Cobordism of non-spherical knots

Vincent Blanlœil

Abstract

. -We give a survey of the theory of cobordism for knots, first for algebraic knots and after for fibered non-simple knots. We also explain the construction of the first examples of cobordant but not isotopic non-spherical knots.-

§1. Introduction

In the 60's M. Kervaire [10] and J. Levine [12] have developed a theory of cobordism for spherical knots. We present a theory of cobordism for algebraic knots developed with F. Michel in [2], and more generaly for non-spherical knots. One motivation for this theory is the study of the topology of isolated singularities of complex hypersurfaces.

Let $f: \mathbf{C}^{n+1}, 0 \rightarrow \mathbf{C}, 0$ be a holomorphic germ with an isolated singularity at the origin. The orientation preserving homeomorphism class of the pair ($D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}$) does not depend of the choice of ε small, it is the topological type of f. The diffeomorphism class of the oriented pair $\left(S_{\varepsilon}^{2 n+1}, K_{f}\right)$ where $K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1}$ is the algebraic knot associated to f. By Milnor's conic structure theorem [16] the algebraic knot associated to f determines the topological type of f, so we are interested in studying the topology of algebraic knots.

Recall that two algebraic knots K_{0} and K_{1} are cobordant (following

Fig. 1. Cobordism between K_{0} and K_{1}.
M. Kervaire and J. Levine) if there exists a manifold K and an embed$\operatorname{ding} \Phi: K \times[0,1] \rightarrow S^{2 n+1} \times[0,1]$ such that $\Phi(K \times\{0\})=K_{0}$ and $\Phi(K \times\{1\})=-K_{1}$ where $-K_{1}$ is the knot with the reversed orientation.

Isotopy implies cobordism, moreover D.T. Lê [11] showed that for one dimensional algebraic knots cobordism implies isotopy. This is not true in higher dimensions since P. Du Bois and F. Michel [6] have constructed for all $n \geq 3$ some ($2 n-1$)-dimensional algebraic spherical knots which are cobordant but not isotopic.

We can also study the cobordism in a general context. More precisely, a knot is a ($n-2$)-connected, oriented, smooth, closed, $(2 n-1)$ dimensional submanifold of $S^{2 n+1}$. A spherical knot is a knot abstractly homeomorphic to $S^{2 n-1}$. For any knot K, there exists a smooth, compact, oriented $2 n$-submanifold F of $S^{2 n+1}$, having K as boundary ; such a manifold F is called a Seifert surface for K. For any $2 n$ dimensional oriented smooth submanifold F of $S^{2 n+1}$, we denote by G the quotient of $\mathrm{H}_{n}(F)^{1}$ by its Z-torsion. The Seifert form associated to F is the bilinear form $A: G \times G \rightarrow \mathbf{Z}$ defined as follows; let (x, y) be in $G \times G$, then $A(x, y)$ is the linking number in $S^{2 n+1}$ of x and $i_{+}(y)$, where $i_{+}(y)$ is the cycle y "pushed" in ($S^{2 n+1} \backslash F$) by the positively oriented vector field normal to F in $S^{2 n+1}$. By definition a Seifert form for a knot K is the Seifert form associated to a Seifert surface for K. A simple knot is a knot which has a $(n-1)$-connected Seifert surface. A knot K is a simple fibered knot if there exists a differentiable fibration $\varphi: S^{2 n+1} \backslash K \rightarrow S^{1}$, being trivial on $U \backslash K$, where U is a "small" open tubular neighbourhood of K, and having ($n-1$)-connected fibers, the adherence of which are Seifert surfaces for K. Furthermore, Milnor's theory of singular complex hypersurfaces implies that algebraic knots are simple fibered knots

In $\S 2$ we define a new equivalence relation on the set of integral bilinear forms of finite rank called algebraic cobordism, in $\S 3$ we give a classification of simple fibered knots up to cobordism using algebraic cobordism of their Seifert forms, in $\S 4$ we explain how one can develop a theory of cobordism for fibered knots not necessary simple and in $\S 5$ we give the construction of cobordant but not isotopic non-spherical fibered knots.

