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Abstract.

We discuss the (twisted) weak positivity theorem. We also treat
some applications.
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§1. Introduction

In this paper, we discuss the (twisted) weak positivity theorem.
We give a detailed proof of the following theorem, which is essentially
equivalent to [Ca, Theorem 4.13] (see also [L]). The proof is based on our
semipositivity theorem (see Theorem 1.5, [F1], [FF], and [FFS]). Note
that Theorem 1.1 has already played important roles in [HM], [FG], and
so on, when X is projective (see also [KP]).
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Theorem 1.1 (Twisted weak positivity). Let (X,Δ) be a log canon-
ical pair such that X is in Fujiki’s class C and let f : X → Y be a
surjective morphism onto a smooth projective variety Y . Assume that
k(KX +Δ) is Cartier. Then, for every positive integer m,

f∗OX(mk(KX/Y +Δ))

is weakly positive.

We have already discussed some generalizations of Theorem 1.1 in
[F9], where Y is a curve and X is a reducible variety. They play crucial
roles in order to prove the projectivity of various moduli spaces. For the
details, see [F9] and [KP]. For the basic properties of weakly positive
sheaves and Viehweg’s fundamental results, we recommend the reader
to see [F15].

In this paper, we first prove the following Hodge theoretic injectivity
theorem (cf. [EV], [A], [F10], etc.).

Theorem 1.2 (Fundamental injectivity theorem). Let X be a com-
plex manifold in Fujiki’s class C and let Δ be a boundary R-divisor on
X such that SuppΔ is a simple normal crossing divisor on X. Let L be
a line bundle on X and let D be an effective Weil divisor on X whose
support is contained in SuppΔ. Assume that L ∼R KX +Δ. Then the
natural homomorphism

Hq(X,L) → Hq(X,L ⊗OX(D))

induced by the inclusion OX → OX(D) is injective for every q.

It is easy to see that Theorem 1.2 implies:

Theorem 1.3 (Injectivity theorem). Let X be a complex manifold
in Fujiki’s class C and let Δ be a boundary R-divisor such that SuppΔ
is simple normal crossing. Let L be a line bundle on X and let D be an
effective Cartier divisor whose support contains no log canonical centers
of (X,Δ). Assume the following conditions.

(i) L ∼R KX +Δ+H,
(ii) H is a semi-ample R-divisor, and
(iii) tH ∼R D + D′ for some positive real number t, where D′ is

an effective R-divisor whose support contains no log canonical
centers of (X,Δ).

Then the homomorphisms

Hq(X,L) → Hq(X,L ⊗OX(D))

induced by the natural inclusion OX → OX(D) are injective for all q.
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As an application of Theorem 1.3, we obtain:

Theorem 1.4 (Torsion-freeness and vanishing theorem). Let Y be
a complex manifold in Fujiki’s class C and let Δ be a boundary R-divisor
such that SuppΔ is simple normal crossing. Let f : Y → X be a surjec-
tive morphism onto a projective variety X and let L be a line bundle on
Y such that L − (KY +Δ) is f -semi-ample.

(i) Let q be an arbitrary nonnegative integer. Then every asso-
ciated prime of Rqf∗L is the generic point of the f -image of
some log canonical stratum of (Y,Δ).

(ii) Assume that L− (KY +Δ) ∼R f∗H for some ample R-divisor
H on X. Then Hp(X,Rqf∗L) = 0 for every p > 0 and q ≥ 0.

When X and Y are projective, Theorem 1.3 and Theorem 1.4 are
well-known and play crucial roles in [F6].

By using Theorem 1.4, we can establish:

Theorem 1.5 (Semipositivity theorem). Let X be a compact Kähler
manifold and let Y be a smooth projective variety, and let f : X → Y
be a surjective morphism. Let D be a simple normal crossing divisor on
X such that every stratum of D is dominant onto Y . Let Σ be a simple
normal crossing divisor on Y . We put Y0 = Y \ Σ. If f is smooth and
D is relatively normal crossing over Y0, then Rif∗ωX/Y (D) is the upper
canonical extension of the bottom Hodge filtration. In particular, it is
locally free.

We further assume that all the local monodromies on the local sys-
tem Rd+if0∗CX0−D0 around Σ are unipotent, then Rif∗ωX/Y (D) is nef,

where d = dimX − dimY , X0 = f−1(Y0), and D0 = D|X0 .

We note that a nef locally free sheaf was originally called a (numer-
ically) semipositive locally free sheaf in the literature. Theorem 1.5 is
the main ingredient of Theorem 1.1. In this paper, we do not use [Kw1,
Theorem 32] for the proof of Theorem 1.1 (see Remark 6.4). Note that
Theorem 7.8 and Corollary 7.11, which directly follow from Theorem
1.5, are new.

Let us discuss some applications of Theorem 1.1. The following
conjecture is a natural formulation of Iitaka’s conjecture for the minimal
model program.

Conjecture 1.6 (Log Iitaka conjecture). Let (X,Δ) be a projective
log canonical pair and let f : X → Y be a surjective morphism onto a
normal projective variety Y with connected fibers. Then

κ(X,KX +Δ) ≥ κ(Xy,KXy +Δ|Xy ) + κ(Y )



76 O. Fujino

where Xy is a sufficiently general fiber of f : X → Y . Note that κ(Y )

denotes the Kodaira dimension of Y , that is, κ(Y ) = κ(Ỹ ,KỸ ), where

Ỹ → Y is a resolution of singularities.

When dimX = n and dimY = m in Conjecture 1.6, we sometimes
call it Conjecture C log

n,m. If X and Y are smooth and Δ = 0, then
Conjecture 1.6 is nothing but Iitaka’s original conjecture (see [I1]). We
can easily check that Conjecture 1.6 holds true when Y is of general
type and Δ is a Q-divisor. Note that Theorem 1.7 below is contained in
[Ca] (see also [N2, Chapter V. 4.1. Theorem (2)]). Moreover, Campana
raised the orbifold version of the Iitaka conjecture. For the details, see
[Ca, Section 4] (see also [L]).

Theorem 1.7 (Addition formula). Let (X,Δ) be a projective log
canonical pair such that Δ is a Q-divisor and let f : X → Y be a
surjective morphism onto a normal projective variety Y with connected
fibers. Assume that κ(Y ) = dimY . Then

κ(X,KX +Δ) = κ(Xy,KXy +Δ|Xy ) + κ(Y )

= κ(Xy,KXy +Δ|Xy ) + dimY

where Xy is a sufficiently general fiber of f : X → Y .

Remark 1.8. By Nakayama (see [N2, Chapter V. 4.4. Theorem
(1)]), we have

κσ(X,KX +Δ) ≥ κσ(Xy,KXy +Δ|Xy ) + κσ(Ỹ ,KỸ ),

where κσ denotes Nakayama’s numerical dimension. In general, it is
conjectured that κσ(X,KX + Δ) = κ(X,KX + Δ) when Δ is a Q-
divisor, which is sometimes called the generalized abundance conjecture.
If κσ(X,KX +Δ) = κ(X,KX +Δ), then we have

κ(X,KX +Δ) ≥ κσ(Xy,KXy +Δ|Xy ) + κσ(Ỹ ,KỸ )

≥ κ(Xy,KXy +Δ|Xy ) + κ(Ỹ ,KỸ ).

Therefore, Conjecture 1.6 follows from the generalized abundance con-
jecture when Δ is a Q-divisor.

Theorem 1.9 is due to Maehara (see [Ma, Corollary 2]). In this
paper, we recover it as an application of Theorem 1.1.

Theorem 1.9 (Addition formula for logarithmic Kodaira dimen-
sions). Let f : X → Y be a surjective morphism between smooth pro-
jective varieties with connected fibers. Let DX (resp. DY ) be a simple
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normal crossing divisor on X (resp. Y ). Assume that Suppf∗DY ⊂
SuppDX . We further assume that κ(Y,KY + DY ) = dimY . Then we
have

κ(X,KX +DX) = κ(F,KF +DX |F ) + κ(Y,KY +DY )

= κ(F,KF +DX |F ) + dimY,

where F is a sufficiently general fiber of f : X → Y .
We put X0 = X \ DX , Y 0 = Y \ DY , and F 0 = F |X0 . Then the

above equality is nothing but

κ(X0) = κ(F 0) + κ(Y 0)

= κ(F 0) + dimY 0.

Note that κ denotes Iitaka’s logarithmic Kodaira dimension (see [I2]).

We will quickly prove Theorem 1.7 and Theorem 1.9 in Section 9
and Section 10 respectively by using Theorem 1.1 and [AK]. In [F13], we
prove the subadditivity of the logarithmic Kodaira dimension for affine
varieties.

We summarize the contents of this paper. Section 2 collects some
basic results and definitions. In Section 3, we prove the fundamental
injectivity theorem: Theorem 1.2. The proof of Theorem 1.2 uses the
theory of mixed Hodge structures. Section 4 is devoted to the theory
of mixed Hodge structures for cohomology with compact support. In
Section 5, we prove Theorem 1.3 and Theorem 1.4. These are direct
consequences of Theorem 1.2. In Section 6, we explain the semipositivity
theorem: Theorem 1.5. In Section 7, we discuss weakly positive sheaves.
Section 8 is the main part of this paper. It is devoted to the proof of
the twisted weak positivity theorem: Theorem 1.1. We prove Theorem
1.7 (resp. Theorem 1.9) in Section 9 (resp. Section 10) as an application
of Theorem 1.1.

In this paper, we discuss neither Nakayama’s sophisticated treat-
ment of weak positivity in [N2, Chapter V. §3] nor Schnell’s results on
weak positivity coming from Saito’s theory of mixed Hodge modules (see
[Schn]). We naively discuss some generalizations of Viehweg’s weak pos-
itivity following [V2], [Ca], etc. The main motivation of this paper is
to understand and clarify Viehweg’s clever covering arguments used for
the proof of his famous weak positivity theorem (see also [F15]).

Acknowledgments. The author was partially supported by Grant-
in-Aid for Young Scientists (A) 24684002 from JSPS. He would like to
thank Professors Akira Fujiki and Kazuhisa Maehara for answering his
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questions. He also would like to thank Professor Noboru Nakayama
for useful comments and discussions. He thanks the referees for useful
comments. Finally, he thanks Yoshinori Gongyo for pointing out a typo.

We will use the standard notation of the minimal model program
as in [F6]. In this paper, we always assume that complex varieties are
Hausdorff and countable at infinity. For the basic theory of complex
varieties, see, for example, [BS], [Fi], and [N2]. The style of this paper
is the same as that of [F6] (see [F3], [F4], [FF], [F12], [F16], etc.). Our
results depend on the theory of variations of mixed Hodge structure (see
[F1], [FF], and [FFS]).

§2. Preliminaries

Let us start with some remarks on canonical divisors.

2.1 (Canonical divisors). We consider complex variety X, which is
not necessarily algebraic.

Remark 2.2. (i) Let ω•
X be the dualizing complex of a complex

variety X (see, for example, [RR], [RRV], and [BS]). We put ωX =
H−d(ω•

X), where d = dimX, and call it the canonical sheaf of X. When
X is a compact complex manifold, it is well-known that ωX � Ωd

X . For
the details of ω•

X , see, for example, [BS, Chapter VII §2].
(iii) Some complex variety X does not admit any nonzero meromor-

phic section of ωX . However, if there is no risk of confusion, we use the
symbol KX as a formal divisor class with an isomorphism OX(KX) �
ωX and call it the canonical divisor of X. See [N2, Chapter II. §4].

