Unipotent group actions on projective varieties

Rajendra V. Gurjar, Kayo Masuda and Masayoshi Miyanishi

Abstract

. The correspondence between G_{a}-actions on affine varieties and locally nilpotent derivations of the coordinate algebras is generalized in the projective case to the correspondence between stratified G_{a}-actions on smooth projective varieties V and regular vector fields on V which are effectively locally nilpotent with stratification. These notions with stratifications are inspired by explicit computations of G_{a}-actions on the projective space \mathbb{P}^{n} as well as the Hirzebruch surface \mathbb{F}_{n} and the associated regular vector fields. Using partly these observations, we investigate the existence of \mathbb{A}^{1}-cylinders in Fano threefolds with rank one.

§ Introduction

In studying algebraic varieties of higher dimension, one effective approach is to decompose a given variety into algebraic varieties of lower dimension via a fibration. To find a fibration via an algebraic group action on the variety, it is expected that there exists the (algebraic) quotient variety and the quotient morphism is a fibration whose general fibers are the orbits of the algebraic group. The quotient variety exists for a nice group like a reductive algebraic group, although the fiber tends to have a complicated structure as a homogeneous space.

An algebraic group action on an algebraic variety X can be detected if one knows the automorphism group $\operatorname{Aut}(X)$ and its subgroups. If X is a projective variety, $\operatorname{Aut}(X)$ is given a group scheme structure, and the connected component $\operatorname{Aut}^{0}(X)$ of the identity element is an algebraic

[^0]group. If the variety X is not projective, say affine, the automorphism group does not necessarily have any algebraic group structure possibly except an ind-affine group structure. But the structure of $\operatorname{Aut}(X)$ is helpful to find elementary algebraic subgroups like the additive group G_{a} or the multiplicative group G_{m}.

Let X be a smooth projective variety and let $\mathcal{T}_{X / k}$ be the tangent bundle. Then it is known that the Lie algebra of the algebraic group Aut ${ }^{0}(X)$ is $\Gamma\left(X, \mathcal{T}_{X / k}\right)$. For a smooth algebraic variety X, an element v of $\Gamma\left(X, \mathcal{T}_{X / k}\right)$ is a regular vector field on X. If $X=\operatorname{Spec} A$ is an affine variety, this field corresponds to an element Δ of $\operatorname{Der}_{k}(A)$, which is a k-derivation of A. If Δ is locally nilpotent, $\exp (t \Delta)$ with $t \in k$ defines a G_{a}-action on X. If an affine variety $X=\operatorname{Spec} A$ has a $G_{a^{-}}$ action defined in this way, one can think about the "algebraic quotient" $X / / G_{a}$ and the "quotient morphism" $q: X \rightarrow X / / G_{a}$ if $A^{\Delta}:=\operatorname{Ker} \Delta$ is finitely generated over k. Then $X / / G_{a}$ is defined as $\operatorname{Spec} A^{\Delta}$ and q is the morphism associated to the inclusion $A^{\Delta} \hookrightarrow A$. If $\operatorname{dim} X \leq 3$, by a theorem of Zariski, A^{Δ} is finitely generated over k. Hence $X / / G_{a}$ and q exist, and the morphism q is an \mathbb{A}^{1}-fibration. Here an \mathbb{A}^{1}-fibration is a dominant morphism $f: X \rightarrow Y$ of algebraic varieties such that general closed fibers as well as the generic fiber are isomorphic to \mathbb{A}^{1}. We discussed \mathbb{A}^{1}-fibrations on affine threefolds in [16]. The correspondence between G_{a}-actions on affine varieties and locally nilpotent derivations on the coordinate algebras has been successfully used in affine algebraic geometry. Meanwhile, the results on G_{a}-actions on projective varieties are not abundant except for some basic ones in [2, 7, 20].

In the present article, we look into unipotent group actions on projective varieties. In the later sections, we restrict ourselves to G_{a}-actions. In order to develop some meaningful theory about this subject, we need leading models (or examples) and we take the projective space \mathbb{P}^{n}, the Hirzebruch surface \mathbb{F}_{n}, etc. Throughout the article, keywords are regular vector fields and stratifications on a given projective variety V, which is a sequence of closed subsets

$$
\begin{equation*}
V_{0}=V \supset V_{1} \supset \cdots \supset V_{n-1} \supset V_{n}, \operatorname{dim} V_{i}=n-i \tag{*}
\end{equation*}
$$

In the sequence $(*)$, strata consist of $V_{0} \backslash V_{1}, V_{1} \backslash V_{2}, \ldots, V_{n-1} \backslash V_{n}$ and each stratum satisfies some property varying from one situation to the other.

In Section one, we determine explicitly the Lie algebra $\Gamma\left(X, \mathcal{T}_{X / k}\right)$ for $X=\mathbb{P}^{n}, X=\mathbb{F}_{n}$ and a Danielewski surface $X=\left\{x y=z^{2}-1\right\}$. In the last case which treats an affine surface, $\Gamma\left(X, \mathcal{T}_{X / k}\right)$ is seen to have more complicated structure than in the first two cases. Furthermore,
we observe the behavior of $\Gamma\left(X, \mathcal{T}_{X / k}\right)$ under the blowing-up. Thus this section is for preliminary results for the later developments.

In Section two, we introduce the notion of unipotent group orbit stratification on a smooth projective variety V which is the sequence $(*)$ such that each stratum is the finite union of orbits under the given action of a unipotent group U (see Definition 2.5). In particular, since $V_{0} \backslash V_{1}$ is a single unipotent group orbit, the variety V itself is very restrictive. In fact, if we simply assume that each V_{i} is smooth and $\bar{\kappa}\left(V_{i}-V_{i+1}\right)=-\infty$, then V is isomorphic to \mathbb{P}^{n} (Theorem 2.8). So, the unipotent group orbit stratification is thought to be a prototype of stratifications of other kinds to be introduced in later sections. In fact, the assumption that each stratum consists of finite unipotent orbits is too strong, and some algebraic or topological substitutes are desirable. For example, we may consider the condition that each stratum has as many independent G_{a}-actions as the dimension of the stratum or the condition that each stratum is simply connected. In Theorem 2.9, we look into the relationship between these conditions.

Section three deals with generalities of G_{a}-actions on smooth projective varieties. Let V be a smooth projective variety with a nontrivial G_{a}-action. Let H be a very ample divisor. Since H is G_{a}-linearizable, G_{a} acts on the linear system $|H|$ and hence there exists a G_{a}-stable member H_{1} in $|H|$. The G_{a}-action induces a locally nilpotent homogeneous derivation of degree 0 on the graded domain $\oplus_{n \geq 0} H^{0}(V, \mathcal{O}(n H))$, which in turn determines the G_{a}-action on V (Theorem 3.3). The stratum $V \backslash H_{1}$ has the induced G_{a}-action, and the regular vector field Δ on V corresponding to the G_{a}-action restricts to a locally nilpotent derivation on the coordinate algebra of $V \backslash H_{1}$. This leads to the notion of stratified G_{a}-action (Definition 3.7) and the notion of a regular vector field being effectively locally nilpotent with stratification (Definition 3.9). Theorem 3.10 shows that these two notions are dual to each other.

Section four is devoted to a study of a smooth projective threefold such that Pic $(V)=\mathbb{Z}[H]$ for a smooth ample divisor H and V has a G_{a}-action making H stable. Then V is a Fano threefold of Picard rank one, and the structures of such threefolds are known (see [22]), but we are interested in the structure or properties of the principal stratum $X:=V \backslash H$. We will treat basically the case V is \mathbb{P}^{3} or a quadric hypersurface in \mathbb{P}^{4}. Especially noteworthy is Theorem 4.5 , the assertion (2). It gives a characterization of \mathbb{P}^{3} in terms of a G_{a}-action and the topological properties of X. Once X becomes isomorphic to \mathbb{A}^{3} which is a conclusion of (2), the quotient surface $X / / G_{a}$ is isomorphic to \mathbb{A}^{2} and the quotient morphism $q: X \rightarrow X / / G_{a}$ is surjective. But, in Theorem 4.9, this conclusion $X / / G_{a} \cong \mathbb{A}^{2}$ is derived, without the
topological properties on X, from the existence of the above G_{a}-ation and the assumption that the index of V is greater than one and H is smooth. But in the case where V is a smooth quadric hypersurface in \mathbb{P}^{4}, though the same conclusion is obtained, the quotient morphism q : $X \rightarrow X / / G_{a}$ is not surjective (Theorem 4.6). Therefore these properties reflect subtle differences of Fano threefolds of rank one equipped with G_{a}-actions.

The article is partly meant to free G_{a}-actions from the framework of affine varieties and to consider them in more general settings. As explained above, a key is a regular vector field on an algebraic variety. Though there are many results related to vector fields, most of them are not written to fit our purpose and scattered in various references. So, we chose our way to exhibit the idea by giving concrete examples (though elementary). This might cause an impression that promising or original ideas are buried in isolated examples. A task to develop the details is perhaps left to our subsequent works and possibly to the interested readers.

We assume throughout the article that the ground field k is an algebraically closed field of characteristic zero. Whenever topological arguments are employed, we assume tacitly that k is the complex field \mathbb{C}. If V is an algebraic variety and V_{1} a closed subvariety of V, the complement $V \backslash V_{1}$ is also denoted by $V-V_{1}$, especially when V_{1} is a divisor of V.

Acknowledgments. We thank the referees for the critical reading of the manuscript and many comments and suggestions which were helpful to improve the manuscript.

§1. Preliminary results on vector fields on projective varieties

In this section, we consider global vector fields on \mathbb{P}^{n} or on the Hirzebruch surface $\mathbb{F}_{n}(n \geq 0)$ in terms of vector fields on the affine space \mathbb{A}^{n} naturally embedded into \mathbb{P}^{n} or \mathbb{A}^{2} into \mathbb{F}_{n}. Perhaps these computations are well-known but buried in the various references. We will give them for our conveniences.

First of all, in the case where $\mathbb{A}^{n} \hookrightarrow \mathbb{P}^{n}$, we consider a system of homogeneous coordinates $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ on \mathbb{P}^{n} and set $x_{i}=X_{i} / X_{0}$ for $1 \leq i \leq n$.

Lemma 1.1. Let Δ be a regular vector field on \mathbb{A}^{n} and write

$$
\Delta=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}} \text { with } f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, x_{n}\right] .
$$

Then Δ extends to a regular vector field on \mathbb{P}^{n} if and only if

$$
\begin{gathered}
f_{1}=a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+\cdots+a_{n} x_{1} x_{n}+\sum_{i=1}^{n} b_{1 i} x_{i}+c_{1} \\
f_{2}=a_{1} x_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{2} x_{n}+\sum_{i=1}^{n} b_{2 i} x_{i}+c_{2} \\
\cdots \cdots \cdots \\
f_{n}=a_{1} x_{1} x_{n}+a_{2} x_{2} x_{n}+\cdots+a_{n} x_{n}^{2}+\sum_{i=1}^{n} b_{n i} x_{i}+c_{n} .
\end{gathered}
$$

where $a_{i}(1 \leq i \leq n), b_{i j}(1 \leq i, j \leq n), c_{i}(1 \leq i \leq n)$ are elements of k. Hence $\operatorname{dim} \Gamma\left(\mathbb{P}^{n}, \mathcal{T}_{\mathbb{P}^{n}}\right)=n(n+2)$.

Proof. To avoid complicated computations, we exhibit the idea in the case $n=2$. We set $x=X_{1} / X_{0}$ and $y=X_{2} / X_{0}$. Let $U_{i}=\left\{X_{i} \neq\right.$ $0\}(i=0,1,2)$ be the open sets of \mathbb{P}^{2} isomorphic to \mathbb{A}^{2}. Hence $U_{0}=$ Spec $k[x, y]$. Let $U_{1}=\operatorname{Spec} k[u, v]$ with $u=X_{0} / X_{1}=x^{-1}$ and $v=$ $X_{2} / X_{1}=y x^{-1}$. Assume that Δ is a regular vector field on \mathbb{P}^{2}. Write

$$
\Delta=f \frac{\partial}{\partial x}+g \frac{\partial}{\partial y}=\xi \frac{\partial}{\partial u}+\eta \frac{\partial}{\partial v}, \quad x, y \in k[x, y], \xi, \eta \in k[u, v] .
$$

Since $\xi=\Delta(u)=-u^{2-d} u^{d} f\left(\frac{1}{u}, \frac{v}{u}\right)$ with $d=\operatorname{deg}_{x, y} f$, we have $d \leq 2$. Similarly, on $U_{2}=\operatorname{Spec} k[z, w]$ with $z=X_{0} / X_{2}=y^{-1}$ and $w=X_{1} / X_{2}=x y^{-1}$. Writing $\Delta=\varphi \frac{\partial}{\partial z}+\psi \frac{\partial}{\partial w}$, we have $\varphi=\Delta(z)=-z^{2-e} z^{e} g\left(\frac{w}{z}, \frac{1}{z}\right)$ with $e=\operatorname{deg}_{x, y} g$. Hence $e \leq 2$. Hence we can write

$$
\begin{aligned}
& f=a_{0} x^{2}+a_{1} x y+a_{2} y^{2}+c_{0} x+c_{1} y+c_{2} \\
& g=b_{0} x^{2}+b_{1} x y+b_{2} y^{2}+d_{0} x+d_{1} y+d_{2}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\xi= & -u^{2}\left(\frac{a_{0}}{u^{2}}+a_{1} \frac{v}{u^{2}}+a_{2} \frac{v^{2}}{u^{2}}+\frac{c_{0}}{u}+c_{1} \frac{v}{u}+c_{2}\right) \\
= & -\left(a_{0}+a_{1} v+a_{2} v^{2}+c_{0} u+c_{1} u v+c_{2} u^{2}\right) \\
\eta= & -\frac{v}{u} \cdot u^{2}\left(\frac{a_{0}}{u^{2}}+a_{1} \frac{v}{u^{2}}+a_{2} \frac{v^{2}}{u^{2}}+\frac{c_{0}}{u}+c_{1} \frac{v}{u}+c_{2}\right) \\
& +\frac{1}{u} \cdot u^{2}\left(\frac{b_{0}}{u^{2}}+b_{1} \frac{v}{u^{2}}+b_{2} \frac{v^{2}}{u^{2}}+\frac{d_{0}}{u}+d_{1} \frac{v}{u}+d_{2}\right) \\
= & -a_{0} \frac{v}{u}-a_{1} \frac{v^{2}}{u}-a_{2} \frac{v^{3}}{u}-v\left(c_{0}+c_{1} v+c_{2} u\right) \\
& +\frac{b_{0}}{u}+b_{1} \frac{v}{u}+b_{2} \frac{v^{2}}{u}+d_{0}+d_{1} v+d_{2} u
\end{aligned}
$$

Hence $b_{0}=0, b_{1}=a_{0}, b_{2}=a_{1}$ and $a_{2}=0$. Then it is easy to show that Δ is regular on U_{2} as well. So, f and g are as stated above for $n=2$ and $x=x_{1}, y=x_{2}$.
Q.E.D.

Remark 1.2. There is an exact sequence of $\mathcal{O}_{\mathbb{P}^{n}}$-Modules

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus(n+1)} \rightarrow \mathcal{T}_{\mathbb{P}^{n}} \rightarrow 0
$$

Since $\mathrm{H}^{1}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right)=0$, we have $\operatorname{dim} \mathrm{H}^{0}\left(\mathbb{P}^{n}, \mathcal{T}_{\mathbb{P}^{n}}\right)=n(n+2)$.
Let $V=\mathbb{F}_{n}$ be the Hirzebruch surface of degree n and let M be a minimal section of the canonical \mathbb{P}^{1}-fibration $p: V \rightarrow \mathbb{P}^{1}$. The affine plane \mathbb{A}^{2} can be embedded into V as the complement $V \backslash\left(M \cup \ell_{\infty}\right)$, where ℓ_{∞} is the fiber at infinity of p. We consider a regular vector field Δ on \mathbb{A}^{2} and look for a condition with which Δ is extendable to a regular vector field on V.

Write $V=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ and let M be defined by the projection $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}$. To be more precise, let $\mathbb{P}^{1}=U_{0} \cup U_{1}$, where $U_{0}=\operatorname{Spec} k[x]$ and $U_{1}=\operatorname{Spec} k\left[x^{-1}\right]$. Then $\left.\mathcal{O}_{\mathbb{P}^{1}}(n)\right|_{U_{0}}=\mathcal{O}_{U_{0}} e_{1}$ and $\left.\mathcal{O}_{\mathbb{P}^{1}}(n)\right|_{U_{1}}=\mathcal{O}_{U_{1}} e_{1}^{\prime}$, where $e_{1}^{\prime}=x^{n} e_{1}$. We write the direct summand $\mathcal{O}_{\mathbb{P}^{1}}$ as $\mathcal{O}_{\mathbb{P}^{1}} e_{0}$ to give a base e_{0}. Then V is covered by four open sets $V=V_{0} \cup V_{1} \cup V_{2} \cup V_{3}$, where

$$
\begin{array}{ll}
V_{0}=\operatorname{Spec} k[x, y], \quad y=\frac{e_{0}}{e_{1}} \\
V_{1}=\operatorname{Spec} k[u, v], \quad u=\frac{1}{x}, \quad v=\frac{e_{0}}{e_{1}^{\prime}}=\frac{y}{x^{n}} \\
V_{2}=\operatorname{Spec} k[x, z], \quad z=\frac{1}{y}=\frac{e_{1}}{e_{0}} \\
V_{3}=\operatorname{Spec} k[u, t], \quad u=\frac{1}{x}, t=\frac{1}{v}=\frac{e_{1}^{\prime}}{e_{0}}=\frac{x^{n}}{y}
\end{array}
$$

Write a regular vector field Δ on the open set V_{0} as

$$
\Delta=f \frac{\partial}{\partial x}+g \frac{\partial}{\partial y}
$$

with $f, g \in k[x, y]$. Express Δ on the open sets V_{1}, V_{2}, V_{3} in terms of the above respective coordinate systems and find the condition for Δ to be regular on each of the above open sets. The computations show the following result.