§2. Algebraic cobordism

We define a new equivalence relation, called algebraic cobordism on the set \mathcal{A} of bilinear forms defined on free \mathbf{Z}-modules G of finite rank.

[^0]Let ε be +1 or -1 . If A is in \mathcal{A}, let us denote by A^{T} the transpose of A, by S the ε-symmetric form $A+\varepsilon A^{T}$ associated to A, by $S^{*}: G \rightarrow G^{*}$ the adjoint of $S\left(G^{*}\right.$ being the dual $\operatorname{Hom}_{\mathbf{Z}}(G ; \mathbf{Z})$ of $\left.G\right)$, by $\bar{S}: \bar{G} \times \bar{G} \rightarrow \mathbf{Z}$ the ε-symmetric non degenerated form induced by S on $\bar{G}=G_{/ K e r} S^{*}$. A submodule M of G is pure if $G_{/ M}$ is torsion free. If M is any submodule of G let us denote by M^{\wedge} the smallest pure submodule of G which contains M. In fact M^{\wedge} is equal to $(M \otimes \mathbf{Q}) \cap G$. For a submodule M of G we denote by \bar{M} the image of M in \bar{G}.

Definition 1. Let $A: G \times G \rightarrow \mathbf{Z}$ be a bilinear form in \mathcal{A}. The form A is Witt associated to 0 if the rank m of G is even and if there exists a pure submodule M of rank $m / 2$ in G such that A vanishes on M, such a module M is called a metabolizer for A.

Definition 2. Let $A_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms in \mathcal{A}. Let G be $G_{0} \oplus G_{1}$ and A be $\left(A_{0} \oplus-A_{1}\right)$. The form A_{0} is algebraically cobordant to A_{1} if there exists a metabolizer M for A such that \bar{M} is pure in \bar{G}, an isomorphism φ from $\operatorname{Ker} S_{0}^{*}$ to $\operatorname{Ker} S_{1}^{*}$ and an isomorphism θ from Tors(Coker S_{0}^{*}) to Tors(Coker S_{1}^{*}) which satisfy the following two conditions:
(1) $M \cap \operatorname{Ker} S^{*}=\left\{(x, \varphi(x)) ; x \in \operatorname{Ker} S_{0}^{*}\right\}$,
(2) $d\left(S^{*}(M)^{\wedge}\right)=\left\{(x, \theta(x)) ; x \in \operatorname{Tors}\left(\operatorname{Coker} S_{0}^{*}\right)\right\}$, where d is the quotient map from G^{*} to Coker S^{*}.

We have the following theorem:
Theorem 1 ([2, Theorem 1 p. 33]).
Algebraic cobordism is an equivalence relation on the set \mathcal{A}.
Remark. In the previous definition $S_{i}=A_{i}+\varepsilon A_{i}^{T}$ is the intersection form on $\mathrm{H}_{n}\left(F_{i}\right)$, $\operatorname{Ker} S_{i}^{*}$ is the image of $\mathrm{H}_{n}\left(K_{i}\right)$ in $\mathrm{H}_{n}\left(F_{i}\right)$ and Coker S_{i}^{*} is isomorphic to $\tilde{\mathrm{H}}_{n-1}\left(K_{i}\right)$. So for spherical knots, both $\operatorname{Ker} S_{i}^{*}$ and Coker S_{i}^{*} are zero, and conditions c. 1 and c. 2 vanish ; this corresponds to the classical situation of spherical knots studied by M. Kervaire and J. Levine.

§3. Cobordism of simple fibered knots

We have the following theorem:
Theorem 2 ([2, Theorem B p. 31]).
If $n \geq 3$, two algebraic knots, of dimension $2 n-1$ are cobordant if and only if they have algebraically cobordant Seifert forms.

This theorem is a consequence of the two following theorems:

Theorem 3 ([2, Theorem 2^{\prime} p. 34]).
Let K_{0} and K_{1} be two simple fibered knots having F_{0} and F_{1} as ($n-1$)-connected fibers of differentiable fibrations. If K_{0} is cobordant to K_{1}, then the Seifert forms A_{0} and A_{1}, associated respectively to F_{0} and F_{1}, are algebraically cobordant.