Remark 2.3. Let D be a Cartier divisor and let L be a line bundle
on a complex variety X. If there is no risk of confusion, we sometimes
write

OX(KX +D + L)
in order to express

ωX ⊗OX(D)⊗ L.
For simplicity, we sometimes use LN to denote L⊗N if there is no risk
of confusion.

In this paper, all complex varieties are algebraic or compact. There-
fore, there are no subtle problems in the following definitions.

2.4 (Singularities of pairs). Let us recall the definition of singulari-
ties of pairs.

Let X be a normal variety and let Δ be an effective R-divisor on X
such that KX+Δ is R-Cartier. Let f : Y → X be a resolution such that
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Exc(f) ∪ f−1
∗ Δ has a simple normal crossing support, where Exc(f) is

the exceptional locus of f and f−1
∗ Δ is the strict transform of Δ on Y .

We write
KY = f∗(KX +Δ) +

∑
i

aiEi

and a(Ei,X,Δ) = ai. We say that (X,Δ) is lc if and only if ai ≥ −1
for every i. Note that the discrepancy a(E,X,Δ) ∈ R can be defined
for every prime divisor E over X. It is well-known that (X,Δ) is lc
if and only if a(E,X,Δ) ≥ −1 for every prime divisor E over X. Let
(X,Δ) be an lc pair. If there is a resolution f : Y → X such that Exc(f)
is a divisor, Exc(f) ∪ f−1

∗ Δ has a simple normal crossing support, and
a(E,X,Δ) > −1 for every f -exceptional divisor E, then (X,Δ) is called
dlt. Here, lc (resp. dlt) is an abbreviation of log canonical (resp. divisorial
log terminal).

For the details and various examples of singularities of pairs, see,
for example, [F2] (see also [F12, Section 2.3]).

Remark 2.5 (Szabó’s resolution lemma). We note that Szabó’s
resolution lemma (see, for example, [F2, 3.5 Resolution lemma]) now
holds for compact complex varieties. For the details, see, for example,
[Ko2, Theorem 10.45, Proposition 10.49, and the proof of (10.45)]. We
will use Szabó’s resolution lemma repeatedly in this paper.

Let us recall the definition of log canonical centers.

Definition 2.6 (Log canonical center). Let (X,Δ) be a log canon-
ical pair. If there is a resolution f : Y → X and a prime divisor E on Y
such that a(E,X,Δ) = −1, then f(E) is called a log canonical center of
(X,Δ).

Definition 2.7 is useful for torsion-free theorem.

Definition 2.7 (Log canonical stratum). Let (X,Δ) be a log canon-
ical pair. A log canonical stratum (an lc stratum, for short) of (X,Δ)
is X itself or a log canonical center of (X,Δ). Note that X is a log
canonical stratum of (X,Δ) but is not a log canonical center of (X,Δ).

2.8 (Divisors). Let us recall some basic operations for Q-divisors
and R-divisors.

For an R-divisor D =
∑r

i=1 diDi such that Di is a prime divisor
for every i and Di 
= Dj for i 
= j, we define the round-down �D� =∑r

i=1�di�Di (resp. the round-up D� =
∑r

i=1di�Di), where for every
real number x, �x� (resp. x�) is the integer defined by x− 1 < �x� ≤ x
(resp. x ≤ x� < x+1). The fractional part {D} of D denotes D−�D�.
We also define D=1 =

∑
di=1 Di. We call D a boundary R-divisor if

0 ≤ di ≤ 1 for every i.
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Remark 2.9. Let X be a compact complex manifold and let D1,
D2, · · · , Dk be Cartier divisors on X. We consider the linear map

ϕ : Rk −→ Pic(X)⊗ R

defined by ϕ(r1, r2, · · · , rk) = r1D1+r2D2+ · · ·+rkDk, which is defined

over Q. Let L be a line bundle on X. Then L ∼R

∑k
i=1 riDi means L =

ϕ(r1, r2, · · · , rk) in Pic(X)⊗R. Note that ϕ−1(L) is an affine subspace
of Rk defined over Q. Therefore, we can find (r′1, r

′
2, · · · , r′k) ∈ Qk such

that L ∼Q

∑k
i=1 r

′
iDi, that is, L = ϕ(r′1, r

′
2, · · · , r′k) in Pic(X) ⊗ Q if

ϕ−1(L) is not empty.

2.10 (Fujiki’s class C). In this paper, we use the notion of complex
varieties in Fujiki’s class C.

Definition 2.11 (Fujiki’s class C). Let X be a compact reduced
complex analytic space. Then X is in Fujiki’s class C if and only if
there is a surjective morphism f : Y → X with Y a compact Kähler
manifold. It is well-known that X is in Fujiki’s class C if and only if
there is a bimeromorphic morphism g : V → X from a compact Kähler
manifold V (see, for example, [Va, Théorème 3]).

It is well-known that some basic results on the minimal model pro-
gram can be generalized for varieties in Fujiki’s class C. See [N1], [F5,
Section 4], etc.

Remark 2.12. For the details of complex varieties in Fujiki’s class
C, (locally) Kähler morphisms, and so on, see [Fk1], [Fk2], and [Va].
Note that every (locally) projective morphism is (locally) Kähler and
that the composition of two locally Kähler morphisms is again locally
Kähler (see [Fk2, (1.2), (2.1), (2.2), and so on]).

2.13 (Simple normal crossing varieties). In Section 4, we will use the
Mayer–Vietoris simplicial resolution of a simple normal crossing variety
X in order to discuss various mixed Hodge structures.

Definition 2.14 (Mayer–Vietoris simplicial resolution). Let X be a
simple normal crossing variety with the irreducible decomposition X =⋃

i∈I Xi. Let In be the set of strictly increasing sequences (i0, · · · , in) in
I and Xn =

∐
In

Xi0 ∩ · · · ∩Xin the disjoint union of the intersections
of Xi. Let εn : Xn → X be the disjoint union of the natural inclu-
sions. Then {Xn, εn}n has a natural semi-simplicial structure. The face
operator is induced by λj,n, where

λj,n : Xi0 ∩ · · · ∩Xin → Xi0 ∩ · · · ∩Xij−1 ∩Xij+1 ∩ · · · ∩Xin
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is the natural closed embedding for j ≤ n (cf. [E2, 3.5.5]). We denote it
by ε : X• → X and call it the Mayer–Vietoris simplicial resolution of
X. The complex

0 → ε0∗OX0 → ε1∗OX1 → · · · → εk∗OXk → · · · ,
where the differential dk : εk∗OXk → εk+1∗OXk+1 is

∑k+1
j=0 (−1)jλ∗

j,k+1

for every k ≥ 0, is denoted by OX• . We see that OX• is quasi-isomorphic
to OX . By tensoring L, any line bundle on X, to OX• , we obtain a
complex

0 → ε0∗L0 → ε1∗L1 → · · · → εk∗Lk → · · · ,
where Ln = ε∗nL. Here, Ln does not mean L⊗n (see Remark 2.3). It is
denoted by L•. Of course, L• is quasi-isomorphic to L. We note that
Hq(X,L•) is obviously isomorphic to Hq(X,L) for every q ≥ 0 because
L• is quasi-isomorphic to L.

We note that a stratum of X means an irreducible component of
Xi0 ∩ · · · ∩ Xik for some {i0, · · · , ik} ⊂ I. If X is a simple normal
crossing divisor on a smooth variety M , then a stratum of X is nothing
but a log canonical center of (M,X).

2.15 (Flat base change theorem). In the proof of Theorem 1.9, we
will use the flat base change theorem for relative dualizing sheaves (see
[V2, §3] and [Mo, Section 4]). We need the following statement.

Theorem 2.16. Let f : V → W be a flat projective surjective mor-
phism from a Cohen–Macaulay quasi-projective variety V to a smooth
quasi-projective variety W . Let g : W ′ → W be a finite flat morphism
from a smooth quasi-projective variety W ′. We consider the following
diagram:

V ′ h ��

f ′

��

V

f

��
W ′

g
�� W

where V ′ = W ′ ×W V . Then we have

h∗ωV/W = ωV ′/W ′ .

Note that

ωV/W = ωV ⊗ f∗ω⊗−1
W and ωV ′/W ′ = ωV ′ ⊗ f ′∗ω⊗−1

W ′ .

Theorem 2.16 is a very special case of the flat base change theorem
(see [Vd, Theorem 2]). See also [H1], [Co], etc. The author does not
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know if the flat base change theorem ([Vd, Theorem 2]) is true or not in
the analytic category (cf. [RR] and [RRV]). Therefore, we do not use the
flat base change theorem in the proof of Theorem 1.1 (see [V2, Lemma
3.2] and [Mo, (4.10) Base change theorem]). Note that X in Theorem
1.1 is not necessarily algebraic.

2.17 (Relative vanishing theorems). The following theorem is a rela-
tive version of the Kawamata–Viehweg vanishing theorem for generically
finite morphisms.

Theorem 2.18 (cf. [N1, Theorem 3.6]). Let f : X → Y be a proper
generically finite morphism from a compact complex manifold X onto a
complex variety Y and let Δ be a Q-divisor on X such that SuppΔ is
a simple normal crossing divisor and �Δ� = 0. Let L be a line bundle
on X. Assume that L − (KX +Δ) is f -nef. Then Rif∗L = 0 for every
i > 0.

Theorem 2.18 is a special case of [F7, Corollary 1.3]. For the de-
tails, see [N1], [F7], etc. Lemma 2.19, which is an easy consequence of
Theorem 2.18, is very useful and indispensable.

Lemma 2.19 (Reid–Fukuda type (see [Fuk, Lemma])). Let X be a
compact complex manifold and let Δ be a boundary Q-divisor on X such
that SuppΔ is a simple normal crossing divisor on X. Let f : X → Y be
a bimeromorphic morphism onto a compact complex variety Y . Assume
that f is an isomorphism at the general points of any log canonical center
of (X,Δ) and that L is a line bundle on X such that L − (KX +Δ) is
f -nef. Then Rif∗L = 0 for every i > 0.

Proof. By using induction on the number of irreducible compo-
nents of �Δ� and on the dimension of X, we can quickly prove Lemma
2.19 by Theorem 2.18. For the details, see, for example, the proof of
[F6, Lemma 6.2]. Q.E.D.

We close this section with a remark on the relative Kawamata–
Viehweg vanishing theorem. Anyway, the proof of Theorem 2.18 when
Y is not algebraic is much harder than the case when Y is algebraic.

Remark 2.20 (Projective versus Kähler). We are mainly interested
in projective varieties. This is because the minimal model program works
well only for projective varieties. However, in this paper, we treat Kähler
manifolds and complex varieties in Fujiki’s class C in order to cover Cam-
pana’s result (see [Ca, Theorem 4.13], which is essentially equivalent to
Theorem 1.1). If the reader is only interested in projective varieties, then
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we recommend the reader to read this paper assuming that all the vari-
eties are projective. For the minimal model program for compact Kähler
manifolds and some related topics, see [CHP], [F11], [HP1], [HP2], etc.