Lemma 1.3. Embed \mathbb{A}^{2} into $\mathbb{F}_{n}(n \geq 0)$ as $\mathbb{A}^{2}=\mathbb{F}_{n} \backslash\left(M \cup \ell_{\infty}\right)$. Let $\Delta=f \frac{\partial}{\partial x}+g \frac{\partial}{\partial y}$ be a regular vector field on \mathbb{A}^{2}. Then Δ is extendable to a regular vector field on \mathbb{F}_{n} if and only if
(1) $f(x, y)=a_{20} x^{2}+a_{10} x+a_{00}$,
$g(x, y)= \begin{cases}b_{n 0} x^{n}+\cdots+b_{10} x+b_{00}+b_{01} y+b_{11} x y\left(b_{11}=n a_{20}\right) & (n>0) \\ b_{02} y^{2}+b_{01} y+b_{00} & (n=0)\end{cases}$
Hence $\operatorname{dim} \mathrm{H}^{0}\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}_{n}}\right)$ is equal to $n+5$ if $n>0$ and 6 if $n=0$.
Remark 1.4. Let V be \mathbb{P}^{2} or \mathbb{F}_{n}. In Lemma 1.1 and Lemma 1.3, we tacitly used the coincidence of two k-vector spaces $\mathrm{H}^{0}\left(V, \mathcal{T}_{V}\right)$ and

$$
\Gamma=\left\{\begin{array}{l|l}
\Delta \in \Gamma\left(\mathbb{A}^{2}, \mathcal{T}_{\mathbb{A}^{2}}\right) & \begin{array}{l}
\text { a regular vector field on } \mathbb{A}^{2} \text { which is ex- } \\
\text { tendable to a regular vector field on } V
\end{array}
\end{array}\right\}
$$

Since a given vector field on \mathbb{A}^{2} is uniquely extendable to a rational vector field on V, where only the coefficients are restricted if it is regular on V, there is a natural correspondence which assigns Δ to itself

$$
\theta: \Gamma \rightarrow \mathrm{H}^{0}\left(V, \mathcal{T}_{V}\right)
$$

Then the correspondence is an isomorphism. In fact, an element $\Delta \in \mathrm{H}^{0}\left(\mathbb{A}^{2}, \mathcal{T}_{\mathbb{A}^{2}}\right)$ is identified with a k-derivation of the function field
$k\left(\mathbb{A}^{2}\right)$. So, $\mathrm{H}^{0}\left(V, \mathcal{T}_{V}\right)$ is a k-derivation of $k\left(\mathbb{A}^{2}\right)$ which is regular on V. The extendability of a given vector field on \mathbb{A}^{2} onto V depends on the embedding $\mathbb{A}^{2} \hookrightarrow V$. The above remark applies if one replaces $\mathbb{A}^{2} \hookrightarrow \mathbb{P}^{2}$ by $\mathbb{A}^{n} \hookrightarrow \mathbb{P}^{n}$.

Remark 1.5. The dimension of $\mathrm{H}^{0}\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}^{n}}\right)$ can be also computed by an exact sequence

$$
0 \rightarrow \mathrm{H}^{0}\left(V, \mathcal{O}_{V}(2 M+n \ell)\right) \rightarrow \mathrm{H}^{0}\left(V, \mathcal{T}_{V}\right) \rightarrow \mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right) \rightarrow 0
$$

where $h^{0}\left(V, \mathcal{O}_{V}(2 M+n \ell)\right)=n+2$ if $n>0$ and $=3$ if $n=0$. This sequence is obtained from the exact sequence

$$
0 \rightarrow \mathcal{O}_{V}(2 M+n \ell) \rightarrow \mathcal{T}_{V} \rightarrow p^{*} \mathcal{O}_{\mathbb{P}^{1}}(2) \rightarrow 0
$$

which is dual to

$$
0 \rightarrow p^{*} \Omega_{\mathbb{P}^{1} / k}^{1} \rightarrow \Omega_{V / k}^{1} \rightarrow \Omega_{V / \mathbb{P}^{1}}^{1} \rightarrow 0
$$

Determination of regular vector fields on a smooth algebraic surface is not so easy as for \mathbb{A}^{2}. As an example, we determine those for a Danielewski surface $X=\left\{x y=z^{2}-1\right\} \subset \mathbb{A}^{3}$. For a similar direction of research, one can refer to [28]. Let $K=k(X)$ and let Δ be a regular vector field on X. Then, as a derivation of $k(X) / k, \Delta$ is written as

$$
\Delta=g \frac{\partial}{\partial x}+h \frac{\partial}{\partial z}
$$

where $g=\Delta(x)$ and $h=\Delta(z)$. Since $y=x^{-1}\left(z^{2}-1\right)$, we have

$$
f:=\Delta(y)=-\frac{1}{x^{2}} \cdot x y g+\frac{2 z}{x} h
$$

whence $x f+y g=2 z h$. Since Δ corresponds to $\delta \in \operatorname{Hom}_{R}\left(\Omega_{R / k}^{1}, R\right)$ by $\Delta=\delta \cdot d$ with $d: R \rightarrow \Omega_{R / k}^{1}$ being the universal derivation of R, where R is the coordinate ring of X [19, Definition, p.172]. We have $f=\delta(d y), g=\delta(d x)$ and $h=\delta(d z)$, whence $f, g, h \in R$.

Lemma 1.6. Since $R=k[x, y]+k[x, y] z$ is a free $k[x, y]$-module, write

$$
f=f_{0}+f_{1} z, g=g_{0}+g_{1} z, h=h_{0}+h_{1} z
$$

where $f_{i}, g_{i}, h_{i} \in k[x, y]$ for $i=0,1$. Then we have:
(1) $h_{0}=\frac{1}{2}\left(x f_{1}+y g_{1}\right)$.
(2) There exist $L, M, F \in k[x, y]$ such that
$f_{0}=2(x y+1) L+y F, g_{0}=2(x y+1) M-x F, h_{1}=x L+y M$,
where L, M, F, f_{1} and g_{1} are chosen arbitrarily.
(3) With the choice of these elements, Δ is written as

$$
\begin{aligned}
\Delta= & \left\{2(x y+1) M-x F+g_{1} z\right\} \frac{\partial}{\partial x} \\
& +\left\{\left(\frac{1}{2} f_{1}+L z\right) x+\left(\frac{1}{2} g_{1}+M z\right) y\right\} \frac{\partial}{\partial z} .
\end{aligned}
$$

Proof. Since $x f+y g=2 z h$, we have

$$
\left(x f_{0}+y g_{0}\right)+z\left(x f_{1}+y g_{1}\right)=2 h_{1}(x y+1)+2 h_{0} z
$$

whence

$$
\begin{equation*}
x f_{0}+y g_{0}=2 h_{1}(x y+1) \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{0}=\frac{1}{2}\left(x f_{1}+y g_{1}\right) . \tag{ii}
\end{equation*}
$$

Let (x, y) be the maximal ideal in $k[x, y]$. Since $x y+1 \notin(x, y)$, (i) implies $h_{1} \in(x, y)$. Hence we may write

$$
\begin{equation*}
h_{1}=x L+y M \tag{iii}
\end{equation*}
$$

By (i), we have an equality in $k[x, y]$,

$$
x\left\{f_{0}-2(x y+1) L\right\}=y\left\{2(x y+1) M-g_{0}\right\} .
$$

Since $\operatorname{gcd}(x, y)=1$, we have

$$
f_{0}=2(x y+1) L+y F, \quad g_{0}=2(x y+1) M-x F
$$

for some $F \in k[x, y]$. Tracing the above computations backward, it is clear that the choice of L, M, F, f_{1}, g_{1} in $k[x, y]$ is arbitrary. Q.E.D.

Let $\sigma: W \rightarrow V$ be the blowing-up of a smooth algebraic variety V with a smooth center Z. Let Δ be a vector field on V which is regular along Z. If V^{\prime} is a variety birational to V, then Δ is viewed as a rational vector field on V^{\prime}. So, we use the same symbol Δ to denote the rational vector field on W. The regularity of Δ near the exceptional subvariety $\sigma^{-1}(Z)$ is given by the following.

Lemma 1.7. With the above notations, let P be a point of Z and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a system of local parameters of V at P such that Z is defined by $x_{1}=x_{2}=\cdots=x_{d}=0$, where $d=\operatorname{codim}_{V}(Z)$. Write Δ near P as

$$
\Delta=f_{1} \frac{\partial}{\partial x_{1}}+f_{2} \frac{\partial}{\partial x_{2}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}
$$

where $f_{1}, \ldots, f_{n} \in \mathcal{O}_{V, P}$. Then Δ is regular near $\sigma^{-1}(P)$ if and only if $f_{1}(P)=\cdots=f_{d}(P)=0$.

Proof. Since $\sigma^{-1}(Z)$ is a \mathbb{P}^{d-1}-bundle over $Z, \sigma^{-1}(P)$ is a projective space \mathbb{P}^{d-1} with a system of homogeneous coordinates $\left\{X_{1}, \ldots, X_{d}\right\}$. Fix i with $1 \leq i \leq d$. Then, on the open set $U_{i}=\left\{X_{i} \neq 0\right\}$, it holds that $X_{j} / X_{i}=x_{j} / x_{i}$ for $1 \leq j \leq d$ and $j \neq i$. Set $u_{j}=x_{j} / x_{i}$ if $1 \leq j \leq d$ and $j \neq i$ and $u_{i}=x_{i}$. For any point $Q \in \sigma^{-1}(P)$, the set $\left\{u_{1}-u_{1}(Q), \ldots, u_{d}-u_{d}(Q), x_{d+1}, \ldots, x_{n}\right\}$ is a system of local parameters of W at Q. Hence we can write

$$
\Delta=\xi_{1} \frac{\partial}{\partial u_{1}}+\cdots+\xi_{d} \frac{\partial}{\partial u_{d}}+f_{d+1} \frac{\partial}{\partial x_{d+1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}
$$

where $\xi_{i}=f_{i}$. If $1 \leq j \leq d$ and $j \neq i$, we have

$$
\begin{aligned}
\xi_{j}= & \Delta\left(u_{j}\right)=\Delta\left(\frac{x_{j}}{x_{i}}\right)=-\frac{x_{j}}{x_{i}^{2}} f_{i}+\frac{1}{x_{i}} f_{j} \\
= & \frac{1}{x_{i}}\left\{f_{j}\left(u_{1} x_{i}, \ldots, x_{i}, \ldots, u_{d} x_{i}, x_{d+1}, \ldots, x_{n}\right)\right. \\
& \left.\quad-u_{j} f_{i}\left(u_{1} x_{i}, \ldots, x_{i}, \ldots, u_{d} x_{i}, x_{d+1}, \ldots, x_{n}\right)\right\} .
\end{aligned}
$$

If $f_{j}(P) \neq 0$, then ξ_{j} has a simple pole along $\sigma^{-1}(Z)$. So, ξ_{j} is regular only if $f_{j}(P)=0$. This implies that Δ is regular along $\sigma^{-1}(Z)$ only if $f_{1}(P)=\cdots=f_{d}(P)=0$. The converse is clear by the above expression of the ξ_{j}.
Q.E.D.

Example 1.8. Let $\sigma: \mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$ be the blowing-up with center P. By Lemma 1.7, $\Gamma\left(\mathbb{F}_{1}, \mathcal{T}_{\mathbb{F}^{1}}\right)$ is identified with

$$
\Gamma=\left\{\Delta \left\lvert\, \begin{array}{l}
\text { a regular vector field on } \mathbb{P}^{2} \text { which van- } \\
\text { ishes at } P
\end{array}\right.\right\}
$$

Hence $\operatorname{dim} \Gamma\left(\mathbb{F}_{1}, \mathcal{T}_{\mathbb{F}_{1}}\right)=\operatorname{dim} \Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}\right)-2=8-2=6$.
Lemma 1.7 implies the following result.
Lemma 1.9. Let $\sigma: W \rightarrow V$ be the blowing-up of a smooth projective variety V with center P. Assume that $\operatorname{dim} V=n>1$. Then we have

$$
\operatorname{dim} \Gamma\left(V, \mathcal{T}_{V}\right) \geq \operatorname{dim} \Gamma\left(W, \mathcal{T}_{W}\right) \geq \operatorname{dim} \Gamma\left(V, \mathcal{T}_{V}\right)-n
$$

Proof. Let $\widetilde{\Delta}$ be a regular vector field on W. Let $E=\sigma^{-1}(P)$. Then $\left.\widetilde{\Delta}\right|_{W \backslash E}$ is a regular vector field on $V \backslash\{P\}$. Hence it extends to a regular vector field Δ on V such that $\Delta=0$ at P. Indeed, let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a system of local parameters of V at P. As a rational vector field on V, we can write $\widetilde{\Delta}=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}}$. Then f_{1}, \ldots, f_{n} are elements of $k(V)$ which are regular on an open neighborhood of P punctured the point P. Then f_{1}, \ldots, f_{n} are regular at P as well because V is smooth at P and $n \geq 2$. Hence Δ is regular at P and $\widetilde{\Delta}$ is the extension of Δ on W. Then $\Delta=0$ at P by Lemma 1.7. The condition that Δ vanishes at P imposes on $\Gamma\left(V, \mathcal{T}_{V}\right)$ the condition of dimension by at most n. Hence we obtain the stated inequalities. Q.E.D.

Example 1.10. Consider $\mathbb{F}_{n}(n \geq 0)$ as V. With the notations of Lemma 1.3, let P be defined by $u=t=0$ (the point of origin of the open set V_{3}). Let Δ be a regular vector field in Lemma 1.3. Then the condition that Δ vanishes at P imposes the condition of dimension 1 (resp. 2) if $n>0$ (resp. $n=0$), i.e., $a_{20}=0$ (resp. $a_{20}=b_{02}=0$) if $n>0$ (resp. $n=0$). Furthermore, by the computation in Lemma 1.7 repeated for the blowing-up at P, we conclude that

$$
\operatorname{dim} \Gamma\left(\mathbb{F}_{n+1}, \mathcal{T}_{\mathbb{F}_{n+1}}\right)= \begin{cases}\operatorname{dim} \Gamma\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}_{n}}\right)-1+2 & (n>0) \\ \operatorname{dim} \Gamma\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}_{n}}\right)-2+2 & (n=0)\end{cases}
$$

Hence $\operatorname{dim} \Gamma\left(\mathbb{F}_{n+1}, \mathcal{T}_{\mathbb{F}_{n+1}}\right)=n+6$.
We shall give one more result (see also [25, pp. 225-226]).
Example 1.11. Let V be a del Pezzo surface of degree d. If $d \leq 5$, then there are no regular vector fields on V.

Proof. The surface V is obtained by blowing up $(9-d)$ points $P_{1}, \ldots, P_{m}(m=9-d)$ on \mathbb{P}^{2} in general position, i.e., no three of them lie on a line and no five of them lie on a conic. We can choose the line at infinity ℓ_{∞} so that none of P_{1}, \ldots, P_{m} lies on ℓ_{∞}. Suppose there exists a nonzero regular vector field $\widetilde{\Delta}$ on V. Then, by the proof of Lemma 1.9 , there exists a regular vector field Δ on \mathbb{P}^{2} such that Δ vanishes at points P_{1}, \ldots, P_{m}. We may choose a system of coordinates $\{x, y\}$ on $\mathbb{A}^{2}=\mathbb{P}^{2} \backslash \ell_{\infty}$ so that $P_{1}=(0,0), P_{2}=(1,0)$ and $P_{3}=(0,1)$. With the notations in Lemma 1.1 (the proof in the case $n=2$), it follows that $c_{2}=d_{2}=0, d_{0}=0, a_{1}+d_{1}=0, a_{0}+c_{0}=0$ and $c_{1}=0$. Hence we have $f=a_{0}\left(x^{2}-x\right)+a_{1} x y$ and $g=a_{0} x y+a_{1}\left(y^{2}-y\right)$. Suppose that $P_{4}=(\alpha, \beta)$ is involved. Then $\alpha \beta \neq 0$ because no three of $P_{1}, P_{2}, P_{3}, P_{4}$
lie on a line. Since $f(\alpha, \beta)=g(\alpha, \beta)=0$, we have

$$
\left|\begin{array}{cc}
\alpha^{2}-\alpha & \alpha \beta \\
\alpha \beta & \beta^{2}-\beta
\end{array}\right|=0
$$

For otherwise $a_{0}=a_{1}=0$ and $\Delta=0$ everywhere. The above determinant gives $\alpha+\beta=1$. Then P_{2}, P_{3} and P_{4} are colinear, which is a contradiction. So, P_{4} cannot be involved, and $9-d \leq 3$.
Q.E.D.

This implies that there is no G_{a}-action on V if $d=5$. The last result follows from the following two facts.
(i) $\mathrm{H}^{0}\left(V, \mathcal{T}_{V}\right)$ is the Lie algebra of the algebraic group $\mathrm{Aut}^{0}(V)$.
(ii) Let φ be an element of $\operatorname{Aut}^{0}(V)$. Then φ comes from an automorphism of \mathbb{P}^{2} fixing the points P_{1}, \ldots, P_{m}. Hence if $m \geq 4$ then $\varphi=\mathrm{id}$. In fact, no three of P_{1}, \ldots, P_{m} lie on a line. Hence any automorphism of \mathbb{P}^{2} fixing four of them is the identity automorphism.

§2. Unipotent group orbit stratifications

Let X be a smooth algebraic variety with an algebraic group G acting on it, whence there is a group homomorphism $\sigma: G \rightarrow \operatorname{Aut}(X)$. Taking the Lie algebra homomorphism, we have

$$
d \sigma: \mathfrak{g} \rightarrow \Gamma\left(X, \mathcal{T}_{X}\right)
$$

where \mathcal{T}_{X} is the tangent bundle of X and \mathfrak{g} is the Lie algebra of G. If (X, D) is a pair of a G-variety X and a G-stable effective divisor D with simple normal crossings and further if G is connected, then G stabilizes each of the irreducible components $D=D_{1}+\cdots+D_{m}$. Let $x \in X$ and let $\left\{t_{1}, \ldots, t_{n}\right\}$ be a system of local parameters at $x \in X$ such that D is defined by $t_{1} \cdots t_{r}=0$. Then an infinitesimal automorphism $\exp (\varepsilon \delta)$ with $\delta \in \mathcal{T}_{x}$ acts on $\widehat{\mathcal{O}}_{X, x}=k\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ as

$$
\exp (\varepsilon \delta)(a)=a+\delta(a) \varepsilon+\frac{1}{2!} \delta^{2}(a) \varepsilon^{2}+\cdots+\frac{1}{j!} \delta^{j}(a) \varepsilon^{j}+\cdots
$$

Hence that $\exp (\varepsilon \delta)$ preserves each irreducible component D_{i} means $\delta\left(t_{i} a\right) \in t_{i} \widehat{\mathcal{O}}_{X, x}$. If we write δ as

$$
\delta=c_{1} \partial_{1}+c_{2} \partial_{2}+\cdots+c_{i} \partial_{i}+\cdots+c_{n} \partial_{n} \quad \text { with } \quad \partial_{i}=\frac{\partial}{\partial t_{i}}
$$

the above condition is that $t_{1}\left|c_{1}, \ldots, t_{r}\right| c_{r}$. Thus, δ belongs to the stalk
$\mathcal{T}_{X}(-\log D)_{x}=\mathcal{O}_{x}\left(t_{1} \partial_{1}\right)+\cdots+\mathcal{O}_{x}\left(t_{r} \partial_{r}\right)+\mathcal{O}_{x}\left(\partial_{r+1}\right)+\cdots+\mathcal{O}_{x}\left(\partial_{n}\right)$,
where $\mathcal{T}_{X}(-\log D)$ is the dual bundle $\mathcal{H o m}\left(\Omega_{X}^{1}(\log D), \mathcal{O}_{X}\right)$ of the bundle of $\operatorname{logarithmic} 1$-differential forms $\Omega_{X}^{1}(\log D)$ along D and hence a subbundle of the tangent bundle $\mathcal{T}_{X}{ }^{1}$. Hence the above Lie algebra automorphism $d \sigma$ factors through a homomorphism

$$
\mathfrak{g} \rightarrow \Gamma\left(X, \mathcal{T}_{X}(-\log D)\right) \rightarrow \Gamma\left(X, \mathcal{T}_{X}\right)
$$

We consider an orbit of a unipotent group U, which is a homogeneous space U / H, where H is the isotropy group of a base point of the orbit. We recall first the following well-known results [37, Corollary, p. 1043] and [41].

