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Local types of singularities of plane curves 
and 

the topology of their complements 

Hiro-o Tokunaga 1 

§ Introduction 

Let B be a reduced plane curve in P 2 = pi. After Zariski's famous 
article [37], there have been many results on the topology of p 2 \B(see 
References of [8], for example). The main purpose of this article is to 
survey some of recent progress on the topology of p 2 \B with a special 
emphasis on the case of deg B = 6, including a new example of a Zariski 
pair. Throughout this article, our fundamental question is the following: 

Problem 0.1. What one can say about the topology of p 2 \B 
just from the data of local types of singularities of B? 

Hereafter we simply say the configuration of singularities in the place 
of the data of local topological types of singularities. 

As Problem 0.1 seems to be rather vague, we consider more specific 
problem: 

Problem 0.2. Under what condition on the configuration of sin
gularities of B, can one determine the (non-) commutativity of n1 (P2 \B) 
? 

Even Problem 0.2 is still by no means easy. To know how subtle 
this problem is, let us recall Zariski's famous example: 

Example 0.3 (Zariski [37], [38]). Let (Bi, B2) be a pair of sex
tic curves with 6 cusps such that 
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(i) there exists a conic, C, passing through the 6 cusps for Bi, while 
(ii) there exists no such conic as in (i) for B2. 
For these sextic curves, 1ri (P2 \Bi) ~ 1ri (P2 \B2). 

Remark 0.4. More precisely, 1ri (P2 \Bi) ~ Z /2 Z * Z /3 z. For 
B2, Oka found an explicit example such that 1ri (P2 \B2) ~ Z /6 Z in 
[22]. It is, however, still unknown whether 1ri(P2 \B2) ~ Z /6 Z always 
holds for any sextic curve of second type. 

As Zariski's example shows, in general, just the configuration of 
singularities is not enough to determine whether 1ri(P2 \B) is abelian 
or non-abelian. Nevertheless, under some particular conditions, we are 
able to determine it. Let us begin with the cases when 1ri (P2 \B) is 
abelian. The first statement is 

Theorem 0.5 (Deligne-Fulton [7], [12]). If B has only nodes, 
then 1ri (P2 \B) is abelian. 

After this statement, Nori generalized it for irreducible plane curves 
having only nodes and cusps. 

Theorem 0.6 (Nori, [15]). Suppose that Bis an irreducible curve 
of degree d and has only nodes and cusps. Let a and b be the numbers of 
nodes and cusps, respectively. If2a+6b < d2 , then 1ri(P2 \B) is abelian. 

Note that Example 0.3 shows that the inequality in Theorem 0.6 is 
sharp. Shimada recently gave another kind of statement as follows: 

Theorem 0.7 (Shimada [28]). Under the same notations and 
assumption as in Theorem 0.6, if 2a ~ d2 - 5d + 8, then 1ri(P2 \B) is 
abelian. 

All of these statements assure that 1ri (P2 \B) is abelian. Although 
there are many results on reduced plane curves whose complements have 
non-abelian fundamental groups (see References of [8], for example), 
most of them are given by explicit equations; and the defining equations 
give much more information on curves than just the configuration of 
singularities does. Our main concern in this article is: 

(i) To find some condition on the configuration of singularities which 
assures that 1ri (P2 \B) is non-abelian. 

(ii) To look into how good the given condition in (i) is. 

To state our result, let us introduce some notation as follows: 
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(a) For x E Sing(B), we denote its Milnor number by µx. We define 
the total Milnor number of B by 

µB = L µx. 
xESing(B) 

(b) Let p be an odd prime. For B, we define a non-negative integer 
lp as follows: 

E5. 
If p = 3, la = the number of singularities of type Aak-1 (k ~ 1) and 

If p 2:'. 5, lp = the number of singularities of type Apk-1 (k 2:'. 1). 
Now we are in position to state our result. 

Theorem 0.8. Let B be a reduced plane curve of even degree with 
at most simple singularities. Suppose that there exists an odd prime p 
such that 

lp + µB > d2 - 3d + 3. 

Then 1r1 (P2 \B) is non-abelian. 

A straightforward, but interesting corollary to Theorem 0.8 is: 

Corollary 0.9. Let B be a plane curve of even degree with only 
nodes and cusps. Let a and b be the number of nodes and cusps, respec
tively. If a + 3b > d2 - 3d + 3, then 1r1 (P2 \B) is non-abelian. 