Let f : X → Y be a projective bimeromorphic morphism from a
compact complex manifoldX to a compact Kähler manifold Y . LetD be
an f -nef Cartier divisor onX such that the support of the fractional part
{D} of D is a simple normal crossing divisor on X. Then Rif∗OX(KX+
D�) = 0 for every i > 0 by Theorem 2.18.

If Y is projective, then the above vanishing easily follows from the
usual Kawamata–Viehweg vanishing theorem for projective varieties (see
[KM, Proposition 2.69] and the proof of Proposition 7.15 below). This
means that the relative vanishing theorem follows from the vanishing
theorem for projective varieties. On the other hand, if Y is Kähler
but not projective, then the above vanishing theorem is much harder to
prove.

§3. Fundamental injectivity theorem

In this section, we prove Theorem 1.2. Theorem 1.2 is a direct con-
sequence of the E1-degeneration of Hodge to de Rham spectral sequence
associated to the mixed Hodge structure for cohomology with compact
support. We discuss the E1-degeneration in Section 4.

Proof of Theorem 1.2. Without loss of generality, we may assume
that X is connected. We put S = �Δ� and B = {Δ}. By perturbing
B, we may assume that B is a Q-divisor (see Remark 2.9). We put
M = OX(L−KX −S). Let N be the smallest positive integer such that
LN ∼ N(KX + S + B). In particular, NB is an integral Weil divisor.
We take the N -fold cyclic cover

π′ : Y ′ = Specan
N−1⊕
i=0

M−i → X

associated to the section NB ∈ |MN |. More precisely, let s ∈ H0(X,
MN ) be a section whose zero divisor is NB. Then the dual of s : OX →
MN defines an OX -algebra structure on

⊕N−1
i=0 M−i. Let Y → Y ′ be

the normalization and let π : Y → X be the composition morphism. It
is well-known that

Y = Specan
N−1⊕
i=0

M−i(�iB�).
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For the details, see [EV, 3.5. Cyclic covers]. Note that Y has only
quotient singularities. We put T = π∗S. We note that T is Cartier.
Hence the locally free sheaf OY (−T ) is the defining ideal sheaf of T on
Y . The E1-degeneration of

Ep,q
1 = Hq(Y, Ω̃p

Y (log T )(−T )) ⇒ Hp+q(Y, j!CY−T ),(♣)

where j : Y − T → Y is the natural open immersion, implies that the
homomorphism

Hq(Y, j!CY−T ) → Hq(Y,OY (−T ))

induced by the natural inclusion

j!CY−T ⊂ OY (−T )

is surjective for every q. For the definition of Ω̃p
Y (log T )(−T ), see Defini-

tion 4.5. We will discuss the E1-degeneration of (♣) in Section 4 below.
By taking a suitable direct summand

C ⊂ M−1(−S)

of
π∗(j!CY−T ) ⊂ π∗OY (−T ),

we obtain a surjection

Hq(X, C) → Hq(X,M−1(−S))

induced by the natural inclusion C ⊂ M−1(−S) for every q. We can
check the following simple property by examining the monodromy action
of the Galois group Z/NZ of π : Y → X on C around SuppB (see also
the proof of [Ko1, 2.12.1 Proposition]).

Lemma 3.1 (cf. [KM, Corollary 2.54]). Let U ⊂ X be a connected
open subset such that U ∩ SuppΔ 
= ∅. Then H0(U, C|U ) = 0.

Proof. If U ∩ SuppB 
= ∅, then H0(U, C|U ) = 0 since the mon-
odromy action on C|U\SuppB around SuppB is nontrivial. If U∩SuppS 
=
∅, then H0(U, C|U ) = 0 since C is a direct summand of π∗(j!CY−T ) and
T = π∗S. Q.E.D.

Lemma 3.1 is useful by the following fact. The proof of Lemma 3.2
is obvious.

Lemma 3.2 (cf. [KM, Lemma 2.55]). Let F be a sheaf of Abelian
groups on a topological space X and let F1 and F2 be subsheaves of F .
Let Z ⊂ X be a closed subset. Assume that
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(1) F2|X−Z = F |X−Z , and
(2) if U ⊂ X is a connected open subset with U ∩ Z 
= ∅, then

H0(U,F1|U) = 0.

Then F1 is a subsheaf of F2.

Therefore, we obtain:

Corollary 3.3 (cf. [KM, Corollary 2.56]). Let M ⊂ M−1(−S) be a
subsheaf such that M |X−SuppΔ = M−1(−S)|X−SuppΔ. Then the injec-
tion

C → M−1(−S)

factors as
C → M → M−1(−S).

Therefore,
Hq(X,M) → Hq(X,M−1(−S))

is surjective for every q.

Proof. The first part is clear from Lemma 3.1 and Lemma 3.2. This
implies that we have maps

Hq(X, C) → Hq(X,M) → Hq(X,M−1(−S)).

As we saw above, the composition is surjective. Hence so is the map on
the right. Q.E.D.

Therefore, Hq(X,M−1(−S−D)) → Hq(X,M−1(−S)) is surjective
for every q. By Serre duality, we obtain that

Hq(X,OX(KX)⊗M(S)) → Hq(X,OX(KX)⊗M(S +D))

is injective for every q. This means that

Hq(X,L) → Hq(X,L ⊗OX(D))

is injective for every q. Q.E.D.

§4. MHS for cohomology with compact support

In this section, we prove the E1-degeneration of (♣) in the proof of
Theorem 1.2 for the reader’s convenience. It is more or less well-known
to the experts.

From 4.1 to 4.3, we recall some well-known results on mixed Hodge
structures. We use the notations in [D] freely. The basic references on
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this topic are [D, Section 8], [E1, Part II], [E2, Chapitres 2 and 3], and
the book [PS].

First, we start with the pure Hodge structures on complex manifolds
in Fujiki’s class C.

4.1. Let X be a complex manifold in Fujiki’s class C. Then the
triple (ZX , (Ω•

X , F ), α), where Ω•
X is the holomorphic de Rham complex

with the filtration bête F (see [D, (1.4.7)]) and α : CX → Ω•
X is the

inclusion, is a cohomological Hodge complex (CHC, for short) of weight
zero.

If we define weight filtrations as follows:

WmQX =

{
0 if m < 0

QX if m ≥ 0

and

WmΩ•
X =

{
0 if m < 0

Ω•
X if m ≥ 0,

then we can see that

(ZX , (QX ,W ), (Ω•
X , F,W ))

is a cohomological mixed Hodge complex (CMHC, for short). We need
these weight filtrations in the following arguments.

The next one is also a fundamental example. For the details, see
[E1, I.1] or [E2, 3.5].

4.2. Let D be a simple normal crossing variety in Fujiki’s class
C. Let ε : D• → D be the Mayer–Vietoris simplicial resolution (see
Definition 2.14). We use similar notations to those in Definition 2.14.
The following complex of sheaves, denoted by QD• ,

ε0∗QD0 → ε1∗QD1 → · · · → εk∗QDk → · · · ,
is a resolution of QD. More explicitly, the differential dk : εk∗QDk →
εk+1∗QDk+1 is

∑k+1
j=0 (−1)jλ∗

j,k+1 for every k ≥ 0. The weight filtration
W on QD• is defined by

W−q(QD•) = (0 → · · · → 0 → εq∗QDq → εq+1∗QDq+1 → · · · ).
We obtain the resolution Ω•

D• of CD as follows:

ε0∗Ω
•
D0 → ε1∗Ω

•
D1 → · · · → εk∗Ω

•
Dk → · · · .
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Of course, dk : εk∗Ω•
Dk → εk+1∗Ω•

Dk+1 is
∑k+1

j=0 (−1)jλ∗
j,k+1. Let s(Ω

•
D•)

be the single complex associated to the double complex Ω•
D• . The Hodge

filtration F on s(Ω•
D•) is defined by

F p = s(0 → · · · → 0 → ε∗Ω
p
D• → ε∗Ω

p+1
D• → · · · ).

We note that

ε∗Ω
p
D• = (ε0∗Ω

p
D0 → ε1∗Ω

p
D1 → · · · → εk∗Ω

p
Dk → · · · )

for every p. The weight filtration W on s(Ω•
D•) is defined by

W−q(s(Ω
•
D•)) = s(0 → · · · → 0 → εq∗Ω•

Dq → εq+1∗Ω•
Dq+1 → · · · ).

We note that
GrW−qQD• � εq∗QDq [−q]

and
GrW−q(s(Ω

•
D•)) � εq∗Ω•

Dq [−q].

Then
(ZD, (QD• ,W ), (s(Ω•

D•),W, F ))

is a CMHC. Here, we omitted the quasi-isomorphisms α : ZD⊗Q → QD•

and β : (QD• ,W )⊗C → (s(Ω•
D•),W ) since there is no risk of confusion.

This CMHC induces a natural mixed Hodge structure on H•(D,Z). We
note that the spectral sequence with respect to W on QD• is

WEp,q
1 = Hp+q(D,GrW−pQD•) = Hp+q(D, εp∗QDp [−p])

= Hq(Dp,Q)

⇒ Hp+q(D,Q)

such that the differential dp,q1 : WEp,q
1 → WEp+1,q

1 is given by

dp,q1 =

p+1∑
j=0

(−1)jλ∗
j,p+1 : Hq(Dp,Q) → Hq(Dp+1,Q)

and it degenerates at E2. The spectral sequence with respect to F is

FE
p,q
1 = Hp+q(D,GrpF (s(Ω

•
D•))) ⇒ Hp+q(D,C)

and it degenerates at E1.

For the precise definitions of CHC and CMHC (CHMC, in French),
see [D, Section 8] or [E2, Chapitre 3]. See also [PS, 2.3.3 and 3.3].

The third example is not so standard but is indispensable for our
injectivity theorems.



88 O. Fujino

4.3. Let X be a complex manifold in Fujiki’s class C and let D be
a simple normal crossing divisor on X. We consider the mixed cones of
φ : QX → QD• and ψ : Ω•

X → Ω•
D• with suitable shifts of complexes and

weight filtrations (for the details, see, for example, [E1, I.3], [E2, 3.7.14],
[EL, Section 3.3.4] or [PS, Theorem 3.22]), where φ and ψ are induced
by the natural restriction map. More precisely, we define a complex

QX−D• = Cone•(φ)[−1].

Then we have
(QX−D•)p = (QX)p ⊕ (QD•)p−1.

The weight filtration on QX−D• is defined as follows:

(WmQX−D•)p = (WmQX)p ⊕ (Wm+1(QD•))p−1.

We note that QX−D• is quasi-isomorphic to j!QX−D, where j : X−D →
X is the natural open immersion. We put

Ω•
X−D• = Cone•(ψ)[−1].

We note that
Ωp

X−D• = Ωp
X ⊕ (sΩ•

D•)p−1.

We define filtrations on Ω•
X−D• as follows:

(WmΩ•
X−D•)p = (WmΩ•

X)p ⊕ (Wm+1(sΩ
•
D•))p−1

and
(F rΩ•

X−D•)p = (F rΩ•
X)p ⊕ (F r(sΩ•

D•))p−1.