Proof. We have to construct a metabolizer which fulfills the conditions of definition 2 . Let N be the compact, closed, oriented submanifold of $S^{2 n+1} \times[0,1]$ obtained by gluing together (along their boundaries) F_{0}, the "tube" $\Phi(K \times[0,1])$ of the cobordism and F_{1}. By the classical obstruction theory it is easy to see that there exists a submanifold W of $S^{2 n+1} \times[0,1]$ such that $\partial W=N$.

Fig. 2. The manifold W.
Let $i: \mathrm{H}_{n}\left(F_{0}\right) \oplus \mathrm{H}_{n}\left(F_{1}\right) \rightarrow \mathrm{H}_{n}(W)$ induced by the inclusions, and $M=\operatorname{Ker} i$ be the submodule of all the n-cycles of $\mathrm{H}_{n}\left(F_{0}\right) \oplus \mathrm{H}_{n}\left(F_{1}\right)$ which are boundaries in $\mathrm{H}_{n}(W)$. We are going to prove that $A=A_{0} \oplus-A_{1}$ vanishes on M. Let $[a]$ and $[b]$ be two homology classes in M, thus there exists two $(n+1)$-chains x and y in W such that $\partial x=a$ and $\partial y=b$. Let i_{+}be the positively oriented normal vector field to W in $S^{2 n+1} \times[0,1]$. The intersection of x and $i_{+}(y)$ is zero, as shown in the following picture.

Fig. 3. Moving chains in W along i_{+}.
Hence the linking number in $S^{2 n+1} \times\{0,1\}$ of a and $i_{+}(b)$ is zero. But this linking number is, by definition, equal to $A(a, b)$, so $A(a, b)=0$ and $A_{\mid M} \equiv 0$.

To prove that M gives the algebraic cobordims, we must show that it fulfills the conditions of definition 2 , this is quite hard and we refer to $[2, \S 3]$ for details.
Q.E.D.

Using classical methods of surgery, we will prove
Theorem 4 ([2, Theorem 3 p. 34]). Let n be greater than or equal to 3 and let K_{0} and K_{1} be two $2 n-1$ dimensional simple knots. If the Seifert forms A_{0} and A_{1}, associated to some ($n-1$)-connected Seifert surfaces F_{0} and F_{1} of K_{0} and K_{1}, are algebraically cobordant then K_{0} is cobordant to K_{1}.

Proof. First we do the connected sum, denoted by \mathcal{S}, of the two spheres in which K_{0} and K_{1} are imbedded, such that $K_{0} \coprod K_{1}$ is a knot in this sphere \mathcal{S}. We also do the connected sum of the Seifert surfaces F_{0} and F_{1} in \mathcal{S}, such that this connected sum denoted by F is a Seifert surface for $K_{0} \coprod K_{1}$. Let M be a metabolizer for $a=A_{0} \oplus A_{1}$ as in definition 2. There exists (cf. [2, p. 36]) a basis $\mathcal{B}=\left\{m_{i}, m_{i}^{*} ; i=1, \ldots, s+r\right\}$ of $\mathrm{H}_{n}\left(F_{0}\right) \oplus \mathrm{H}_{n}\left(F_{1}\right)$ such that:
(1) $\left\{m_{i} ; i=1, \ldots, s+r\right\}$ is a basis of M,
(2) $\left\{m_{i}, m_{i}^{*} ; i=s+1, \ldots, s+r\right\}$ is a basis of $\operatorname{Ker} S^{*}$ and $\left\{m_{i}^{*} ; i=s+1, \ldots, s+r\right\}$ is a basis of $\operatorname{Ker} S_{0}^{*}$,
(3) the submodules $\left\langle m_{i}, m_{i}^{*}\right\rangle, i=1, \ldots, s+r$; are orthogonal for S, i.e.

$$
\mathrm{H}_{n}\left(F_{0}\right) \oplus \mathrm{H}_{n}\left(F_{1}\right)=\bigoplus_{1 \leq i \leq s+r}^{\perp}\left\langle m_{i}, m_{i}^{*}\right\rangle
$$

(4) when $i=1, \ldots, s, S\left(m_{i}, m_{i}^{*}\right)=a_{i}$ with $a_{i} \in \mathbf{Z}$.