Note that Corollary 0.9 gives a nice contrast to Theorem 0.6. In fact, 
the inequality Corollary 0.9 is equivalent to 2a + 6b > 2d2 - 6d + 6; and 
the left hand side is the same as that of the inequality in Theorem 0.6. 
We give examples of plane curves satisfying the conditions in Theorem 
0.8 in §3. 

Now our next question is: 

Question 0.10. Is the inequality in Theorem 0.8 best possible? 

As we see in §2, our proof for Theorem 0.8 is based on the existence 
of non-abelian Galois covering branched along B. Hence the inequality 
does not seem to be sharp. Nevertheless, it is best possible when d = 6. 
In fact, Oka proved the following result in [23]. 

Theorem 0.11 (Oka [231). There exists a pair of irreducible sex
tic curves (B1, B2) satisfying the following conditions: 

(i) The configuration of singularities of B1 and B2 are the same; 
and they are either 3E5 or 3A1 + 6A2. 

(ii) 1r1 (P2 \B1) ~ Z /2 Z * Z /3 Z, while 1r1 (P2 \B2) ~ Z /6 z. 
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A pair of plane curves as in Example 0.3 and Theorem 0.9 is called 
a Zariski pair, precise definition of which is as follows: 

Definition 0.12 (cf. [1]). A pair of irreducible plane curves of 
the same degree, (B1, B2 ), is called a Zariski pair if (i) the configura
tion of singularities of B1 and B2 are the same, and (ii) P 2 \Bi is not 
homeomorphic to p 2 \B2 . 

As we see in §4, there are several examples for Zariski pairs of sextic 
curves satisfying the equality l3 + µB = d2 - 3d+ 3 (Theorem 4.1). All of 
these are possible candidates showing that the inequality in Theorem 0.8 
is sharp. It might be interesting to determine the fundamental groups 
of the complements of such curves. 

This article consists of five sections. In §1, we give a summary on 
Galois coverings. In §2, we explain how we prove Theorem 0.8. §3 and 
§4 are devoted to examples. In §5, we give a method to obtain sextic 
curves with the desired properties. 

Notations and conventions 

Throughout this article, the ground field is always the complex num
ber field C. We always understand (unless otherwise explicitly stated) 
by variety (resp. surface) a smooth projective variety (resp. surface) 
defined over C. We denote the rational function field of X by C(X). 

Let X be a normal variety, and let Y be a variety. Let 1r : X -+ Y 
be a finite morphism from X to Y. We define the branch locus of f, 
which we denote by ~(X/Y) or~(!), as follows: 

~(X/Y) = {y E YIU(1r- 1(y)) < deg1r}. 

For a divisor Don Y, 1r-1(D) denotes the set-theoretic inverse image 
of D, while 1r*(D) denotes the ordinary pullback. Also, SuppD means 
the supporting set of D. 

Let 1r: X-+ Y be a 'D2p covering of Y. Morphisms, /31 and /32 , and 
the variety D(X/Y) always mean those defined in §1. 

Let W be a finite double covering of a surface ~- The "canonical 
resolution" of W always means the resolution given by Horikawa in [13]. 

Let S be an elliptic surface over B. We call S minimal if the fib ration 
is relatively minimal. In this paper, we always assume that an elliptic 
surface is minimal. For singular fibers of an elliptic surface, we use the 
notation of Kodaira [14], and for its configuration, we use the notation 
as in [25]. 

Let D1, D2 be divisors. 
D1 ~ D2: linear equivalence of divisors. 
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Di f:::! D2: algebraic equivalence of divisors. 
Di f:::!Q D2: Q-algebraic equivalence of divisors. 
For simple singularities of a plane curve, we use the same notation 

as that in [2]. 

§1. Preliminaries 

1. Galois coverings of algebraic varieties 
Let Y be a normal projective variety, and let X be a normal variety 

with a finite morphism 1r: X -t Y. Then C(X) is a finite extension of 
C(Y). 

Definition 1.1. We call 1r : X -t Y a Galois covering if C(X) is 
a Galois extension of C(Y). 

Remark 1.2. Let X' be the C(X)-normalization of Y. Then X ~ 
X' over Y by the uniqueness for the C(X)-normalization of Y. 

The following proposition is fundamental in connecting branched 
coverings with 1ri(Y \ B). For its proof, see (30]. 