Then we obtain that the triple

(j!ZX−D, (QX−D• ,W ), (Ω•
X−D• ,W, F ))

is a CMHC. It defines a natural mixed Hodge structure onH•
c (X−D,Z).

We note that
GrW0 QX−D• = QX

and
GrW−pQX−D• = GrW1−pQD• [−1] = εp−1∗QDp−1 [−p]

for p ≥ 1. The spectral sequence with respect to W

WEp,q
1 = Hp+q(X,GrW−pQX−D•) ⇒ Hp+q

c (X −D,Q)

degenerates at E2, where

WE0,q
1 = Hq(X,Q)
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and

WEp,q
1 = Hq(Dp−1,Q)

for every p ≥ 1. We put

Ω•
X(logD)(−D) = Ω•

X(logD)⊗OX(−D).

Since we can check that the complex

0 → Ω•
X(logD)(−D) → Ω•

X → ε0∗Ω
•
D0

→ ε1∗Ω
•
D1 → · · · → εk∗Ω

•
Dk → · · ·

is exact by direct local calculations, we see that (Ω•
X−D• , F ) is quasi-

isomorphic to (Ω•
X(logD)(−D), F ) in D+F (X,C), where

F pΩ•
X(logD)(−D)

= (0 → · · · → 0 → Ωp
X(logD)(−D) → Ωp+1

X (logD)(−D) → · · · ).
Therefore, the spectral sequence with respect to F

Ep,q
1 = Hq(X,Ωp

X(logD)(−D)) ⇒ Hp+q(X,Ω•
X(logD)(−D))

degenerates at E1. Note that the right hand side is isomorphic to
Hp+q

c (X −D,C). We also note that

Gr0FΩ
•
X(logD)(−D) � OX(−D).

Remark 4.4. When we take mixed cones in 4.3, we have to be
careful about the commutativity of various comparison morphisms in
the derived category (see [EL, Section 3.3.4] and [PS, Remark 3.23]).

Let us recall the notion of V -manifolds. We need it for the proof of
Theorem 1.2.

Definition 4.5 (V -manifold). A V -manifold of dimension d is a
complex analytic space that admits an open covering {Ui} such that
each Ui is analytically isomorphic to Vi/Gi, where Vi ⊂ Cd is an open
ball and Gi is a finite subgroup of GL(d,C). In this paper, Gi is always
an abelian group for every i.

Let X be a V -manifold and let Σ be its singular locus. Then we
define

Ω̃•
X = j∗Ω•

X−Σ,

where j : X − Σ → X is the natural open immersion. A divisor D on
X is called a divisor with V -normal crossings if locally on X we have
(X,D) � (V,E)/G with V ⊂ Cd an open domain, G ⊂ GL(d,C) a small
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subgroup acting on V , and E ⊂ V a G-invariant normal crossing divisor.
We define

Ω̃•
X(logD) = j∗Ω•

X−Σ(logD).

Furthermore, if D is Cartier, then we put

Ω̃•
X(logD)(−D) = Ω̃•

X(logD)⊗OX(−D).

Let us go back to the proof of the E1-degeneration of (♣) in the
proof of Theorem 1.2.

Proof of the E1-degeneration of (♣) in the proof of Theorem 1.2.
Here, we use the notation in the proof of Theorem 1.2. In this case, we
know that Y has only quotient singularities, that is, Y is a V -manifold.
We see that Y is in Fujiki’s class C (see Remark 2.12). Then we obtain
that

(ZY , (Ω̃
•
Y , F ), α)

is a CHC, where F is the filtration bête and α : CY → Ω̃•
Y is the inclu-

sion. For the details, see [St, (1.6)]. By construction, T is a divisor with
V -normal crossings on Y (see Definition 4.5 and [St, (1.16) Definition]).
We can check that Y is singular only over the singular locus of SuppB.
Let ε : T • → T be the Mayer–Vietoris simplicial resolution. Although
each irreducible component of T may have singularities, Definition 2.14
makes sense without any modifications. We note that Tn has only quo-
tient singularities for every n ≥ 0 by the construction of π : Y → X.
We can also check that the same construction as in 4.2 works with only
minor modifications. Hence we have a CMHC

(ZT , (QT• ,W ), (s(Ω̃•
T•),W, F ))

that induces a natural mixed Hodge structure on H•(T,Z). By the same
arguments as in 4.3, we can construct a triple

(j!ZY−T , (QY−T• ,W ), (KC,W, F )),

where j : Y −T → Y is the natural open immersion. It is a CMHC that
induces a natural mixed Hodge structure on H•

c (Y − T,Z) and (KC, F )

is quasi-isomorphic to (Ω̃•
Y (log T )(−T ), F ) in D+F (Y,C), where

F pΩ̃•
Y (log T )(−T )

= (0 → · · · → 0 → Ω̃p
Y (log T )(−T ) → Ω̃p+1

Y (log T )(−T ) → · · · ).
Therefore, the spectral sequence with respect to F

Ep,q
1 = Hq(Y, Ω̃p

Y (log T )(−T )) ⇒ Hp+q(Y, Ω̃•
Y (log T )(−T ))
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degenerates at E1. Note that the right hand side is isomorphic to
Hp+q

c (Y − T,C) = Hp+q(Y, j!CY−T ). We also note that

Gr0F Ω̃
•
Y (log T )(−T ) � OY (−T ).

Q.E.D.

§5. Injectivity, torsion-free, and vanishing theorems

Once we establish Theorem 1.2, we can easily prove Theorem 1.3.
Moreover, Theorem 1.4 is an easy consequence of Theorem 1.3.

Proof of Theorem 1.3. We can obtain Theorem 1.3 as an applica-
tion of Theorem 1.2. More precisely, by Theorem 1.2, the proof of [F6,
Theorem 6.1] works with some suitable modifications. Note that the
vanishing theorem of Reid–Fukuda type for birational morphisms (see
[F6, Lemma 6.2]) holds for bimeromorphic morphisms between complex
varieties by Lemma 2.19. The desingularization used in the proof of [F6,
Theorem 6.1] holds also for compact complex varieties (see Remark 2.5).
We leave the details as exercises for the reader. Q.E.D.

Proof of Theorem 1.4. Theorem 1.4 follows from Theorem 1.3 by
some standard arguments. For (i), Step 1 in the proof of [F6, Theorem
6.3 (i)] is sufficient by Theorem 1.3 since X is projective. Step 1 in
the proof of [F6, Theorem 6.3 (ii)] works without any modifications by
Theorem 1.3. Therefore, we obtain the statement (ii). For the details,
see [F6]. Q.E.D.

§6. Semipositivity theorem

The following result is a special case of Theorem 1.4 (i).

Corollary 6.1. Let X be a compact Kähler manifold and let f :
X → Y be a surjective morphism onto a projective variety Y . Let D be
a simple normal crossing divisor on X such that every stratum of D is
dominant onto Y . Then Rif∗OX(KX +D) is torsion-free for every i.

Once we establish Corollary 6.1, we can prove Theorem 1.5.

Proof of Theorem 1.5. By Corollary 6.1, the arguments in [F1, Sec-
tion 3] work without any modifications. Therefore, we obtain Theorem
1.5. Q.E.D.

Remark 6.2. Theorem 1.5 is contained in [FFS]. See [FFS, 4.7. Re-
mark]. Note that the argument in [FFS] heavily depends on Saito’s
theory of mixed Hodge modules.
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Remark 6.3. The semipositivity of Rif∗OX(KX/Y +D) in Theo-
rem 1.5 follows from [FF, Theorem 1.3] or [FFS, Theorem 3]. We do not
use [Kw2, Theorem 2], which depends on [Kw1]. For some comments on
the semipositivity theorem in [Kw1], see [FFS, 4.6. Remark].

Remark 6.4. In Theorem 1.5, the case when i = 0 is similar to
[Kw1, Theorem 32]. Unfortunately, our results and arguments do not
recover Kawamata’s original statement (see [Kw1, Theorem 32]). The
author has been unable to follow [Kw1, Theorem 32]. Anyway, our
formulation of Theorem 1.5 is natural and the statement of Theorem 1.5
is sufficient for most applications. We do not use [Kw1, Theorem 32] in
this paper. Therefore, we do not touch [Kw1, Theorem 32] here anymore.
We note that [Kw1] was written before [SZ] and [Ks], where the theory
of (admissible) variations of mixed Hodge structure was investigated.

Remark 6.5 (On canonical extensions). In the last paragraph in
[Kw3, Section 2], Yujiro Kawamata wrote:

The Hodge filtration F of H extends to H̃ such that
GrF (H̃) is still a locally free sheaf on Ỹ . Indeed this
is a consequence of the nilpotent orbit theorem [14]
when H is a variation of pure Hodge structures, and
the general case follows immediately from this.

Note that [14] is Schmid’s famous paper: [Schm]. Kawamata’s statement
is obviously wrong when H is a variation of mixed Hodge structure. In
[Kw4, 5. Canonical extension], he also wrote:

By [17], the Hodge filtration of H extends to a fil-
tration by locally free subsheaves, which we denote
again by F .

We note that [17] is Schmid’s paper: [Schm].
As mentioned above, in [Kw3] and [Kw4], Yujiro Kawamata seems

to misuse Schmid’s nilpotent orbit theorem. It is a result for polariz-
able variations of pure Hodge structure. We can not directly apply it
to graded polarizable variations of mixed Hodge structure. For some
explicit examples on this topic, see [FF, Example 1.5], [SZ, (3.16) Ex-
ample], etc. Therefore, we do not use the results in [Kw3] and [Kw4] in
this paper.

Note that the main theorem of [FF] (see [FF, Theorem 1.1]), whose
proof is completely different from Kawamata’s argument in [Kw3], is
sharper than Kawamata’s main statement in [Kw3] (see [Kw3, Theorem
1.1]). We also note that [Kw3, Theorem 1.1] does not seem to cover the
semipositivity theorem in [F1] directly (see [F1, Theorem 3.9]). This is
because [Kw3, Theorem 1.1] requires some extra assumptions on every
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stratum. Roughly speaking, [F1, Theorem 3.9] is Theorem 1.5 under the
assumption that X is a smooth projective variety.

Anyway, we have established Theorem 1.5, which is the main ingre-
dient of the twisted weak positivity: Theorem 1.1.

§7. Weakly positive sheaves

In this section, we discuss weakly positive sheaves introduced by
Viehweg (see [V1] and [V2]). For the basic properties of weakly posi-
tive sheaves and related results, see, for example, [V4, Section 2] and
[F15]. In this paper, we closely follow [V2], [V4, Section 2], [Ca, Section
4.4], and [Mo]. Here, we adopt [V3, Definition 3.1] for the definition
of weakly positive sheaves, which is slightly different from Viehweg’s
original definition (see [V1] and [V2, Definition 1.2]).

Definition 7.1. Let W be a smooth projective variety and let F be

a torsion-free coherent sheaf on W . Let Ŵ be the largest Zariski open
subset of W such that F|

Ŵ
is locally free. Then we put

Ŝk(F) = i∗Sk(i∗F)

where i : Ŵ → W is the natural open immersion and Sk denotes the

k-th symmetric product. Note that codimW (W \ Ŵ ) ≥ 2 since F is
torsion-free.