Lemma 2.1. Let U be a unipotent group and $X=U / H$ be a homogeneous space. Then X is isomorphic to \mathbb{A}^{n} with $n=\operatorname{dim} X$. In particular, the underlying scheme of U is the affine space \mathbb{A}^{d} with $d=\operatorname{dim} U$.

The following result follows from the closedness of orbits of unipotent group actions on quasi-affine varieties (see [4, Prop. 4.10, Chap. 1]).

Corollary 2.2. Let U be a unipotent group and let X be a U-variety containing an open U-orbit. Then the following assertions hold.
(1) Assume that X is affine. Then X coincides with the open U orbit and hence isomorpbic to the affine space \mathbb{A}^{n}.
(2) Let Y be a U-stable open set of X. Then Y contains the open orbit.

Let V be a smooth projective variety which is a U-variety and let X be an open U-orbit. Since X is affine by Lemma 2.1, the complement $D=V \backslash X$ is a U-stable subvariety of pure codimension one. Let $D=D_{1}+\cdots+D_{r}$ be the irreducible decomposition. Since U is connected, each irreducible component is U-stable. We shall see in concrete examples what takes place in the boundary D.

Example 2.3. (1) Embed $\mathbb{A}^{2}=\operatorname{Spec} k[x, y]$ into \mathbb{P}^{2} in the standard way $(x, y) \mapsto(1, x, y)$. Let $D=\ell_{\infty}$ be the line at infinity. Then $\Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}(\log D)\right)$ is a k-module generated by the elements

$$
\Delta=\left(c_{0} x+c_{1} y+c_{2}\right) \frac{\partial}{\partial x}+\left(d_{0} x+d_{1} y+d_{2}\right) \frac{\partial}{\partial y}
$$

[^1]where $c_{i}, d_{j} \in k$. Hence $\operatorname{dim} \Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}(\log D)\right)=6$. Let U be the upper triangular unipotent subgroup of $\mathrm{SL}(3)$, which consists of matrices of the form
\[

\left($$
\begin{array}{ccc}
1 & s_{1} & s_{2} \\
0 & 1 & s_{3} \\
0 & 0 & 1
\end{array}
$$\right), \quad s_{1}, s_{2}, s_{3} \in k
\]

Then U acts from the right on \mathbb{P}^{2} as $\left(X_{0}, X_{1}, X_{2}\right) \mapsto\left(X_{0}, X_{1}+\right.$ $s_{1} X_{0}, X_{2}+s_{3} X_{1}+s_{2} X_{0}$) with the line at infinity $\ell_{\infty}=\left\{X_{0}=0\right\}$ stabilized under this action. With the inhomogeneous coordinates $x=$ $X_{1} / X_{0}, y=X_{2} / X_{0}$, the action is given as $(x, y) \mapsto\left(x+s_{1}, y+s_{3} x+s_{2}\right)$. The Lie algebra \mathfrak{u} of U is generated by the matrices

$$
\delta_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \delta_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \delta_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The Lie algebra homomorphism $d \sigma: \mathfrak{u} \rightarrow \Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}(\log D)\right)$ is given by

$$
\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \mapsto\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, x \frac{\partial}{\partial y}\right)
$$

(2) Let $O=(1,0,0)$. Since U acts from the right on \mathbb{P}^{2}, the orbit $O \cdot U$ is $\left\{\left(1, s_{1}, s_{2}\right) \mid s_{1}, s_{2} \in k\right\}$ and the isotropy group at O is

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & s_{3} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, s_{3} \in k\right\}
$$

The homogeneous space $H \backslash U$ is the ordinary (x, y)-plane. The line at infinity ℓ_{∞} has a U-action

$$
\left(0, X_{1}, X_{2}\right) \mapsto\left(0, X_{1}, X_{2}+s_{3} X_{1}\right)
$$

Hence ℓ_{∞} contains an U-orbit $O_{1} \cdot U=\left\{\left(0,1, s_{3}\right) \mid s_{3} \in k\right\}$, where $O_{1}=(0,1,0)$ and the isotropy group is

$$
H_{1}=\left\{\left.\left(\begin{array}{ccc}
1 & s_{1} & s_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, s_{1}, s_{2} \in k\right\}
$$

The point $O_{2}=(0,0,1)$ is a unique U-fixed point. So, there exist a decomposition of \mathbb{P}^{2} into strata of U-orbits $\mathbb{P}^{2}=O \cdot U \cup O_{1} \cdot U \cup\left\{O_{2}\right\}$.
(3) The observation made in (2) above can be easily generalized to the case of \mathbb{P}^{n} and the group U_{n} of upper triangular unipotent matrices in $\mathrm{SL}(n+1)$. The decomposition into U_{n}-orbits

$$
\mathbb{P}^{n}=O \cdot U_{n} \cup O_{1} \cdot U_{n} \cup \cdots \cup O_{n-1} \cdot U_{n} \cup\left\{O_{n}\right\}
$$

is also the decomposition into the B_{n}-orbits, where B_{n} is the Borel subgroup of $\mathrm{SL}(n+1)$ consisting of upper triangular matrices.

We prove only the first statement of the assertion (1). The rest are obvious. By Lemma 1.1, $\Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}\right)$ is a k-module generated by the elements
$\Delta=\left(a_{0} x^{2}+a_{1} x y+c_{0} x+c_{1} y+c_{2}\right) \frac{\partial}{\partial x}+\left(a_{0} x y+a_{1} y^{2}+d_{0} x+d_{1} y+d_{2}\right) \frac{\partial}{\partial y}$,
where $a_{i}, c_{j}, d_{\ell} \in k$. Meanwhile, ℓ_{∞} is defined by $x^{-1}=0$ near the point $(0,1,0)$ and by $y^{-1}=0$ near the point $(0,0,1)$. Hence $\Delta \in$ $\Gamma\left(\mathbb{P}^{2}, \mathcal{T}_{\mathbb{P}^{2}}(\log D)\right)$ if and only if $\Delta\left(x^{-1}\right)$ (resp. $\left.\Delta\left(y^{-1}\right)\right)$ is divisible by x^{-1} (resp. y^{-1}). Hence we obtain the above expression of Δ.

Example 2.4. (1) With the notations before Lemma 1.3, identify $\mathbb{A}^{2}=\operatorname{Spec} k[x, y]$ with the open set V_{0} of \mathbb{F}_{n}. Let $D=\ell_{\infty}+M$. Then $\Gamma\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}_{n}}(\log D)\right)$ is a k-module consisting of vector fields

$$
\Delta= \begin{cases}\left(a_{10} x+a_{00}\right) \frac{\partial}{\partial x}+\left(b_{n 0} x^{n}+\cdots+b_{10} x+b_{00}+b_{01} y\right) \frac{\partial}{\partial y} & (n>0) \\ \left(a_{10} x+a_{00}\right) \frac{\partial}{\partial x}+\left(b_{01} y+b_{00}\right) \frac{\partial}{\partial y} & (n=0)\end{cases}
$$

Hence $\operatorname{dim} \Gamma\left(\mathbb{F}_{n}, \mathcal{T}_{\mathbb{F}_{n}}(\log D)\right)=n+4$ for $n \geq 0$.
(2) Assume that $n>0$. By [29], the automorphism group $G:=$ $\operatorname{Aut}{ }^{0}\left(\mathbb{F}_{n}\right)$ satisfies an exact sequence

$$
(1) \rightarrow H \rightarrow \operatorname{Aut}^{0}\left(\mathbb{F}_{n}\right) \rightarrow \operatorname{PGL}(2) \rightarrow(1)
$$

where H consists of automorphisms

$$
(x, y) \mapsto\left(x, c y+d_{0}+d_{1} x+\cdots+d_{n} x^{n}\right)
$$

with $c \in k^{*}$ and $d_{0}, d_{1}, \ldots, d_{n} \in k$. Hence $H=U_{0} \rtimes G_{m}$, where U_{0} is the unipotent subgroup with $c=1$ in the above expression and $U_{0} \cong$ $G_{a}^{\times(n+1)}$. Let \mathfrak{u}_{0} be the Lie algebra of U_{0}. Then the natural G-action σ on \mathbb{F}_{n} induces a Lie algebra isomorphism

$$
d \sigma: \mathfrak{u}_{0} \rightarrow\left\{\Delta \left\lvert\, \Delta=\left(d_{0}+d_{1} x+\cdots+d_{n} x^{n}\right) \frac{\partial}{\partial y}\right., d_{0}, d_{1}, \ldots, d_{n} \in k\right\}
$$

Let U be a maximal unipotent subgroup of G containing U_{0}. Then U / U_{0} is a unipotent subgroup of $\operatorname{PGL}(2)$. For the Lie algebra \mathfrak{u} of U, $(d \sigma)(\mathfrak{u})=k \frac{\partial}{\partial x}+(d \sigma)\left(\mathfrak{u}_{0}\right)$. So, \mathbb{F}_{n} is a G-variety and V_{0} is a U-orbit. However G is not a reductive algebraic group if $n>0$.
(3) The U_{0}-action on $\ell_{\infty} \cup M$ is given by

$$
\begin{array}{rll}
\ell_{\infty} & : \quad u \mapsto u, & v \mapsto v+d_{0} u^{n}+\cdots+d_{n} \\
M & : & x \mapsto x,
\end{array} \quad z \mapsto \frac{z}{1+d_{0} z+d_{1} x z+\cdots+d_{n} x^{n} z}
$$

This shows that $\ell_{\infty} \backslash\left\{P_{\infty}\right\}$ with $P_{\infty}=(u=0, t=0)$ is an U_{0}-orbit and all points on M are U_{0}-fixed points. However since U / U_{0} moves the x-coordinate, $M \backslash\left\{P_{\infty}\right\}$ is a U-orbit and P_{∞} is the unique U-fixed point. Thus the decomposition into U-orbits is

$$
\mathbb{F}_{n}=V_{0} \cup\left(\ell_{\infty} \backslash\left\{P_{\infty}\right\}\right) \cup\left(M \backslash\left\{P_{\infty}\right\}\right) \cup\left\{P_{\infty}\right\}
$$

These examples suggest the following definition.
Definiton 2.5. Let U be a unipotent group and let V be a smooth projective variety of dimension n equipped with a nontrivial U-action. A sequence of closed subsets

$$
\begin{equation*}
V_{0}=V \supset V_{1} \supset \cdots \supset V_{n-1} \supset V_{n} \tag{*}
\end{equation*}
$$

is the unipotent group orbit stratification if the following conditions are satisfied.
(1) Each V_{i} is a (possibly reducible) subvariety of pure dimension $n-i$ and $V_{i}-V_{i+1}$ is affine.
(2) Each irreducible component of V_{i} is the closure of a single U orbit.

Note that V_{n} consists of a single point because the U-fixed point locus of V is connected (cf. [7]).

If a smooth projective variety V has the unipotent group orbit stratification $(*)$, we may ask if the stratification determines the ambient variety V. In order to answer the question, we first recall a result of C.P. Ramanujam [38].

Lemma 2.6. Let V be a smooth projective variety of dimension $n>2$ and let H be a divisor of V isomorphic to \mathbb{P}^{n-1} such that $V-H$ is affine and $H_{1}(V-H ; \mathbb{Z})$ is torsion free. Then V is isomorphic to \mathbb{P}^{n}.

We can easily obtain the following result.

Corollary 2.7. Let V be a smooth projective variety of dimension n equipped with a nontrivial action of a unipotent group U. Assume that V has the unipotent group orbit stratification $(*)$ such that every V_{i} is smooth and irreducible. Then V is isomorphic to \mathbb{P}^{n}.

Proof. If $n=1$, it is clear that $V \cong \mathbb{P}^{1}$. If $n=2$, then $V_{1} \cong \mathbb{P}^{1}$ and $V-V_{1} \cong \mathbb{A}^{2}$. Then $V \cong \mathbb{P}^{2}$ by the classification of minimal normal completions of \mathbb{A}^{2} [33]. Assume now that $n \geq 3$. By induction on n, we may assume that $V_{1} \cong \mathbb{P}^{n-1}$ and $V-V_{1}$ is an open U-orbit. Then $V-V_{1} \cong \mathbb{A}^{n}$ by Corollary 2.2. Hence $H_{1}\left(V-V_{1} ; \mathbb{Z}\right)=0$. Then $V \cong \mathbb{P}^{n}$ by Lemma 2.6.
Q.E.D.

In the unipotent group orbit stratification $(*)$ with smooth and irreducible V_{i}, we have the pair $\left(V_{i}, V_{i+1}\right)$ of logarithmic Kodaira dimension $\bar{\kappa}\left(V_{i}-V_{i+1}\right)=-\infty$. If we assume this property instead of a unipotent group action, we can obtain a similar characterization of the projective space \mathbb{P}^{n} as we will see in Theorem 2.8 below. A stratification like ($*$) is obtained from a very ample divisor H on a smooth projective variety V of dimension n. Namely, V and H satisfy the following two conditions.
(1) The linear system $|H|$ has no base points and contains a smooth member.
(2) There exist members $H_{1}, H_{2}, \ldots, H_{n}$ of $|H|$ such that $V_{i}=$ $H_{1} \cap H_{2} \cap \cdots \cap H_{i}$ is a smooth and irreducible subvariety of dimension $n-i$, where $0 \leq i \leq n$ and $V_{0}=V$. In particular, $H^{n}=1$.
We consider a descending chain of \log pairs $\left(V_{i}, V_{i+1}\right)$ for $0 \leq i \leq n-1$.
Theorem 2.8. With the above notations and conditions (1) and (2), we assume that the pair $\left(V_{i}, V_{i+1}\right)$ has log Kodaira dimension $-\infty$ for $0 \leq i \leq n-1$. Then V is isomprphic to \mathbb{P}^{n} and H is a hyperplane.

Proof. We consider first the case $n=2$. Then V_{1} is a smooth irreducible curve with $\bar{\kappa}\left(V_{1}-V_{2}\right)=-\infty$. Hence $V_{1} \cong \mathbb{P}^{1}$ and V_{2} is a point. This implies that the self-intersection number H^{2} is equal to one. Let $X=V \backslash V_{1}$. Since H is ample, X is an affine surface with $\bar{\kappa}(X)=-\infty$. Hence there exists an \mathbb{A}^{1}-fibration $\rho: X \rightarrow C$, where C is a smooth curve. Suppose that ρ extends to a \mathbb{P}^{1}-fibration $p: V \rightarrow \bar{C}$. Then $V_{1} \cong \bar{C}$, and hence V is a rational ruled surface and V_{1} is a cross-section of p. If V is not minimal, there exists an irreducible fiber component which is disjoint from V_{1}. This is absurd because H is ample. So, V is a Hirzebruch surface \mathbb{F}_{d} of degree d. Let M be a minimal section of \mathbb{F}_{d}. Then $H \sim M+s \ell$, where ℓ is a fiber of p. Since $1=H^{2}=-d+2 s$, we have $d=2 s-1$. Meanwhile, $H \cdot M=s-d=-s+1 \geq 0$ and $d \geq 0$, whence $s=1$ and $d=1$. Then $H \cdot M=0$, which contradicts the
ampleness of H. This implies that the closures of the fibers of ρ in V form a linear pencil Λ with a base point, say P. The curve V_{1} is a member of Λ. Since $H^{2}=1$, the pencil Λ becomes free of base point after a single blowing-up with center P. Then the blown-up surface becomes a Hirzebruch surface \mathbb{F}_{1} and the exceptional curve is the minimal section. Here we note that if there is a reducible member, say F, of Λ, then $F \cdot V_{1}=1$ and hence there exists an irreducible component of F which is disjoint from V_{1}. This contradicts the ampleness of H. By contracting the exceptional curve back to the point P, we know that $V \cong \mathbb{P}^{2}$ and H is a line.

Suppose that $n>2$. We assume by induction that V_{1} is isomorphic to \mathbb{P}^{n-1} and V_{2} is a hyperplane. We consider a \mathbb{Z}-cohomology exact sequence for a pair $\left(V, V_{1}\right)$:

$$
H^{2 n-2}(V ; \mathbb{Z}) \xrightarrow{i_{2 n-2}^{*}} H^{2 n-2}\left(V_{1} ; \mathbb{Z}\right) \longrightarrow H^{2 n-1}\left(V, V_{1} ; \mathbb{Z}\right) \longrightarrow H^{2 n-1}(V ; \mathbb{Z})
$$

where $i: V_{1} \rightarrow V$ is the canonical inclusion. Since $V_{2}=V_{1} \cap H_{2}$ for a general member H_{2} of $|H|$ and V_{2} is a hyperplane of \mathbb{P}^{n-1}, H_{2} is also \mathbb{P}^{n-1} and V_{2} is a hyperplane of H_{2}. Then there exists a line L on H_{2} such that L intersects V_{1} transversally in one point P. By the Poincaré duality, $H^{2 n-2}\left(V_{1} ; \mathbb{Z}\right) \cong H_{0}\left(V_{1} ; \mathbb{Z}\right) \cong \mathbb{Z}$. We may assume that $H_{0}\left(V_{1} ; \mathbb{Z}\right)$ is generated by the point P. Similarly, $H^{2 n-2}(V ; \mathbb{Z}) \cong H_{2}(V ; \mathbb{Z})$. The class $[L]$ in $H_{2}(V ; \mathbb{Z})$ gives rise to an element α of $H^{2 n-2}(V ; \mathbb{Z})$ which is mapped by $i_{2 n-2}^{*}$ to the element of $H^{2 n-2}\left(V_{1} ; \mathbb{Z}\right)$ corresponding to $[P]$. By the Poincaré duality, this mapping is simply the intersection $L \cap V_{1}=\{P\}$. Hence the mapping $i_{2 n-2}^{*}$ is surjective. On the other hand, $H^{2 n-1}(V ; \mathbb{Z})$ is isomorphic to $H_{1}(V ; \mathbb{Z})$ by the Poincaré duality, and $H_{1}(V ; \mathbb{Z}) \cong H_{1}\left(V_{1} ; \mathbb{Z}\right)$ by the Lefschetz hyperplane section theorem. Then $H_{1}\left(V_{1} ; \mathbb{Z}\right)=(0)$ because $V_{1} \cong \mathbb{P}^{n-1}$. Hence $H^{2 n-1}(V ; \mathbb{Z})=(0)$. The above exact sequence shows that $H^{2 n-1}\left(V, V_{1} ; \mathbb{Z}\right)=(0)$. By the Lefschetz duality, it follows that $H_{1}\left(V-V_{1} ; \mathbb{Z}\right)=(0)$. Now we can use Lemma 2.6 to conclude that $V \cong \mathbb{P}^{n}$ and V_{1} is a hyperplane. Q.E.D.