Proposition 1.3. Let Y be a variety, X be a normal variety with 
a finite morphism 1r : X -t Y, and let B be the branch locus of 1r. If 
C(X) is a Galois extension of C(Y) with the Galois group, G, then there 
exists a surjective homomorphism 1ri(Y \ B) -t G. 

Corollary 1.4. Let Y be a variety, and let B be a reduced divisor 
on Y. If there exists a Galois covering 1r : X -t Y branched along B 
with non-abelian Galois group, then 1ri (Y \ B) is non-abelian. 

2. V2p coverings 
Let p be an odd prime. Let 1r : X -t Y be a Galois covering. We 

call X a V 2p covering if Gal(C(X)/ C(Y)) is a dihedral group of order 
2p. In this subsection, we give a summary on V2p coverings. For details, 
see [29] and [33]. 

Let 1r : X -t Y be a V2p covering of a variety Y. Put V2p = 
(a, rla2 = 7P = (ar) 2 = 1). The invariant subfield, C(X)7", of C(X) is a 
quadratic extension of C(Y). Let D(X/Y) be the C(X)7"-normalization 
of Y. Then D(X/Y) is a double covering of Y satisfying the following 
commutative diagram: 

X 
~f32 

t 1r D(X/Y) 
,/ f3i 

y 
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where /31 : D(X/Y) --t Y is a double covering of Y and /32 : X --+ 

D(X/Y) is a p-fold cyclic covering of D(X/Y). 
With these notation, we have the following result in constructing a 

V2p covering of Y. 

Proposition 1.5. Let f : Z --+ Y be a smooth finite double cover
ing of a smooth projective variety Y. Let a be the involution determined 
by the covering transformation of f. Suppose that there exist three ef
fective divisors D1, D2, and D3 on Z satisfying the following conditions: 

(i) D1 is positive. D1 and a* D1 have no common component. 
(ii) If D1 = Ei aiDi1> denotes the decomposition into irreducible 

components, then O < ai ~ (p - 1)/2 for every i. 
(iii) D1 + pD2 ~ a* D1 + pD3. 
Then there exists a V2p covering, X, ofY such that (i) Z = D(X/Y) 

and (ii) !J.(X/Y) = !J.(Z/Y) U f(Supp(D1)). 

We modify Proposition 1.5 slightly so that it is rather convenient for 
our purpose. Let B be as in Theorem 0.8. Let f' : Z' --+ p 2 be a double 
covering with !J.(f') = B. Since B has at most simple singularities, Z' 
has at most rational double points. Let µ : Z --t Z' be the canonical 
resolution of Z' (see (2] III, §7 or (13] §2 for its definition). By the 
definition, we have the following diagram: 

Z' t... Z 
f' ! ! f 
p2 $. E 

where q is a sequence of blowing-ups and f is a double covering branched 
along the proper transform of Band (possibly empty) some irreducible 
component of the exceptional divisor of q. We put j = q of. Then: 

Proposition 1.6. Let f : Z --+ E be as above, and let a be the 
covering transformation. Suppose that there exists a pair of a positive 
divisor D and a line bundle £ satisfying the condition as follows: 

(i) If we let D = Ei aiDi be the irreducible decomposition, then 
gcd({ai},p) = 1; and D and a* D have no common component. 

(ii) D - a* D ~ p£. 
Then there exists a p-cyclic covering g : S --+ Z such that 
(i) !J.(g) c Supp(D + a* D) and 
(ii) the composition fog gives rise to a V2p covering of E. 

For a proof, see (33] Proposition 1. 1. 

Corollary 1.7. With the same notation as in Proposition 1.6, if 
Supp(D + a* D) is contained in the supporting set of the exceptional 
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divisor ofµ, then there exists a V2p covering, S', of P 2 branched along 
B. 

Proof. Let S' be the Stein factorization of q of; and we denote 
the induced morphism by 1r : S' ---4 p 2 . Since C(S') ~ C(S) and 
C(P2 ) ~ C(I:), 7r is a D2p covering of p 2 . Hence it is enough to show 
D.(1r) = B. By the assumption in the construction of S, the branch locus 
of f o g is contained in the supporting set of the proper transform, B, of 
B and the exceptional divisor of µ. As the the image of the exceptional 
set of q is a subset of Sing(B), we have our statement. Q.E.D. 

§2. A sketch of a proof of Theorem 0.8 

We keep the same notation as those in §1. The goal of this section 
is to show the following theorem. 

Theorem 2.1. Let B be as Theorem 0.8. Suppose that there exists 
an odd prime p such that 

lp + µB > d2 - 3d + 3. 