Definition 7.2 (Weak positivity). Let W be a smooth projective
variety and let F be a torsion-free coherent sheaf on W . We call F
weakly positive, if for every ample line bundle H on W and every positive

integer α there exists some positive integer β such that Ŝαβ(F)⊗H⊗β

is generically generated by global sections. This means that the natural
map

H0(W, Ŝαβ(F)⊗H⊗β)⊗OW → Ŝαβ(F)⊗H⊗β

is generically surjective. By definition, the trivial sheaf F = 0 is weakly
positive.

In some literature, the following definition is used for weakly positive
sheaves on smooth projective varieties (see, for example, [V1], and [V2,
Definition 1.2]).

Definition 7.3 (Original weak positivity). Let W be a smooth
projective variety and let F be a torsion-free coherent sheaf on W . Let
U be a Zariski open set of W . We call F weakly positive over U , if
for every ample line bundle H on W and every positive integer α there
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exists some positive integer β such that Ŝαβ(F)⊗H⊗β is generated by
global sections over U . This means that the natural map

H0(W, Ŝαβ(F)⊗H⊗β)⊗OW → Ŝαβ(F)⊗H⊗β

is surjective over U . We call F weakly positive, if there exists some
nonempty Zariski open set U such that F is weakly positive over U .

Note that U is independent of α and β in Definition 7.3. It is obvious
that if F is weakly positive in the sense of Definition 7.3 then F is weakly
positive in the sense of Definition 7.2.

In this paper, we do not use the weak positivity in the sense of
Definition 7.3, which is slightly stronger but is harder to prove than the
weak positivity in the sense of Definition 7.2.

Remark 7.4. Let W and F be as in Definition 7.2. By Definition

7.2, F is weakly positive if and only if so is Ŝ1(F) = F∗∗, where F∗∗ is
the double-dual of F .

Remark 7.5 (Nef locally free sheaf). Let W be a smooth projective
variety and let F be a locally free sheaf of finite rank on W . If F is nef,
that is, F = 0 or OPW (F)(1) is a nef line bundle on PW (F), then F is
weakly positive.

More precisely, let F 
= 0 be a nef locally free sheaf of finite rank
on a smooth projective variety W and let H be an ample line bundle
on W . We put π : PW (F) → W . Then we can easily check that
OPW (F)(α)⊗π∗H is an ample line bundle for every positive integer α by
Nakai’s criterion. In particular, OPW (F)(1)⊗π∗H is ample, equivalently,
F ⊗ H is ample. By the argument b) in the proof of [H2, Proposition
(3.2)], there is a positive integer β0 such that Sαβ(F)⊗H⊗β is generated
by global sections for every integer β ≥ β0. Therefore, F is weakly
positive.

Remark 7.6. Let F be a line bundle on a smooth projective variety
W . Then F is weakly positive if and only if F is pseudo-effective.

Although Lemma 7.7 is obvious by the definition of weakly positive
sheaves, it is very useful. We will repeatedly use Lemma 7.7 in this
section.

Lemma 7.7 (cf. [V2, Lemma 1.4. 1)]). Let W be a smooth projective
variety and let F and G be torsion-free coherent sheaves on W . If F → G
is a morphism which is generically surjective and if F is weakly positive,
then G is also weakly positive.
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Let us prove the following generalization of Viehweg’s theorem (cf.
[V2, Theorem 4.1]), which follows from Theorem 1.5. Viehweg only
considered the case when i = 0 with D = 0.

Theorem 7.8 (Fundamental weak positivity theorem). Let f : V →
W be a surjective morphism from a compact Kähler manifold V to a
smooth projective variety W . Let D be a simple normal crossing divisor
on V such that every irreducible component of D is dominant onto W .
Let Σ be a simple normal crossing divisor on W such that f is smooth
over W0 = W \ Σ and that D is relatively normal crossing over W0,
and Supp(D+ f∗Σ) is a simple normal crossing divisor on V . Then the
locally free sheaf Rif∗OV (KV/W +D) is weakly positive for every i ≥ 0.

Proof. We put V0 = f−1(W0), f0 = f |V0 , D0 = D|V0 , and d =
dimV − dimW . We take a finite morphism g : W ′ → W from a smooth
projective variety, which induces a unipotent reduction for the local sys-
tem Rd+if0∗CV0−D0 , such that Supp(g∗Σ) is a simple normal crossing
divisor on W ′ (see, for example, [KM, Proposition 2.67] and [Kw1, The-
orem 17]). We can construct a commutative diagram:

V ′ ��

f ′

��

V

f

��
W ′

g
�� W

with the following properties:

(i) V ′ is a compact Kähler manifold which is a resolution of V ×W

W ′,
(ii) f ′ is smooth over W ′

0 = W ′ \ Σ′, where Σ′ = Supp(g∗Σ),
(iii) D′ is a simple normal crossing divisor on V ′ such that D′

and f ′∗Σ′ have no common irreducible components and that
Supp(D′ + f ′∗Σ′) is a simple normal crossing divisor on V ′,
and

(iv) f ′ : (V ′, D′) → W ′ is nothing but the base change of f :
(V,D) → W over W ′

0.

Then we obtain a natural inclusion of locally free sheaves

ϕi : Rif ′
∗OV ′(KV ′/W ′ +D′) ⊂ g∗Rif∗OV (KV/W +D).

such that ϕi is the identity over W ′
0. Note that Rif∗OV (KV/W +D) is

the upper canonial extension of the bottom Hodge filtration and that
Rif ′

∗OV ′(KV ′/W ′ +D′) is the canonical extension of the bottom Hodge

filtration (see Theorem 1.5). By Theorem 1.5, Rif ′
∗OV ′(KV ′/W ′ +D′) is
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nef. In particular, Rif ′
∗OV ′(KV ′/W ′+D′) is weakly positive (see Remark

7.5). Let H be an ample Cartier divisor on W and let α be a positive
integer. Then

S2αβ(g∗Rif∗OV (KV/W +D))⊗OW ′(βg∗H)

is generically generated by global sections for some positive integer β
since g∗Rif∗OV (KV/W +D) is weakly positive by Lemma 7.7. Without
loss of generality, we may assume that OW (βH) ⊗ g∗OW ′ is generated
by global sections. We have a surjection

g∗g∗S2αβ(Rif∗OV (KV/W +D)) → S2αβ(Rif∗OV (KV/W +D)).

Therefore, we have a generically surjective homomorphism⊕
finite

OW (βH)⊗ g∗OW ′ → S2αβ(Rif∗OV (KV/W +D))⊗OW (2βH).

Thus, we obtain that

S2αβ(Rif∗OV (KV/W +D))⊗OW (2βH)

is generically generated by global sections. This means that the locally
free sheaf Rif∗OV (KV/W +D) is weakly positive. Q.E.D.

Remark 7.9. In general, the locally free sheaf Rif∗OV (KV/W +D)
is not necessarily nef. See [FF, Section 8] for some examples.

Remark 7.10. In Theorem 7.8, it is easy to see that Rif∗OV (KV/W

+D) is weakly positive over W0 in the sense of Definition 7.3.

By using the basic properties of weakly positive sheaves, we can
obtain the following corollary of Theorem 7.8, which is new when i > 0.

Corollary 7.11. Let f : V → W be a surjective morphism from
a compact Kähler manifold V to a smooth projective variety W . Let D
be a simple normal crossing divisor on V . Then the torsion-free part of
Rif∗OV (KV/W +D), that is,

Rif∗OV (KV/W +D)/torsion,

is weakly positive.

Proof. By replacing D with its horizontal part, we may assume
that every irreducible component of D is dominant onto W (see Lemma
7.7). If there is a log canonical center C of (V,D) such that f(C) � W ,
then we take the blow-up h : V ′ → V along C. We put

KV ′ +D′ = h∗(KV +D).
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Then D′ is a simple normal crossing divisor on V ′ and

Rif∗OV (KV/W +D) � Ri(f ◦ h)∗OV ′(KV ′/W +D′)

for every i. Therefore, we can replace (V,D) with (V ′, D′). Then we
replace D with its horizontal part (see Lemma 7.7). By repeating this
process finitely many times, we may assume that every stratum of D is
dominant onto W . In this case, Rif∗OV (KV/W +D) is torsion-free by
Theorem 1.4 (i). Now we take a closed subset Σ of W such that f is
smooth over W \Σ and that D is relatively normal crossing over W \Σ.
Let g : W ′ → W be a birational morphism from a smooth projective
variety W ′ such that Σ′ = g−1(Σ) is a simple normal crossing divisor.
By taking some suitable blow-ups of V in f−1(Σ) and replacing D with
its strict transform, we may further assume the following conditions:

(i) f ′ = g−1 ◦ f : V → W ′ is a morphism,
(ii) f ′ is smooth over W ′ \ Σ′ and D is relatively normal crossing

over W ′ \ Σ′, and
(iii) every irreducible component of D is dominant onto W and

Supp(f ′∗Σ′ +D) is a simple normal crossing divisor on V .

V

f ′

��

f

���
��

��
��

�

W ′
g

�� W

Here we used Szabó’s resolution lemma (see Remark 2.5) and Lemma
2.19. Then, by Theorem 7.8, Rif ′

∗OV (KV/W ′ + D) is weakly positive.
Note that

Rif ′
∗OV (KV/W +D) � Rif ′

∗OV (KV/W ′ +D)⊗OW ′(E)

where E is a g-exceptional effective divisor such that KW ′ = g∗KW +E.
Thus Rif ′

∗OV (KV/W +D) is weakly positive. We note that

g∗Rif ′
∗OV (KV/W +D) � Rif∗OV (KV/W +D).

Here we used the fact that

Rpg∗Rqf ′
∗OV (KV/W +D) = 0

for every p > 0 and q ≥ 0 by Proposition 7.15 below. We can take an
effective g-exceptional divisor F on W ′ such that −F is g-ample. Let H
be an ample Cartier divisor on W . Then there exists a positive integer
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k such that kg∗H − F is ample. Since Rif ′
∗OV (KV/W + D) is weakly

positive,

Skαβ(Rif ′
∗OV (KV/W +D))⊗OW ′(β(kg∗H − F ))

is generically generated by global sections. By taking g∗,

Ŝαkβ(Rif∗OV (KV/W +D))⊗OW (kβH)

is generically generated by global sections. This means that the torsion-
free sheaf Rif∗OV (KV/W +D) is weakly positive. Q.E.D.

Remark 7.12. In the proof of Corollary 7.11, the following isomor-
phism (

g∗Rif ′
∗OV (KV/W +D)

)∗∗ � (
Rif∗OV (KV/W +D)

)∗∗
is obvious since g is birational. This isomorphism is sufficient for the
proof of the weak positivity of Rif∗OV (KV/W + D) (see Remark 7.4)
although we used a shaper isomorphism

g∗Rif ′
∗OV (KV/W +D) � Rif∗OV (KV/W +D).

Remark 7.13. In Corollary 7.11, we take a Zariski open set W0

of W such that f is smooth over W0 and that D is relatively normal
crossing over W0. Then we see that

Rif∗OV (KV/W +D)/torsion

is weakly positive over W0 in the sense of Definition 7.3 by the proof of
Corollary 7.11.

Before we give a proof of Proposition 7.15, we prepare an easy
lemma.

Lemma 7.14. Theorem 1.4 (ii) holds true even when Y is a complex
manifold in Fujiki’s class C and Δ is an effective R-divisor on Y such
that (Y,Δ) is dlt.

Proof. Let h : Y ′ → Y be a resolution such that h is an isomor-
phism over the general points of any log canonical center of (Y,Δ) (see
Remark 2.5). We can write

KY ′ +ΔY ′ = h∗(KY +Δ) + E
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where ΔY ′ and E are effective, E is Cartier and h-exceptional, ΔY ′ is
a boundary R-divisor, and Supp(ΔY ′ + E) is a simple normal crossing
divisor on Y ′. Then

h∗L ⊗OY ′(E)− (KY ′ +ΔY ′) = h∗(L − (KY +Δ))

∼R h∗f∗H.

By Theorem 1.4 (ii), we obtain that

Hp(X,Rq(f ◦ h)∗(h∗L ⊗OY ′(E))) = 0

for every p > 0 and q ≥ 0. Note that Rih∗(h∗L⊗OY ′(E)) = 0 for every
i > 0 by Lemma 2.19. Thus we obtain

Hp(X,Rqf∗L) � Hp(X,Rq(f ◦ h)∗(h∗L ⊗OY ′(E))) = 0

for every p > 0 and q ≥ 0. Note that h∗(h∗L ⊗OY ′(E)) � L. Q.E.D.

Proposition 7.15. Let f : X → Y be a surjective morphism such
that X is a complex manifold in Fujiki’s class C and Y is a projective
variety. Let D be a simple normal crossing divisor on X such that every
stratum of D is dominant onto Y . Let g : Y → Z be a birational
morphism between projective varieties. Then

Rpg∗Rqf∗OX(KX +D) = 0

for every p > 0 and q ≥ 0.

Proof. Let A be a sufficiently ample line bundle on Z such that

Hr(Z,Rpg∗Rqf∗OX(KX +D)⊗A) = 0

for p > 0, q ≥ 0, and r > 0 and that

Rpg∗Rqf∗OX(KX +D)⊗A
is generated by global sections for p > 0 and q ≥ 0. By the Leray
spectral sequence, we have

H0(Z,Rpg∗Rqf∗OX(KX +D)⊗A)

� Hp(Y,Rqf∗OX(KX +D + f∗g∗A)).

Therefore, it is sufficient to prove that

Hp(Y,Rqf∗OX(KX +D + f∗g∗A)) = 0
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for p > 0 and q ≥ 0. By Kodaira’s lemma, we can write

g∗A ∼Q H + E

where H is an ample Q-divisor on Y and E is an effective Q-Cartier
Q-divisor on Y . Let ε be a sufficiently small positive number. Then
(X,D + εf∗E) is dlt and

OX(KX +D + f∗g∗A)− (KX +D + εf∗E) ∼Q f∗((1− ε)g∗A+ εH).

Therefore, by Lemma 7.14, we obtain that

Hp(Y,Rqf∗OX(KX +D + f∗g∗A)) = 0

for p > 0 and q ≥ 0. Q.E.D.

§8. Twisted weak positivity

This section is the main part of this paper. Here, we prove the
twisted weak positivity theorem: Theorem 1.1.

Lemma 8.1 is a slight generalization of [V2, Lemma 5.1]. It follows
from Corollary 7.11 by the usual covering trick.

Lemma 8.1 (cf. [V2, Lemma 5.1]). Let f : X → Y be a surjective
morphism from a compact Kähler manifold X to a smooth projective
variety Y . Let D be a simple normal crossing divisor on X. Let L and
N be line bundles on X and let C be an effective divisor on X such that
LN = N + C for some positive integer N , D and C have no common
components, and Supp(D + C) is a simple normal crossing divisor on
X. Assume that there is a nonempty Zariski open set U of Y such that
some power of N is generated over f−1(U) by global sections. Then the
sheaf

f∗OX(KX/Y +D + L(i))

is weakly positive for 0 ≤ i ≤ N − 1, where

L(i) = Li ⊗OX

(
−
⌊
iC

N

⌋)
.

Proof. Since the statement is compatible with replacingN byNN ′,
C by N ′C, and N by NN ′

for some positive integer N ′, we may assume
that N itself is generated by global sections over f−1(U). This means
that the base locus of |N | is contained in X \ f−1(U). Without loss
of generality, we may shrink U if necessary. Let B + F be the zero
set of a general section of N such that every irreducible component of
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B is dominant onto Y and that SuppF ⊂ X \ f−1(U). By Bertini’s
theorem, B is smooth and Supp(B+D+C) is a simple normal crossing
divisor on f−1(U). We note that N = OX(B+F ). By taking a suitable
bimeromorphic modification outside f−1(U), we may assume that B is
smooth and that Supp(B + D + C + F ) is a simple normal crossing

divisor (see Remark 2.5). In fact, if h : X̃ → X is a bimeromorphic

modification which is an isomorphism over f−1(U) and if L̃ = h∗L,
Ñ = h∗N , C̃ = h∗C, and D̃ is the strict transform of D, then we can

easily check that h∗OX̃
(K

X̃/Y
+ D̃ + L̃(i)) is contained in OX(KX/Y +

D + L(i)). By construction, h∗OX̃
(K

X̃/Y
+ D̃ + L̃(i)) coincides with

OX(KX/Y +D + L(i)) on f−1(U). When we prove the weak positivity

of f∗OX(KX/Y +D+L(i)), by replacing C with C+F , we may assume

that LN = OX(B+C), that is, F = 0 (see Lemma 7.7). Note that every
irreducible component of F is vertical with respect to f : X → Y . By
taking a cyclic cover p : Z ′ → X associated to LN = OX(B + C), that

is, Z ′ is the normalization of Specan
⊕N−1

i=1 L−i. Let Z be a resolution
of the cyclic cover Z ′ and let g : Z → Y be the corresponding morphism.

Z
q ��

g

����
���

���
���

���
� Z ′ p �� X

f

��
Y

It is well-known that Z ′ has only quotient singularities and

p∗OZ′(KZ′) �
N−1⊕
i=0

OX(KX + L(i)).

Let D† be the union of the strict transform of p∗D and the exceptional
divisor of q : Z → Z ′. Then

q∗OZ(KZ +D†) � OZ′(KZ′ + p∗D).

Note that (Z ′, p∗D) is log canonical. Of course, we may assume that D†

is a simple normal crossing divisor. We obtain

g∗OZ(KZ/Y +D†) �
N−1⊕
i=0

f∗OX(KX/Y +D + L(i)).

Therefore, by Corollary 7.11, f∗OX(KX/Y +D+L(i)) is weakly positive
for every i. Q.E.D.
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Before we start the proof of Theorem 1.1, we prepare a very impor-
tant lemma.

Lemma 8.2 (cf. [Ca, Lemma 4.19]). Let f : X → Y be a surjective
morphism from a compact Kähler manifold X to a smooth projective
variety Y . Let Δ be a boundary Q-divisor on X such that SuppΔ is
a simple normal crossing divisor. Let l be a positive integer such that
l(KX/Y +Δ) is Cartier. Let A′ be an ample Cartier divisor on Y . We
put A = f∗A′. Assume that

ŜN (f∗OX(l(KX/Y +Δ) + lA))

is generated by global sections on some nonempty Zariski open set of Y .
Then

f∗OX(l(KX/Y +Δ) + (l − 1)A)

is weakly positive.

Proof. We consider

M := Im(f∗f∗OX(l(KX/Y +Δ) + lA) → OX(l(KX/Y +Δ) + lA)).

We may assume that the relative base locus of l(KX/Y +Δ) + lA does
not contain any component of lΔ by decreasing the relevant coefficients
of Δ. Furthermore, if necessary, by taking blow-ups of X and decreasing
the relevant coefficients of Δ, we may assume that M is a line bundle,
l(KX/Y +Δ)+ lA = M+E, where E is an effective divisor on X, E and
lΔ have no common components, and Supp(E +Δ) is a simple normal
crossing divisor on X. Let

f : X
ψ−→ V −→ Y

be the Stein factorization. Then

M = Im(ψ∗ψ∗OX(l(KX/Y +Δ) + lA) → OX(l(KX/Y +Δ) + lA)).

If we take a Zariski open set U ′ of Y such that codimY (Y \U ′) ≥ 2 suit-
ably, then ψ∗OX(l(KX/Y +Δ)+ lA) is locally free and ψ∗OX(l(KX/Y +
Δ) + lA) � ψ∗M over U ′ by construction. Therefore, f∗OX(l(KX/Y +
Δ) + lA) � f∗M on U ′. Since

ŜN (f∗OX(l(KX/Y +Δ) + lA))

is generically generated by global sections, there is an effective divisor S
on X such that codimY f(S) ≥ 2 and that MN ⊗OX(NlS) is generated
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by global sections over f−1(U) ⊂ X, where U is a nonempty Zariski
open set of Y . We put

L = KX/Y +Δ=1 + l{Δ}+A+ S

and

L(l−1) = (l − 1)L−
⌊
l − 1

l
(E + (l − 1)l{Δ})

⌋
.

We note that

Δ=1 = �Δ� and Δ = Δ=1 + {Δ}
because Δ is a boundary Q-divisor. We also note that

lL = lKX/Y + lΔ+ lA+ lS + (l − 1)l{Δ}
= M+ lS + E + (l − 1)l{Δ}.

By the usual covering argument, we obtain that

f∗OX(KX/Y +Δ=1 + L(l−1))

is weakly positive by Lemma 8.1. We can easily see that

KX/Y +Δ=1 + (l − 1)L− �(l − 1)2{Δ}�
= l(KX/Y +Δ=1) + l(l − 1){Δ} − �(l2 − 2l + 1){Δ}�+ (l − 1)(A+ S)

= l(KX/Y +Δ) + (l − 1)(A+ S).

Therefore, we can also check that

f∗OX(KX/Y +Δ=1 + L(l−1))

⊂ f∗OX(KX/Y +Δ=1 + (l − 1)L− �(l − 1)2{Δ}�)
and that they coincide over the generic point of Y because E is the
relative base locus of l(KX/Y +Δ) + lA, A = f∗A′, f(S) � Y , and

L(l−1) = (l − 1)L− �(l − 1)2{Δ}� −
⌊
l − 1

l
E

⌋
.

Hence we obtain that

f∗OX(l(KX/Y +Δ) + (l − 1)(A+ S))

= f∗OX(KX/Y +Δ=1 + (l − 1)L− �(l − 1)2{Δ}�)
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is weakly positive by Lemma 7.7. Therefore,

(f∗OX(l(KX/Y +Δ) + (l − 1)A))∗∗

is weakly positive because codimY f(S) ≥ 2. This means that

f∗OX(l(KX/Y +Δ) + (l − 1)A)

is weakly positive (see Remark 7.4). Q.E.D.

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into several steps.

Step 1. Let X̃ → X be a resolution such that X̃ is a compact
Kähler manifold with

K
X̃
+ Δ̃ = π∗(KX +Δ) + E,

where E and Δ̃ are effective and have no common components. By

replacing (X,Δ) with (X̃, Δ̃), we may assume that X is a compact
Kähler manifold and that SuppΔ is a simple normal crossing divisor.
By replacing mk with k, we may assume that m = 1.