In Lemma 2.6, the condition that $H_{1}(V-H ; \mathbb{Z})$ is torsion free is crucial and the condition is satisfied if $V-H$ is simply connected. Instead of an open orbit of a unipotent group in $V-H$, we can think of independent G_{a}-actions $\sigma_{1}, \ldots, \sigma_{n}$ on $V-H$. We shall make the situation more precise.

Let X be a smooth affine variety of dimension n. Let $\sigma_{i}: G_{a} \times X \rightarrow$ X be an action of G_{a} for $1 \leq i \leq m$. We say that the actions $\sigma_{i}(1 \leq i \leq$ m) are independent if there exists a point P such that the vector fields Δ_{i} associated with σ_{i} span a vector subspace of dimension m in the tangent space $\mathcal{T}_{X, P}$. It is clear that we can choose as P any point from
an open set U of X. In fact, let Δ_{i} be the vector field associated with the action σ_{i}. Then the mapping $P \mapsto\left(\Delta_{1}\right)_{P} \wedge \cdots \wedge\left(\Delta_{m}\right)_{P} \in \wedge_{i=1}^{m} \mathcal{T}_{X, P}$ defines a section

$$
\Delta_{1} \wedge \cdots \wedge \Delta_{m}: X \rightarrow \wedge_{i=1}^{m} \mathcal{T}_{X}
$$

which is nonzero at the point P by the assumption. Then it is non-zero in an open neighborhood of P. We then prove the following result.

Theorem 2.9. Let X be a smooth affine variety of dimension n defined over \mathbb{C} with n independent G_{a}-actions $\sigma_{i}(1 \leq i \leq n)$. Then the following assertions hold.
(1) The fundamental group of X is a finite group and $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=$ \mathbb{C}^{*}.
(2) Assume that $n=2$ and X is factorial. Then $X \cong \mathbb{A}^{2}$ and hence X is simply connected.
(3) If $n=3, X$ is factorial and the (algebraic) quotient surface of X with respect to one of the actions σ_{i}, say σ_{1}, is smooth, then X is simply connected.

Proof. (1) We denote the group scheme G_{a} by G_{i} if G_{a} acts on X by σ_{i}. The corresponding vector field Δ_{i} is a locally nilpotent derivation of the coordinate ring A of X. Let $B_{1}=\operatorname{Ker} \Delta_{1}$. By slice theorem, $A_{b}:=A\left[b^{-1}\right]$ is a polynomial ring in one variable over $B_{1, b}:=B_{1}\left[b^{-1}\right]$ for some nonzero element $b \in B_{1}$. Then the inclusion $B_{1, b} \hookrightarrow A_{b}$ defines an \mathbb{A}^{1}-bundle morphism $q_{b}: X_{b} \rightarrow Y_{b}:=\operatorname{Spec} B_{1, b}$.

Let P be a general point of X_{b}. Hence $G_{1} P \cong \mathbb{A}^{1}$ is a fiber of q_{b}. Let $\tau: G_{2} \times \cdots \times G_{n} \rightarrow Y_{b}$ be a rational mapping defined by $\left(g_{2}, \ldots, g_{n}\right) \mapsto$ $q_{b}\left(g_{n}\left(\cdots\left(g_{2} P\right) \cdots\right)\right)$. Then τ is a dominant mapping and holomorphic in a small analytic neighborhood of the point of origin $\left(e_{2}, \ldots, e_{n}\right)$ of $G_{2} \times \cdots \times G_{n}$. In fact, if $\varepsilon_{i}(2 \leq i \leq n)$ moves a complex number with $\left|\varepsilon_{i}\right|$ small, then $\exp \left(\varepsilon_{n} \Delta_{n}\right) \cdots \exp \left(\varepsilon_{2} \Delta_{2}\right) P$ is considered to be a transversal section of a tubular neighborhood of the orbit $G_{1} P$. This implies that $\sigma: G_{1} \times \cdots \times G_{n} \rightarrow X$ defined by $\left(g_{1}, \ldots, g_{n}\right) \mapsto g_{n}\left(\cdots\left(g_{2}\left(g_{1} P\right)\right) \cdots\right)$ is a dominant morphism. In fact, if $\left|\varepsilon_{1}\right|$ is small, $\exp \left(\varepsilon_{1} \Delta_{1}\right) P$ is a disc neighborhood of P in the orbit $G_{1} P$. Hence $\exp \left(\varepsilon_{n} \Delta_{n}\right) \cdots \exp \left(\varepsilon_{2} \Delta_{2}\right)$. $\exp \left(\varepsilon_{1} \Delta_{1}\right)(P)$ gives a ball-like, analytic, open neighborhood of the point P. Since $G_{1} \times \cdots \times G_{n}$ has \mathbb{A}^{n} as the underlying space, σ gives a dominant morphism $\sigma: \mathbb{A}^{n} \rightarrow X$. Let $q: Z \rightarrow X$ be a connected topological covering. Then the fiber product $q_{\mathbb{A}^{n}}: Z \times_{X} \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is a topological covering. Since $\pi_{1}\left(\mathbb{A}^{n}\right)=(1), Z \times_{X} \mathbb{A}^{n}$ contains \mathbb{A}^{n} as a connected component. Then the morphism σ splits as $\sigma: \mathbb{A}^{n} \longrightarrow Z \xrightarrow{q} X$. In fact, Z has locally the same complex structure as X since Z is a
topological covering of X. Hence Z is a smooth connected complex manifold of dimension n. Since $Z \times_{X} \mathbb{A}^{n}$ is a disjoint union of the connected components isomorphic to \mathbb{A}^{n}, the canonical projection $p r_{Z}$: $Z \times_{X} \mathbb{A}^{n} \rightarrow Z$ yields a morphism of complex manifolds $\mathbb{A}^{n} \rightarrow Z$ which factors $\sigma: \mathbb{A}^{n} \rightarrow X$. By counting the number of points in \mathbb{A}^{n} (resp. Z) lying over a general point P of X, we infer that $\operatorname{deg} q \leq \operatorname{deg} \sigma$. Hence $q: Z \rightarrow X$ is a finite covering of X and Z is a smooth affine algebraic variety of dimension n. Hence $\left|\pi_{1}(X)\right| \leq \operatorname{deg} \sigma$. Since $\sigma: \mathbb{A}^{n} \rightarrow X$ is a dominant morphism, it follows that $A^{*}=\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$.
(2) By an algebraic characterization of the affine plane, X is isomorphic to \mathbb{A}^{2} because X is factorial, $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=\mathbb{C}^{*}$ and X has a G_{a}-action.
(3) Since $n=3, B_{1}=\operatorname{Ker} \Delta_{1}$ is a normal affine domain of dimension 2. Hence we can think of the algebraic quotient $Y=X / / G_{1}$ and the quotient morphism $q: X \rightarrow Y$ instead of the morphism q_{b}. In fact, the restriction of q onto X_{b} is the morphism q_{b}. Further, the mapping $\tau: G_{2} \times G_{3} \rightarrow Y_{b}$ extends to a dominant morphism $\tau: \mathbb{A}^{2} \rightarrow Y$. Assume that X is factorial. Then Y is factorial because $\Gamma\left(Y, \mathcal{O}_{Y}\right)$ is factorially closed in $\Gamma\left(X, \mathcal{O}_{X}\right)$ as the kernel of Δ_{1}. Since $\tau: \mathbb{A}^{2} \rightarrow Y$ is dominant, it follows that $\bar{\kappa}(Y)=-\infty$ and there are no non-constant units in $\Gamma\left(Y, \mathcal{O}_{Y}\right)$. In fact, Y is smooth by the assumption, and hence we have $\bar{\kappa}(Y) \leq \bar{\kappa}\left(\mathbb{A}^{2}\right)=-\infty$. Then Y is isomorphic to \mathbb{A}^{2}. Since the general fiber of q is isomorphic to \mathbb{A}^{1} and the factorial closedness of $\Gamma\left(Y, \mathcal{O}_{Y}\right)$ in $\Gamma\left(X, \mathcal{O}_{X}\right)$ implies that the fibers over codimension one points of Y are all reduced, we can apply Nori's lemma [35, Lemma 1.5] to obtain an exact sequence

$$
\pi_{1}\left(\mathbb{A}^{1}\right) \rightarrow \pi_{1}(X) \rightarrow \pi_{1}(Y) \rightarrow(1)
$$

This implies that $\pi_{1}(X)=(1)$. In fact, if there is a point $Q \in Y$ such that the fiber $q^{-1}(Q)$ has all non-reduced irreducible components, let $Y^{\circ}=Y \backslash S$, where S is the finite set

$$
\left\{Q \in Y \mid \text { every component of } q^{-1}(Q) \text { is non-reduced }\right\}
$$

and let $X^{\circ}=q^{-1}\left(Y^{\circ}\right)$. Since $\pi_{1}\left(Y^{\circ}\right)=\pi_{1}(Y)=(1)$, we can apply Nori's lemma to $q^{\circ}: X^{\circ} \rightarrow Y^{\circ}$ to obtain $\pi_{1}\left(X^{\circ}\right)=(1)$. Since codim $X_{X}(X$ $\left.X^{\circ}\right) \geq 2$, we have $\pi_{1}(X)=\pi_{1}\left(X^{\circ}\right)=(1)$.
Q.E.D.

For the X in Theorem 2.9, the universal covering space \widetilde{X} of X is a smooth affine variety of dimension n such that \widetilde{X} is simply connected and has n independent G_{a}-actions. In fact, any locally nilpotent derivation of an affine domain extends uniquely to a locally nilpotent derivation of a
finite étale extension of the domain (cf. [31]). It is an interesting problem to find out what kind of structure the variety \widetilde{X} has. In the surface case, let X be a smooth affine surface which is an ML_{0}-surface (i.e., whose coordinate ring has trivial Makar-Limanov invariant; see [13] for the definition and relevant results) and simply connected. In general, $\pi_{1}(X)$ for an ML_{0}-surface X has order bounded by the intertwining number of two G_{a}-orbits corresponding to two independent G_{a}-actions [30, Lemma 1.3]. If X is further a \mathbb{Q}-homology plane, or equivalently if X has the Picard number 0 , then X is isomorphic to \mathbb{A}^{2}. If the Picard number is positive, the structure of such surface X is described in [13].

In the threefold case, let X be the product of a Danielewski surface $\left\{x y=z^{2}-1\right\}$ and the affine line \mathbb{A}^{1}. Then X has three independent G_{a}-actions because the Danielewski surface has two independent $G_{a^{-}}$ actions and the direct product factor \mathbb{A}^{1} has a third G_{a}-action making the Danielewski surface invariant. Furthermore, X is simply connected because the Danielewski surface is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}-\{$ diagonal $\}$. Meanwhile, the Picard number of X is 1 . A similar example is a hypersurface $X=\left\{x y z=u^{3}-1\right\}$ in \mathbb{A}^{4}. X has three G_{a}-actions which are defined by locally nilpotent derivations $\delta_{i}(i=1,2,3)$, where $\delta_{1}(x)=\delta_{1}(y)=0, \delta_{1}(z)=3 u^{2}$ and $\delta_{1}(u)=x y$ with δ_{2} and δ_{3} defined in a similar fashion by changing the roles of $x, y, z . X$ is simply connected, but the Picard number is nonzero. So, we can ask if a smooth factorial affine threefold X is isomorphic to \mathbb{A}^{3} provided it has three independent G_{a}-actions. But there are again many counterexamples to this question. A typical one is $\mathrm{SL}(2)$ which is the hypersurface $x z-y u=1$ in \mathbb{A}^{4} (see [8, Remark 5.15]).

§3. G_{a}-actions on projective varieties

Let V be a smooth projective variety of dimension n defined over k. Let Δ be a regular vector field. We say that Δ has a locally nilpotent stratification if V has a decomposition $V=\coprod_{i} W_{i}$ into locally closed subsets satisfying the following conditions:
(1) W_{0} is an affine open set of V, W_{i} is an affine open set of the closure \bar{W}_{i} and $\bar{W}_{i} \backslash W_{i}$ is the union of closures \bar{W}_{j} of several W_{j} with $j>i$.
(2) For every $i,\left.\Delta\right|_{W_{i}}$ is a locally nilpotent derivation on $\Gamma\left(W_{i}, \mathcal{O}_{W_{i}}\right)$ unless W_{i} is a point.
The locally nilpotent stratifications used in the subsequent arguments are constructed in such a way that $V \backslash W_{0}$ is supported by an
ample divisor, and for $i>0, \bar{W}_{i} \backslash W_{i}$ is also supported by an ample divisor on \bar{W}_{i} provided \bar{W}_{i} is smooth (cf. Definition 3.9).

Lemma 3.1. Let $U=\operatorname{Spec} R$ be an affine open set. Then $\left.\Delta\right|_{U}$, the restriction of Δ onto U, is a k-derivation D of R.

Proof. Since $\Delta \in \Gamma\left(V, \mathcal{T}_{V / k}\right)$, it follows that $\left.\Delta\right|_{U} \in \Gamma\left(U, \mathcal{T}_{U / k}\right) \cong$ $\operatorname{Der}_{k}(R)$.
Q.E.D.

Lemma 3.2. Let $U=\operatorname{Spec} R$ and let D be as above. Let $U^{\prime}=$ Spec R^{\prime} be an affine open set such that $U^{\prime} \subseteq U$ and let D^{\prime} be the k derivation corresponding to $\left.\Delta\right|_{U^{\prime}}$. Then D is the restriction of D^{\prime} to R. If D^{\prime} is locally nilpotent, then so is D on R.

Proof. Note that R and R^{\prime} are subalgebras in the function field $k(V)$ and hence that $R \subseteq R^{\prime}$ in $k(V)$. Define a k-algebra homomorphism $\Phi_{D}: R \longrightarrow R[[t]]$ by

$$
\Phi_{D}(a)=\sum_{i \geq 0} \frac{1}{i!} D^{i}(a) t^{i}
$$

Then we have a commutative diagram

where i and $i[[t]]$ are the canonical inclusions. If D^{\prime} is locally nilpotent, $\Phi_{D^{\prime}}$ splits via $R^{\prime}[t]$. Then Φ_{D} splits via $R[t]$ because $R[t]=R^{\prime}[t] \cap R[[t]]$. Hence D is locally nilpotent.
Q.E.D.

This result implies that if Δ is locally nilpotent on a non-empty affine open set, there exists a maximal affine open set $U_{\max }$ of V such that Δ induces a locally nilpotent derivation on $U_{\max }$.

Let $\widetilde{A}=\oplus_{n \geq 0} A_{n}$ be a graded affine domain over k with $A_{0}=k$ and generated by A_{1} and let $\widetilde{\Delta}$ be a nonzero locally nilpotent derivation of \widetilde{A} which is homogeneous of degree 0 . Let $V=\operatorname{Proj}(\widetilde{A})$ which is identified with $(\operatorname{Spec}(\widetilde{A}) \backslash\{\mathfrak{M}\}) / / G_{m}$, where \mathfrak{M} is the irrelevant ideal of \widetilde{A} and G_{m} acts on $\operatorname{Spec}(\widetilde{A})$ via the grading. Then the G_{a}-action on Spec (\widetilde{A}) induced by $\widetilde{\Delta}$ commutes with the G_{m}-action and hence induces a G_{a}-action on V. This G_{a}-action is described as follows. Since $\widetilde{\Delta}$ restricted on A_{1} is a nilpotent linear endomorphism, there exists an element $s_{0} \neq 0$ of A_{1} such that $\widetilde{\Delta}\left(s_{0}\right)=0$. Then $\widetilde{\Delta}$ induces a locally
nilpotent derivation Δ on $\widetilde{A}\left[s_{0}^{-1}\right]_{0}$ and it gives rise to a G_{a}-action on the affine open set $V \backslash V_{+}\left(s_{0}\right)$. This G_{a}-action coincides with the restriction of the above-obtained G_{a}-action on V restricted to $V \backslash V_{+}\left(s_{0}\right)$. The G_{a}-action on $V_{+}\left(s_{0}\right)$ is described by the locally nilpotent homogeneous derivation $\widetilde{\Delta}\left(\bmod \left(s_{0}\right)\right)$ induced on $\widetilde{A} /\left(s_{0}\right)$.

Conversely, a G_{a}-action on a smooth projective variety is obtained via G_{a}-linealization from this construction.

Theorem 3.3. Let V be a smooth projective variety which has an algebraic G_{a}-action and let Δ be the regular vector field associated with the G_{a}-action. The following assertions hold:
(1) Let H be an effective ample divisor such that the subset $H_{\text {red }}$ of codimension one is G_{a}-stable and let $W_{0}=\operatorname{Spec} R_{0}$ be the complement of H_{red}. Then $D_{0}=\left.\Delta\right|_{W_{0}}$ is a locally nilpotent derivation.
(2) Let H be an effective ample divisor. Then H is G_{a}-linearizable. Hence there exists a member of $|H|$ which is G_{a}-stable. If H_{0} is a G_{a}-stable member of $|H|$, then $V \backslash H_{0}$ is a G_{a}-stable affine open set.
(3) Let H be a G_{a}-stable effective very ample divisor and let $\widetilde{A}=\oplus_{n \geq 0} H^{0}(V, \mathcal{O}(n H))$. Then there exists a locally nilpotent, homogeneous derivation $\widetilde{\Delta}$ of degree 0 on \widetilde{A} such that $\widetilde{\Delta}$ induces the G_{a}-action on V.