Next we do embedded surgeries in $D^{2 n+2}$ on \mathcal{B} at once, this gives a submanifold \tilde{F} of $D^{2 n+2}$ with $\partial(\tilde{F})=K_{0} \amalg K_{1}$. Moreover we have $H_{*}\left(\tilde{F}, K_{i}\right)=0$ for $i=0,1$, so according to the h-cobordism theorem (cf. [15]) \tilde{F} gives the cobordism between K_{0} and K_{1}.
Q.E.D.

Remark. In Theorem 4 the definition of the algebraic cobordism of the Seifert forms gives a strategy to do surgery. Consider the case of a non spherical knot which is the disjoint union of two copies of $S^{2 n-1}$ with $S^{2 n-1} \times[0,1]$ as a Seifert surface. This knot is cobordant to itself. If we do the connected sum of the two copies of $S^{2 n-1} \times[0,1]$ then the metabolizer we obtain is of rank 2 with $\{\mathrm{a}, \mathrm{b}\}$ as generators (see figure 4 below). There are two possible surgeries, as shown in the following picture, one proves the cobordism, the other does not.

But the cycle b is in $\operatorname{Ker} S^{*} \cap M$ and fulfils conditions of the algebraic cobordism between the two Seifert forms, and the cycle a does not.

Fig. 4. Two surgeries are possible.

§4. Cobordism of fibered knots

J. Levine (cf. [12, lemma 4 p. 234]) proved: Every ($2 n-1$)-spherical knot is cobordant to a simple spherical knot. We do the same in the case of non-spherical knots.

Proposition 1. Every knot K is cobordant to a simple knot.
Proof. First we choose a Seifert surface F for K, if F is not ($n-1$)connected then we do embedded surgeries, in a ($2 n+2$)-disk, on F to obtain a ($n-1$)-connected Seifert surface F^{\prime} for K. (We refer to [4] for details.)
Q.E.D.

Since we can realize an integral matrix as a Seifert form for a simple knot of dimension greater than or equal to 5 , we have the following:

Proposition 2. Let $n \geq 3$. Let K be $a(2 n-1)$-knot and A a Seifert form for K. Then K is cobordant to simple knot K^{\prime} which has A as Seifert matrix.

Proposition 1 allows us to prove the following theorems, which are the analogue of theorems 3 and 4.

Theorem 5. Let $n \geq 3$. Let K_{0} and K_{1} be two $(2 n-1)$-knots. If K_{0} and K_{1} have algebraically cobordant Seifert forms, then K_{0} and K_{1} are cobordant.

Theorem 6. Let $n \geq 3$. Let K_{0} et K_{1} be two $(2 n-1)$-fibered knots, with A_{0} and A_{1} as Seifert forms. If K_{0} and K_{1} are cobordant then A_{0} is algebraically cobordant to A_{1}.

On top of that we have:
Theorem 7. Let $n \geq 3$. Let K_{0} and K_{1} be two $(2 n-1)$-fibered knots. The knots K_{0} and K_{1} are cobordant if and only if their Seifert forms are algebraically cobordant.

Furthermore, having algebraically cobordant Seifert forms is also a necessary condition of cobordism for knots when n is 1 or 2 . So we obtain, without any restriction of dimension, a "Fox-Milnor" relation (see [8]) for the Alexander polynomials of cobordant knots.

Let K be a $2 n-1$ dimensional knot, and $\varepsilon=(-1)^{n}$. One can associate a polynomial $\Delta \in \mathbf{Z}[X]$ to any Seifert surface F for the knot K, defined by: $\Delta(X)=\operatorname{det}\left(X A+\varepsilon A^{T}\right)$, where A is the Seifert form associated to F. Such a polynomial Δ is called a Alexander polynomial for the knot K. Changing the Seifert surface to another multiplies Δ by $\pm X^{m}$ with m in \mathbf{Z}. For a polynomial γ in $\mathbf{Z}[X]$ we define the polynomial γ^{*} by: $\gamma^{*}(X)=X^{\operatorname{deg} \gamma} \gamma\left(X^{-1}\right)$.