Then there exists a V 2p covering branched along B. 

Note that Theorem 0.8 easily follows from Theorem 2.1 and Corol
lary 1.4. To prove Theorem 2.1, it is enough to show that the inequality 
assures the existence of a pair of a divisor and a line bundle, (D, .C), on 
Z satisfying the conditions in Proposition 1.6 and Corollary 1. 7. The 
rest of this section is devoted to it. 

Let NS(Z) be the Neron-Severi group of z. As 1r1 (P2 ) = {1} and B 
has at most simple singularities, by [3], [4] and [6], 1r1(Z) = {l}. Hence 
H 2 (Z, Z) is a unimodular lattice with respect to the intersection pairing. 
In particular, NS(Z) = Pic(Z) and it is a sublattice of H 2 (Z, Z). Let 
T be the subgroup of NS(Z) generated by the pull-back of a line of P 2 

and irreducible components of the exceptional divisor of µ. As we can 
easily see, T has a direct decomposition 

T= ZL(f; EB Tx, 
xESing(B) 

where Lis the pull-back of a line of p 2 and Tx is the subgroup of NS(Z) 
generated by irreducible components of the exceptional divisor arising 
from the singularity f'-\x). Note that the direct decomposition as 
above is orthogonal with respect to the intersection pairing. 

Suppose that the effective divisor D as in Corollary 1. 7 exists. Then 
this implies that NS(Z)/T has a p-torsion. In constructing V2p cover
ings, what is important is that the converse of this holds. 



306 H. Tokunaga 

Theorem 2.2. If NS(Z)/T has a p-torsion, then there exists an 
efjective divisor D and a line bundle on £ satisfying the conditions in 
Proposition l.6 and Corollary 1.7. 

We give here a rough explanation. For details, see [33]. 
Let TH = {D E NS(Z)lnD ET for some n EN} and let Tv = 

Homz(T, Z). Then: 
(i) T.L.L = TH and TH /T ~ (NS(Z)/T)tor· Here for a subgroup, M, 

of H 2 (Z, Z), we denote its orthogonal complement with respect to the 
intersection pairing by M .L. 

(ii) By using intersection pairing, one can identify TH with a sub
group of Tv. Hence TH /T C Tv /T ~ Z /2 ZEB EBxESing(B) T;( /Tx. Also, 
as Tv 0 Q = T 0 Q, we can use a Q-divisor in Tx 0 Q as a representative 
for an element in Tv /T. For example, if the singularity xis of An type, 
then Tv /T ~ z /n z and we can choose a representative of a generater 
of Tv /T as follows: 

where if n is even, 

and if n is odd, 

_l_D 
n+ 1 x, 

Dx = n(81 - 8n) + (n - 1)(82 - 8n-1) + · · · 
n-l n+l 

+ -2-(e(n-1)/2 - e(n+3)/2) + -2-e(n+l)/2, 

where 8i's are irreducible components of the exceptional divisor labeled 
in such way that eiei+l = 1 (1 :::; i :::; n - l). Note that a*8i = 8n+l-i 
with respect to the covering transformation of f. 

Let £' be any element of NS( Z) that gives rise to a p-torsion element, 
a, in NS(Z)/T. Then we may assume that £' ETH; and we have 

a= ( 0:L, (ax)xESing(B)), 0:£ E Z /2 Z, O:x E T; /Tx. 

Since PIU(T;( /Tx) if and only if either x is of type Apk-1 or x is of 
type E6 and p = 3, we may assume that ax = 0 for other type of 
singularities. For x with type Avk-1, by (ii) as above, we may assume 
that ax = i/pDx mod T for some O < i < p. By the above explicit 
formula, we can show ax = l/p(D' - a* D') mod T, where D' is an 
effective divisor satisfying the condition (i) in Proposition 2.1. For x with 
type EB, the situation is similar (see [30] or [33]). Thus, by replacing 
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C' if necessary, we can see there exists an effective divisor D and a line 
bundle C on Z satisfying the conditions in Proposition 1.6 and Corollary 
1.7. 

We now go on to show that the inequality in Theorem 0.8 implies 
the existence of p-torsion. 

Lemma 2.3. Let bi(Z) be the i-th Betti number of Z. Then we 
have 

b2(Z) = d2 - 3d + 4. 

Proof. The statement easily follows from Lemma 6, [13] and the 
Noether formula. 