Step 2. Let H be an ample Cartier divisor on Y . We put

r = min{s > 0 ; f∗OX(k(KX/Y +Δ))⊗OY ((sk−1)H) is weakly positive}.
By definition, we can find ν > 0 such that

Ŝν(f∗OX(k(KX/Y +Δ)))⊗OY ((rkν − ν)H)⊗OY (νH)

is generated by global sections over a nonempty Zariski open set. By
Lemma 8.2,

f∗OX(k(KX/Y +Δ)⊗OY ((rk − r)H)

is weakly positive. The choice of r allows this only if (r−1)k−1 < rk−r,
equivalently, r ≤ k. Hence we obtained the weak positivity of

f∗OY (k(KX/Y +Δ))⊗OY ((k
2 − k)H).

Step 3. Let d be an arbitrary positive integer. By Lemma 8.3, we
can take a finite flat morphism g : Y ′ → Y from a smooth projective
variety Y ′ such that g∗H ∼ dH ′ and that X ′ = X ×Y Y ′ is a compact
Kähler manifold. We put τ : X ′ → X and Δ′ = τ∗Δ. Thus, by Lemma
8.3, we have

f ′
∗OX′(k(KX′/Y ′ +Δ′)) � g∗f∗OX(k(KX/Y +Δ)),
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where f ′ : X ′ → Y ′. We may further assume that Δ′ is a boundary Q-
divisor such that SuppΔ′ is a simple normal crossing divisor by Lemma
8.3. Then we obtain that

g∗f∗OX(k(KX/Y +Δ))⊗OY ′((k2 − k)H ′)

is weakly positive. This is because

f ′
∗OX′(k(KX′/Y ′ +Δ′))⊗OY ′((k2 − k)H ′)

is weakly positive by applying the above result (see Step 2) to f ′ :
(X ′,Δ′) → Y ′. If α is a positive integer, then we choose d = 2α(k2 −
k) + 1. Let β be a sufficiently large positive integer. Then we have that

Ŝ2αβ(g∗f∗OX(k(KX/Y +Δ))⊗OY ′((k2 − k)H ′))⊗OY ′(βH ′)

= g∗Ŝ2αβ(f∗OX(k(KX/Y +Δ)))⊗ g∗OY (βH)

is generated by global sections over a nonempty Zariski open set. We
may further assume that g∗OY ′ ⊗ OY (βH) is generated by global sec-

tions. Over the Zariski open set Ŷ of Y where

Ŝ2αβ(f∗OX(k(KX/Y +Δ)))

is locally free, we have a surjection

g∗g∗Ŝ2αβ(f∗OX(k(KX/Y +Δ)))⊗OY (βH)

→ Ŝ2αβ(f∗OX(k(KX/Y +Δ)))⊗OY (βH).

Therefore, we have a homomorphism⊕
finite

(OY (βH)⊗ g∗OY ′) → Ŝ2αβ(f∗OX(k(KX/Y +Δ)))⊗OY (2βH)

which is surjective over a nonempty Zariski open set. Note that g∗OY ′ ⊗
OY (βH) is generated by global sections. Therefore,

Ŝ2αβ(f∗OX(k(KX/Y +Δ)))⊗OY (2βH)

is generated by global sections over a nonempty Zariski open set.

This means that f∗OX(k(KX/Y +Δ)) is weakly positive. Q.E.D.

In the above proof of Theorem 1.1, we have already used the follow-
ing lemma. It is a variant of Kawamata’s cover (see [Kw1, Theorem 17]).
The description of Kawamata’s covering trick in [EV, 3.19. Lemma] is
very useful for our purpose. See also [AK, 5.3. Kawamata’s covering]
and [V4, Lemma 2.5].
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Lemma 8.3. Let f : X → Y be a surjective morphism from a
compact Kähler manifold X to a smooth projective variety Y and let H
be a Cartier divisor on Y . Let d be an arbitrary positive integer. Then
we can take a finite flat morphism g : Y ′ → Y from a smooth projective
variety Y ′ and a Cartier divisor H ′ on Y ′ such that g∗H ∼ dH ′ and that
X ′ = X ×Y Y ′ is a compact Kähler manifold with ωX′/Y ′ = τ∗ωX/Y ,
where τ : X ′ → X. Let S be a simple normal crossing divisor on X.
Then we can choose g : Y ′ → Y such that τ∗S is a simple normal
crossing divisor on X ′.

Furthermore, let D be a Cartier divisor on X. We put f ′ : X ′ → Y ′.
Then there is a natural isomorphism

f ′
∗OX′(nKX′/Y ′ + τ∗D) � g∗f∗OX(nKX/Y +D)

for every integer n.

Proof. We take general very ample Cartier divisorsD1 andD2 with
the following properties.

(i) H ∼ D1 −D2,
(ii) D1, D2, f

∗D1, and f∗D2 are smooth,
(iii) D1 and D2 have no common components, and
(iv) Supp(D1 + D2) and Supp(f∗D1 + f∗D2) are simple normal

crossing divisors.

We take a finite flat cover due to Kawamata with respect to Y and
D1 +D2 (see [Kw1, Theorem 17]), we obtain g : Y ′ → Y and H ′ such
that g∗H ∼ dH ′. By the construction of the above Kawamata cover
g : Y ′ → Y , we may assume that the ramification locus Σ of g in Y
is a general simple normal crossing divisor. This means that f∗P is a
smooth divisor for any irreducible component P of Σ and that f∗Σ is
a simple normal crossing divisor on X. We may further assume that
f∗P 
⊂ S for any irreducible component P of Σ and that f∗Σ + S is a
simple normal crossing divisor on X since D1 and D2 are general. In
this situation, we can check that X ′ = X ×Y Y ′ is a compact Kähler
manifold (see Remark 2.12) and that τ∗S is a simple normal crossing
divisor on X ′.

X ′ τ ��

f ′

��

X

f

��
Y ′

g
�� Y

By construction, we can also easily check that ωX′/Y ′ = τ∗ωX/Y by the
Hurwitz formula. Therefore, we have

OX′(nKX′/Y ′ + τ∗D) � τ∗OX(nKX/Y +D)
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for every integer n. Thus, we obtain

f ′
∗OX′(nKX′/Y ′ + τ∗D) � f ′

∗τ
∗OX(nKX/Y +D)

� g∗f∗OX(nKX/Y +D)

for every integer n. Q.E.D.

As a special case of Theorem 1.1, we have:

Corollary 8.4 (cf. [V2, Theorem III]). Let f : X → Y be a surjec-
tive morphism such that X is a complex manifold in Fujiki’s class C and
Y is a smooth projective variety. Then f∗OX(kKX/Y ) is weakly positive
for every k > 0.

As is well-known, Corollary 8.4 is a very famous fundamental result
by Viehweg when X is projective.

Remark 8.5. In Corollary 8.4, we did not check the weak positivity
of f∗OX(kKX/Y ) in the sense of Definition 7.3. Corollary 8.4 says that
f∗OX(kKX/Y ) is weakly positive in the sense of Definition 7.2.

By Theorem 1.1, we can recover Campana’s twisted weak positivity
(see [Ca, Theorem 4.13]).

Corollary 8.6. Let f : X → Y be a surjective morphism from a
complex manifold X in Fujiki’s class C to a smooth projective variety Y .
Let D be a divisor on X. We put D = Dh +Dv where Dh (resp. Dv)
is the horizontal (resp. vertical) part of D with respect to f : X →
Y . Assume that SuppDh is a simple normal crossing divisor and the
coefficients of Dh is less than or equal to m, where m is a positive
integer. Then f∗OX(mKX/Y +D) is weakly positive.

Proof. We put Δ = 1
mD. Then (X,Δ) is log canonical over the

generic point of Y . We take a resolution g : X ′ → X. Then

KX′ +Δ′ = g∗(KX +Δ) + E

where Δ′ and E are effective and have no common components such

that Supp(Δ′ +E) is a simple normal crossing divisor on X ′. Let Δ̃ be

the horizontal part of Δ′. Then (X ′, Δ̃) is log canonical. By Lemma 7.7,

we can replace (X,Δ) with (X ′, Δ̃). By Theorem 1.1, we obtain that
f∗OX(m(KX/Y +Δ)) = f∗OX(mKX/Y +D) is weakly positive. Q.E.D.
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§9. Addition formula

Theorem 1.7 is an easy application of Theorem 1.1. It is contained
in [Ca]. See also [L] and [N2].

Proposition 9.1 is a slight reformulation of [V2, Corollary 7.1].

Proposition 9.1 (cf. [V2, Corollary 7.1]). Let f : V → W be an
equidimensional surjective morphism from a normal projective variety
V to a smooth projective variety W with connected fibers. Let (V,Δ) be
a log canonical pair. Let H be an ample Cartier divisor on W . Then
there are some positive integers a and l such that a(KV +Δ) is Cartier
and the linear system Λ associated to

H0(V,OV (al(KV/W +Δ))⊗ f∗OW (lH))

defines a rational map Φ : V ��� X with

dimX = κ(Vw,KVw +Δ|Vw) + dimW,

where Vw is a sufficiently general fiber of f . Moreover, there is a rational
map π : X ��� W such that f = π ◦ Φ.

V
Φ �����

f

��

X

π���
�
�
�

W

Remark 9.2. When κ(Vw,KVw +Δ|Vw) = −∞, we claim nothing
in Proposition 9.1.

Proof. We take a positive integer a such that a(KV +Δ) is Cartier
and f∗OV (a(KV/W +Δ)) is nontrivial. By the twisted weak positivity
theorem: Theorem 1.1, there is some b > 0 such that

Ŝ2b(f∗OV (a(KV/W +Δ)))⊗OW (bH)

is generated by global sections on some nonempty Zariski open set. Since
the natural map

Ŝ2b(f∗OV (a(KV/W +Δ)))⊗OW (bH)

→ f∗OV (2ba(KV/W +Δ))⊗OW (bH)

is nontrivial, we obtain an inclusion from f∗OW (bH) into OV (2ba(KV/W

+Δ))⊗f∗OW (2bH). Note that f∗OV (2ba(KV/W +Δ)) is reflexive since
f is equidimensional. Without loss of generality, we may assume that
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bH is very ample by replacing b with b′b for some b′ � 0. We put
l = 2b. If b is sufficiently large, then the sections of OV (2ba(KV/W +
Δ)) ⊗ f∗OW (2bH) define a rational map Φ : V ��� X such that C(X)
is algebraically closed in C(V ). Since bH is very ample and there is an
inclusion from f∗OW (bH) into OV (2ba(KV/W +Δ))⊗ f∗OW (2bH), we
obtain a rational map π : X ��� W such that f = π ◦ Φ. The easy
addition formula gives

κ(Vw,KVw +Δ|Vw)

≤ dimΦ(Vw) + κ(F, (OV (2ba(KV/W +Δ))⊗ f∗OW (2bH))|F )
= dimΦ(Vw)

where F is a sufficiently general fiber of Φ : V ��� X (if necessary,
we take an elimination of points of indeterminacy of Φ). On the other
hand, the restriction of the linear system Λ to Vw is a subsystem of
H0(Vw,OVw(2ba(KVw + Δ|Vw)). Therefore, dimΦ(Vw) ≤ κ(Vw,KVw +
Δ|Vw). Hence, we obtain

κ(Vw,KVw +Δ|Vw) = dimΦ(Vw) = dimX − dimW.