Proposition 3. Let K_{0} and K_{1} be two cobordant $2 n-1$ dimensional knots. If Δ_{0} and Δ_{1} are Alexander polynomials for K_{0} and K_{1}, then there exists γ in $\mathbf{Z}[X]$ such that: $\gamma \gamma^{*}= \pm \Delta_{0} \Delta_{1}$.

Proof. We denote by F_{0} and F_{1} two $(n-1)$-connected Seifert surfaces for K_{0} and K_{1}, and by A_{0} and A_{1} the associated Seifert forms. The knots K_{0} and K_{1} are cobordant so proposition (3.10) implies that the form $A=A_{0} \oplus-A_{1}$ has a metabolizer M. Therefore, there exists a basis for $\mathrm{H}_{n}\left(F_{0}\right) \oplus \mathrm{H}_{n}\left(F_{1}\right)$ such that in this basis the matrix for A is

$$
\left(\begin{array}{cc}
0 & B_{1} \\
B_{2} & B_{3}
\end{array}\right)
$$

where $B_{i},{ }_{i=1,2,3}$ are square matrices. We have $\Delta_{0}(X) \cdot \Delta_{1}(X)=\operatorname{det}(X A$ $\left.+\varepsilon A^{T}\right)$, hence $\Delta_{0}(X) \cdot \Delta_{1}(X)=\varepsilon \cdot \operatorname{det}\left(X B_{1}+\varepsilon B_{2}^{T}\right) \cdot \operatorname{det}\left(X B_{2}+\varepsilon B_{1}^{T}\right)$. Let $\gamma(X)$ be $\operatorname{det}\left(X B_{1}+\varepsilon B_{2}^{T}\right)$, then $\gamma^{*}(X)=\operatorname{det}\left(X B_{2}+\varepsilon B_{1}^{T}\right)$. Finally we get $\gamma \cdot \gamma^{*}= \pm \Delta_{0} \cdot \Delta_{1}$.
Q.E.D.

If F is the Milnor fiber of an algebraic knot K, then the associated Alexander polynomial is the characteristic polynomial of the monodromy. Hence the above proposition and the monodromy theorem imply the following proposition.

Proposition 4. Let K_{0} and K_{1} be two algebraic knots having respectively Δ_{0} and Δ_{1} as characteristic polynomials of monodromy. If K_{0} and K_{1} are cobordant then the product $\Delta_{0} . \Delta_{1}$ is a square in $\mathbf{Z}[X]$.

§5. Examples in the case of non-spherical knots

Proposition 5. For all $n \geq 3$ there exits cobordant non-spherical fibered knots of dimension $2 n-1$ which are not isotopic.

Proof. Let us fix $n \geq 3$. We will use the spherical knots K_{0} and K_{1}, of dimension $2 n-1$ constructed by P. Du Bois and F. Michel in [6]. These knots are the first examples of cobordant and non isotopic algebraic spherical knots, now we will use them to construct some non spherical fibered knots which are cobordant but not isotopic.

Let K_{i}, with $i=0,1$, be the algebraic knot of dimension $2 n-1$ associated to the isolated singularity at 0 of the germs of holomorphic functions $h_{i}:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow(\mathbf{C}, 0)$ defined by:

$$
h_{i}\left(x_{0}, \ldots, x_{n}\right)=g_{i}\left(x_{0}, x_{1}\right)+x_{2}^{p}+x_{3}^{q}+\sum_{k=4}^{n} x_{k}^{2}
$$