Proof. (1) Since H is ample, the complement $W_{0}=V \backslash H_{\text {red }}$ is an affine open set and has the induced G_{a}-action. Hence the restriction $\left.\Delta\right|_{W_{0}}$ gives rise to the induced G_{a}-action on W_{0}. This implies that D_{0} is locally nilpotent.
(2) Since Pic $\left(G_{a}\right)=(0), H$ is G_{a}-linearizable by [24, Prop. 2.4 and its remark]. Hence G_{a} acts linearly on $H^{0}\left(V, \mathcal{O}_{V}(H)\right)$, and hence acts on the projective space $|H|$. Since the fixed point locus on $|H|$ is connected and non-empty (see [7]), there exists an element of $|H|$ which is G_{a}-stable.
(3) Since H is very ample, $H^{0}(V, \mathcal{O}(n H))$ is generated by $H^{0}(V, \mathcal{O}(H))$. Hence the extended G_{a}-coaction on $H^{0}(V, \mathcal{O}(H))$ (cf. [34, p. 32]) extends to a locally nilpotent homogeneous derivation $\widetilde{\Delta}$ on the graded domain \widetilde{A}. Since $\widetilde{\Delta}\left(H^{0}(V, \mathcal{O}(H))\right) \subseteq H^{0}(V, \mathcal{O}(H)), \widetilde{\Delta}$ has degree 0 . Let H_{0} be a G_{a}-stable member of $|H|$ and let $\left\{s_{0}, s_{1}, \ldots, s_{N}\right\}$ be a basis of $H^{0}(V, \mathcal{O}(H))$ such that $H_{0}=\left\{s_{0}=0\right\}$. Then $\widetilde{\Delta}$ induces the G_{a}-action on $V-H_{0}=\operatorname{Spec} k\left[s_{1} / s_{0}, \ldots, s_{N} / s_{0}\right]$ which is the given G_{a}-action on V by construction. By repeating the same argument to H_{0} and $\left.H\right|_{H_{0}}$, it is now easy to conclude the assertion.
Q.E.D.

Remark 3.4. Let V be a smooth projective variety with a nontrivial G_{a}-action. Let H be a very ample divisor. If we assume that the irregularity $q:=h^{1}\left(V, \mathcal{O}_{V}\right)=0$ and the G_{a}-fixed point locus consists of a single point, we can take a sequence of closed subvarieties

$$
V_{0}=V \supset V_{1} \supset \cdots \supset V_{n-1} \supset V_{n}
$$

as considered before Theorem 2.8 in a G_{a}-equivariant way provided the smoothness condition on V_{i} is guaranteed. In fact, by Theorem 3.3, (2), there is a G_{a}-stable open set W_{0} such that $W_{0}=V \backslash H_{1}$ with a $G_{a^{-}}$ stable member $H_{1} \in|H|$. If $V_{1}:=H_{1}$ is smooth, then we consider a very ample divisor $\left.H\right|_{H_{1}}$. Since the induced G_{a}-action on V_{1} is nontrivial if $\operatorname{dim} V_{1}>0$, we find a G_{a}-stable member of $|H|_{V_{1}} \mid$. Suppose further that the irregularity $q:=h^{1}\left(V, \mathcal{O}_{V}\right)=0$. Then the exact sequence

$$
0 \longrightarrow \mathcal{O}_{V} \longrightarrow \mathcal{O}_{V}(H) \longrightarrow \mathcal{O}_{H_{1}}(H) \longrightarrow 0
$$

induces the surjection $\mathrm{H}^{0}\left(V, \mathcal{O}_{V}(H)\right) \rightarrow \mathrm{H}^{0}\left(H_{1}, \mathcal{O}_{H_{1}}(H)\right)$. So, the $G_{a^{-}}$ stable member of $|H|_{H_{1}} \mid$ is written as $H_{1} \cap H_{2}$. Note that the irregularity of H_{1} vanishes. In fact, if $\operatorname{dim} V \geq 3$, then the exact sequence

$$
\mathrm{H}^{1}\left(V, \mathcal{O}_{V}\right) \longrightarrow \mathrm{H}^{1}\left(H_{1}, \mathcal{O}_{H_{1}}\right) \longrightarrow \mathrm{H}^{2}\left(V, \mathcal{O}_{V}(-H)\right)
$$

implies the assertion because $\mathrm{H}^{2}\left(V, \mathcal{O}_{V}(-H)\right)=0$ by the Kodaira vanishing theorem. If $\operatorname{dim} V=2$, then $\mathrm{H}^{2}\left(V, \mathcal{O}_{V}(-H)\right) \cong \mathrm{H}^{0}\left(V, \mathcal{O}\left(K_{V}+\right.\right.$ $H))=0$ because the existence of a G_{a}-action implies $\bar{\kappa}\left(V \backslash H_{1}\right)=-\infty$. Since the G_{a}-fixed point locus on V consists of a single point by assumption, we proceed the above construction inductively under the assumption that $H_{1} \cap H_{2} \cap \cdots \cap H_{i}$ is smooth for $1 \leq i \leq \operatorname{dim} V-1$. Then the G_{a}-action on $V_{i}:=H_{1} \cap \cdots \cap H_{i}$ is nontrivial if $i \leq \operatorname{dim} V-1$. Thus we reach to the set-up of Theorem 2.8. Since the nontrivial G_{a}-action on $V_{i}-V_{i+1}$ implies that $\bar{\kappa}\left(V_{i}-V_{i+1}\right)=-\infty$, the theorem shows that $V \cong \mathbb{P}^{n}$. If $V \not \approx \mathbb{P}^{n}$, it fails to hold that $H_{1} \cap \cdots \cap H_{i}$ is smooth for some $1 \leq i \leq \operatorname{dim} V-1$.

Given a regular vector field Δ on a smooth projective variety V, an irreducible subvariety W of codimension one is called integral if for every smooth point P of W and for a system of local parameters $\left\{u_{1}, \ldots, u_{n}\right\}$ of V at P such that W is defined by $u_{1}=0$, we have $\Delta\left(u_{1}\right) \in u_{1} \mathcal{O}_{V, P}$. If $\operatorname{dimV}=2$, we call W an integral curve of Δ.

Example 3.5. With the notations in Lemma 1.1, we consider the case $V=\mathbb{P}^{2}=U_{0} \coprod H_{0}$ with $H_{0}=\left\{X_{0}=0\right\}$, where $U_{0}=\operatorname{Spec} k[x, y]$.

Write a regular vector field Δ on \mathbb{P}^{2} as $\Delta=f \frac{\partial}{\partial x}+g \frac{\partial}{\partial y}$, where

$$
\begin{aligned}
& f=a_{0} x^{2}+a_{1} x y+c_{0} x+c_{1} y+c_{2} \\
& g=a_{0} x y+a_{1} y^{2}+d_{0} x+d_{1} y+d_{2} .
\end{aligned}
$$

In terms of the coordinates $\{u, v\}$ on $U_{1}=\left\{X_{1} \neq 0\right\}$ and $\{z, w\}$ on $U_{2}=\left\{X_{2} \neq 0\right\}$ (cf. Lemma 1.1), we compute $\left.\Delta\right|_{U_{1}}$ and $\left.\Delta\right|_{U_{2}}$ as follows.

$$
\begin{aligned}
\left.\Delta\right|_{U_{1}}= & -\left(a_{0}+a_{1} v+c_{0} u+c_{1} u v+c_{2} u^{2}\right) \frac{\partial}{\partial u} \\
& +\left(d_{0}+d_{1} v+d_{2} u-c_{0} v-c_{1} v^{2}-c_{2} u v\right) \frac{\partial}{\partial v} \\
\left.\Delta\right|_{U_{2}}= & -\left(a_{1}+d_{1} z+a_{0} w+d_{2} z^{2}+d_{0} z w\right) \frac{\partial}{\partial z} \\
& +\left(c_{1}+c_{2} z+\left(c_{0}-d_{1}\right) w-d_{2} z w-d_{0} w^{2}\right) \frac{\partial}{\partial w} .
\end{aligned}
$$

We assume that H_{0} is an integral curve of Δ. By the above expression of $\left.\Delta\right|_{U_{1}}$ and $\left.\Delta\right|_{U_{2}}$, where H_{0} is defined by $u=0$ and $z=0$ respectively, H_{0} is an integral curve if and only if $a_{0}=a_{1}=0$. Hence we have

$$
\Delta=\left(c_{0} x+c_{1} y+c_{2}\right) \frac{\partial}{\partial x}+\left(d_{0} x+d_{1} y+d_{2}\right) \frac{\partial}{\partial y}
$$

Namely we have

$$
\Delta\binom{x}{y}=\binom{\Delta(x)}{\Delta(y)}=\left(\begin{array}{cc}
c_{0} & c_{1} \\
d_{0} & d_{1}
\end{array}\right)\binom{x}{y}+\binom{c_{2}}{d_{2}}
$$

Furthermore, we have

$$
\Delta^{n}\binom{x}{y}=\left(\begin{array}{cc}
c_{0} & c_{1} \\
d_{0} & d_{1}
\end{array}\right)^{n}\binom{x}{y}+\left(\begin{array}{cc}
c_{0} & c_{1} \\
d_{0} & d_{1}
\end{array}\right)^{n-1}\binom{c_{2}}{d_{2}}
$$

for all $n \geq 1$. This implies that Δ is locally nilpotent if and only if the matrix $\left(\begin{array}{cc}c_{0} & c_{1} \\ d_{0} & d_{1}\end{array}\right)$ is a nilpotent matrix. Hence there exists a matrix $P \in \operatorname{GL}(2, k)$ such that

$$
P^{-1}\left(\begin{array}{cc}
c_{0} & c_{1} \\
d_{0} & d_{1}
\end{array}\right) P=\left(\begin{array}{cc}
0 & \alpha \\
0 & 0
\end{array}\right)
$$

Let $\widetilde{P}=\left(\begin{array}{ll}1 & 0 \\ 0 & P\end{array}\right) . \quad$ By a change of coordinates ${ }^{t}\left(X_{0}, X_{1}, X_{2}\right) \mapsto$ $\widetilde{P}^{-1 t}\left(X_{0}, X_{1}, X_{2}\right)$, we may assume that

$$
\Delta=\left(\alpha y+c_{2}\right) \frac{\partial}{\partial x}+d_{2} \frac{\partial}{\partial y}
$$

whence $\Delta(x)=\alpha y+c_{2}$ and $\Delta(y)=d_{2}$. Now we define a G_{a}-action on \mathbb{P}^{2} by

$$
t \cdot\left(\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
c_{2} t+\frac{1}{2!} \alpha d_{2} t^{2} & 1 & \alpha t \\
d_{2} t & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2}
\end{array}\right)
$$

It is now clear that Δ is the vector field associated to the G_{a}-action.
Consider a regular vector field $\Delta=\left(c_{1} y+c_{2}\right) \frac{\partial}{\partial x}$ with $c_{1} \neq 0$. Then $\left.\Delta\right|_{U_{2} \cap H_{0}}=c_{1} \frac{\partial}{\partial w}$. This implies that the G_{a}-action is effective on $U_{2} \cap H_{0}$ and the fixed point locus Γ consists of a single point $(0,1,0)$. In fact, the decomposition $U_{0} \coprod\left(U_{2} \cap H_{0}\right) \coprod \Gamma$ is a locally nilpotent stratification of Δ.

A similar thing holds in the case $n>2$. With the notations in Lemma 1.1, we have the following.

Remark 3.6. Assume that the hyperplane H_{0} is integral for Δ as in Lemma 1.1. This implies that $\Delta\left(\frac{X_{0}}{X_{i}}\right)$ is divisible by $\frac{X_{0}}{X_{i}}$ for every $i \neq 0$. This condition is equivalent to $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence we have

$$
\Delta\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=B\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Since

$$
\Delta^{n}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=B^{n}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+B^{n-1}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Δ is locally nilpotent if and only if B is nilpotent. Hence, after a suitable base change of $\left(x_{1}, \ldots, x_{n}\right)$, we may assume that B is an upper triangular matrix $\left(c_{i j}\right)$ with all the diagonal entries zero. Then the vector field Δ is associated with a G_{a}-action on \mathbb{P}^{n} which stabilizes the hyperplane H_{0}.

Modeled after the above examples, we introduce the following two definitions, where we note that the stratifications stop at the second strata.

Definiton 3.7. Let V be a smooth projective variety of dimension n. A G_{a}-action on V is called a stratified action if there exists a reduced effective divisor $H=H_{1}+\cdots+H_{r}$ (irreducible decomposition) supporting an ample divisor satisfying the following two conditions.
(1) H is G_{a}-stable, whence there exists the induced effective $G_{a^{-}}$ action on $X=V \backslash H$. Further, there is an induced G_{a}-action on each H_{i}.
(2) For each irreducible component H_{i}, there exists a reduced effective divisor K_{i} supporting an ample divisor on H_{i} such that K_{i} is G_{a}-stable and the induced G_{a}-action on $H_{i} \backslash K_{i}$ is effective.

Remark 3.8. In view of Remark 3.4 and the argument therein, if V is a smooth projective variety with a nontrivial G_{a}-action and if the G_{a}-fixed point locus has codimension greater than or equal to 2 , then the G_{a}-action is a stratified G_{a}-action.

Definiton 3.9. Let V be a smooth projective variety of dimension n and let Δ be a regular vector field. We call Δ effectively locally nilpotent with stratification if there exists a reduced effective divisor $H=H_{1}+\cdots+$ H_{r} supporting an ample divisor satisfying the following two conditions.
(1) Δ induces a nontrivial locally nilpotent derivation on $X=$ $V \backslash H$ and each irreducible component H_{i} is Δ-integral in the sense that, for each smooth point P of $H_{i}, \Delta\left(u_{i}\right)$ is divisible by u_{i} in $\mathcal{O}_{V, P}$, where $u_{i}=0$ is a local defining equation of H_{i}.
(2) For each H_{i}, there exists a reduced effective divisor K_{i} on H_{i} supporting an ample divisor such that $\left.\Delta\right|_{H_{i} \backslash K_{i}}$ induces a nontrivial locally nilpotent derivation.

It is well known that a G_{a}-action on an affine scheme corresponds bijectively to a locally nilpotent derivation on the coordinate algebra of the scheme. The following result will correspond partly to this result for affine schemes and explain when a given regular vector field comes from a G_{a}-action on a smooth projective variety.

Theorem 3.10. Let V be a smooth projective variety of dimension $n \geq 2$. Then the following assertions hold.
(1) A stratified G_{a}-action σ on V induces the regular vector field Δ on V which is effectively locally nilpotent with stratification.
(2) Let Δ be a regular vector field on V which is effectively locally nilpotent with stratification. Then there exists a stratified G_{a} action on V which induces the vector field Δ.

Proof. (1) By the hypothesis, the G_{a}-action σ on X (see the notations in Definition 3.7) is effective, whence the associated vector field is nontrivial on X. Similarly, we can extend this vector field, say Δ, to $H_{i} \backslash K_{i}$ for each i because it is associated to the induced G_{a}-action on $H_{i} \backslash K_{i}$. Then Δ is an element of $\Gamma\left(V \backslash\left(\cup_{i=1}^{r} K_{i}\right), \mathcal{T}_{V / k}\right)$, where
$\operatorname{codim}_{V}\left(\cup_{i=1}^{r} K_{i}\right) \geq 2$. Then Δ is defined on V as a regular vector field. It is now clear that Δ is effectively locally nilpotent with stratification because the G_{a}-action on $H_{i} \backslash K_{i}$ is effective.
(2) Let $R=\Gamma\left(X, \mathcal{O}_{V}\right)$. Then Δ is considered as a locally nilpotent derivation of R. Let σ_{X} be the induced G_{a}-action, which is given by the coaction

$$
\Phi: R \rightarrow R[t], \quad \Phi(z)=\sum_{i \geq 0} \frac{1}{i!} \Delta^{i}(z) t^{i}
$$

For $\alpha \in k$, define the automorphism φ_{α} of R by $\varphi_{\alpha}(z)=\left.\Phi(z)\right|_{t=\alpha}$. Then $\sigma_{\alpha}:={ }^{a} \varphi_{\alpha}$ is the automorphism of X such that $\sigma_{\alpha} \cdot \sigma_{\beta}=\sigma_{\alpha+\beta}$ for $\alpha, \beta \in$ k. The k-algebra homomorphism Φ extends to a k-homomorphism $\Phi_{k(V)}: k(V) \rightarrow k(V)(t)$ such that $\Phi_{k(V)}\left(\frac{z_{2}}{z_{1}}\right)=\Phi\left(z_{2}\right) / \Phi\left(z_{1}\right)$, where $k(V)=Q(R)$ is the function field of V over k and $z_{1}, z_{2} \in R$. Then σ_{α} for $\alpha \in k$ is viewed as a birational automorphism of V. Although σ_{α} is biregular on $X=V \backslash H$, it may not be biregular on the irreducible component H_{1}, \ldots, H_{r}. Suppose that σ_{α} induces a correspondence between H_{i} and a curve or a point. However, the correspondence induces an automorphism on the affine open set $H_{i} \backslash K_{i}$ by the hypothesis. Hence σ_{α} is biregular on all codimension one points of V. This implies that σ_{α} is a biregular automorphism of V. Since $\sigma_{\alpha} \cdot \sigma_{\beta}=\sigma_{\alpha+\beta}$ for $\alpha, \beta \in k$, the collection $\left\{\sigma_{\alpha} \mid \alpha \in k\right\}$ defines a G_{a}-action on V. It is clear that this G_{a}-action is stratified and induces the vector field Δ. Q.E.D.

Example 3.11. Let $V=\mathbb{F}_{n}$ with $n \geq 0$. With the notations in Lemma 1.3, a regular vector field $\Delta=f \frac{\bar{\partial}}{\partial x}+g \frac{\partial}{\partial y}$ makes the divisor $M+\ell_{\infty}$ integral if and only if $a_{20}=0$ if $n>0$ and $a_{20}=b_{02}=0$ if $n=0$. Δ is locally nilpotent on $\mathbb{F}_{n} \backslash\left(M+\ell_{\infty}\right)$ if and only if $a_{10}=b_{01}=0$ for $n \geq 0$. If the latter condition is satisfied, Δ is associated with a stratified G_{a}-action on \mathbb{F}_{n} provided other constants a_{00} and the $b_{i 0}$ are nonzero.

Remark 3.12. Dubouloz-Liendo [6] introduced the notion of rationally integrable k-derivation and showed that regular G_{a}-actions on a semi-affine variety X are in one-to-one correspondence with rationally integrable k-derivations $\widetilde{\partial}: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ such that the derivation $\Gamma(X, \widetilde{\partial}): \Gamma\left(X, \mathcal{O}_{X}\right) \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$ is locally nilpotent, where an algebraic variety X is said to be semi-affine if the canonical morphism $\left.p: X \rightarrow \operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)\right)$ is a proper morphism. Hence a complete variety or an affine variety is semi-affine.

$\S 4 . \quad G_{a}$-actions on Fano varieties

Our objective in this section is to describe the structure of a smooth projective variety V with a stratified G_{a}-action, mostly in the case where
V is a Fano variety of rank 1. Our result is very restrictive since we only know of few examples for which all possible G_{a}-actions are known together with the fixed-point loci and the behaviors of orbits. We shall see first what is the situation with the simplest example \mathbb{P}^{2}.

Lemma 4.1. (1) The standard form of a G_{a}-action on \mathbb{P}^{2} is given by

$$
t \cdot\left(X_{0}, X_{1}, X_{2}\right)=\left(X_{0}, X_{1}+\left(b X_{2}+c_{1} X_{0}\right) t+\frac{1}{2} b c_{2} X_{0} t^{2}, X_{2}+c_{2} X_{0} t\right)
$$

where $t \in k, b, c_{1}, c_{2} \in k$ with the notations being slightly different from Example 3.5.
(2) The fixed point locus Γ is given by

$$
\Gamma=\left\{\begin{array}{lll}
\text { one point }\{(0,1,0)\} & \text { if } c_{2} b \neq 0 \\
\text { line }\left\{X_{0}=0\right\} & \text { if } c_{2} \neq 0, b=0 \\
\text { line }\left\{b X_{2}+c_{1} X_{0}=0\right\} & \text { if } & c_{2}=0
\end{array}\right.
$$

(3) Suppose $c_{2} b \neq 0$. Then the closure of each G_{a}-orbit passes through the point $P_{0}:=(0,1,0)$ and is smooth at P_{0}, and the intersection multiplicity of the closures of two distinct G_{a}-orbits is 4 . By the blowing-ups with centers P_{0} and its 3 more consecutive, infinitely-near points, the proper transforms of the closures of general G_{a}-orbits are separeted from each other. If either $c_{2} \neq 0$ and $b=0$ or $c_{2}=0$, the closure of each G_{a}-orbit is a line passing through the point $\left(0, c_{1}, c_{2}\right)$ or the point P_{0} respectively.
(4) If $c_{2} b \neq 0$ then the G_{a}-action is a stratified action. If either $c_{2} \neq 0$ and $b=0$ or $c_{2}=0$ then the action is not a stratified action. The third G_{a}-action with $c_{2}=0$ is brought to the second one by a projective transformation.

Proof. (1) By Theorem 3.3, (2), the system of hyperplanes $|H|$ has an induced G_{a}-action. Hence it contains a member H_{0} which is G_{a}-stable. Then we can choose a system of homogeneous coordinates $\left(X_{0}, X_{1}, X_{2}\right)$ so that H_{0} is defined by $X_{0}=0$. By Example 3.5, we can write the associated vector field Δ as

$$
\Delta\binom{x}{y}=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\binom{x}{y}+\binom{c_{1}}{c_{2}} .
$$

The expression of the G_{a}-action in (1) is obtained from this Δ. Then the assertion (2) is straightforward.
(3) Let $P(\alpha, \beta)$ be a point of $U_{0}=\left\{X_{0} \neq 0\right\}$. Then the G_{a}-orbit is the set of points

$$
t \cdot(1, \alpha, \beta)=\left(1, \alpha+\left(b \beta+c_{1}\right) t+\frac{1}{2} b c_{2} t^{2}, \beta+c_{2} t\right) .
$$

Eliminating t from

$$
x=\alpha+\left(b \beta+c_{1}\right) t+\frac{1}{2} b c_{2} t^{2}, \quad y=\beta+c_{2} t
$$

we obtain the equation of an affine curve on U_{0} which is the G_{a}-orbit. If $c_{2} \neq 0$, the curve is defined by

$$
c_{2}(x-\alpha)=\left(b \beta+c_{1}\right)(y-\beta)+\frac{1}{2} b(y-\beta)^{2} .
$$

The projective closure of the curve is defined by

$$
c_{2}\left(X_{1}-\alpha X_{0}\right) X_{0}=\left(b \beta+c_{1}\right)\left(X_{2}-\beta X_{0}\right) X_{0}+\frac{1}{2} b\left(X_{2}-\beta X_{0}\right)^{2}
$$

If $c_{2} b \neq 0$, then this curve is irreducible and smooth at the point $P_{0}=$ $(0,1,0)$. If $c_{2} \neq 0$ and $b=0$, then the projective closure of the curve is defined by

$$
c_{2}\left(X_{1}-\alpha X_{0}\right)=c_{1}\left(X_{2}-\beta X_{0}\right)
$$

Hence it passes through the point $\left(0, c_{1}, c_{2}\right)$. If $c_{2}=0$, the orbit through a point (α, β) is defined by $y=\beta$ and its projective closure is $X_{2}=\beta X_{0}$. Hence it passes through the point P_{0}.
(4) It is easy to verify the assertion. For the last assertion, let $Y_{0}=b X_{2}+c_{1} X_{0}, Y_{1}=X_{2}$ and $Y_{2}=X_{1}$. Then the G_{a}-action becomes

$$
t \cdot\left(Y_{0}, Y_{1}, Y_{2}\right)=\left(Y_{0}, Y_{1}, Y_{2}+Y_{0} t\right)
$$

which is the case $c_{2}=1$ and $b=c_{1}=0$.
Q.E.D.

We consider next the case of the Hirzebruch surface $V=\mathbb{F}_{n}(n \geq 0)$.
Example 4.2. (1) Suppose that $V=\mathbb{F}_{n}$ with $n>0$. Then the minimal section M is G_{a}-stable because $\left(M^{2}\right)=-n<0$. Furthermore, the pencil $|\ell|$ of fibers has an induced G_{a}-action and contains a $G_{a^{-}}$ stable member ℓ_{∞}. By Lemma 1.3, the associated vector field Δ on $\mathbb{A}^{2}=\mathbb{F}_{n} \backslash\left(M \cup \ell_{\infty}\right)$ is locally nilpotent. This implies that $f(x, y)=a_{00}$ and $g(x, y)=b_{n 0} x^{n}+\cdots+b_{10} x+b_{00}$. If $a_{00} b_{n 0} \neq 0$, then the point $M \cap \ell_{\infty}$ is the fixed point locus, and the G_{a}-action is stratified with respect to $M+\ell_{\infty}$.
(2) Suppose that $n=0$. Then the pencils $|\ell|$ and $|M|$ contain $G_{a^{-}}$ stable members ℓ_{∞} and M_{∞}. The complement $\mathbb{A}^{2}=\mathbb{F}_{0} \backslash\left(\ell_{\infty} \cup M_{\infty}\right)$ has the associated vector field

$$
\Delta=a_{00} \frac{\partial}{\partial x}+b_{00} \frac{\partial}{\partial y}
$$

which is locally nilpotent. If $a_{00} b_{00} \neq 0$ then $\ell_{\infty} \cap M_{\infty}$ is the fixed point locus, and the G_{a}-action is stratified with respect to $M_{\infty}+\ell_{\infty}$.

In the case $\operatorname{dim} V=2$, we have the following result.
Theorem 4.3. Let V be a smooth projective surface with an effective G_{a}-action. Then the following assertions hold.
(1) V is birationally a ruled surface. If there is a (-1) curve E on V, then E is G_{a}-stable. Hence we can contract E so that the G_{a}-action is preserved on the contracted surface. We assume below that V is relatively minimal.
(2) Suppose that V is irrational. Then the fixed point locus Γ consists of a cross-section S_{0} and a (possibly empty) set of the fibers $\ell_{1}, \ldots, \ell_{r}$, where S_{0} is not an ample section. Let $\mathcal{L}:=$ $\mathcal{O}_{S_{0}}\left(S_{0}\right)$. Then there exists a non-zero section $s \in H^{0}\left(C, \mathcal{L}^{-1}\right)$ such that the zeroes of s defines the fibers $\ell_{1}, \ldots, \ell_{r}$.
(3) Suppose that V is a rational ruled surface. Then the G_{a}-action on V is described in Example 4.2.
(4) Suppose that $V \cong \mathbb{P}^{2}$. Then the G_{a}-action is described in Lemma 4.1.
Proof. (1) Let H be a very ample divisor. Since H is $G_{a^{-}}$ linearizable, the linear system $|H|$ contains a G_{a}-stable member H_{0}. Since $X=V \backslash H_{0}$ has a non-trivial G_{a}-action, V is birationally a ruled surface. The rest of the assertion (1) is clear.
(2) Any G_{a}-orbit is contained in a fiber of the canonical \mathbb{P}^{1}-fibration $\pi: V \rightarrow C$, where C is an irrational smooth projective curve. Hence the fixed point locus Γ contains a corss-section S_{0}. The other components of Γ is a (possibly empty) set of fibers $\ell_{1}, \ldots, \ell_{r}$. The section S_{0} is not ample. In fact, if S_{0} is ample, the complement $X=V \backslash S_{0}$ is affine and endowed with a G_{a}-action. The quotient morphism is the restriction $\left.\pi\right|_{X}$ of the \mathbb{P}^{1}-fibration $\pi: V \rightarrow C$ such that $\pi(X)=C$. This is a contradiction because $X / / G_{a}$ is an affine curve.

Consider an exact sequence

$$
0 \rightarrow \mathcal{O}_{V} \rightarrow \mathcal{O}_{V}\left(S_{0}\right) \rightarrow \mathcal{O}_{S_{0}}\left(S_{0}\right) \rightarrow 0
$$

whose direct images by π gives an exact sequece

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \pi_{*} \mathcal{O}_{V}\left(S_{0}\right) \rightarrow \mathcal{L} \rightarrow 0
$$

where $\mathcal{L} \cong \mathcal{O}_{S_{0}}\left(S_{0}\right)$ with $\operatorname{deg} \mathcal{L}=\left(S_{0}^{2}\right)$. Let $\mathcal{E}=\pi_{*} \mathcal{O}_{V}\left(S_{0}\right)$. Then \mathcal{E} is a rank 2 vector bundle over C and $V=\operatorname{Proj}(\mathcal{E})$. Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open covering of C such that $\left.\mathcal{L}\right|_{U_{i}}=\mathcal{O}_{U_{i}} e_{i}$. Let $\left.\mathcal{E}\right|_{U_{i}}=\mathcal{O}_{U_{i}} e \oplus \mathcal{O}_{U_{i}} \widetilde{e}_{i}$, where \widetilde{e}_{i} is a lift of e_{i} in \mathcal{E}. Then

$$
\left(\widetilde{e}_{j}, e\right)=\left(\widetilde{e}_{i}, e\right)\left(\begin{array}{cc}
f_{j i} & 0 \\
g_{j i} & 1
\end{array}\right)
$$

over $U_{i} \cap U_{j}$. Then $\pi^{-1}\left(U_{i}\right)=\operatorname{Proj} \Gamma\left(U_{i}, \mathcal{O}_{C}\right)\left[\widetilde{e}_{i}, e\right]$ and $\pi^{-1}\left(U_{i}\right) \backslash S_{0}=$ Spec $\Gamma\left(U_{i}, \mathcal{O}_{C}\right)\left[\frac{\widetilde{e}_{i}}{e}\right]$. Then the G_{a}-action is given by a locally nilpotent derivation Δ defined by $\Delta\left(\frac{\widetilde{e}_{i}}{e}\right)=s_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{C}\right)$. Since $\frac{\widetilde{e}_{j}}{e}=f_{j i} \frac{\widetilde{e}_{i}}{e}+$ $g_{j i}$, we have $s_{j}=f_{j i} s_{i}$. Hence $\left\{s_{i}\right\}$ defines a section of $H^{0}\left(C, \mathcal{L}^{-1}\right)$. The zeroes of s gives the fiber components of the fixed point locus Γ. Conversely, a section $s \in H^{0}\left(C, \mathcal{L}^{-1}\right)$ yields a G_{a}-action on V. Q.E.D.

Now we consider the case $\operatorname{dim} V \geq 3$. We assume further the condition that the Picard number ρ of V equals one, i.e., V has (Picard) rank one.

Lemma 4.4. With the above condition, if V has an effective $G_{a^{-}}$ action, then V is a Fano variety of $\rho=1$.

Proof. Let H be a very ample divisor. Then $|H|$ contains a $G_{a^{-}}$ stable (possibly reducible) member H_{0}. Then $V \backslash\left(H_{0}\right)_{\text {red }}$ is an affine, G_{a}-stable open set. There exists an open set U of $V \backslash\left(H_{0}\right)_{\text {red }}$ such that $U \cong U_{0} \times \mathbb{A}^{1}$, where U_{0} is an affine variety. Hence V is birationally a ruled variety. In particular, the canonical divisor K_{V} is not a torsion divisor. Since $\rho=1$, it follows that $-K_{V}$ is ample. So, V is a Fano variety of $\rho=1$.
Q.E.D.

The following properties are well known about Fano threefolds (not necessarily of the Picard number one).
(1) A Fano manifold, i.e., a smooth projective variety with ample anti-canonical divisor, is rationally connected and hence simply connected [26]. The Kodaira vanishing theorem implies that $H^{i}\left(V, \mathcal{O}_{V}\right)=0$ for every $i>0$.
(2) Let r be the index of a Fano threefold V, i.e., r is the maximal positive integer such that $-K_{V} \sim r H$ with $H \in \operatorname{Pic}(V)$. Then the linear system $|H|$ contains a smooth irreducible surface. If $r \geq 2$ then the set of base points of $|H|$ is finite [40]. More precisely, H is very ample if $H^{3} \geq 3$, the base point locus $\mathrm{Bs}|H|=\emptyset$ if $H^{3} \geq 2$ and $\mathrm{Bs}|H|$ is a one-point set if $H^{3}=1$ (see [39]).
(3) Let V be a smooth projective threefold with $H^{0}\left(V, K_{V}\right)=0$. Then the Brauer group $\operatorname{Br}(V)$ is isomorphic to the torsion group T of $H^{3}(V ; \mathbb{Z})$ (see [22, p.166]). If V is a Fano threefold, $\operatorname{Br}(V)=0$, whence the torsion group T is zero (see p.168, loc.cit.). The torsion group T is isomorphic to the torsion group of $H_{2}(V ; \mathbb{Z})$ by the universal coefficient theorem. In fact, if $H_{2}(V ; \mathbb{Z})$ has the torsion group T^{\prime}, then $H^{3}(V ; \mathbb{Z}) \cong \operatorname{Hom}\left(H_{3}(V ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{2}(V ; \mathbb{Z}), \mathbb{Z}\right)$ by the universal coefficient theorem, where $\operatorname{Hom}\left(H_{3}(V ; \mathbb{Z}), \mathbb{Z}\right)$ is a free abelian group and $\operatorname{Ext}\left(H_{2}(V ; \mathbb{Z}), \mathbb{Z}\right) \cong T^{\prime}$. Hence $T \cong T^{\prime}$. The torsion group T of
$\mathrm{H}^{3}(V ; \mathbb{Z})$ is a birational invariant by [1]. For example, if V is rational, then $H^{3}(V ; \mathbb{Z}) \cong H^{3}\left(\mathbb{P}^{3} ; \mathbb{Z}\right)=0$. So, $T=0$.

We are interested in the affine open set $X=V \backslash H$ when V is a Fano threefold and H is an effective ample divisor. X is also the first stratum if V has a G_{a}-action with H stable. We prove the following result.

Theorem 4.5. Let V be a smooth Fano threefold with $\operatorname{Pic}(V)=$ $\mathbb{Z}[H]$, where H is an ample effective divisor ${ }^{2}$. Assume that H is smooth. Let $X=V \backslash H$. Then the following assertions hold.
(1) $H_{1}(X ; \mathbb{Z})=H_{2}(X ; \mathbb{Z})=0$.
(2) If X is a homology threefold, i.e., $H_{3}(X ; \mathbb{Z})=0$, then $H \cong \mathbb{P}^{2}$ and $V \cong \mathbb{P}^{3}$.
(3) In addition to the assumption in (2), assume further that V has a non-trivial G_{a}-action and H is G_{a}-stable. Then the quotient surface $Y:=X / / G_{a}$ is isomorphic to \mathbb{A}^{2} and the quotient morphism $q: X \rightarrow Y$ is surjective.

Proof. The proof of the assertion (1) consists of several steps.
(i) We have $H_{1}(V ; \mathbb{Z})=0$ because V is simply connected. The Lefschetz hyperplane theorem implies $H_{1}(H ; \mathbb{Z})=0$. In fact, Fujita [10] proved a generalization of the Lefschetz theorem, which we use here.
(ii) Consider the exact sequence

$$
H^{1}\left(V, \mathcal{O}_{V}\right) \rightarrow H^{1}\left(V, \mathcal{O}_{V}^{*}\right) \rightarrow H^{2}(V ; \mathbb{Z}) \rightarrow H^{2}\left(V, \mathcal{O}_{V}\right)
$$

associated to

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{V} \xrightarrow{\exp } \mathcal{O}_{V}^{*} \rightarrow 0
$$

This implies that $H^{2}(V ; \mathbb{Z}) \cong H^{1}\left(V, \mathcal{O}_{V}^{*}\right)=\operatorname{Pic}(V) \cong \mathbb{Z}$ by the hypothesis. By the universal coefficient theorem, it follows that $H_{2}(V ; \mathbb{Z})=\mathbb{Z}$ because $H_{2}(V ; \mathbb{Z})$ has no torsion group.
(iii) Now consider the long exact sequence of singular cohomology groups for a pair (V, H),

$$
\begin{aligned}
& H^{2}(V, H ; \mathbb{Z}) \rightarrow H^{2}(V ; \mathbb{Z}) \rightarrow H^{2}(H ; \mathbb{Z}) \rightarrow H^{3}(V, H ; \mathbb{Z}) \rightarrow \\
& H^{3}(V ; \mathbb{Z}) \rightarrow H^{3}(H ; \mathbb{Z}) \rightarrow H^{4}(V, H ; \mathbb{Z}) \rightarrow H^{4}(V ; \mathbb{Z}) \rightarrow \\
& H^{4}(H ; \mathbb{Z}) \rightarrow H^{5}(V, H ; \mathbb{Z}) \rightarrow H^{5}(V ; \mathbb{Z}),
\end{aligned}
$$

where $H^{i}(V, H ; \mathbb{Z}) \cong H_{6-i}(X ; \mathbb{Z})$ by the Lefschetz duality and hence $H^{i}(V, H ; \mathbb{Z})=0$ if $i \leq 2$ because X is affine. Since $H^{4}(V ; \mathbb{Z}) \cong$ $H_{2}(V ; \mathbb{Z}) \cong \mathbb{Z}$ by (ii), $H^{4}(H ; \mathbb{Z}) \cong H_{0}(H ; \mathbb{Z}) \cong \mathbb{Z}$ and $H^{5}(V ; \mathbb{Z}) \cong$

[^2]$H_{1}(V ; \mathbb{Z})=0$ by (i), a part of the long exact sequence reads as an exact sequence
$$
H_{2}(V ; \mathbb{Z}) \xrightarrow{\alpha} H_{0}(H ; \mathbb{Z}) \rightarrow H_{1}(X ; \mathbb{Z}) \rightarrow 0,
$$
where $\alpha: H_{2}(V ; \mathbb{Z}) \rightarrow H_{0}(H ; \mathbb{Z})$ is non-trivial. In fact, $H_{2}(V ; \mathbb{Z})$ is represented as $\mathbb{Z}[C]$, where C is a curve and $\alpha(C)=H \cdot C$. Since H is an ample divisor, $H \cdot C>0$. So, $H_{1}(X ; \mathbb{Z})$ is a finite cyclic group $\mathbb{Z} / n \mathbb{Z}$. By the universal coefficient theorem, $H^{1}(X ; \mathbb{Z} / n \mathbb{Z}) \cong H_{1}(X ; \mathbb{Z}) \cong \mathbb{Z} / n \mathbb{Z}$. On the other hand, the exact sequence of étale sheaves on X
$$
0 \rightarrow \mu_{n} \rightarrow G_{m} \xrightarrow{t \mapsto t^{n}} G_{m} \rightarrow 1
$$
yields an exact sequence
$$
H^{0}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{t \mapsto t^{n}} H^{0}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow H^{1}(X ; \mathbb{Z} / n \mathbb{Z}) \rightarrow \operatorname{Pic}(X) \xrightarrow{\times n} \operatorname{Pic}(X),
$$
where $\operatorname{Pic}(X)=\operatorname{Pic}(V) /\langle H\rangle=0$ and $H^{0}\left(X, \mathcal{O}_{X}^{*}\right)=k^{*}$. Hence we have $n=1$ and $H_{1}(X ; \mathbb{Z})=0$.
(iv) Since α is an isomorphism, the above long exact sequence gives an exact sequence
$$
H^{3}(V ; \mathbb{Z}) \rightarrow H^{3}(H ; \mathbb{Z}) \rightarrow H_{2}(X ; \mathbb{Z}) \rightarrow 0
$$

Since $H^{3}(H ; \mathbb{Z}) \cong H_{1}(H ; \mathbb{Z})=0$, we have $H_{2}(X ; \mathbb{Z})=0$. This completes the proof of the assertion (1).

We prove the assertion (2). Since $H^{2}(V, H ; \mathbb{Z}) \cong H_{4}(X ; \mathbb{Z})=0$, the long exact sequence in the step (iii) above yields an exact sequence

$$
0 \rightarrow H^{2}(V ; \mathbb{Z}) \rightarrow H^{2}(H ; \mathbb{Z}) \rightarrow H_{3}(X ; \mathbb{Z}) \rightarrow H^{3}(V ; \mathbb{Z}) \rightarrow 0
$$

Suppose that $H_{3}(X ; \mathbb{Z})=0$. Then $H^{2}(H ; \mathbb{Z}) \cong \mathbb{Z}$ and $H^{3}(V ; \mathbb{Z})=0$ because $H^{2}(V ; \mathbb{Z}) \cong \mathbb{Z}$. Let r be the index of V. Then H is a del Pezzo surface if $r \geq 2$ and a K3 surface if $r=1$. Since the second Betti number $b_{2}(H)=1$ now, H cannot be a K3 surface for which $b_{2}(H)=22$. Hence $r \geq 2$ and H is a rational surface. Since $H^{2}(H ; \mathbb{Z}) \cong \mathbb{Z}$ as above, it follows that $\operatorname{Pic}(H) \cong H^{2}(H ; \mathbb{Z}) \cong \mathbb{Z}$. This implies that $H \cong \mathbb{P}^{2}$. Since $H_{1}(X ; \mathbb{Z})=0$ by $(1), V \cong \mathbb{P}^{3}$ by Lemma 2.6. In fact, H is a hyperplane and $X \cong \mathbb{A}^{3}$.
(3) Now the assertion (3) that $Y \cong \mathbb{A}^{2}$ follows from [32], and the surjectivity of $q: X \rightarrow Y$ follows from [3].
Q.E.D.

Perhaps we need some explanation on the significance of the assertion (3) of Theorem 4.5. If an affine variety X has a nontrivial G_{a}-action, the slice theorem shows that X contains an \mathbb{A}^{1}-cylinder. The property that X contains an \mathbb{A}^{1}-cylinder and how big is it is a crucial matter in
determining the structure of an affine variety. So, the algebraic quotient $Y:=X / / G_{a}$ being isomorphic or not to \mathbb{A}^{2} is thought of as a measure to know how close a given variety is to a rational threefold like \mathbb{P}^{3}. Furthermore, the quotient morphism $q: X \rightarrow Y$ being surjective or not when $Y \cong \mathbb{A}^{2}$ is another measure. The assertion (3) above is generalized in Theorem 4.9 below by dropping the assumption that X be a homology threefold.

Theorem 4.5 shows that with the above notation X is not, in general, a homology threefold. A simple counter-example is given by a smooth quadric hypersurface Q in \mathbb{P}^{4}. Before stating the result, a smooth quadric hypersurface is given by a nondegenerate quadratic form in the homogeneous coordinates $\left\{X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right\}$. By a suitable change of coordinates, we may assume that Q is of Fermat type, i.e., it is defined by $X_{0}^{2}+X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}=0$. Again, by a change of coordinates, we may assume that Q is defined by $X_{0}^{2}-X_{1} X_{3}+X_{2} X_{4}=0$.

Theorem 4.6. Let Q be a quadric hypersurface in \mathbb{P}^{4} defined by $F=X_{0}^{2}-X_{1} X_{3}+X_{2} X_{4}=0$. Then the following assertions hold.
(1) $\operatorname{Pic}(Q)$ is generated by a hyperplane section $H_{Q}=H \cap Q$, where $H=\left\{X_{0}=0\right\}$, and hence $\operatorname{Pic}(Q) \cong \mathbb{Z}\left[H_{Q}\right]$, and $K_{Q} \sim-3 H_{Q}$, whence Q is a Fano threefold.
(2) Q has the G_{a}-action induced by a G_{a}-action on \mathbb{P}^{4}

$$
{ }^{t}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(X_{0}, X_{1}, X_{2}, X_{3}+X_{2} t, X_{4}+X_{1} t\right) .
$$

The surface H_{Q} is G_{a}-stable, and the induced action on $X=$ $Q \backslash H_{Q} \cong \operatorname{Spec} k[x, y, z, u] /(x z-y u-1)$ is given by a locally nilpotent derivation δ such that $\delta(x)=\delta(y)=0, \delta(z)=y$ and $\delta(u)=x$.
(3) X is simply connected, $H_{1}(X ; \mathbb{Z})=H_{2}(X ; \mathbb{Z})=0$ and $H_{3}(X ; \mathbb{Z}) \cong \mathbb{Z}$. Hence X is not a homology threefold.
(4) $\quad Y:=X / / G_{a}$ is isomorphic to \mathbb{A}^{2}, but the quotient morphism $q: X \rightarrow Y$ is not surjective.

Proof. (1) This follows from [11, Exp. 12, Cor. 3.7]. Hence $X:=$ $Q \backslash H_{Q}$ is factorial and $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=k^{*}$. This also follows from [16, Example 1.12].
(2) It is straightforward. By loc.cit., the quotient surface $Y:=$ $X / / G_{a} \cong \mathbb{A}^{2}=\operatorname{Spec} k[x, y]$ and the quotient morphism $q: X \rightarrow Y$ is the projection $(x, y, z, u) \mapsto(x, y)$. Furthermore, $q(X)=\mathbb{A}^{2}-\{(0,0)\}$ and every fiber of q over a point of $q(X)$ is reduced and isomorphic to \mathbb{A}^{1}. This proves the assertion (4).
(3) By Nori's result [35, Lemma 1.5], we have an exact sequence

$$
\pi_{1}\left(\mathbb{A}^{1}\right) \rightarrow \pi_{1}(X) \rightarrow \pi_{1}\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right) \rightarrow 1
$$

Hence $\pi_{1}(X)=1$. Namely, X is simply connected. By [42, Theorem 1.2], we have $h^{1,2}(Q)=h^{2,1}(Q)=0$. Since $b_{1}(Q)=0$ and $b_{2}(Q)=1$ by Lefschetz theorem, we have $b_{0}(Q)=b_{6}(Q)=1, b_{1}(Q)=b_{5}(Q)=0$ and $b_{2}(Q)=b_{4}(Q)=1$. Since $h^{3,0}(Q)=h^{0,3}(Q)=0$, we have $b_{3}(Q)=0$. Hence the Euler number $\chi(Q)$ is equal to 4 . On the other hand, H_{Q} is a quadric surface in \mathbb{P}^{3}. Hence $\chi\left(H_{Q}\right)=4$. So, $\chi(X)=0$. If $b_{3}(X)=0$ which is equivalent to $H_{3}(X ; \mathbb{Z})=0$ because $H_{3}(X ; \mathbb{Z})$ has no torsion by Hamm's theorem [12, Lemma 1.2], then X is contractible and $\chi(X)=1$. This contradicts the above calculation of $\chi(X)$. Hence, $b_{3}(X)=1$ and $H_{3}(X ; \mathbb{Z}) \cong \mathbb{Z} .{ }^{3}$
Q.E.D.

Remark 4.7. Let V be a cubic hypersurface in \mathbb{P}^{4}. Then V is a Fano threefold and $\operatorname{Pic}(V)$ is generated by a hyperplane section. However, V has no G_{a}-actions because V is irrational and unirational. See [5] and [17]. Similarly, if V is a quartic hypersurface in \mathbb{P}^{4}, it seems that V has no G_{a}-actions because some of quartic hypersurfaces are not rational, but unirational. See [21].

Concerning the assertion (3) in Theorem 4.6, we have a more general result.

Theorem 4.8. Let V be a Fano threefold such that $\operatorname{Pic}(V)=\mathbb{Z}[H]$ for an ample effective divisor H. Assume that the index r of V is greater than one and H is smooth. Let $X:=V \backslash H$. Then X is simply connected.

Proof. Let S be a general member of $|H|$, which is irreducible and smooth. Since $r \geq 2$ by the assumption, S is a del Pezzo surface with $K_{S} \sim-(r-1) \Gamma$, where $\Gamma=\left.H\right|_{S}$. Since $1 \leq K_{S}^{2} \leq 9$, we have $r-1=3,2$ or 1 , whence $r=4,3$ or 2 . By the Lefschetz theorem for affine threefolds (see [35]), we have an isomorphism

$$
\pi_{1}(S \backslash \Gamma) \cong \pi_{1}(V \backslash H)=\pi_{1}(X)
$$

Hence it suffices to show that $\pi_{1}(S \backslash \Gamma)=1$. If $r=4$ then $S \cong \mathbb{P}^{2}$ and Γ is a line. Hence $S \backslash \Gamma \cong \mathbb{A}^{2}$ and $\pi_{1}(S \backslash \Gamma)=1$. If $r=3$ then S is

[^3]isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\Gamma \sim \ell+M$, where ℓ and M are respective fibers of two projections onto \mathbb{P}^{1}. So, $S \backslash \Gamma$ contains \mathbb{A}^{2} as an open set and $\pi_{1}(S \backslash \Gamma)=1$. Suppose now that $r=2$ and $1 \leq K_{S}^{2} \leq 7$. Then we have $K_{S}^{2}=H^{3}$ and S is obtained from \mathbb{P}^{2} by blowing up s points in general position lying on a cubic curve C on \mathbb{P}^{2}, where $2 \leq s=9-H^{3} \leq 8$. If $s \neq 8$ then $H^{3} \geq 2$ and $\mathrm{Bs}|H|=\emptyset$. Hence we can take C to be a smooth curve. In fact, $\left|H_{S}\right|$ is the restriction of $|H|$ onto S, and $\left|H_{S}\right|$ has no base points. If $s=8$, then $\left|H_{S}\right|$ is the proper transform of a pencil generated by two smooth cubic curves on \mathbb{P}^{2} intersecting transversally in 9 points, out of which we choose 8 points to blow up. So, for any value of $s(2 \leq s \leq 8)$, we can choose S so that the image of Γ on \mathbb{P}^{2} is a smooth cubic curve. The divisor Γ on S is the proper transform of C, and $\mathbb{P}^{2} \backslash C$ is an open set of $S \backslash \Gamma$. Hence we have a surjection $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right) \rightarrow \pi_{1}(S \backslash \Gamma)$. Since $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right) \cong \mathbb{Z} / 3 \mathbb{Z}$, we know that $\pi_{1}(S \backslash \Gamma)$ is abelian.

On the other hand, by the Lefschetz theorem for affine threefolds, we have

$$
H_{1}(S \backslash \Gamma ; \mathbb{Z}) \cong H_{1}(X ; \mathbb{Z})
$$

Since $H_{1}(X ; \mathbb{Z})=0$ by Theorem 4.5, we have $\pi_{1}(S \backslash \Gamma)=1$. Q.E.D.
We have shown in Theorem 4.5 that Y is isomorphic to \mathbb{A}^{2} under the assumption that V has a non-trivial G_{a}-action with G_{a}-stable H and X is a homology threefold. In the following theorem, we show that the same result holds without assuming that X is a homology threefold.

Theorem 4.9. Let V be a smooth Fano threefold with Pic $(V)=$ $\mathbb{Z}[H]$, where H is an ample effective divisor. Assume that the index r of V is greater than one and H is smooth. Let $X=V \backslash H$. Assume further that V has a non-trivial G_{a}-action and H is G_{a}-stable. Then the quotient surface $Y:=X / / G_{a}$ is isomorphic to \mathbb{A}^{2}.

Proof. The proof consists of several steps.
(1) Let $q: X \rightarrow Y$ be the quotient morphism. Since X is factorial, so is Y by [16]. Since V is rationally connected and the quotient morphism $q: X \rightarrow Y$ extends to a proper morphism $\bar{q}: V^{\prime} \rightarrow \bar{Y}$, where V^{\prime} is birational to V and \bar{Y} is a smooth completion of Y, the surface \bar{Y} is then rationally connected and hence rational. So, Y is rational and has no non-constant invertible regular functions. Furthermore, every fiber of q is one-dimensional, and Y has at most quotient singularities because there is locally a smooth hyperplane of X dominating the given point of Y. Since Y is factorial and rational, every singularity is $E_{8^{-}}$ singularity. Set \bar{Y} anew a smooth normal completion of Y. Namely, \bar{Y} is a normal projective surface such that \bar{Y} is smooth at every point of
$D:=\bar{Y}-Y$ and D is a divisor with simple normal crossings. Then q defines a rational mapping $q^{\prime}: V \rightarrow \bar{Y}$. We eliminate the indeterminacies of q^{\prime} by blowing up a G_{a}-fixed point of H and subsequently blowing up the smooth centers which consist of G_{a}-fixed points, and obtain a morphism $\widetilde{q}: \widetilde{V} \rightarrow \bar{Y}$ such that the divisor $\widetilde{D}=\widetilde{V}-X$ is a divisor with simple normal crossings.

Since $\bar{\kappa}(X)=-\infty$ as X contains an \mathbb{A}^{1}-cylinder and since $K_{V}+H \sim$ $-(r-1) H$ with the index r, it follows that $r>1$. Then H is a del Pezzo surface.
(2) Let $\Delta=\widetilde{q}^{-1}(D)$. Then $\Delta \subseteq \widetilde{D}$. Since $\left.\widetilde{q}\right|_{\Delta}: \Delta \rightarrow D$ is a proper morphism, Δ is a finite connected union of irreducible components which consist of the proper transforms of the divisor H and the exceptional divisors. We shall show that $\pi_{1}(\Delta)=1$ by making use of Van Kampen's theorem on the fundamental group of a connected simplicial complex. The proper transform of any exceptional divisor which constitutes Δ is either the blowing-up of \mathbb{P}^{2} or the blowing-up a \mathbb{P}^{1} bundle over a smooth curve. We prove $\pi_{1}(\Delta)=1$ by induction on the number of irreducible components of Δ which are indexed after the order of blowing-ups $p: \widetilde{V} \rightarrow V$ by which they appear. The divisor H is rational since H is a del Pezzo surface. So, $\pi_{1}(H)=1$. The exceptional divisor E_{1} which appear by the blowing-up of the fixed point on H is isomorphic to \mathbb{P}^{2} meeting the proper transform H^{\prime} of H along a smooth rational curve. By Van Kampen's theorem applied to $E_{1} \cup H^{\prime}$, it follows that $\pi_{1}\left(E_{1} \cup H^{\prime}\right)$ is the amalgamated product of $\pi_{1}\left(E_{1}\right)$ and $\pi_{1}\left(H^{\prime}\right)$ over $\pi_{1}\left(E_{1} \cap H^{\prime}\right)$. Since $\pi_{1}\left(H^{\prime}\right)=\pi_{1}\left(E_{1}\right)=1$, we have $\pi_{1}\left(E_{1} \cup H^{\prime}\right)=1$. After performing blowing-ups at least k times, we obtain the exceptional divisors E_{1}, \ldots, E_{k} and the proper transform of H^{\prime}, although some of the exceptional divisors may have the images by \widetilde{q} meeting the open set Y and do not appear in Δ. Here we denote the proper transforms of H^{\prime} and the exceptional divisors obtained by the earlier blowing-ups by the same letters. By induction, we assume that $\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup E_{k-1}\right)=1$. In order to compute $\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots E_{k-1} \cup E_{k}\right)$, we need more observations on what are the centers of the above blowing-ups.

The indeterminacy of $q^{\prime}: V \rightarrow \bar{Y}$ or of the subsequently induced rational mappings is either a base point where the closures of general G_{a}-orbits pass through or an irreducible curve C such that each general point of C is a base point of a one-dimensional subfamily of the closures of G_{a}-orbits. Namely, there exists a morphism $q^{\prime \prime}: V^{\prime \prime} \rightarrow C$, where $V^{\prime \prime}$ appears in the course of blowing-ups $p: \widetilde{V} \rightarrow V$. In the first case, the center of the blowing-up is a smooth point. In the second case, C is contained in an exceptional divisor and it is possibly singular. The
curve C is possibly the intersection curve of a newly born exceptional divisor with the old exceptional divisor, in which case C is smooth. If C is singular, we blow up smooth points in a threefold to eliminate the singularities of C. After making the proper transform of C a smooth curve, we blow up C to obtain the exceptional divisor E which is a \mathbb{P}^{1} bundle over C. Afterwards, the centers to be blown up are the irreducible smooth intersection curves of two irreducible components, say $F_{1} \cap F_{2}$, where one of F_{1}, F_{2}, say F_{2}, meets a chain of \mathbb{P}^{1}-bundles F_{3}, \ldots, F_{s} and where only possible intersections of $F_{2}, F_{3}, \ldots, F_{s}$ with each other and with other components of \widetilde{D} are the intersection curves $F_{2} \cap F_{3}, F_{3} \cap$ $F_{4}, \ldots, F_{s-1} \cap F_{s}$ which are all isomorphic to C.

Now we return to the computation of $\pi_{1}:=\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup E_{k-1} \cup\right.$ E_{k}).
(i) If E_{k} is the exceptional divisor of the blowing-up with center at either a point or an irreducible smooth curve, Van Kampen's theorem shows that $\pi_{1}=1$. In fact, the π_{1} of a \mathbb{P}^{1}-bundle over a smooth curve C is equal to $\pi_{1}(C)$ and the π_{1} of the intersection curve is also equal to $\pi_{1}(C)$. Since $\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup E_{k-1}\right)=1$, we obtain $\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup\right.$ $\left.E_{k-1} \cup E_{k}\right)=1$.
(ii) Suppose that the center is the intersection curve $C=F_{1} \cap F_{2}$ and F_{2} meets a chain of \mathbb{P}^{1}-bundles F_{3}, \ldots, F_{s}. Again, we have $\pi_{1}\left(E_{k} \cup\right.$ $\left.F_{2} \cup \cdots \cup F_{s}\right) \cong \pi_{1}(C)$ by Van Kampen's theorem, where E_{k} is the exceptional divisor arising from the blowing-up of C and F_{2}, \ldots, F_{s} are identified with the proper transforms by this blowing-up. It is then easy to see that $\pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup E_{k-1} \cup E_{k}\right) \cong \pi_{1}\left(H^{\prime} \cup E_{1} \cup \cdots \cup E_{k-1}\right)=1$.

Thus we have shown that $\pi_{1}(\Delta)=1$.
(3) Let $\bar{q}:=\left.\widetilde{q}\right|_{\Delta}: \Delta \rightarrow D$, where D (resp. Δ) is a reduced effective divisor with simple normal crossings in \bar{Y} (resp. \widetilde{V}). Let $Z \rightarrow D$ be an unramified connected (topological) covering of D. Then the fiber product $\Delta \times_{D} Z \rightarrow \Delta$ is a connected unramified covering of Δ because the fibers of \bar{q} are connected, and the unramifiedness of $Z \rightarrow D$ implies that Z and $\Delta \times_{D} Z$ are the unions of smooth irreducible components with simple normal crossings. Hence $\pi_{1}(\Delta) \rightarrow \pi_{1}(D)$ is surjective by the covering space theory. This implies that $\pi_{1}(D)=1$.
(4) We shall show that Y is a homology plane. Note that Y has at most E_{8}-singularities. Let $Y^{\circ}=Y-\operatorname{Sing} Y$ and \tilde{Y} be the minimal desingularization of \bar{Y}. Then $Y^{\circ}=\widetilde{Y} \backslash(D \cup E)$, where E is the union of the exceptional curves of the desingularization. Consider an exact
sequence of integral cohomology groups for a pair $(\widetilde{Y}, D \cup E)$,

$$
\begin{aligned}
& H^{1}(\widetilde{Y} ; \mathbb{Z}) \rightarrow H^{1}(D \cup E ; \mathbb{Z}) \rightarrow H^{2}(\widetilde{Y}, D \cup E ; \mathbb{Z}) \rightarrow \\
& H^{2}(\widetilde{Y} ; \mathbb{Z}) \rightarrow H^{2}(D \cup E ; \mathbb{Z}) \rightarrow H^{3}(\widetilde{Y}, D \cup E ; \mathbb{Z}) \rightarrow \\
& H^{3}(\widetilde{Y} ; \mathbb{Z}) \rightarrow 0,
\end{aligned}
$$

where $H^{1}(\widetilde{Y} ; \mathbb{Z})=0$ and $H^{3}(\widetilde{Y} ; \mathbb{Z}) \cong H_{1}(\widetilde{Y} ; \mathbb{Z})=0$ since \widetilde{Y} is rational, $H^{1}(D \cup E ; \mathbb{Z})=0$ because $\pi_{1}(D)=1$ and E is a rational tree, and $H^{2}(\widetilde{Y} ; \mathbb{Z}) \cong \operatorname{Pic}(\widetilde{Y})$ is a free abelian group of rank $\# D+\# E$. Hence $H^{2}(\widetilde{Y} ; \mathbb{Z})$ is isomorphic to $H^{2}(D \cup E ; \mathbb{Z})$. So, $H_{2}\left(Y^{\circ} ; \mathbb{Z}\right) \cong H^{2}(\widetilde{Y}, D \cup$ $E ; \mathbb{Z})=0$ and $H_{1}\left(Y^{\circ} ; \mathbb{Z}\right) \cong H^{3}(\widetilde{Y}, D \cup E ; \mathbb{Z})=0$. Meanwhile, a small open neighborhood (in the Euclidean topology) of an E_{8}-singularity is homologous to a ball in \mathbb{C}^{2}. This implies that $H_{i}(Y ; \mathbb{Z}) \cong H_{i}\left(Y^{\circ} ; \mathbb{Z}\right)=0$ for $i=1,2$. This shows that Y is a homology plane. Furthermore, Y is topologically contractible. In fact, the quotient morphism $q: X \rightarrow Y$ has irreducible and reduced fibers over all codimension one points of Y if X is factorial, q has no multiple fibers over the codimension one points of Y (see the argument in the step (3) of the proof of Theorem 2.9). Hence, by Nori's theorem [35, Lemma 1.5] and since $\pi_{1}(X)=1$ by Theorem 4.8, it follows that $\pi_{1}(Y)=1$.
(5) We argue by the logarithmic Kodaira dimension of Y°. If $\bar{\kappa}\left(Y^{\circ}\right)=2$, then the singular point of Y is at most one cyclic singularity by [15]. This is impossible if $\operatorname{Sing} Y \neq \emptyset$ because Y has only E_{8}-singularities. Suppose that Y has an \mathbb{A}_{*}^{1}-fibration. Then the singularities are at most cyclic singularities. By the same reason as above, $\operatorname{Sing} Y=\emptyset$. Suppose that Y° has an \mathbb{A}_{*}^{1}-fibration, but the \mathbb{A}_{*}^{1}-fibration does not extend to an \mathbb{A}_{*}^{1}-fibration on Y (hence Y is singular). Then Y has a unique singular point, and the closures (in Y) of general fibers of the \mathbb{A}_{*}^{1}-fibration form a family of rational curves with one place at infinity which pass through the singular point of Y. Then the desingularization \widetilde{Y} of Y is dominated by a smooth surface with an \mathbb{A}^{1}-fibration. Hence $\bar{\kappa}(\widetilde{Y})=-\infty$. Then, by Koras-Russell [27, Theorem 1.1], $\bar{\kappa}\left(Y^{\circ}\right)=-\infty$. We treat this case later. If $\bar{\kappa}\left(Y^{\circ}\right)=0$, then by Palka [36, Theorem 7.2], either Y is smooth or Y has only A_{1} or A_{2} singularity. So, the singular case does not occur, and the smooth case does not occur either by Fujita [9] and [18].

We consider finally the case $\bar{\kappa}\left(Y^{\circ}\right)=-\infty$. If Y° is affine-ruled, then $Y \cong \mathbb{A}^{2}$ since Y is factorial and has no non-constant invertible regular functions. If Y° is not affine-ruled, then $Y \cong \mathbb{A}^{2} / / G$, where G is a binary icosahedral group. Then Y is isomorphic to a hypersurface $x^{2}+y^{3}+z^{5}=0$ in \mathbb{A}^{3}. Then $\pi_{1}\left(Y^{\circ}\right) \cong G \neq(1)$. Meanwhile, the
fiber of $q: X \rightarrow Y$ over the singular point is one-dimensional. Hence $\pi_{1}\left(X^{\circ}\right)=(1)$, where $X^{\circ}=q^{-1}\left(Y^{\circ}\right)$. Then $\pi_{1}\left(Y^{\circ}\right)=1$ by Nori's result, loc.cit. This is a contradiction. Hence we have proven that Y is a smooth contractible surface.

We have a very conceptual proof of Y being smooth by using an Affine Mumford Theorem [14]. Since X is simply connected by Theorem 4.8 and the fibers of the quotient morphism are one-dimensional, Nori's theorem [35, Lemma 1.5] implies that $\pi_{1}(Y-\operatorname{Sing} Y)=1$. In (4) above, we have shown that $\pi_{1}(Y)=1$. Now, Y is smooth by [14, Theorem 3.6].
(6) As in the proof of Theorem 4.8, we take a general member S of $|H|$. Then S is a smooth del Pezzo surface, and $\Gamma=\left.H\right|_{S}$ is a smooth curve on S. Since $K_{S} \sim-(r-1) \Gamma$ with $r \geq 2$, it follows that $\bar{\kappa}(S \backslash \Gamma)$ is 0 or $-\infty$. We may assume that $r=2$ since we have treated the cases $r=4$ and $r=3$ in Theorems 4.5 and 4.6. Then S is horizontal to the quotient morphism. In fact, Γ is then isomorphic to a smooth curve, and $S \backslash \Gamma$ does not contain an \mathbb{A}^{1}-cylinder because $\bar{\kappa}(S \backslash \Gamma)=0$. If S were not horizontal to the quotient morphism, S would contain a family of G_{a}-orbits. This is a contradiction. So, the restriction of $q: X \rightarrow Y$ onto $S \backslash \Gamma$ is a dominant morphism, and therefore $\bar{\kappa}(Y)=0$ or $-\infty$. Meanwhile, there is no homology plane in the case $\bar{\kappa}(Y)=0$ by Fujita's result $[9,18]$. This implies that $\bar{\kappa}(Y)=-\infty$. Since Y is factorial and $\Gamma\left(Y, \mathcal{O}_{Y}^{*}\right)=k^{*}$, it follows that $Y \cong \mathbb{A}^{2}$. Q.E.D.

References

[1] M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., (3) 25 (1972), 75-95.
[2] A. Bialynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology, 12 (1973), 99-103.
[3] P. Bonnet, Surjectivity of quotient maps for algebraic ($\mathbb{C},+$)-actions and polynomial maps with contractible fibers, Transform. Groups, 7 (2002), no. 1, 3-14.
[4] A. Borel, Linear algebraic groups, Second edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991. xii+288 pp.
[5] A. Dubouloz and T. Kishimoto, Log-uniruled affine varieties without cylinderlike open subsets, Bull. Soc. Math. France, 143 (2015), no. 2, 383-401.
[6] A. Dubouloz and A. Liendo, Rationally integrable vector fields and rational additive group actions, Internat. J. Math. 27 (2016), no. 8, 1650060, 19pp.
[7] J. Fogarty, Fixed point schemes, Amer. J. Math., 95 (1973), 35-51.
[8] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, 136, Invariant Theory and Algebraic Transformation Groups, VII. Springer-Verlag, Berlin, 2006. xii+261 pp.
[9] T. Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), no. 3, 503-566.
[10] T. Fujita, A generalization of Lefschetz theorem, Proc. Japan Acad. Ser. A Math. Sci., 63 (1987), no. 6, 233-234.
[11] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Advanced Studies in Pure Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam; Masson \& Cie, Editeur, Paris, 1968. vii+287 pp.
[12] R.V. Gurjar, M. Koras, K. Masuda, M. Miyanishi and P. Russell, $\mathbb{A}_{*^{-}}^{1-}$ fibrations on affine threefolds, In: Affine Algebraic Geometry, World Scientific, 2013, pp. 62-102.
[13] R.V. Gurjar, K. Masuda, M. Miyanishi and P. Russell, Affine lines on affine surfaces and the Makar-Limanov invariant, Cand. J. Math., 60 (2008), 109-139.
[14] R.V. Gurjar, M. Koras, M. Miyanishi and P. Russell, Affine normal surfaces with simply-connected smooth locus. Math. Ann., 353 (2012), no. 1, 127144.
[15] R.V. Gurjar, M. Koras, M. Miyanishi and P. Russell, A homology plane of general type can have at most a cyclic quotient singularity, J. Algebraic Geom., 23 (2014), 1-62.
[16] R.V. Gurjar, K. Masuda and M. Miyanishi, \mathbb{A}^{1}-fibrations on affine threefolds, J. Pure and Applied Algebra, 216 (2012), 296-313.
[17] R.V. Gurjar, K. Masuda and M. Miyanishi, Deformations of \mathbb{A}^{1}-fibrations, In: Automorphisms in Birational and Affine Geometry, Springer proceedings in Mathematics \& Statistics, 79, 2014, pp. 327-361.
[18] R. V. Gurjar and M. Miyanishi, Affine surfaces with $\kappa \leq 1$, In: Algebraic Geometry and Commutative Algebras in honor of Masayoshi Nagata, 1987, Kinokuniya, pp. 99-124.
[19] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp.
[20] G. Horrocks, Fixed point schemes of additive group actions, Topology, 8 (1969), 233-242.
[21] V.A. Iskovskih and Ju.I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.), 86 (128) (1971), 140-166. English Transl. Math. USSR-Sb., 15 (1971), 141-166.
[22] V.A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
[23] Y. Kawamata, On deformations of compactifiable complex manifolds, Proc. Japan Acad., 53 (1977), 106-109.
[24] F. Knop, H. Kraft, D. Luna and Th. Vust, Local properties of algebraic group actions, In: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhauser, Basel, 1989, pp. 63-75.
[25] K. Kodaira, Complex manifolds and deformations of complex structures, Grundlehren der Mathematischen Wissenschaften, 283, Springer-Verlag, New York, 1986. x+465 pp.
[26] J. Kollár, Y. Miyaoka and S. Mori, Rational Connectedness and boundedness of Fano Manifolds, J. Diff. Geom., 36 (1992), 765-769.
[27] M. Koras and P. Russell, Contractible affine surfaces with quotient singularities, Transform. Groups, 12 (2007), no. 2, 293-340.
[28] M. Leuenberger, Complete algebraic vector fields on Danielewski surfaces, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 433-454.
[29] M. Maruyama, On automorphism groups of ruled surfaces, J. Math. Kyoto Univ., 11 (1971), 89-112.
[30] K. Masuda and M. Miyanishi, The additive group actions on \mathbb{Q}-homology planes, Annales de l'Institut Fourier (Grenoble), 53 (2003), 429-464.
[31] K. Masuda and M. Miyanishi, Lifting of locally nilpotent derivations under finite homomorphisms, Tohoku Math. J., 61 (2009), 267-286.
[32] M. Miyanishi, Normal affine subalgebras of a polynomial ring, In: Algebraic and Topological Theories - to the memory of Dr. Takehiko MIYATA, Kinokuniya, 1985, pp. 37-51.
[33] J.A. Morrow, Minimal normal compactifications of \mathbb{C}^{2}, Complex Analysis, 1972 (Proc. Conf. Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of singularities, Rice Univ. Studies, 59 (1973), no. 1, 97-112.
[34] D. Mumford and J. Fogarty, Geometric invariant theory, Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, Berlin, 1982, xii +220 pp.
[35] M. Nori, Zariski's conjecture and related problems, Ann. Sci. Ecole Norm. Sup., (4) 16 (1983), no. 2, 305-344.
[36] K. Palka, Recent progress in the geometry of \mathbb{Q}-acyclic surfaces, In: CRM Proc. and Lecture Notes 54 (2011), Amer. Math. Soc, pp. 271-287.
[37] V. L. Popov, Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 1038-1055.
[38] S. Ramanan, A note on C. P. Ramanujam, In: C. P. Ramanujam-a tribute, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978, pp. 11-13.
[39] K.H. Shin, 3-dimensional Fano varieties with canonical singularities, Tokyo J. Math., 12 (1989), no. 2, 375-385.
[40] V.V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), no. 2, 430-441.
[41] R. Steinberg, Conjugacy classes in algebraic groups, Lect. notes in math., 366, Springer (1974)
[42] L. Tu, Macaulay's theorem and local Torelli for weighted hypersurfaces, Compositio Math., 60 (1986), no. 1, 33-44.

R. V. Gurjar
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road, Mumbai 400001
India
E-mail address: gurjar@math.tifr.res.in
K. Masuda
School of Science and Technology
Kwansei Gakuin University
2-1 Gakuen, Sanda 669-1337
Japan
E-mail address: kayo@kwansei.ac.jp
M. Miyanishi
Research Center for Mathematical Sciences
Kwansei Gakuin University
2-1 Gakuen, Sanda 669-1337
Japan
E-mail address: miyanisi@kwansei.ac.jp

[^0]: Received August 25, 2014.
 Revised November 10, 2015.
 2010 Mathematics Subject Classification. Primary 14R20; Secondary 14J45.
 Key words and phrases. regular vector field, unipotent group, stratified G_{a} action, Fano variety.

 The second and third authors are supported by Grant-in-Aid for Scientific Research (C), No. 22540059 and (B), No. 24340006, JSPS.

[^1]: ${ }^{1}$ See $[23]$ for the definition, where it is denoted by $\mathcal{T}_{X}(\log D)$.

[^2]: ${ }^{2}$ It is an easy consequence of $\operatorname{Pic}(V)=\mathbb{Z}[H]$ that H is irreducible and reduced.

[^3]: ${ }^{3}$ One of the referees suggested us the following simple argument for the step (3). By the argument in the step (2) above, $q: X \rightarrow \mathbb{A}^{2} \backslash\{(0,0)\}$ is a locally trivial \mathbb{A}^{1}-bundle (actually a principal G_{a}-bundle). Hence q gives a homotopy equivalence of topological manifolds, and X has the same homology type as $\mathbb{A}^{2} \backslash\{(0,0)\} \approx \mathbb{R}^{4} \backslash\{(0,0,0,0)\}$, which is itself homotopy equivalent to the real 3 -space S^{3}.