Q.E.D.

Remark 9.3. In Proposition 9.1, it is sufficient to assume that a is a
positive integer such that a(KV +Δ) is Cartier and that f∗OV (a(KV/W+
Δ)) is nontrivial.

Let us start the proof of Theorem 1.7.

Proof of Theorem 1.7. By [AK], we can construct a commutative
diagram:

X ′ h ��

f ′

��

X

f

��
Y ′

g
�� Y

with the following properties:

(i) f ′ : X ′ → Y ′ is an equidimensional surjective morphism from
a normal projective variety X ′ to a smooth projective variety
Y ′,

(ii) h and g are birational, and
(iii) X ′ has only quotient singularities and (UX′ ⊂ X ′) is toroidal

for some nonempty Zariski open set UX′ .
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By [AK], we may assume that Exc(h) ∪ Supph−1
∗ Δ is contained in X ′ \

UX′ . We put
KX′ +Δ′ = h∗(KX +Δ) + E

such that (X ′,Δ′) is log canonical and E is effective and h-exceptional.
Let H be an ample Cartier divisor on Y ′. Since KY ′ is a big divisor, by
Kodaira’s lemma, aKY ′ ∼ H +F for some effective divisor F on Y ′ and
a sufficiently divisible positive integer a. By Proposition 9.1 (see also
Remark 9.3), we have

κ(X,KX +Δ) = κ(X ′,KX′ +Δ′)

≥ κ(X ′, a(KX′ +Δ′)− af ′∗KY ′ + f ′∗H)

≥ κ(X ′
y,KX′

y
+Δ′|X′

y
) + dimY ′

= κ(Xy,KXy +Δ|Xy ) + dimY.

Note that

κ(X,KX +Δ) ≤ κ(Xy,KXy +Δ|Xy ) + dimY

always holds by the easy addition formula. Therefore, we obtain

κ(X,KX +Δ) = κ(Xy,KXy +Δ|Xy ) + dimY.

This is the desired equality. Q.E.D.

§10. Addition for logarithmic Kodaira dimensions

We prove Theorem 1.9, which is due to Maehara (see [Ma]), as an
application of Theorem 1.1: Twisted weak positivity. Before we start
the proof of Theorem 1.9, we give some comments on Maehara’s works
(see [Ma]).

Remark 10.1. In Theorem 1.9,

f∗OX(k(KX +DX))⊗OY (−k(KY +DY ))⊗OY (DY )

is weakly 1-positive in the sense of Maehara for any k > 0. It is the
main theorem of [Ma]. Maehara obtained Theorem 1.9 as a corollary of
the above weak 1-positivity (see [Ma, Corollary 2]). In this section, we
do not use Maehara’s results and prove Theorem 1.9 as an application
of Theorem 1.1 by using the weak semistable reduction theorem (see
[AK]).

Let us start the proof of Theorem 1.9.
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Proof of Theorem 1.9. By [AK], we may assume that

(i) f : (UX ⊂ X) → (UY ⊂ Y ) is toroidal and is equidimensional,
(ii) DY is contained in Y \ UY and DX is contained in X \ UX ,
(iii) X has only quotient singularities, Y is smooth, and
(iv) f is smooth over UY .

Moreover, there is a Kawamata cover τ : Y ′ → Y such that the nor-

malization X ′ of X̃ = X ×Y Y ′ is a weak semistable reduction over Y ′.
Note that f is flat. We put ΔY = Y \ UY .

Lemma 10.2 (cf. [Ma, Main Theorem]). Under the above assump-
tions,

f∗OX(k(KX +DX))⊗OY (−k(KY +DY ))⊗OY (ΔY )

is weakly positive for every divisible positive integer k.

Once we establish Lemma 10.2, we can check:

Lemma 10.3. Let H be an ample Cartier divisor on Y . Then there
are some positive integers a and l such that a(KX +DX) is Cartier and
the linear system Λ associated to

H0(X,OX(al(KX/Y +DX − f∗DY ))⊗ f∗OY (lH + lΔY ))

defines a rational map Φ : X ��� Z with

dimZ = κ(F,KF +DX |F ) + dimY,

where F is a sufficiently general fiber of f . Moreover, there is a rational
map π : Z ��� Y such that f = π ◦ Φ.

X
Φ �����

f

��

Z

π
���
�
�
�

Y

Proof. See the proof of Proposition 9.1 (see also Remark 9.3).
Q.E.D.

If a is a sufficiently large and divisible positive integer, then a(KX +
DX) is Cartier,

f∗OX(a(KX +DX))⊗OY (−a(KY +DY ))⊗OY (ΔY ) 
= 0

is weakly positive by Lemma 10.2, and

a(KY +DY )−ΔY ∼ H +G
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for an ample Cartier divisor H and some effective divisor G on Y by
Kodaira’s lemma. Therefore, by Lemma 10.3, we obtain

κ(X,KX +DX)

≥ κ(X, a(KX +DX)− af∗(KY +DY ) + f∗ΔY + f∗H)

≥ κ(F,KF +DX |F ) + dimY.

On the other hand, we always have

κ(X,KX +DX) ≤ κ(F,KF +DX |F ) + dimY

by the easy addition formula. Thus, we obtain

κ(X,KX +DX) = κ(F,KF +DX |F ) + dimY.

This is the desired equality.
Anyway, we see that it is sufficient to prove Lemma 10.2. For

the proof of Lemma 10.2, we can replace DY with ΔY and DX with
Supp(DX + f∗DY ). Moreover, by adding some divisors to DY , we may
further assume that DY is a simple normal crossing divisor, ΔY ≤ DY ,

and τ is étale over Y \ DY . We put f ′ : X ′ → Y ′, p : X ′ → X̃,

q : X̃ → X, and KX′ +DX′ = λ∗(KX +DX) where λ = q ◦ p : X ′ → X.

X ′ p ��

f ′
���

��
��

��
� X̃

q ��

f̃
��

X

f

��
Y ′

τ
�� Y

We also put KY ′ + DY ′ = τ∗(KY + DY ). Note that DX′ and DY ′

are reduced. Let Sing(X) be the singular locus of X. We put Σ =

f−1(f(Sing(X))) and Σ̃ = q−1(Σ). Then codimXΣ ≥ 2, codim
X̃
Σ̃ ≥ 2

and ω
X̃
|X† is locally free by the flat base change theorem (cf. Theorem

2.16) with X† = X̃ \ Σ̃. We put ω
[k]

X̃
= ι∗((ωX̃

|X†)⊗k) where ι : X† →
X̃. We note that X̃ is Cohen–Macaulay by the local description of

Kawamata’s cover. We also note that ω
[k]

X̃
is invertible if OX(kKX) is

invertible. We can check:

Lemma 10.4 (cf. [Ma, Lemma C]). We have the following inclusion

p∗OX′(k(KX′/Y ′ +DX′ − f ′∗DY ′))(♠)

⊂ ω
[k]

X̃/Y ′ ⊗O
X̃
(k(q∗(DX − f∗DY )))⊗O

X̃
(q∗f∗ΔY )

for every divisible positive integer k.
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Proof of Lemma 10.4. Since k is divisible, we have that ω
[k]

X̃/Y ′ is

invertible and that k(KX′/Y ′+DX′−f ′∗DY ′) and k(q∗(DX−f∗DY )) are
Cartier. Therefore, the both hand sides satisfy Serre’s S2 condition. We
also note that X \Σ is smooth and that X† is Gorenstein. By replacing

X and X̃ with X \ Σ and X† respectively, we may assume that X is

smooth and that X̃ is Gorenstein. We have

p∗OX′(KX′) ⊂ ω
X̃

because p is the normalization. Since DX′ − λ∗DX ≤ 0, we obtain

p∗OX′(KX′/Y ′ +DX′ − λ∗DX) ⊂ ω
X̃/Y ′ .

This is equivalent to

p∗OX′(KX′/Y ′ +DX′ − f ′∗DY ′)⊗O
X̃
(f̃∗DY ′)

⊂ ω
X̃/Y ′ ⊗O

X̃
(q∗(DX − f∗DY ))⊗O

X̃
(q∗f∗DY ).

Since f̃∗DY ′ is effective, we have

p∗OX′(KX′/Y ′ +DX′ − f ′∗DY ′)

⊂ ω
X̃/Y ′ ⊗O

X̃
(q∗(DX − f∗DY ))⊗O

X̃
(q∗f∗DY ).

Over the generic point of every irreducible component of DY − ΔY ,

f is smooth, f̃ is smooth, p is an isomorphism, and DX − f∗DY =
DX′ − f ′∗DY ′ = 0. Therefore, we obtain

p∗OX′(KX′/Y ′ +DX′ − f ′∗DY ′)(♥)

⊂ ω
X̃/Y ′ ⊗O

X̃
(q∗(DX − f∗DY ))⊗O

X̃
(q∗f∗ΔY ).

We note that

q∗OX(KX +DX − f∗(KY +DY )) � ω
X̃/Y ′ ⊗O

X̃
(q∗(DX − f∗DY ))

by the flat base change theorem (cf. Theorem 2.16) and

p∗q∗OX(KX +DX − f∗(KY +DY ))

� OX′(KX′ +DX′ − f ′∗(KY ′ +DY ′)).

By taking
⊗ω⊗k−1

X̃/Y ′ ⊗O
X̃
((k − 1)q∗(DX − f∗DY ))

with (♥), we obtain the desired inclusion by the projection formula.
Q.E.D.
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Let us go back to the proof of Lemma 10.2. Note that

ω
[k]

X̃/Y ′ ⊗O
X̃
(k(q∗(DX − f∗DY )))

� q∗(OX(k(KX +DX))⊗ f∗OY (−k(KY +DY )))

when k is a divisible positive integer. By applying f̃∗, (♠) implies:

Lemma 10.5. There exists a generically isomorphic inclusion

f ′
∗OX′(k(KX′ +DX′))⊗OY ′(−k(KY ′ +DY ′))

⊂ τ∗(f∗OX(k(KX +DX))⊗OY (−k(KY +DY ))⊗OY (ΔY ))

for every divisible positive integer k.

This is because τ is flat. Since

f ′
∗OX′(k(KX′ +DX′))⊗OY ′(−k(KY ′ +DY ′))

= f ′
∗OX′(k(KX′/Y ′ +DX′ − f ′∗DY ′))

is weakly positive by Theorem 1.1, we can easily check that

f∗OX(k(KX +DX))⊗OY (−k(KY +DY ))⊗OY (ΔY )

is also weakly positive (see, for example, [V2, Lemma 1.4. 5)] and [F15,
Lemma 3.6]). Note that DX′ − f ′∗DY ′ is effective since f ′ is weakly
semistable. Thus we obtain Lemma 10.2. This implies that the equality
in Theorem 1.9 holds. Q.E.D.

Note that Theorem 1.9 contains a generalization of [Kw1, Theorem
30], which plays an important role for Kawamata’s theorem on the quasi-
Albanese maps for varieties of the logarithmic Kodaira dimension zero
(see [Kw1, Corollary 29]). For the details, see [F14].
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