with

$$
\begin{aligned}
g_{0}\left(x_{0}, x_{1}\right)=\left(x_{0}-x_{1}\right)\left(\left(x_{1}^{2}\right.\right. & \left.\left.-x_{0}^{3}\right)^{2}-x_{0}^{s+6}-4 x_{1} x_{0}^{(s+9) / 2}\right) \\
& \times\left(\left(x_{0}^{2}-x_{1}^{5}\right)^{2}-x_{1}^{r+10}-4 x_{0} x_{1}^{(r+15) / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g_{1}\left(x_{0}, x_{1}\right)=\left(x_{0}-x_{1}\right)\left(\left(x_{1}^{2}-\right.\right. & \left.\left.x_{0}^{3}\right)^{2}-x_{0}^{r+14}-4 x_{1} x_{0}^{(r+17) / 2}\right) \\
& \times\left(\left(x_{0}^{2}-x_{1}^{5}\right)^{2}-x_{1}^{s+2}-4 x_{0} x_{1}^{(s+7) / 2}\right)
\end{aligned}
$$

where $s \geq 11$ is odd, $s \neq r+8$ is odd, $p \neq q$ are prime numbers which do not divide the product $\epsilon=330(30+r)(22+s)[6, \mathrm{p} .166]$. We denote by $A_{i}, i=0,1$ the Seifert form associated to K_{i} defined on a free Z-module of finite rank H_{i}.

Let L be the algebraic knot of dimension $2 n-1$ associated to the isolated singularity at 0 defined by the germ:

$$
\begin{aligned}
f:\left(\mathbf{C}^{n+1}, 0\right) & \rightarrow(\mathbf{C}, 0) \\
\left(x_{0}, \ldots, x_{n}\right) & \mapsto \sum_{k=0}^{n} x_{k}^{2}
\end{aligned}
$$

according to [7, p. 50] this algebraic knot has $A=\left((-1)^{n(n+1) / 2}\right)$, defined on a free Z-module of rank one G, as Seifert matrix.

We construct L_{i} the connected sum of L and K_{i} for $i=0,1$. The Seifert form for L_{i} is the integral bilinear form $A \oplus A_{i}$ defined on a free Zmodule $G_{i}=G \oplus H_{i}$ of finite rank. The knots L_{i} are simple fibered since $A \oplus A_{i}$ is unimodular and the knots L and K_{i} are simple. We denote by S_{i} the $(-1)^{n}$-symetric form associated to $A \oplus A_{i}$, it is the intersection form for a fiber of L_{i}. We have $A=(\pm 1)$ so Tors $\operatorname{Coker} S_{i}^{*} \neq\{0\}$ or $\operatorname{Ker} S_{i}^{*} \neq\{0\}$; hence $L_{i}, i=0,1$ are not spherical knots.

Let M be the metabolizer for $A_{0} \oplus-A_{1}$ given by P. Du Bois and F. Michel. The module $N=\Delta_{G} \oplus M$, where $\Delta_{G}=\{x \oplus x, x \in G\}$, is a metabolizer for $B=A \oplus A_{0} \oplus-\left(A \oplus A_{1}\right)$. Since N fulfills c. 1 and c. 2 in definition 2 we have $A \oplus A_{0}$ algebraically cobordant to $A \oplus A_{1}$. So L_{0} is cobordant to L_{1} by theorem 4.

Now we are going to prove that the knots considered are not isotopic. Let τ_{i} be the monodromy associated to the fibered knot L_{i}, if there exists an integer e such that $\left(\tau_{i}^{e}-1\right) G_{i}=0$ then e is called an exponent for L_{i}. Recall that the e-twist group for L_{i} is defined as follows: assuming $\left(t^{e}-1\right)^{2} G_{i}=0$, if e is an exponent for L_{i} then the e-twist group associated to L_{i} is the group denoted by $G T^{e}\left(L_{i}\right)$ which is the \mathbf{Z}-torsion subgroup of the quotient $\operatorname{Ker}\left(t_{i}^{e}-1\right)_{/\left(t_{i}^{e}-1\right) H_{i}}$.

Moreover, we have $\epsilon=330(30+r)(22+s)$ is an exponent for L_{0} and L_{1}, and for all k which are multiple of ϵ the twist groups $G T^{k}\left(L_{0}\right)$ and $G T^{k}\left(L_{1}\right)$ have distinct orders. Finaly, as $\mathbf{Z}\left[t, t^{-1}\right]$-module $\mathrm{H}_{n}\left(G_{0}\right)$ and $\mathrm{H}_{n}\left(G_{1}\right)$ are not isomorphic. Hence the knots L_{0} and L_{1} are not isotopic.
Q.E.D.

Remark. According to [1, th. 4 p. 117], the knots L_{0} and L_{1}, which are the connected sum of two algebraic knots, cannot be algebraic.

§6. Questions

The methods used here are specific to dimensions greater than 5 (hcobordism theorem, embedded surgery...), nevertheless since algebraic cobordism of Seifert forms is necessary in any dimension, we can ask:

Question 1. What do we have to add to the definition of the algebraic cobordism of the Seifert forms in order to have the cobordism of 3-knots?

Question 2. Do cobordant but not isotopic 3-knots exist?
For 3-knots may be the definition of cobordism has to be changed. For instance we can use as a new definition of cobordism: two knots K_{0} and K_{1} are weakly cobordant if there exists a submanifold T of $S^{2 n+1} \times[0,1]$ such that $\partial(T)=K_{0} \amalg-K_{1}$ where $-K_{1}$ is the knot with the reversed orientation and with $\mathrm{H}_{*}\left(T, K_{0}\right)=\mathrm{H}_{*}\left(T, K_{1}\right)=0$.

Question 3. Does algebraic cobordism of Seifert forms ossociated to 3-knots imply weak cobordism of these 3-knots?

References

[1] N. A'Campo, Le nombre de Lefschetz d'une monodromie, Indag. Math., 35 (1973), 113-118.
[2] V. Blanlœil, F. Michel, A theory of cobordism for non-spherical links, Comm. Math. Helv., 72 (1997), 30-51.
[3] V. Blanlœil, Cobordism of non-spherical links, International Mathematics Research Notices, 2 (1998), 117-121.
[4] V. Blanlœil, Cobordisme des entrelacs, Ann. de la Faculté des Sciences de Toulouse, VII 2 (1998), 185-205.
[5] W. Browder, Surgery on Simply-connected Manifolds, Erger. Math., 65 (1972).
[6] P. du Bois, F. Michel, Cobordism of Algebraic Knots via Seifert Forms, Invent. Math., 111 (1993), 151-169.
[7] A. Durfee, Fibered Knots and Algebraic Singularities, Topology, (1974), 47-59.
[8] R. Fox, J. Milnor, Singularities of 2-spheres in 4-spaces and Cobordism of Knots, Osaka J. Math., 3 (1966), 257-267.
[9] M. Kervaire, Les noeuds de dimension supérieure, Bulletin de la Société Mathématique de France, (1965), 225-271.
[10] M. Kervaire, Knot Cobordism in Codimension Two, Manifolds Amsterdam 1970, Lecture Notes, 197 (1970), 83-105.
[11] J. Levine, Knot Cobordism in Codimension Two, Comment Math. Helv., 44 (1969), 229-244.
[12] J. Levine, An Algebraic Classification of Some Knots of Codimension Two, Comment. Math. Helv., 45 (1970), 185-198.
[13] D.T. Lê, Sur les noeuds algébriques, Compos. Math., (1972), 281-321.
[14] J. Milnor, A Procedure for Killing Homotopy Groups of Differentiable Manifolds, Proceeding of Symposia in Pure Math., 3 (1961), 39-55.
[15] J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Mathematical Notes, (1965).
[16] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61 (1968).
[17] K. Sakamoto, The Seifert Matrices of Milnor Fiberings defined by Holomorphic Functions, J. Math. Soc. Japan, 264 (1974), 714-721.
[18] C.T.C. Wall, Surgery on Compact Manifolds, Academic Press, (1970).

Department of Mathematics
Louis Pasteur University of Strasbourg
7, rue René Descartes
67084 Strasbourg
France

[^0]: ${ }^{1}$ We denote by $\mathrm{H}_{n}(F)$ the $\mathrm{n}^{\text {th }}$ homology group of F with integer coefficients.