In the following, we make use of some Nikulin theory ([21]). This 
argument is a modification of Miranda-Persson's in §4, [18]. A similar 
argument is also found in (35]. 

Suppose that there exists no p-torsion in TJ.J. /T. Then 

Sp(Tv /T) ~ Sp ( (TJ.J.) v /TJ.J.) , 

where Sp( G) denote the p-Sylow group of G. On the other hand, by 
Proposition 1.2 in [11], we have 

(TJ.) V /TJ. ~ (TJ.J.) V /TJ.J.. 

Hence the number of generators, h, of Sp(GrH) ~ rankTJ. = b2 (Z) -
rankT = d2-3d+4-(µB+l). On the other hand, by the assumption we 
have li 2:: lp > d2 -3d+3-µB. This leads us to a contradiction. Q.E.D. 

§3. Examples 

In this section, we give some examples of plane curves satisfying the 
inequality in Theorem 0.8. Since 11"1 (P2 \B) is always abelian for conics, 
we start with the case of deg B = 4. 

Example 3.1. degB = 4. In this case, d2 - 3d + 3 = 7. 
(i) Let B be a quartic curve with 3A2 singularities. Then µB = 6, 

la = 3. Hence the inequality in Theorem 0.8 is satisfied. This implies 
that 71"1 (P2 \B) is non-abelian. 

As it is well-known, 7r1(P2 \B) is a finite non-abelian group of order 
12. In fact, 11"1 (P2 \B) ~ Ba(P1) (see (37] or [8]) 

(ii) Let B be a quartic curve having two irreducible components; 
· one is a cuspidal cubic, C, and the other is a tangent line, l, at an 
inflection point of C. In this case, the singularities of B are of type As 
and A2. Hence µB = 7, la = 2. Hence the inequality in Theorem 0.8 
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is satisfied; and 1r1 (P2 \B) is non-abelian. In [19], one can find more 
detailed description. 

We now go on to the case of deg B = 6. 

Example 3.2. deg B = 6. In this case, d2 - 3d + 3 = 21. There 
exists a sextic curve B for every case in the following table. In each 
case, the inequality in Theorem 0.8 is satisfied. Hence 1r1 (P2 \B) is 
non-abelian. 

types of singularities of B µB la 
1 6A2 + 4A1 16 6 
2 3E6 + A1 19 3 
3 2E6 + 2A2 + 2A1 18 4 
4 E6 +4A2 + 3A1 17 5 
5 E6 +A5 +4A2 19 6 
6 E6 +Au +A2 19 3 
7 E6 + As + A3 + A2 19 3 
8 E6 + As + 2A2 + A1 19 4 
9 E6 + A5 + A4 + 2A2 19 3 

10 D5 +As +3A2 19 4 
11 E6 + A5 + A3 + 2A2 + A1 19 4 
12 E6 +2A5 +A3 19 3 
13 D5 + 2A5 + 2A2 19 4 
14 D4 + 3A5 19 3 
15 D4 +An +2A2 19 3 
16 3A5 + 4A1 19 3 

What is problem here is the existence of curves as above. We here 
explain it for No. 1, 2 and 15. For the others, we give a sketch how we 
show it in §5. Also, for those with µB = 19, one can check it in [36] 

No. 1: 6A2 + 4A1. One obtains such a sextic curve as a generic 
plane section of the discriminant variety, Disc (H0 (p1, 0(4)), 0(4)) (see 
[10] for details). 

No. 2, 16: 3E6 + A1 and 3A5 + 4A1. These two cases are closely 
related to each other. Let C be a nodal cubic curve and let li, b, and la 
be three tangent lines at three inflection points of C ( C has exactly three 
inflection points). A sextic curve for No. 16 is given by C + li + l2 + la. 
Next, consider a Cremona transformation given by these three tangent 
lines. Then the image of C gives a sextic curve for No. 2. 

Remark 3.3. By Proposition 5.6 in [34] and [23], one can see that 
sextic curves for No. 1 - 10 are irreducible torus curves of type (2, 3) 
(see [23] for torus curves). It might be interesting to study them sys
tematically as in [23]. 
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Remark 3.4. The author does not know any single example of B 
with deg B 2:: 8 satisfying the inequality in Theorem 0.8. The condition 
may be too strong for curves of higher degree. In fact, in [26], Sakai 
proved: 

Theorem 3.5 (Sakai). Let b be the number of cusps. Then 

b < ~d2 - ~d. 
- 16 8 

Suppose that B has only cusps. Then Sakai's inequality implies that 
there is no B with 3b > d2 - 3d + 3 if d 2:: 29. Hence our inequality is too 
strong for curves of higher degree. This is something one can expect, 
since Theorem 0.8 comes from Theorem 2.1, which gives very rough 
information on 1r1 (P2 \B). Nevertheless, as we see in next section, the 
inequality in Theorem 0.8 is very nice estimate for sextic curves when 
p= 3. 

§4. 4 Some sextic curves with l3 + µB = 21 

We look into what happens for sextic curves when the equality l3 + 
µB = 21 holds. For such cases, as we have already seen Theorem 0.9, we 
are not able to determine whether 1r1 (P2 \B) is abelian or not. In this 
section, we give other examples of Zariski pairs with equality la+ µB = 
21. More precisely, we give two kinds of sextic curves, B1 and B2, such 
that (i) both of them have the same configuration of singularities, (ii) 
B1 is the branch locus for some V 6 covering, while B2 can never be. 
This means that V 6 is a homomorphic image of 1r1 (P2 \B1), while there 
is no homomorphism from 1r1(P2 \B2) to V6. Now we give a list for the 
configurations of singularities. 

Theorem 4.1. For each case in the following table, there exists a 
pair of irreducible sextic curves (B1 , B 2 ) with the properties (i) and (ii) 
as above. 

Configuration of singularities of B 
1 E6 + As + A2 + 2A1 
2 E6 + A5 + 2A2 + 2A1 
3 E6 +4A2 +2A1 
4 2E6 +A5 +A1 
5 2E6 + 2A2 + A1 

Remark 4.2. (i) Note that No 2 is not contained in the examples 
in [31] and [32]. We show that the example does exist in §5. 

(ii) For all cases, one of geometric differences between B1 and B2 
is the existence of a conic, C, as in Example 0.3. Namely, for B1 there 
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exists a conic, C, with properties (i) CnB1 C Sing(B1); and the type of 
singularities in C n B1 are either A3k-l or EB, and (ii) the intersection 
multiplicity at A3k-l (resp. EB) is 2k (resp. 4), while there exists no 
such conic for B 2 • In [9], Degtyarev conjectured that there exist exact 
one rigid isotopy class for a sextic curve having the configuration of 
singularities No 1, 2 and 4 in Theorem 4.1. Our examples show that his 
conjecture is false for these cases. 

§5. Existence of sextic curves 

The main purpose of this section is to explain how one gets sextic 
curves with the prescribed properties as in §3 and §4. The method that 
we explain here is the one in [31] and [32]. 

Let cp : £ -t p 1 be an elliptic K3 surface with a section s0 , i.e., 
a Jacobian elliptic K3 surface. It is well-known that such surfaces are 
always obtained in the following way( cf. [17]): 

Let F4 be the Hirzebruch surface of degree 4, i.e., F4 = P(Op1 EB 
Op 1 ( 4)). Let .6.0 and .6.= be the negative and positive section, respec
tively. Let T be a reduced divisor on F4 such that (i) T ~ 3.6.= and 
(ii) T has at most simple singularities. As .6.0 + T ~ 3.6.= ~ 4.6.0 + 12/, 
where f denotes the class of a fiber F4 -t p1, there exists a double cov
ering, £', of F 4 branched along .6.0 + T. Let µ : £ -t £' be the canonical 
resolution, which satisfies the following diagram: 

where E -t F4 is a composition of blowing-ups so that the branch locus 
of£ -t E is smooth. Then £ is a K3 surface with a Jacobian elliptic 
fibration induced by the ruling F 4 - p 1; and its section s0 comes from 
D.o. 

We can also explain the above construction in another way as fol
lows: 

Since cp : £ -t p 1 is a Jacobian elliptic fibration, the generic fiber 
of cp is an elliptic curve, £c(P1), over C(P 1) (so gives a reference point). 
Considering so as the zero, we can equip £c(p1) with additive group 
structure. Let a denote the inverse morphism with respect to the group 
law on £c(pl)- It induces a fiber preserving involution on£, which we 
also denote by a. Consider the quotient surface £/(a). £/(a) is nothing 
but E in the above diagram, and it is not minimal in general. Blowing 
down ( -1) curves contained in fibers not meeting .6.0 in an appropriate 
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order, we have F4. Let MW(£) be the Mordell-Weil group of£, i.e., the 
group of sections of t.p. Now we can easily see: 

Lemma 5.1. (i) .6.o + T is the image of the locus of 2-torsions, 
T2 ( £), with respect to the group law. 

(ii) T is irreducible if and only if the Mardell-Weil group, MW(£), 
has no 2-torsion point. 

We now consider when one can blow down E(= £/(a-)) to P 2 , not 
to F4, in such a way that the image of T2(£) is a sextic curve. There 
are several ways to do it ([24]), and we here explain one of them. 

Lemma 5.2. lf t.p: £-• P 1 has a singular fiber of type In (n 2:: 6), 
then one can blow down E to p 2 ; and the image ofT2 (£) is a sextic curve 
with an E6 singularity. 

Proof. The action of er on an In fiber is as follows (cf. [5], [20]): 
Label irreducible components of an In fiber in such a way that 

8081 = ... = 8n-180 = 1, 80s0 = 1. 

n: odd 

n: even 
(Figure 1) 

Then cr*0i = 0n-i and cr*80 = 8 0 . Hence the image of an In fiber 
in Eis a tree of ([n/2] + 1) p 1's, Ei (i = 0, ... , [n/2]), such that 

EiEi+l = 1, ( 0 ~ i ~ [i] - 1), Eoso = l, 

where so is the image of so, and 

E5 = E[n/21 = -1, E'f = -2, 1 < i < [!!:.] -1. - - 2 
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In blowing down E to F4, we first blow down E[n/2], then E[n/2]-1' 
E[n/2]-l and so on. In order to blow down E to P 2 , we do it in a 
different way. Namely, we first blow down Eo, then E1 and E2 in this 
order. Then s0 becomes a (-1) curve; and one can blow down it to 
a point, x. Then we blow down E[n/2], E[n/2]_ 1 , ... , E4 in this order. 
Blowing down ( -1) curves in the other fibers in the same way as we 
do in blowing down E to F4, we have P 2 . Since (i) the image of T2(E) 
has an E6 singularity at x, (ii) the image of a general fiber for elliptic 
fibration is a line through x, we infer that the image of T2(E) is a sextic 
curve, Be:, with an E 6 singularity. Q.E.D. 

Remark 5. 3. In a similar manner, one can also blow down E to 
p 2 if <p has 312 (resp. 14 and J2 ) singular fibers. In this case, the 
corresponding triple point is D4 (resp. Ds). 

Corollary 5.4. Be: is irreducible if and only if MW([) has no 
2-torsion point. 

Definition 5.5. We call the singular fibers as in Lemma 5.2 and 
Corollary 5.3 the preferred fibers. 

As one can easily see from its construction Be:, the type of a singu
larity of Be: other than E6, D4 and Ds as in Lemma 5.2 and Remark 
5.3 has something to do with that of the corresponding singular fiber of 
<p. We give a table for its correspondence ( cf. [17]): 

Lemma 5.6. The relation between the type of a non-preferred sin
gular fiber of <p and that of the corresponding singularity of Be: is as 
follows; ~-'--------~-~-~-~~--r------~r-----=---, 

Type of a singular fiber In (n ~ 2) Ii I~ 
Type of a singular point An-1 a smooth point Dn+4 

II II* III III* IV IV* 
a smooth point Es 

With the argument so far, the existence of the sextic curves as in 
Example 3-15 is reduce to that of Jacobian elliptic K3 surfaces with the 
prescribed configuration of singular fibers. Here we give a table for that. 

Lemma 5. 7. A sextic curve with singularities as in one of the left 
column exists if a Jacobian elliptic K3 surface with the configuration of 
singular fibers in the same row of the right column exists. 
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3 2E6 + 2A2 + 2A1 IB, IV*, 213, 212 
4 EB+ 4A2 + 3A1 16, 413, 312 
5 EB +A5 +4A2 216, 4h 
6 EB +Au +A2 h, Ii2, l3, 3li 
7 EB + As + A3 + A2 16, Jg, J4, J3, 2li 
8 EB + As + 2A2 + Ai IB, lg, 213, h, Ii 
9 EB + A5 + A4 + 2A2 216, J5, 2h, Ii 

10 D5 +As +3A2 l4, I2, Jg, 313 
11 EB + A5 + A3 + 2A2 + Ai 216, J4, 213, h 
12 EB +2A5 +A3 316, J4, 2li 
13 D5 + 2A5 +2A2 I2, J4, 216, 213 
14 D4 + 3A5 312, 316 
15 D4+A11 +2A2 312, Ii2, 2J3 

For No. 4 - 15, such elliptic K3 surfaces exist by [18]. For No. 3, 
one obtains it in the same way as in Lemma 4.2, [32]. Hence, by Lemma 
5.7, there exist sextic curves for No. 3 - 15 in Example 3.2. 

Now we go on to Theorem 4.1. An easy but key lemma to obtain a 
pair of sextic curves having the same configuration of singularities is as 
follows: 

Lemma 5.8. Let Ei and £2 be Jacobian elliptic K3 surfaces such 
that 

(i) the configurations of non semi-stable singular fibers of Ei and E2 
are the same, and 

{ii) the configurations of semi-stable singular fibers of Ei is h, In 1 , ••• , 

In, (ni ~ 2), r Ii, while that of E2 is I1, In 11 ••• ,In, (ni ~ 2), (r - 1) 11. 
Then the configuration of singularities of Be1 is the same as that of 

Be2· 

Proof. From Lemmas 5.2 and 5.6, the statement follows. Q.E.D. 

Corollary 5.9. Let <pi : £1 - P 1 and <p2 : E2 - P 1 be elliptic 
K3 surfaces having the configurations of singular fibers as in the table 
below. Then the configurations of singularities of Be1 and Be2 are the 
right column in the table. 

Singular fibers of £1 Singular fibers of £2 Singularities of Bt:- (i = 1, 2) 
1 16, Jg, Ia, 2h, 2Ii h, lg, Ia, 2h, Ii E6 + As + A2 + 2A1 
2 216, 2Ia, 2h, 2h h, 16, 2Ia, 2h, Ii E6 + As + 2A2 + 2A1 
3 h, 4Ia, 2h, 211 h, 4la, 2h, Ii E6 +4A2 + 2A1 
4 2h, IV*, I2, 2h h, IV*, I2, h 2E6 +As +A1 
5 h, IV*, 2la, h, 2h h, IV*, 2la, I2, Ii 2E6 + 2A2 + A1 

In order to prove Theorem 4.1, the following is crucial. 
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Proposition 5.10. Let Be1 and Be2 as in Corollary 5.9. There 
exists a V 6 covering branched along Be; if and only if MW(£i) has a 
3-torsion. 

We give here an idea for our proof. Let Tip; be the subgroup of 
NS(£i) generated by the zero section, a general fiber and irreducible com
ponents of singular fibers not meeting the zero section. Then MW(£i) ~ 
NS(£i)/Tip by (27]. Hence this indicates our proof is done in a similar 
way to that of Theorem 2.1. For details, see (31], [32]. 

Now Theorem 4.1 easily follows from the below: 

Proposition 5.11. For each case in Corollary 5.9, there exist el-
liptic surfaces £1 and £2 satisfying the following properties: 

(i) MW(£i) has no 2-torsion. In particular, Be, is irreducible. 
(ii) MW(£2) has no 3-torsion. 
(iii) MW(£1) has a 3-torsion. 

Proof. For all the statements except those for No. 2, one can find 
their proof in [31] and (32]. Hence we give a proof for No. 2 only. By 
(18], there exists £2 and it satisfies (i) and (ii) by Lemma 1.7 in (32]. 
For £1, we construct it in the following way: Let 'lj; : Y - p 1 be a 
rational elliptic surface with singular fibers 3/3, 12, 11. Let v1 and v2 
be points of p 1 such that 'lj;-1(vi) (i = 1,2) are J3 fibers. Let g be a 
degree 2 map from P 1 to P 1 branched at v1 and v2 • Consider an elliptic 
K3 surface, £1, obtained as the pull-back surface of Y by g, i.e., the 
relatively minimal smooth model of the fiber product Y x 9 p 1 . Then: 

Claim. MW(£1) has (i) a 3-torsion, and (ii) no 2-torsion. 

Proof of Claim. Since MW(Y) has a 3-torsion (see [25], for exam
ple), so does MW(£1). Since the covering transformation of g commutes 
with the inverse morphism, a, T2(£1) is a double covering of T2(Y), and 
it is branched at two points on T2(Y). Hence T2(£1) is irreducible. In 
particular, MW(£1) has no 2-torsion by Corollary 5.4. Q.E.D. 

Thus we have £1 with the desired properties. 

Acknowledgment: The author expresses gratitude to the referee for 
his/her comments about the first version of this article. 
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