A Duality of a Twisted Group Algebra of the Hyperoctahedral Group and the Queer Lie Superalgebra

Manabu Yamaguchi

§1. Introduction

We establish a duality relation (Theorem 4.2) between one of the twisted group algebras of the hyperoctahedral group H_{k} (or the Weyl group of type B_{k}) and a Lie superalgebra $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$ for any integers $k \geq 4$ and $n_{0}, n_{1} \geq 1$. Here $\mathfrak{q}\left(n_{0}\right)$ and $\mathfrak{q}\left(n_{1}\right)$ denote the "queer" Lie superalgebras as called by some authors. The twisted group algebra \mathcal{B}_{k}^{\prime} in focus in this paper belongs to a different cocycle from the one \mathcal{B}_{k} used by A. N. Sergeev in his work [8] on a duality with $\mathfrak{q}(n)$ and by the present author in a previous work [11]. This \mathcal{B}_{k}^{\prime} contains the twisted group algebra \mathcal{A}_{k} of the symmetric group \mathfrak{S}_{k} in a straightforward manner (cf. §1.1.1), and has a structure similar to the semidirect product of \mathcal{A}_{k} and $\mathbb{C}\left[(\mathbb{Z} / 2 \mathbb{Z})^{k}\right] . \quad\left(\mathcal{B}_{k}^{\prime}\right.$ and \mathcal{B}_{k} were denoted by $\mathbb{C}^{[-1,+1,+1]} W_{k}$ and $\mathbb{C}^{[+1,+1,-1]} W_{k}$ respectively by J. R. Stembridge in [10].)

In $\S 2$, we construct the \mathbb{Z}_{2}-graded simple \mathcal{B}_{k}^{\prime}-modules (where $\mathbb{Z}_{2}=$ $\mathbb{Z} / 2 \mathbb{Z}$) using an analogue of the little group method. These simple $\mathcal{B}_{k^{-}}^{\prime}$ modules are slightly different from the non-graded simple \mathcal{B}_{k}^{\prime}-modules constructed by Stembridge in [10] because of the difference between \mathbb{Z}_{2}-graded and non-graded theories, but they can easily be translated into each other. We will use the algebra $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$, where \mathcal{C}_{k} is the 2^{k} dimensional Clifford algebra (cf. (3.2)) and $\dot{\otimes}$ denotes the \mathbb{Z}_{2}-graded tensor product (cf. [1], [2], [11, §1]), as an intermediary for establishing our duality, as we explain below. The construction of the simple \mathcal{B}_{k}^{\prime}-modules leads to a construction of the simple $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$-modules in $\S 3$.

In $\S 4$, we define a representation of $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$ in the k-fold tensor product $W=V^{\otimes k}$ of $V=\mathbb{C}^{n_{0}+n_{1}} \oplus \mathbb{C}^{n_{0}+n_{1}}$, the space of the natural representation of the Lie superalgebra $\mathfrak{q}\left(n_{0}+n_{1}\right)$. This representation
of $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$ depends on n_{0} and n_{1}, not just $n_{0}+n_{1}$. Note that \mathcal{B}_{k} can be regarded as a subalgebra of $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$, since \mathcal{B}_{k} is isomorphic to $\mathcal{C}_{k} \dot{\otimes} \mathcal{A}_{k}$ by our previous result (cf. (3.3) of [11]). Under this embedding, our representation of $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$ restricts to the representation of \mathcal{B}_{k} in W defined by Sergeev (cf. