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Bass’ triangulability problem

Vladimir L. Popov

Abstract.

Exploring Bass’ Triangulability Problem on unipotent algebraic
subgroups of the affine Cremona groups, we prove a triangulability
criterion, the existence of nontriangulable connected solvable affine al-
gebraic subgroups of the Cremona groups, and stable triangulability
of such subgroups; in particular, in the stable range we answer Bass’
Triangulability Problem in the affirmative. To this end we prove a the-
orem on invariant subfields of 1-extensions. We also obtain a general
construction of all rationally triangulable subgroups of the Cremona
groups and, as an application, classify rationally triangulable connected
one-dimensional unipotent affine algebraic subgroups of the Cremona
groups up to conjugacy.

§1. Introduction

We assume given an algebraically closed field k of arbitrary char-
acteristic which serves as domain of definition for each of the varieties
considered below. In this paper, “variety” means “algebraic variety” and
it is identified with its set of k-rational points.

Recall that the Cremona group (over k) of rank n is the group

Cn := Autk k(A
n),

and Autk k[A
n] is the affine Cremona group (over k) of rank n. The

group BirAn of rational self-maps of An (resp. the group AutAn) is
identified with Cn (resp.Autk k[A

n]) by means of the isomorphism ϕ �→
(ϕ∗)−1. For n > 1, we identify k(An−1) with the subfield of k(An)
by means of the natural embedding k(An−1) ↪→ k(An) determined by
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the projection An → An−1, (α1, . . . , αn) �→ (α1, . . . , αn−1). This makes
k[An−1] the subalgebra of k[An]. We put k(A0) = k[A0] := k.

Let xi : A
n → k, (α1, . . . , αn) �→ αi, be the ith standard coordinate

function. We have

(1) k(An) = k(x1, . . . , xn), k[An] = k[x1, . . . , xn].

The group Cn−1 is identified with the subgroup of Cn by means of
the embedding

(2) Cn−1 ↪→Cn, ϕ �→ ϕ̃, where ϕ̃(xi) :=ϕ(xi) for i<n and ϕ̃(xn) :=xn.

This makes Autk k[A
n−1] the subgroup of Autk k[A

n].
Although the groups Cn and Autk k[A

n] are infinite-dimensional for
n > 1 (see [Ra 1964], [Po 2014]), the analogies between them and al-
gebraic groups catch the eye: they have the Zariski topology, algebraic
subgroups, tori, roots, the Weyl groups, . . . (see [Po 20131], [Po 20132]
and references therein). The de Jonquières subgroup

Jn := {ϕ ∈ Autk k[A
n] | ϕ(xi) = αixi + hi, αi ∈ k×, hi ∈ k[Ai−1]}

is viewed by some authors as an analog of Borel subgroup for Autk k[A
n]

(see, e.g., [Ba 1984]). Supporting this viewpoint, [Po 20131, Thm. 3.1]
implies that every algebraic subgroup of Jn is affine solvable. Having
in mind conjugacy of Borel subgroups in every finite dimensional affine
algebraic group, one leads to the question whether it is true that every
connected solvable affine algebraic subgroupG of Autk k[A

n] is conjugate
in Autk k[A

n] to a subgroup of Jn. In particular, Problem III in [Ba 1984]
asks whether it is true for unipotent G. In [Ba 1984] Bass answered the
latter question in the negative for char k = 0, n = 3, and G = k+, the
one-dimensional additive group. In [Po 1987] was then elaborated a sim-
ple general method yielding negative answers for char k = 0, G = k+,
and all n > 2 (this method, in the form of usage of so called replicas,
became the crucial instrument in the recent studies on infinite transi-
tivity of automorphism groups of algebraic varieties [Ka 2012]). Given
these developments, Bass formulated for char k = 0 the following

Bass’ Triangulability Problem ([Ba 1984, Question 4]). “If a unipo-
tent group G acts on An, can the action be rationally triangularized,
i.e., can we write k(x1, . . . , xn) = k(y1, . . . , yn) so that each subfield
k(y1, . . . , yi) is G-invariant?”

Here we explore this problem in the broader context of connected
solvable affine algebraic groups G and arbitrary char k. To formulate our
results we first introduce two definitions.
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Definition 1 (1-extensions). If a field K is a purely transcendental
extension of a field L of the transcendence degree 1, then, for brevity,
we say that K is a 1-extension of L.

Definition 2 (Rationally triangulable subgroups). A subgroup G
of Cn is called rationally triangulable if there is a flag

(3) k(An) =: Kn ⊃ Kn−1 ⊃ · · · ⊃ K1 ⊃ K0 := k

of G-stable subfields of k(An) such that Ki/Ki−1 is a 1-extension for
every i > 0. A rational action of an algebraic group on An is called ra-
tionally triangulable if the image of this group under the homomorphism
to Cn determined by this action is rationally triangulable.

Now we shall formulate our results.
We start with proving the following Theorem 1; it, in turn, yields

Theorem 2 that is heavily used in the proofs of our next results.

Theorem 1 (Invariant subfields of 1-extensions). Let Q be a finitely
generated field extension of k and let P be a 1-extension of Q. Let G be a
one-dimensional connected solvable affine algebraic subgroup of Autk(P )
such that Q is G-stable.

(i) If QG = Q, then PG = QG.
(ii) If QG � Q, then PG is a 1-extension of QG.

Theorem 2 (Purity of invariant field extensions). Let Q be a finitely
generated field extension of k and let P be a 1-extension of Q. Let G be
a connected solvable affine algebraic subgroup of Autk(P ) such that Q is
G-stable. Then one of the following holds:

(i) PG = QG;
(ii) PG is a 1-extension of QG.

Using Theorem 2, we obtain the following triangulability criterion:

Theorem 3 (Triangulability criterion). The following properties of
a connected solvable affine algebraic subgroup G of the Cremona group
Cn are equivalent:

(i) k(An)G is purely transcendental over k;
(ii) G is rationally triangulable.

Theorem 3 generalizes [DF 1991, Thm. 3.1], where the claim is proved
for one-dimensional unipotent algebraic subgroups of AutkA

n in the case
char k = 0.

Corollary 1 (Low-dimensional quotients). A connected solvable
affine algebraic subgroup G of Cn is rationally triangulable in either
of the following cases:
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(i) tr degkk(A
n)G � 1;

(ii) tr degkk(A
n)G = 2 and char k = 0;

(iii) G ⊂ AutAn and
(a) dimG · x � n− 1 for some point x ∈ An, or
(b) char k = 0 and dimG · x = n− 2 for some point x ∈ An.

Corollary 2 (3-dimensional affine space). If char k = 0, then ev-
ery connected solvable affine algebraic subgroup of AutA3 is rationally
triangulable.

Corollary 2 generalizes [DF 1991, Cor. 3.2], where the claim is proved
for one-dimensional unipotent algebraic subgroups of AutA3 and chark =
0.

Corollary 3 (Tori). The following properties of an affine algebraic
torus T in the Cremona group Cn are equivalent:

(i) T is rationally triangulable,
(ii) T is linearizable, i.e., conjugate in Cn to a subgroup of GLn.
(iii) T is conjugate in Cn to the diagonal torus of GLd, where d =

dimT .

Next we show that the nontriangulable connected solvable affine
algebraic subgroups of Cn do exist. In particular, the following theorem
implies that in case (ii) of Corollary 1 it is not possible to replace 2 by
a bigger integer.

Theorem 4 (Nontriangulable subgroups). Let n be an integer � 5
and let char k �= 2. Every (n − 3)-dimensional connected solvable affine
algebraic group G is isomorphic to a rationally nontriangulable algebraic
subgroup of the Cremona group Cn.

As far as we do not claim that the subgroup in the formulation of
Theorem 4 lies in Autk k[A

n], this theorem does not furnish the nega-
tive answer to Bass’ Triangulability Problem. However, its proof demon-
strates the intimate interrelation between triangulability and Zariski’s
Cancellation Problem: it shows that if there is a nonrational variety Z
such that An is isomorphic to As × Z, then the answer to Bass’ Trian-
gulability Problem is negative (in view of this it is worth to recall that
in positive characteristic Zariski’s Cancellation Problem is solved in the
negative in [Gu 2014]); by Theorems 6, 7, described in Section 3, the
converse it true at the birational level.

On the other hand, in the stable range we do answer Bass’ Tri-
angulability Problem in the affirmative. Namely, the following theorem
shows that despite the existence of rationally nontriangulable connected
solvable affine algebraic subgroups of Cn, every such subgroup is stably
rationally triangulable. More precisely, the following holds true.
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Theorem 5 (Stable triangulability). Every connected solvable affine
algebraic subgroup G of the Cremona group Cn is rationally triangulable
in the Cremona group Cm for every

(4) m � 2n− tr degkk(A
n)G.

Theorem 5 generalizes [DF 1991, Thm. 3.1], where the statement is
proved for one-dimensional unipotent algebraic subgroups of AutkA

n,
assuming char k = 0.

Next we obtain a general construction of all rationally triangulable
subgroups of Cn, see Theorem 7 in Section 3. As an application, it leads
to the classification (given below in Corollary 4) of rationally triangula-
ble one-dimensional connected unipotent algebraic subgroups in Cn up
to conjugacy. In this classification we use the following terminology.

A one-dimensional connected unipotent algebraic subgroup G of Cn,
identified with k+ by means of an isomorphism G → k+, is called stan-
dard if x1, . . . , xn−1 ∈ k[An]G and, for every t ∈ k+, the following holds:

(i) for char k = 0, we have

t(xn) = xn + t

(in this case G is also called the translation);
(ii) for char k = p > 0, we have

t(xn) = fn + c1t
pi1

+ · · ·+ cdt
pid

,

where all cj ’s are the nonzero elements of k(x1, . . . , xn−1), and
i1 < · · · < id are the nonnegative integers.

Corollary 4 (One-dimensional rationally triangulable unipotent sub-
groups). A one-dimensional connected unipotent algebraic subgroup of
Cn is rationally triangulable if and only if it is conjugate in Cn to a
standard subgroup.

Corollary 4 generalizes [DF 1991, Thm. 2.2], where the claim is
proved for char k = 0.

Corollary 5 (Low-dimensional affine spaces). Let U be a one-
dimensional connected unipotent algebraic subgroup of Cn.

(i) If n = 2, then U is conjugate in C2 to a standard subgroup.
(ii) If char k = 0 and n = 3, then U is conjugate in C3 to the

translation.

By [Re 1968] for char k = 0, and by [Mi 1971] for char k > 0, if n = 2
and U ⊂ AutA2, then “in C2” in Corollary 5(i) may be replaced by “in
AutA2”.
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By [Ka 2004], for k = C, n = 3, U ⊂ AutA3, if U acts on A3 freely,
then U is conjugate in AutA3 to the translation. Corollary 5(ii) shows
that, allowing conjugation in C3, the “if” assumption in this result may
be dropped, i.e., conjugacy to the translastion becomes true for every U
in C3.

The proofs of Theorems 1–5 and Corollaries 1–3 are given in Sec-
tion 2. Theorem 7 is formulated and proved, together with Corollaries
4, 5, in Section 3.

Notation and conventions. We use freely the standard notation and
conventions of [Bo 1991], [Sp 1998], [PV1994] and refer to [Ro 1956],
[Ro 1961], [Ro 1963], [PV 1994], [Po 20131] regarding the definitions and
basic properties of rational and regular (morphic) actions of algebraic
groups.

Unless otherwise specified, we will assume that every field appearing
below contains k and every embedding of fields restricts to the identity
map on k.

Acknowledgements. My thanks go to the referees for their comments.

§2. Proofs of Theorems 1–5 and Corollaries 1, 2

Proof of Theorem 1.
1. The assumptions on Q and P imply that there is an irreducible

variety X such that for

(5)
Y := A1 ×X,

ρ : Y → X, (a, x) �→ x,

we may (and shall) identify P with k(Y ):

(6) P = k(Y ),

and Q with the image of embedding ρ∗ : k(X) ↪→ k(Y ):

(7) Q = ρ∗(k(X)).

The actions of G on Q and P determine the rational actions of G
on X and Y . The action on Y is faithful (because G ⊆ Autk(P )), and
the morphism ρ is equivariant with respect to these actions.

By Weil’s regularization theorem [We 1955] (see also [Ro 1956, Thm.
1]) there are

— irreducible algebraic varieties X̃ and Ỹ ;
— nonempty open subsets X0 and Y0 in, respectively, X and Y ;
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— open embeddings ι1 : X0 ↪→ X̃, ι2 : Y0 ↪→ Ỹ

such that the induced rational actions of G on X̃ and Ỹ are regular

(morphic). The action ofG on Ỹ is faithful since that on Y is. We identify
X0 and Y0 with the images of, respectively, ι1 and ι2, that yields the
natural identifications

(8) k(X) = k(X̃), k(Y ) = k(Ỹ ).

By Rosenlicht’s theorem on generic quotients [Ro 1956, Thm. 2], re-

placing X̃, X0, Ỹ , and Y by the appropriate open subsets, we may (and

shall) assume that for the actions of G on X̃ and Ỹ respectively there
are the geometric quotients

π
X̃,G

: X̃ → X̃/G, π
Ỹ ,G

: Ỹ → Ỹ /G.

In particular, π
X̃,G

and π
Ỹ ,G

are equidimensional morphisms, their

fibers are G-orbits, and, in view of (6), (7), (8),

(9) ρ∗ ◦ π∗
X̃,G

: k(X̃/G)
�−→ QG, π∗

Ỹ ,G
: k(Ỹ /G)

�−→ PG.

Since dimG = 1 and G acts on Ỹ faithfully, every fiber of π
Ỹ ,G

is one-

dimensional; in view of (5), this yields

(10) dim Ỹ /G = dimY − 1 = dimX.

The morphism ρ induces a G-equivariant dominant rational map

ρ̃ : Ỹ ��� X̃.

Since its domain of definition is G-stable, replacing the varieties again
by the appropriate open subsets we may (and shall) assume that ρ̃ is a
G-equivariant surjective morphism.

Thus we obtain the following commutative diagram

(11)

Y

ρ

��

Y0
� �

ι4�� � � ι2 ��

ρ0

��

Ỹ

ρ̃

��

π
Ỹ ,G �� Ỹ /G

X X0
� �

ι3�� � � ι1 �� X̃
π
X̃,G �� X̃/G

,

where ρ0 := ρ|Y0 = ρ̃|Y0 and ι3, ι4 are the identical embeddings. Finally,
replacing X0 and Y0 by the appropriate open subsets, we may (and shall)
assume that ρ0(Y0) = X0.



432 V. L. Popov

Now we shall consider separately two arising possibilities.

2. First, consider the case

(12) QG = Q.

By (7), condition (12) is equivalent to triviality of the action of G on X̃.
From Q ⊂ P and (12) we obtain

(13) Q ⊆ PG ⊂ P,

From (6), (8), (10) we infer tr degPGP = 1, and (5), (6), (8) yield
tr degQP = 1. Whence by (13) we obtain tr degQP

G = 0. Since P is a 1-
extension of Q, by Lüroth’s theorem ([Lü 1876], see also, e.g., [vdW1971,
§73]) the latter equality implies that PG = Q. Thus, by (12), in the case
under consideration we have PG = QG. This proves claim (i) of Theorem
1.

3. Now consider the case QG � Q, i.e., G acts on X̃ nontrivially.
Every fiber of π

X̃,G
is then a one-dimensional G-orbit; whence

(14) dim X̃/G = dimX − 1.

In view of (6), (7), (8), (10), (14), we have

(15) tr degQGPG = 1.

Since G is a connected solvable affine algebraic group, by Rosen-
licht’s cross-section theorem [Ro 1956, Thm. 10] there is a rational sec-
tion

σ : X̃/G ��� X̃

of π
X̃,G

, i.e., a rational map such that

(16) π
X̃,G

◦ σ = id
X̃
.

Since g ◦σ for every element g ∈ G is also a rational section of π
X̃,G

, we

may (and shall) assume that σ(X̃/G)∩X0 �= ∅. This implies that there
is a locally closed irreducible subvariety S ⊂ X0 such that

(17) π
X̃,G

|S : S → X̃/G is an open embedding.

In view of (9), this means that

(18) k(X̃)G → k(S), f �→ f |S , is a well-defined isomorphsim.
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In particular, in view of (14), we have

(19) dimS = dimX − 1.

From (5) we obtain that

(20) ρ−1(S) = A1 × S.

Consider in Ỹ the locally closed irreducible subvariety

(21) Z := ρ−1(S) ∩ Y0.

From (20) and (21) we infer that

k(Z) is a 1-extension of K := ρ|∗Z(k(S)),(22)

and from (10), (19) that

dimZ = dimX = dim Ỹ /G.(23)

We claim that the morphism

(24) ζ := π
Ỹ ,G

|Z : Z → Ỹ /G

is dominant. In view of (23), to prove this, it suffices to show that, for ev-
ery point z ∈ Z, the fiber ζ−1(ζ(z)) is finite. Assume the contrary. Since
ζ−1(ζ(z)) = Z ∩ O, where O := π−1

Ỹ ,G
(π

Ỹ ,G
(z)) is a certain G-orbit, we

then infer from dimO = 1 that

(25) dim(Z ∩ O) = 1.

Since ρ̃ is a G-equivariant morphism, O ′ := ρ̃(O) is also a G-orbit. Hence

dimO ′ = 1, because all G-orbits in X̃ are one-dimensional. The latter
equality and (25) imply that ρ̃(Z ∩ O) is an open subset of O ′; in par-
ticular, it is infinite. On the other hand, (21) yields that ρ̃(Z ∩ O) lies
in S ∩ O ′. Since, by (17), the latter is a single point, we obtain a con-
tradiction. This proves the claim.

Thus, since ζ is dominant, it defines an embedding of fields ζ∗ :
k(Ỹ /G) ↪→ k(Z). In view of (6), (8), this means that

(26) τ : PG ↪→ k(Z), f �→ f |Z , is a well-defined embedding,

and (7), (8), (18), (22) imply that

(27) τ : QG ↪→ K is an isomorphism.
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Thus (26), (27) yield the following commutative diagram

k(Z) τ(PG)� �id�� K� �
id��

PG

τ �
��

QG� �id��

τ �

��

.

In view of (15), (22), this diagram and Lüroth’s theorem imply that PG

is a 1-extension of QG. This completes the proof of claim (ii) of Theorem
1. Q.E.D.

Proof of Theorem 2.
We argue by induction on dimG. The statement being clear for triv-

ial G, we need, assuming dimG > 0, to prove the inductive step.
Since G is a connected solvable affine algebraic group, it contains a

closed connected normal subgroup N such that dimG/N = 1, see, e.g.,
[Gr 1956, p. 6–03, Cor. 1]. The group G/N naturally acts on PN and QN ,
and we have

(28) (PN )G/N = PG and (QN )G/N = QG.

By the inductive assumption one of the following holds:

(a) PN = QN ;
(b) PN is a 1-extension of QN .

If (a) is fulfilled, then PG = QG in view of (28), i.e., (i) holds.
If (b) is fulfilled, then, since G/N is a one-dimensional connected

solvable affine algebraic group, (28) and Theorem 1 imply that either (i)
or (ii) holds. This completes the proof. Q.E.D.

Proof of Theorem 3.
(i)⇒(ii) Assume that k(An)G is a purely transcendental field exten-

sion of k. Then there is a flag

(29) k(An)G =: It ⊃ It−1 ⊃ · · · ⊃ I1 ⊃ I0 := k

of the subfields of k(An)G such that Ii/Ii−1 is a 1-extension for every
i > 0.

Since G is a connected solvable affine algebraic group, there is a flag
of its closed connected normal subgroups

(30) G =: G0 ⊃ G1 ⊃ · · · ⊃ Gs−1 ⊃ Gs := {e}
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such that dimGi−1/Gi = 1 for every i > 0, see [Gr 1956, p. 6–03, Cor. 1].
From (30) we obtain the following flag of G-stable subfields of k(An):

(31) k(An) = Ks ⊇ Ks−1 ⊇ · · · ⊇ K1 ⊇ K0 = k(An)G, Ki := k(An)Gi .

By construction, for every i > 0, we have

(32) Ki−1 = k(An)Gi−1 = (k(An)Gi)Gi−1/Gi = K
Gi−1/Gi

i .

If the action of Gi−1/Gi onKi is trivial, then (32) yields Ki = Ki−1. If it
is nontrivial, then, since Gi−1/Gi is a one-dimensional connected solv-
able affine algebraic group, we infer from (32) and [Po 2015, Thm. 1]
(or [Ma 1963, Thm. 1] if char k = 0) that Ki/Ki−1 is a 1-extension.
Therefore, once repetitions in flag (31) are eliminated, we obtain a flag

(33) k(An) =: Ld ⊃ Ld−1 ⊃ · · · ⊃ L1 ⊃ L0 := k(An)G

of G-stable subfields of k(An) such that Li/Li−1 is a 1-extension for
every i > 0. From (33) and (29) we then obtain the flag

k(An) =: Ld ⊃ Ld−1 ⊃ · · · ⊃ L1 ⊃ L0=It ⊃ It−1 ⊃ · · · ⊃ I1 ⊃ I0 := k

of G-stable subfields of k(An) whose “levels” are 1-extensions. By Defi-
nition 2 the group G is then rationally triangulable.

(ii)⇒(i) Conversely, assume that the group G is rationally triangu-
lable and consider a flag (3) of G-stable subfields of k(An). Passing to
the G-invariant subfields, we then obtain the following flag of subfields
of k(An)G:

(34) k(An)G = KG
n ⊇ KG

n−1 ⊇ · · · ⊇ KG
1 ⊇ KG

0 = k.

By Theorem 2, for every i = 1, . . . , n, either KG
i = KG

i−1 or KG
i is

a 1-extension of KG
i−1. Therefore, (34) yields that k(An)G is a purely

transcendental extension of k. This completes the proof. Q.E.D.

Proof of Corollary 1. In cases (i) and (ii), the claim follows, in view
of Theorem 3, from, respectively, Lüroth’s theorem and Castelnuovo’s
theorem (see, e.g., [Ha 1977, Chap.V, 6.2.1]). In case (iii), it follows from
(i) and (ii), since, by [Ro 1956, Thm. 2],

tr degkk(A
n)G = n− max

a∈An
G · a.

Q.E.D.

Proof of Corollary 2. This follows from Corollary 1. Q.E.D.
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Proof of Corollary 3. In view of Theorem 3, the equivalence (i)⇔(ii)
follows from Theorem 2.4 of [Po 20131] (the assumption char k = 0
made in [Po 20131] is not used in the proof of this theorem). The equiv-
alence (ii)⇔(iii) follows from Corollary 4 of [Po 20132] (the assumption
char k = 0 made in [Po 20132] is not used in the proof of this corol-
lary). Q.E.D.

Proof of Theorem 4. By [S-B 2004] (where it is assumed that char k
�= 2) there exists a nonrational threefold X such that A2 × X is bira-
tionally isomorphic to A5. Hence we may (and shall)

(35) fix a birational isomorphism An−3 ×X ��� An.

Since the underlying variety of G is rational (see [Gr 1958, p. 5-02,
Cor.]), we also may (and shall) fix a birational isomorphism between
it and An−3. We then obtain from the action of G on itself by left
translations a faithful rational action of G on An−3 such that

(36) k(An−3)G = k.

In turn, the latter action yields a faithful rational action of G on An−3×
X via the first factor. By [Bo 1991, Cor. of Prop. II.6.6] and (36), for this
action,

(37) k(An−3 ×X)G and k(X) are isomorphic.

Thus, given (35), we obtain a faithful rational action of G on An

such that the field k(An)G is isomorphic to k(X), and hence is not
purely transcendental over k according to the choice of X.

By Theorem 3 we then conclude that the algebraic subgroup of Cn
determined by this action is isomorphic to G and rationally nontriangu-
lable. Q.E.D.

Proof of Theorem 5. First, we shall introduce some notation. Given
a rational action of an algebraic group H on an irreducible algebraic va-

riety Z, we denote by Z --
-H a rational quotient of this action, i.e., an

irreducible variety (uniquely defined up to birational isomorphism) such

that there exists an isomorphism k(Z --
-H) → k(Z)H , restricting to the

identity map on k. We shall write X ≈ Y if X and Y are birationally
isomorphic irreducible varieties.

By [Po 2015, Thm. 1] (or [Ma 1963, Thm. 1] if char k = 0) we have

(38) An ≈ An

--
-G×As, where s := n− tr degkk(A

n)G.
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Take an integer m such that (4) holds and consider G as a subgroup
of Cm via embedding (2). The arising rational action of G on Am =
An ×Am−n is that through the first factor. Therefore

(39)

Am

--
-G = (An

--
-G)×Am−n

(4)
= (An

--
-G)×As ×Am−n−s

(38)≈ An ×Am−n−s = Am−s

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

By (39) the field k(Am)G is purely transcendental over k. Hence by
Theorem 3 the group G is rationally triangulable in Cm. Q.E.D.

§3. Construction �

Now we shall give a general construction of all rationally triangulable
subgroups of Cn. It is prompted by the following result from [Po 2015]
that yields a general construction of all connected solvable affine alge-
braic subgroups of Cn:

Theorem 6 (Standard invariant open subsets [Po 2015, Thm. 3]).
Let X be an irreducible variety endowed with a regular action of a con-
nected solvable affine algebraic group S. Then for the restriction of this
action on a certain S-stable nonempty open subset Q of X there exist

— the geometric quotient πS,Q : Q → Q/S;

— an isomorphism ϕ : Q → Ar,u × (Q/S), where

Ar,u := {(α1, . . . , αr+u) ∈ Ar+u | αi �= 0 for every i � r}, r � 0, u � 0,

such that the natural projection Ar,u × (Q/S) → Q/S is the geometric
quotient of the regular action of S on Ar,u × (Q/S) induced by ϕ.

Theorem 6 leads to the following

Construction �
Let S be a connected solvable affine algebraic group and let Z be

an irreducible variety such that, for some nonnegative integers r, u,

(40) the variety Z ×Ar,u is rational.

Consider a map
ϕ : S × Z → AutAr,u

that has the following properties:
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(i) ϕ is an algebraic family [Ra 1964], [Po 2014], i.e.,

S × Z ×Ar,u → Ar,u, (s, z, a) �→ ϕ(s, z)(a),

is a morphism;
(ii) for every point z ∈ Z, the algebraic family

ϕz : S → AutAr,u, s �→ ϕ(s, z),

is a homomorphism determining a transitive action of S on Ar,u.

These data determine the regular action of S on Z × Ar,u by the
formula

(41) S × (Z ×Ar,u) → Z ×Ar,u,
(
s, (z, a)

) �→ (
z, ϕ(s, z)(a)

)
.

By (ii), the orbits of this action are the fibers of the projection

π : Z ×Ar,u → Z, (z, a) �→ z,

and, more precisely, for every point z ∈ Z, the varietyAr,u endowed with
the S-action determined by ϕz is S-isomorphic to the fiber π−1(z). By
[Bo 1991, Prop. II.6.6] this implies that k(Z ×Ar,u)S � k(Z).

In view of (40), for n = dimZ + r + u, we may (and shall) fix a
birational isomorphism

γ : Z ×Ar,u ��� An.

Then γ and action (41) determine a rational action of S on An. The
image of the homomorphism S → Cn determined by this rational action
is a connected solvable affine algebraic subgroup G of Cn, and for this G
we have

(42) k(An)G � k(Z).

We say that G is a subgroup of Cn obtained by Construction �.

Theorem 6 (combined with Weil’s regularization theorem [We 1955])
implies that this construction is universal, i.e., every connected solvable
affine algebraic subgroup of Cn is obtained by Construction �.

Example 1 (One-dimensional connected unipotent subgroups of
Cn). Let G be the one-dimensional additive group k+. In view of (ii),
we then have r = 0, u = 1, i.e., ϕz : G = k+ → AutA1 for every
z ∈ Z. Since AutA1 = T � N , where T is a one-dimensional torus
and N � k+ is the subgroup consisting of all translations A1 → A1,
a �→ a + t, t ∈ k+, this means that every ϕz may be identified with



Bass’ triangulability problem 439

a surjective homomorphism k+ → k+. What happens next depends on
char k, see [Sp 1998, Lemma 3.3.5].

Namely, a map k+→ k+ is a homomorphism if and only if it has the
following form:

(i) case char k = 0: t �→ ct, where c is a fixed element of k,

(ii) case char k = p > 0: t �→ α1t
pi1

+ · · ·+αdt
pid , where α1, . . . , αd

are the nonzero elements of k and i1, . . . , id is an increasing sequence of
nonnegative integers.

Since every one-dimensional connected unipotent algebraic group is
isomorphic to k+ (see, e.g., [Sp 1998, Thm. 3.4.9]), this yields the follow-
ing general method of constructing connected one-dimensional unipotent
algebraic subgroups of Cn.

Take an irreducible variety Z such that Z × A1 and An are bira-
tionally isomorphic. If char k = 0, fix a nonzero regular function f ∈
k[Z]. If char k = p > 0, fix a sequence of nonnegative integers i1 < . . . <
id and a sequence of nonzero regular functions f1, . . . , fd ∈ k[Z]. Consider
the action of S = k+ on Z ×A1 defined by the formula

S×(Z×A1) → Z×A1,

(s, (z, a)) �→
{
(z, a+f(z)s) if char k=0,

(z, a+
∑d

m=1 fm(z)sp
im

) if char k=p>0.

(43)

Then action (43) and a fixed birational isomorphism γ : Z ×A1 ��� An

determine a one-dimensional connected unipotent algebraic subgroup G
of Cn, and every such subgroup is obtained this way.

Theorem 7 (Structure theorem). The following properties of a con-
nected solvable affine algebraic subgroup G of the Cremona group Cn are
equivalent:

(i) G is rationally triangulable;
(ii) G is obtained by Construction �, in which the variety Z is ra-

tional.

Proof. This follows from (42) and Theorem 3. Q.E.D.

Proof of Corollary 4. LetG be a rationally triangulable one-dimen-
sional connected unipotent algebraic subgroup of Cn. By Theorem 7 and
Example 1, G is obtained from the action of S = k+ on Z ×A1 defined
by formulas (43), where Z is a rational variety. Therefore there are func-
tions f1, . . . , fn ∈ k(An) such that k(f1, . . . , fn) = k(An), f1, . . . , fn−1 ∈
k(An)G, and t(fn) for every element t ∈ S is the following function:

(i) if char k = 0, then t(fn) = fn + ct, where c ∈ k(f1, . . . , fn−1),
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(ii) if char k = p > 0, then

t(fn) = fn + b1t
pi1

+ · · ·+ bdt
pid

,

where bj ∈ k(f1, . . . , fn−1), bj �= 0 for every j and i1 < · · · < id
are the nonzero integers.

In case (i), replacing fn by fn/c we may (and shall) assume that
c=1. Then, conjugating S by means of ϕ ∈ Cn such that ϕ(fi) = xi for
every i (see (1)), we obtain a standard subgroup.

The converse (that standard subgroups are rationally triangulable)
is clear. Q.E.D.

Proof of Corollary 5. This follows from Corollaries 1, 2, and 4.
Q.E.D.
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