functions

We now consider the W (E
(1)
8 )-orbit

(9.24) M = M3,9 = W (E
(1)
8 ){e1, . . . , e9} = W (E

(1)
8 )e9 ⊂ L = L3,9

in the Picard lattice. Noting that e9 ∈ M isW (E8)-invariant, we see that

the natural mapping W (E
(1)
8 ) → M : w �→ w.e9 induces the bijection

Q(E8)
∼→ M : α �→ Tα.e9. The orbit M = W (E

(1)
8 )e9 is intrinsically

characterized as

(9.25) M =
{
Λ ∈ L

∣∣ (Λ|Λ) = 1, (c|Λ) = −1
}
.

To see this, suppose that Λ ∈ L satisfies (Λ|Λ) = 1 and (c|Λ) = −1.
Then, the difference β = Λ−e9 satisfies (β|β)+2(e9|β) = 0 and (c|β) = 0.

This implies β = Λ − e9 ∈ Q(E
(1)
8 ) and Tβ .e9 = e9 + β = Λ. Taking

α = β + (e9|β)c ∈ Q(E8), we see that Λ is uniquely expressed in the
form

(9.26) Λ = e9 + α+ 1
2 (α|α)c, α ∈ Q(E8),

and hence Λ = T−1
Λ−e9

.e9 = T−1
α .e9. We remark that α is the unique

element in Q(E8) such that Λ − e9 ≡ α (mod Cc), which we call the
classical part of Λ− e9 ∈ h0.

In [5], a system of lattice τ -functions associated with the configu-
rations of generic nine points in P

2 is defined as a family of dependent
variables τΛ indexed by Λ ∈ M which admit an action of the affine Weyl

group W (E
(1)
8 ) such that

(9.27) w.τΛ = τw.Λ (Λ ∈ M, w ∈ W (E
(1)
8 ))
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and satisfy the quadratic relations
(9.28)
[εjk][εjkl]τeiτe0−ei−el + [εki][εkil]τejτe0−ej−el + [εij ][εijl]τekτe0−ek−el = 0

for all quadruples of mutually distinct i, j, k, l ∈ {1, . . . , 9}, where εij =
εi−εj and εijk = ε0−εi−εj−εk. (Here we use the notation τΛ instead of
τ(Λ) as in [5] to make clear that Λ is not an independent variable, but an
index.) Under the condition (9.27), τe9 is W (E8)-invariant, and all the
functions τΛ (Λ ∈ M) are expressed as τΛ = T−1

Λ−e9
.τ in terms of a single

W (E8)-invariant function τ = τe9 . We also remark that, if equation
(9.28) holds for some quadruple of distinct i, j, k, l ∈ {1, . . . , 9}, then
it holds for all quadruples as a result of the action of S9 ⊂ W (E

(1)
8 ).

In the following, we use the notation σh = [ν(h)] = [(h|·)] for h ∈ h,
so that σeij = [εij ] and σeijk = [εijk] where eij = ei − ej and eijk =
e0 − ei − ej − ek. In this notation, equation (9.28) is rewritten as
(9.29)
σejkσejkl

τeiτe0−ei−el + σeki
σekil

τejτe0−ej−el + σeijσeijlτekτe0−ek−el = 0.

As we will see below, equations (9.28) can be rewritten in a W (E
(1)
8 )-

invariant form.
To clarify the situation, let X be a left W (E

(1)
8 )-set. Noting that

functions of the form σα = [(α|·)] (α ∈ Q(E
(1)
8 )) are defined over h =

h/Cc, we suppose that a W (E
(1)
8 )-equivariant mapping γ : X → h is

given. Regarding those σα as functions defined on X through γ : X → h,
we can consider systems of lattice τ -functions τΛ (Λ ∈ M) defined on
X. In order to compare this notion with that of ORG τ -functions on X,

we assume that the extension T ( 12Q(E8))�W (E8) of W (E
(1)
8 ) acts on

X so that γ is an equivariant mapping. For a function ϕ defined on a
subset U ⊆ X, we define the action of w ∈ T ( 12Q(E8))�W (E8) on ϕ to

be the function w.ϕ on w.U such that (w.ϕ)(x) = ϕ(w−1.x) (x ∈ w.U).

Proposition 9.1. Let τ be a W (E8)-invariant function on X and
set τΛ = T−1

Λ−e9
.τ for each Λ ∈ M . Then the following three conditions

are equivalent :

(a) The equation
(9.30)
σejkσejkl

τeiτe0−ei−el + σeki
σekil

τejτe0−ej−el + σeijσeijlτekτe0−ek−el = 0

holds for each quadruple of mutually distinct i, j, k, l ∈ {1, . . . , 9}.
(b) The equation
(9.31)
σu1−u2σu1−u′

2
τu0τu′

0
+ σu2−u0σu2−u′

0
τu1τu′

1
+ σu0−u1σu0−u′

1
τu2τu′

2
= 0
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holds for each sextuple of points ui, u
′
i ∈ M (i = 0, 1, 2) such that

u0 + u′
0 = u1 + u′

1 = u2 + u′
2, (ui − u′

i|uj − u′
j) = 4δij (i, j = 0, 1, 2).

(9.32)

(c) The equation

(9.33) σa1±a2Ta0 .τ T
−1
a0

.τ+σa2±a0Ta1 .τ T
−1
a1

.τ+σa0±a1Ta2 .τ T
−1
a2

.τ = 0

holds for each triple of vectors a0, a1, a2 ∈ 1
2Q(E8) such that

(ai|aj) = δi,j , ± ai ± aj ∈ Q(E8) (i, j = 0, 1, 2).(9.34)

Proof. Note first that equation (9.30) is a special case of (9.31)
where u0 = ei, u1 = ej , u2 = ek and v = e0 − el. Hence condition
(b) implies (a). We consider equation (9.31) for a sextuple ui, u

′
i ∈ M

(i = 0, 1, 2) as in (b). Introducing

g = 1
2 (ui + u′

i), bi =
1
2 (ui − u′

i) (i = 0, 1, 2),

ui = g + bi, u′
i = g − bi (i = 0, 1, 2),

(9.35)

we rewrite equation (9.31) into the equation

(9.36) σb1±b2τg+b0τg−b0 + σb2±b0τg+b1τg−b1 + σb0±b1τg+b2τg−b2 = 0

for a sextuple of points g ± bi ∈ M (i = 0, 1, 2) such that

(bi|bj) = δi,j , ± bi ± bj ∈ Q(E
(1)
8 ) (i, j = 0, 1, 2).(9.37)

In this setting, b0, b1, b2 and g are characterized by the conditions

g ∈ 1
2L, (g|g) = 0, (c|g) = −1

bi ∈ 1
2L, (c|bi) = 0, (g|bi) = 0, (bi|bj) = δij , ± bi ± bj ∈ Q(E

(1)
8 ).

(9.38)

Since bi ∈ 1
2Q(E

(1)
8 ) (i = 0, 1, 2), they are expressed as

(9.39) bi = ai + kic, ki = (g|ai) ∈ 1
2Z (i = 0, 1, 2),

where

(9.40) ai ∈ 1
2Q(E8), (g|ai) ∈ 1

2Z, (ai|aj) = δij , ± ai ± aj ∈ Q(E8).

Note that (c|g − e9) = 0 and hence g − e9 ∈ 1
2Q(E

(1)
8 ). In this situation

we have

(9.41) T−1
g−e9 .ai = ai + (g − e9|ai)c = ai + kic = bi (i = 0, 1, 2),
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and hence we see that equations (9.36) and (9.33) are transformed into
each other by the actions of Tg−e9 and T−1

g−e9 . These arguments show
that condition (c) implies (b). Note also that equation (9.33) is a special
case of (9.36) where g = e9 + 1

2c and bi = ai (i = 0, 1, 2). We finally
show that (a) implies (c). Suppose that equation (9.30) holds for some
quadruple of distinct i, j, k, l ∈ {1, . . . , 9}. Since it is a special case of
(9.31), we see that equation (9.33) holds for some triple a0, a1, a2 ∈
1
2Q(E8) satisfying (9.34), namely for some C3-frame {±a0,±a1,±a2}
in the terminology of Section 1. Since the Weyl group W (E8) acts
transitively on the set of all C3-frames, we see that equation (9.33) holds
for all C3-frames, which implies (c). Q.E.D.

By abuse of terminology, we say that a function τ is an ORG τ -
function if it satisfies the non-autonomous Hirota equations (9.33) for
all C3-frames relative to Q(E8). Proposition 9.1 means that a family of
functions τΛ (Λ ∈ M) on X is a system of lattice τ -functions if and only
if τ = τe9 is a W (E8)-invariant ORG τ -function on X. General ORG τ -
functions which are not necessarily W (E8)-invariant can be interpreted
as the system of lattice τ -functions over a covering space of X.

Setting

(9.42) X̃ = W (E8)×X =
{
(w, x)

∣∣w ∈ W (E8), x ∈ X
}
,

we define an action of T ( 12Q(E8))�W (E8) on X̃ by

(9.43) Tαw.(w
′, x) = (ww′, Tαw.x) (α ∈ 1

2Q(E8), w ∈ W (E8))

so that the projection X̃ → X is equivariant. Let U be a subset of X
and suppose that U is stable by the group T (Q(E8)) of translations.

Then the subset Ũ ⊆ X̃ defined as

(9.44) Ũ =
{
(w, x) ∈ X̃

∣∣w ∈ W (E8), x ∈ w.U
}
=

⊔
w∈W (E8)

{w}×w.U

is stable by the action of W (E
(1)
8 ) = T (Q(E8))�W (E8). To a function

τ defined on U , we associate a function τ̃ on Ũ by setting

(9.45) τ̃(w, x) = (w.τ)(x) = τ(w−1.x) (w ∈ W (E8), x ∈ w.U).

The function τ̃ on Ũ is W (E8)-invariant and τ on U is recovered from τ̃

as τ̃(1, x) = τ(x) (x ∈ U). Also, any W (E8)-invariant function on Ũ is
obtained in this way from a function on U . Note also that the function
τ on U satisfies equations

(9.46) σa1±a2Ta0 .τ T−1
a0

.τ+σa2±a0Ta1 .τ T−1
a1

.τ+σa0±a1Ta2 .τ T−1
a2

.τ = 0
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for all C3-frames {±a0,±a1,±a2} relative to Q(E8) if and only if the

W (E8)-invariant function τ̃ on Ũ satisfies

(9.47) σa1±a2Ta0 .τ̃ T−1
a0

.τ̃+σa2±a0Ta1 .τ̃ T−1
a1

.τ̃+σa0±a1Ta2 .τ̃ T−1
a2

.τ̃ = 0

for all C3-frames {±a0,±a1,±a2} relative to Q(E8). Applying Proposi-
tion 9.1 to the mapping

(9.48) γ̃ : Ũ → h : γ̃(w, x) = γ(x) (w ∈ W (E8), x ∈ w.U),

and τ̃ on Ũ , we obtain the following characterization of an ORG τ -
function on U .

Proposition 9.2. For a function τ on a subset U ⊆ X, consider

the function τ̃ defined on Ũ . Then τ is an ORG τ -function on U if
and only if the functions τ̃Λ = T−1

Λ−e9
.τ̃ (Λ ∈ M) form a system lattice

τ -functions on Ũ .

We apply this proposition for constructing lattice τ -functions from
ORG τ -functions discussed in this paper. Fixing a nonzero constant
κ ∈ C

∗, let D ⊂ V be a subset such that D+Q(E8)κ = D, and take an
ORG τ -function τ = τ(x) on D with δ = κ in the sense of Definition 2.1.
We then define the action of Tvw ∈ T (V )�W (E8) (v ∈ V, w ∈ W (E8))
on V by

(9.49) Tvw.x = w.x+ κv (x ∈ V ).

We denote by π : h → V the orthogonal projection to
◦
h = V in (9.8),

and by πκ : hκ → V its restriction to hκ. This projection πκ : hκ → V is
equivariant with respect to the action of T (V )�W (E8) and compatible
with the scalar product in the sense (v|πκ(h)) = (v|h), (v ∈ V, h ∈ h).
Introducing a subset U of hκ by

(9.50) U = π−1
κ (D) =

{
h ∈ hκ

∣∣πκ(h) ∈ D
} ⊂ hκ,

we regard τ as a function on U through the projection πκ : U → D.
Note that the isomorphism

(9.51) γκ : V × C
∼→ hκ : γκ(x, μ) = x− ( 1

2κ (x|x) + μ)c+ κd,

induces the parametrization γκ : D × C
∼→ U of U = π−1

κ (D) with an
invariant parameter μ ∈ C. Then obtain a W (E8)-invariant function τ̃
on

(9.52) Ũ =
⊔

w∈W (E8)

{w} × w.U ⊂ W (E8)× hκ
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by setting

(9.53) τ̃(w, h) = τ(πκ(w
−1.h)) = τ(w−1.x) (w ∈ W (E8), h ∈ w.U),

where x = πκ(h) ∈ w.D. By Proposition 9.2, the family of functions

τ̃Λ = T−1
Λ−e9

.τ̃ gives a system of lattice τ -functions on Ũ . If we take
the classical part α = π0(Λ − e9) ∈ Q(E8) of Λ − e9, then we have
τ̃Λ = T−1

α .τ̃ , and hence

τ̃Λ(w, h) = τ̃(w, Tα.h) = τ(w−1.πκ(Tα.h)) = τ(w−1.(x+ κα)),(9.54)

for any w ∈ W (E8) and h ∈ w.U , where x = πκ(h) ∈ w.D.

Theorem 9.3. Let κ ∈ C
∗ be a generic constant. Suppose that a

subset D ⊆ V is stable by W (E8) and D+Q(E8)κ = D. Let τ(x) be an
ORG τ -function on D with δ = κ. For each Λ ∈ M , define a function

τ̃Λ on Ũ of (9.52) by

(9.55) τ̃Λ(w, h) = τ(w−1.(x+ κα)) (w ∈ W (E8), h ∈ w.U)

with α = π0(Λ− e9) ∈ Q(E8) and x = πκ(h) ∈ w.D. Then τ̃Λ (Λ ∈ M)

form a system of lattice τ -functions on Ũ .

For example, we consider the hypergeometric the ORG τ -function
τ(x) = τ+−(x) of Theorem 8.1 defined on

D = Dφ,−� =
⊔
n∈Z

Hφ,−�+nκ,

Hφ,−�+nκ =
{
x ∈ V

∣∣ (φ|x) = −� + nκ
}

(n ∈ Z),

(9.56)

under the identification δ = κ. The components τ (n) = τ |Hφ,−�+nκ

(n ∈ Z) are then given by τ (n)(x) = 0 (n < 0) and
(9.57)

τ (n)(x) = Ψn(p
1
2 q

1
2 (1−n)u; p, q) = Ψn(q

1
2u−1; p, q) (n = 0, 1, 2, . . .)

in terms of the elliptic hypergeometric integral (6.49). Here, p = e(�),
q = e(κ) and uj = e(xj) denote the multiplicative variables correspond-
ing to xj (j = 0, 1, . . . , 7). In this case, the subset U = π−1

κ (D) ⊂ hκ is
specified as U =

⊔
n∈Z

Un, where

Un =
{
h ∈ hκ

∣∣ (φ|h) = −� + nκ
}

=
{
h ∈ hκ

∣∣ (α8|h) = � + (1− n)κ
}

(n ∈ Z).
(9.58)
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We regard the ORG τ -function τ(x) as a function on U through the
coordinates

(9.59) xj = εj − 1
2 (ε0 − ε9) +

1
2κ (j = 1, . . . , 8), x0 = −x8.

The corresponding lattice τ -functions τ̃Λ (Λ ∈ M) on

(9.60) Ũ =
⊔

w∈W (E8)

{w} × w.U

are defined as

(9.61) τ̃Λ(w, h) = τ(w−1.(x+ κα)) (w ∈ W (E8), h ∈ w.U),

where α = π0(Λ− e9) ∈ Q(E8) and x = πκ(h). Since

(9.62) ej − e9 = v0 + vj − φ+ c (j = 1, . . . , 8),

the nine fundamental τ -functions τ̃ej (j = 1, . . . , 9) are specified as

τ̃ej (w, h) = τ(w−1.(x+ κ(v0 + vj − φ)) (j = 1, . . . , 7),

τ̃e8(w, h) = τ(w−1.(x− κφ)), τ̃e9(w, h) = τ(w−1.x).
(9.63)

for w ∈ W (E8) and h ∈ w.U .

9.3. Remarks on the P
1 × P

1 picture

The difference Painlevé equation of type E8 can also be formulated
in terms of the configuration of generic eight points in P

1 × P
1. In this

case, following the formulation of [6] we use the Picard lattice

(9.64) L = Zh1 ⊕ Zh2 ⊕ Ze1 ⊕ Ze2 ⊕ · · · ⊕ Ze8

with the symmetric bilinear form (·|·) : L× L → Z defined by

(hi|hi) = 0 (i = 1, 2), (h1|h2) = (h2|h1) = −1,

(ei|ej) = δij (i, j = 1, . . . , 8).
(9.65)

If we denote by (f, g) the inhomogeneous coordinates of P1×P1, h1 and
h2 represent the classes of lines f = const. and g = const. respectively,
and e1, . . . , e8 the classes of exceptional divisors corresponding to the
generic eight points. This Picard lattice and its symmetric bilinear form
are identified with those we have used in the P2 picture through the
change of bases

h1 = e0 − e2, h2 = e0 − e1, e1 = e0 − e1 − e2, ej = ej+1 (j = 2, . . . , 8),

(9.66)
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and
(9.67)
e0 = h1 + h2 − e1, e1 = h1 − e1, e2 = h2 − e1, ej = ej−1 (j = 3, . . . , 9).

The simple roots α0, α1, . . . , α8 are now expressed as
(9.68)
α0 = e1−e2, α1 = h1−h2, α2 = h2−e1−e2, αj = ej−1−ej (j = 3, . . . , 8).

The complex vector space h = C⊗ZL is decomposed as h =
◦
h⊕Cc⊕Cd

where

(9.69) c = 2h1 + 2h2 − e1 − · · · − e8, d = −e8 − 1
2c.

In this realization, the orthonormal basis {v0, v1, . . . , v8} for V =
◦
h is

given by

v1 = h1 − e1 − 1
2 (h1 + h2 − e1 − e8) +

1
2c,

v2 = h2 − e1 − 1
2 (h1 + h2 − e1 − e8) +

1
2c,

vj = ej−1 − 1
2 (h1 + h2 − e1 − e8) +

1
2c (j = 3, . . . , 8), v0 = −v8.

(9.70)

Accordingly, the coordinates x = (x0, x1, . . . , x7) for V are given by

x1 = η1 − ε1 − 1
2 (η1 + η2 − ε1 − ε8) +

1
2δ,

x2 = η2 − ε1 − 1
2 (η1 + η2 − ε1 − ε8) +

1
2δ,

xj = εj−1 − 1
2 (η1 + η2 − ε1 − ε8) +

1
2δ (j = 3, . . . , 8), x0 = −x8.

(9.71)

where ηi = (hi|·) (i = 1, 2) and εj = (ej |·) (j = 1, . . . , 8).
In this framework, a system of lattice τ -functions is defined as a

family of dependent variables τΛ, indexed by the same orbit

(9.72) M = W (E
(1)
8 ){e1, . . . , e8} = W (E

(1)
8 )e8 ⊂ L,

which admit an action of W (E
(1)
8 ) such that

(9.73) w.τΛ = τw.Λ (w ∈ W (E
(1)
8 ), Λ ∈ M)

and satisfy the quadratic relations

(9.74) σejkσer;jkτeiτhr−ei + σeki
σer;ki

τejτhr−ej + σeijσer;ijτekτhr−ek = 0

for r = 1, 2 and for mutually distinct i, j, k ∈ {1, . . . , 8}, where eij =

ei−ej and er;ij = hr−ei−ej . Through the expression τΛ = T−1
Λ−e8

τe8 , this
notion of lattice τ -functions is interpreted by that of ORG τ -functions
in the same way as in Proposition 9.2 and Theorem 9.3.
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§Appendix A. Proof of Theorem 3.3

In this Appendix, we give a proof of Theorem 3.3. The following
proof is essentially the same as the argument in Masuda [8, Section
3]. We first prove Theorem 3.3 under an additional assumption that
τ (n−1)(x) and τ (n)(x) are W (E7)-invariant. After that we explain how
the general case can be reduced to the invariant case.

A.1. Preliminary remark

We begin by a general remark on the Hirota equations associated
with C3-frames. Fixing a Cl-frame A = {±a1, . . . ,±al} (l = 3, . . . , 8),
we suppose that a function τ(x) satisfies the Hirota equation
(A.1)
τ(x±aiδ)[(aj±ak|x)]+τ(x±ajδ)[(ak±ai|x)]+τ(x±akδ)[(ai±aj |x)] = 0

for any triple i, j, k ∈ {1, . . . , l}. We also assume that [(ai ± aj |x)] �= 0
on the domain of definition of τ for any distinct pair i, j ∈ {1, . . . , l}.
Then (A.1) can be written as

(A.2) τ(x± akδ) =
τ(x± aiδ)[(ak ± aj |x)]− τ(x± ajδ)[(ak ± ai|x)]

[(ai ± aj |x)]
for any k ∈ {1, . . . , l}. In view of this expression, for each u ∈ V we
define

(A.3) fij(x;u) =
τ(x± ai)[(u± aj |x)]− τ(x± aj)[(u± ai|x)]

[(ai ± aj |x)]
for each distinct pair i, j ∈ {1, . . . , l}, so that fij(x; ak) = τ(x ± akδ)
(k ∈ {1, . . . , l}). A simple but important observation is that the three-
term relation (2.1) of the function [z] implies the functional equation
(A.4)
fij(x;u0)[(u1±u2|x)]+fij(x;u1)[(u2±u0|x)]+fij(x;u2)[(u0±u1|x)] = 0

for any u0, u1, u2 ∈ V . From this, for any distinct pair r, s ∈ {1, . . . , l}
we obtain

fij(x;u)[(ar ± as|x)] = fij(x; ar)[(u± as|x)]− fij(x; as)[(u± ar|x)]
= τ(x± arδ)[(u± as|x)]− τ(x± asδ)[(u± ar|x)]
= frs(x;u)[(ar ± as|x)],

(A.5)

and hence fij(x;u) = frs(x;u). Summarizing these arguments, we have
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Lemma A.1. Let A = {±a1, . . . ,±al} be a Cl-frame and sup-
pose that τ(x) satisfies the Hirota equation (A.1) for any triple i, j, k ∈
{1, . . . , l}. Then the function
(A.6)

f(x;u) =
τ(x± ai)[(u± aj |x)]− τ(x± aj)[(u± ai|x)]

[(ai ± aj |x)] (x, u ∈ V )

does not depend on the choice of distinct i, j ∈ {1, . . . , l}. Furthermore,
it satisfies
(A.7)
f(x;u0)[(u1 ± u2|x)] + f(x;u1)[(u2 ± u0|x)] + f(x;u2)[(u0 ± u1|x)] = 0

for any u0, u1, u2 ∈ V , and

(A.8) f(x; ak) = τ(x± akδ) (k = 1, . . . , l).

Returning to the setting of Theorem 3.3, we suppose furthermore
that τ (n−1)(x) on Hc+(n−1)δ and τ (n)(x) on Hc+nδ are W (E7)-invariant.
For a function ϕ = ϕ(x), the action w.ϕ of w ∈ W (E7) is defined by
(w.ϕ)(x) = ϕ(w−1.x). We say that ϕ is invariant with respect to w if
w.ϕ = ϕ, namely, ϕ(w−1.x) = ϕ(x). Note also that, for the function ψ
defined by ψ(x) = ϕ(x+v) (v ∈ V ), we have (w.ψ)(x) = (w.ϕ)(x+w.v),
and hence (w.ψ)(x) = ϕ(x+ w.v) if ϕ is w-invariant.

A.2. Definition of τ (n+1): W (E7)-invariance and (II1)n

We first show that there exists a unique W (E7)-invariant (meromor-
phic) function τ (n+1)(x) on Hc+(n+1)δ that satisfies the bilinear equa-
tions of type (II1)n.

We consider the C8-frame A = {±a0,±a1, . . . ,±a7} defined by

a0 = 1
2 (v0 − v1 + φ), a1 = 1

2 (v1 − v0 + φ),

aj = vj +
1
2 (v0 + v1 − φ) (j = 2, . . . , 7).

(A.9)

Note that (φ|a0) = (φ|a1) = 1 and (φ|aj) = 0 (j = 2, . . . , 7). Then,

from the assumption that τ (n)(x) satisfies the bilinear equations of type
(II0)n, by Lemma A.1 it follows that the function

(A.10) f(x;u) =
τ (n)(x± aiδ)[(u± aj |x)]− τ (n)(x± ajδ)[(u± ai|x)]

[ai ± aj ]

does not depend on the choice of distinct i, j ∈ {2, . . . , 7}. In view of
the bilinear equations of type (II1)n, we define the function τ (n+1)(x)
on Hc+(n+1)δ by the equation

(A.11) τ (n+1)(x+ a0δ)τ
(n−1)(x− a0δ) = f(x; a0).
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This implies that τ (n+1)(x) satisfies

τ (n+1)(x+ a0δ)τ
(n−1)(x− a0δ)[(ai ± aj |x)]

= τ (n)(x± aiδ)[(a0 ± aj |x)]− τ (n)(x± ajδ)[(a0 ± ai|x)]
(A.12)

for any distinct i, j ∈ {2, . . . , 7}. By replacing x with x − a0δ, these
equations can be written as

τ (n+1)(x)

=
τ (n)(x−(a0±ai)δ)[(a0±aj |x)−δ]−τ (n)(x−(a0±aj)δ)[(a0±ai|x)−δ]

τ (n−1)(x− 2a0δ)[(ai±aj |x)]

(A.13)

for any distinct i, j ∈ {2, . . . , 7}. In terms of the basis v0, v1, . . . , v7 for
V , we have

τ (n+1)(x) =
1

τ (n−1)(x− (φ+ v0 − v1)δ)[(vj − vi|x)][(φ− v01ij |x)]
· (τ (n)(x− v0iδ)τ

(n)(x− (φ− v1i)δ)[(v0j |x)− δ][(φ− v1j |x)− δ]

− τ (n)(x− v0jδ)τ
(n)(x− (φ− v1j)δ)[(v0i|x)− δ][(φ− v1i|x)− δ]

)

(A.14)

for any distinct i, j ∈ {2, . . . , 7}, where vab = va + vb and vabcd =
va + vb + vc + vd.

We next show that this function τ (n+1)(x) is invariant under the
action of the Weyl group
(A.15)
W (E7) = 〈s0, s1, . . . , s6〉; s0 = rφ−v0123 , sj = rvj−vj+1 (j = 1, . . . , 6).

Since τ (n−1)(x) and τ (n)(x) are W (E7)-invariant, from the fact that the
expression (A.14) does not depend on the choice of i, j ∈ {2, . . . , 7}, it
follows that τ (n+1)(x) is invariant with respect to s2, . . . , s6. To see the
invariance with respect to s0, we take (i, j) = (2, 3):

τ (n+1)(x) =
1

τ (n−1)(x− (φ+ v0 − v1)δ)[(v3 − v2|x)][(φ− v0123|x)]
· (τ (n)(x− v02δ)τ

(n)(x− (φ−v12)δ)[(v03|x)− δ][(φ−v13|x)− δ]

− τ (n)(x− v03δ)τ
(n)(x− (φ−v13)δ)[(v02|x)− δ][(φ−v12|x)− δ]

)
.

(A.16)

Since s0(vij) = φ−vkl for {i, j, k, l} = {0, 1, 2, 3}, this expression is man-

ifestly invariant with respect to s0. It remains to show that τ (n+1)(x) is
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invariant with respect to s1. The s1-invariance of τ
(n+1)(x) is equivalent

to the equality of

L = τ (n−1)(x− (φ+ v0 − v2)δ)[(v3 − v1|x)]
· (τ (n)(x− v02δ)τ

(n)(x− (φ− v12)δ)[(v03|x)− δ][(φ− v13|x)− δ]

− τ (n)(x− v03δ)τ
(n)(x− (φ− v13)δ)[(v02|x)− δ][(φ− v12|x)− δ]

)
(A.17)

and

R = τ (n−1)(x− (φ+ v0 − v1)δ)[(v3 − v2|x)]
· (τ (n)(x− v01δ)τ

(n)(x− (φ− v12)δ)[(v03|x)− δ][(φ− v23|x)− δ]

− τ (n)(x− v03δ)τ
(n)(x− (φ− v23)δ)[(v01|x)− δ][(φ− v12|x)− δ]

)
.

(A.18)

Expanding these as L = L1 − L2 and R = R1 −R2, we look at

L1 −R1

= τ (n)(x− (φ− v12)δ)[(v03|x)− δ]

· (τ (n−1)(x−(φ+ v0−v2)δ)τ
(n)(x−v02δ)[(v3−v1|x)][(φ−v13|x)−δ]

−τ (n−1)(x−(φ+ v0−v1)δ)τ
(n)(x−v01δ)[(v3−v2|x)][(φ−v23|x)−δ]

)
.

(A.19)

Setting ui =
1
2φ− vi and y = x− ( 12φ+ v0), we compute the last factor

as

τ (n−1)(y − u2δ)τ
(n)(y + u2δ)[(u1 ± u3|y)]

− τ (n−1)(y − u1δ)τ
(n)(y + u1δ)[(u2 ± u3|y)]

= τ (n−1)(y − u3δ)τ
(n)(y + u3δ)[(u1 ± u2|y)]

= τ (n−1)(x− (φ+ v0 − v3)δ)τ
(n)(x− v03δ)[(v2 − v1|x)][(φ− v12|x)− δ]

(A.20)

by the bilinear equation of type (I)n−1/2 for the C3-frame {±u1,±u2,±u3}.
Hence we have

L1 −R1 = τ (n−1)(x− (φ+ v0 − v3)δ)τ
(n)(x− v03δ)τ

(n)(x− (φ− v12)δ)

· [(v03|x)− δ][(v2 − v1|x)][(φ− v12|x)− δ].

(A.21)
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On the other hand, we have

L2 −R2

= τ (n)(x− v03δ)[(φ− v12|x)− δ]

· (τ (n−1)(x− (φ+ v0 − v2)δ)τ
(n)(x− (φ−v13))[(v3−v1|x)][(v02|x)− δ]

−τ (n−1)(x−(φ+ v0−v1)δ)τ
(n)(x−(φ−v23)δ)[(v3−v2|x)][(v01|x)−δ]

)
.

(A.22)

Setting bi =
1
2v0123−vi (i = 0, 1, 2, 3) and z = x− (φ−b0)δ, we compute

the last factor as

τ (n−1)(z − b2δ)τ
(n)(z + b2δ)[(b1 ± b3|z)]

− τ (n−1)(z − b1δ)τ
(n)(z + b1δ)[(b2 ± b3|z)]

= τ (n−1)(z − b3δ)τ
(n)(z + b3δ)[(b1 ± b2|z)]

= τ (n−1)(x− (φ+ v0 − v3)δ)τ
(n)(x− (φ− v12)δ)[(v2 − v1|x)][(v03|x)− δ]

(A.23)

by the bilinear equation of type (I)n−1/2 for the C3-frame {±b1,±b2,±b3}.
Hence

L2 −R2 = τ (n−1)(x− (φ+ v0 − v3)δ)τ
(n)(x− v03δ)τ

(n)(x− (φ− v12)δ)

· [(v03|x)− δ][(v2 − v1|x)][(φ− v12|x)− δ]

= L1 −R1,

(A.24)

which implies L = R as desired.
Recall that W (E7) acts transitively on the set of all C3-frames of

type II1. Since τ (n+1)(x) is W (E7)-invariant and satisfies (A.12), it
readily satisfies the bilinear equations of type (II1)n for all C3-frames of
type II1.

A.3. (II1)n =⇒ (II2)n

Since τ (n+1)(x) is W (E7)-invariant, we have only to show that it
satisfies the bilinear equation of type (II2)n for a particular C3-frame of
type II2.

Taking the C8-frame (A.9) of type II as before, we look at the bilin-
ear relations

τ (n+1)(x+ akδ)τ
(n−1)(x− akδ)

=
τ (n)(x± a2δ)[(ak ± a3|x)]− τ (n)(x± a3δ)[(ak ± a2|x)]

[(a2 ± a3|x)]
(A.25)
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of type (II1)n for k = 0, 1. From these we have

τ (n+1)(x+ a0δ)τ
(n−1)(x− a0δ)[(a2 ± a1|x)]

− τ (n+1)(x+ a1δ)τ
(n−1)(x− a1δ)[(a2 ± a0|x)]

=
τ (n)(x± a2δ)

[(a2 ± a3|x)]
(
[(a0 ± a3|x)][(a2 ± a1|x)]− [(a1 ± a3|x)][(a2 ± a0|x)]

)
= τ (n)(x± a2δ)[(a0 ± a1|x)],

(A.26)

which is the bilinear equation of type (II2)n for the C3-frame {±a0,±a1,
± a2} of type II2.

A.4. (II1)n =⇒ (I)n+1/2

We have only to show that the bilinear equation (I)n+1/2 holds for
some particular C3-frame of type I.

Taking the C8-frame of (A.9), we look at the bilinear relation

τ (n+1)(x)τ (n−1)(x− (φ+ v0 − v1)δ)[(v3 − v2|x)][(φ− v0123|x)]
= τ (n)(x− (φ− v12)δ)τ

(n)(x− v02δ)[(v03|x)− δ][(φ− v13|x)− δ]

− τ (n)(x− (φ− v13)δ)τ
(n)(x− v03)δ)[(v02|x)− δ][(φ− v12|x)− δ]

(A.27)

of type (II1)n. Replacing x with x+ (v0 − v1)δ, we rewrite this formula
into

τ (n+1)(x+ (v0 − v1)δ)τ
(n−1)(x− φδ)[(v3 − v2|x)][(φ− v0123|x)]

= τ (n)(x− (φ− v02)δ)τ
(n)(x− v12δ)[(v03|x)][(φ− v13|x)]

− τ (n)(x− (φ− v03)δ)τ
(n)(x− (v13)δ)[(v02|x)][(φ− v12|x)].

(A.28)

Multiplying this by τ (n)(x+ (v01 − φ)δ)[(φ− v23|x)], we obtain

τ (n+1)(x+ (v0 − v1)δ)τ
(n)(x+ (v01 − φ)δ)[(v3 − v2|x)][(φ− v23|x)]

· τ (n−1)(x− φδ)[(φ− v0123|x)]
= τ (n)(x− u01δ)τ

(n)(x− u02δ)τ
(n)(x− v12δ)[(u13|x)][(u23|x)][(v03|x)]

− τ (n)(x− u01δ)τ
(n)(x− u03δ)τ

(n)(x− v13δ)[(u12|x)][(u23|x)][(v02|x)]

(A.29)

where ui = 1
2φ − vi and uij = ui + uj = φ − vij . Then, applying the

cyclic permutation (123) to this formula, we see that the sum of those
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three vanishes term by term. It means that

τ (n+1)(x+ (v0 − v1)δ)τ
(n)(x+ (v01 − φ)δ)[(v3 − v2|x)][(φ− v23|x)]

+ · · · = 0,

(A.30)

namely

τ (n+1)(x+ (u1 − u0)δ)τ
(n)(x− (u0 + u1)δ)[(u2 ± u3|x)] + · · · = 0.

(A.31)

Replacing x by x+ u0δ, we obtain the bilinear equation

τ (n+1)(x+ u1δ)τ
(n)(x− u1δ)[(u2 ± u3|x)] + · · · = 0(A.32)

of type (I)n+1/2 for the C3-frame {±u1,±u2,±u3} of type I.

A.5. (II1)n =⇒ (II0)n+1

In order to show that τ (n+1)(x) satisfies the bilinear equations of
type (II)n+1, we take the C8-frame A = {±a0,±a1, . . . ± a7} of type II
defined by

aj = vj +
1
2 (v67 − φ) (j = 0, 1, 2, 3, 4, 5);

a6 = 1
2 (v6 − v7 + φ), a7 = 1

2 (v7 − v6 + φ).
(A.33)

We prove that τ (n+1)(x) satisfies the bilinear equation

(A.34) τ (n+1)(x+ (a0 ± a3)δ)[(a4 ± a5|x)] + · · · = 0

of type (II0)n+1 for the C3-frame {±a3,±a4,±a5}. In terms of the basis
v0, v1, . . . , v7 for V , this equation is expressed as

τ (n+1)(x+ (v0 − v3)δ)τ
(n+1)(x+ (φ−v1245)δ)[(v4−v5|x)][(φ−v0123|x)]

+ · · · = 0.

(A.35)

We now look at the bilinear equation

τ (n+1)(x+ (v0 − v4)δ)τ
(n−1)(x− φδ)[(v2 − v1|x)][(φ− v0124|x)]

= τ (n)(x− (φ− v01)δ)τ
(n)(x− v14δ)[(v02|x)][(φ− v24|x)]

− τ (n)(x− (φ− v02)δ)τ
(n)(x− v24δ)[(v01|x)][(φ− v14|x)]

(A.36)
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of type (II1)n. Applying s0 to this formula, we obtain

τ (n+1)(x+ (φ− v1234)δ)τ
(n−1)(x− φδ)[(v2 − v1|x)][(v3 − v4|x)]

= τ (n)(x− v23δ)τ
(n)(x− v14δ)[(φ− v13|x)][(φ− v24|x)]

− τ (n)(x− v13)δ)τ
(n)(x− v24δ)[(φ− v23|x)][(φ− v14|x)].

(A.37)

Using these formulas, we compute

τ (n+1)(x+ (v0 − v3)δ)τ
(n+1)(x+ (φ− v1245)δ)[(v4 − v5|x)][(φ− v0123|x)]

· τ (n−1)(x− φ)2[(v2 − v1|x)]2
=

(
τ (n)(x− u01δ)τ

(n)(x− v13δ)[(v02|x)][(u23|x)]
− τ (n)(x− u02)δ)τ

(n)(x− v23δ)[(v01|x)][(u13|x)]
)

· (τ (n)(x− v24δ)τ
(n)(x− v15δ)[(u14|x)][(u25|x)]

− τ (n)(x− v14)δ)τ
(n)(x− v25δ)[(u24|x)][(u15|x)]

)
= τ (n)(x− u01δ)[(v02|x)]
· {τ (n)(x− v13δ)τ

(n)(x− v24)δ)τ
(n)(x− v15δ)[(u23|x)][(u14|x)][(u25|x)]

− τ (n)(x−v13δ)τ
(n)(x−v14)δ)τ

(n)(x−v25δ)[(u23|x)][(u24|x)][(u15|x)]
}

+ τ (n)(x− u02δ)[(v01|x)]
· {τ (n)(x− v23δ)τ

(n)(x− v14)δ)τ
(n)(x− v25δ)[(u13|x)][(u24|x)][(u15|x)]

− τ (n)(x−v23δ)τ
(n)(x−v24)δ)τ

(n)(x−v15δ)[(u13|x)][(u14|x)][(u25|x)]
}

(A.38)

Applying the cyclic permutation (345) to this formula, we can directly
observe that the sum of those three vanishes term by term. This com-
pletes the proof of Theorem 3.3 in the case where τ (n−1)(x) and τ (n)(x)
are W (E7)-invariant.

A.6. General case

We now consider the general case where τ (n−1)(x) and τ (n)(x) are
not necessarily W (E7)-invariant. In such a situation, we need to deal
with all the transforms w.τ (n−1) and w.τ (n) by w ∈ W (E7) simultane-
ously.

For each hyperplane Hκ =
{
x ∈ V

∣∣ (φ|x) = κ
}
(κ ∈ C) perpendic-

ular to φ, we introduce the covering space

(A.39) H̃κ = W (E7)×Hκ,
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and define the action of w ∈ W (E7) and the translation Tv (v ∈ H0) by
(A.40)
w.(g, x) = (wg,w.x), Tv.(g, x) = (g, x+ vδ) (g ∈ W (E7), x ∈ Hκ),

so that wTv = Tw.vw. For each function ψ on H̃κ, the induced actions
w.ψ (w ∈ W (E7)) and Tv.ψ (v ∈ H0) are described as

(A.41) (w.ψ)(g, x) = ψ(w−1g, w−1x), (Tv.ψ)(g, x) = ψ(g, x− vδ).

For each function ϕ on Hκ, we define a function ϕ̃ on H̃κ by

(A.42) ϕ̃(g, x) = (g.ϕ)(x) = ϕ(g−1.x) (g ∈ W (E7), x ∈ Hκ).

Then this function ϕ̃ is W (E7)-invariant, and ϕ is recovered from ϕ̃ by

ϕ(x) = ϕ̃(1, x) (x ∈ Hκ). Conversely, a function ψ on H̃κ is W (E7)-
invariant if and only if it is obtained as the lift ψ = ϕ̃ of a function ϕ
on Hκ.

Returning to the setting of Theorem 3.3, for the functions τ (k) on

Hc+kδ we consider the lifts τ̃ (k) on H̃c+kδ (k = n− 1, n). Note that, for
each g ∈ W (E7), g.τ

(n−1) and g.τ (n) also satisfy the bilinear equations
(I)n−1/2 and (II0)n. Hence, the lifted functions τ̃ (k) (k = n−1, n) satisfy
the bilinear equations corresponding to (I)n−1/2 and (II0)n. Formally,
those bilinear equations can be written as

(A.43) (I)n−1/2 : [(a1±a2|x)] τ̃ (n−1)(g, x−a0)τ̃
(n)(g, x+a0)+· · · = 0

and

(A.44) (II)n : [(a1 ± a2|x)] τ̃ (n)(g, x± a0) + · · · = 0.

As in (A.12), we can define a function ψ = ψ(g, x) on H̃c+(n+1)δ so that

ψ(g, x+ a0δ)τ̃
(n−1)(g, x− a0δ)[(ai ± aj |x)]

= τ̃ (n)(g, x− (a0 ± ai)δ)[(a0 ± aj |x)]− τ̃ (n)(g, x± ajδ)[(a0 ± ai|x)]

(A.45)

for any distinct i, j ∈ {2, . . . , 7}. Since τ̃ (k) are W (E7)-invariant on

H̃c+kδ (k = n − 1, n), applying the previous arguments to the lifted
functions, we see that ψ is also W (E7)-invariant and satisfies the bilinear
equations corresponding to (II1)n, (II2)n, (I)n+1/2, (II0)n+1. Since ψ is

W (E7)-invariant, it is expressed as ψ = τ̃ (n+1) with a function on τ (n+1)

on Hc+(n+1)δ:

(A.46) ψ(g, x) = τ̃ (n+1)(g, x) = (g.τ (n+1))(x), τ (n+1)(x) = ψ(1, x).
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Then the bilinear equations (II1)n, (II2)n, (I)n+1/2, (II0)n+1 for τ̃ (n−1),

τ̃ (n) and ψ = τ̃ (n+1) means that τ (n+1) satisfies the corresponding bilin-
ear equations of four types and that the recursive construction of τ (n+1)

from τ (n−1), τ (n) is equivariant with respect to the action of W (E7).
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Functions, Astérisque No. 165 (1988), 210 pp. (1989).

[ 3 ] V. Kac: Infinite Dimensional Lie Algebras, Third Edition, Cambridge Uni-
versity Press, 1990.

[ 4 ] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada: 10E9 solution
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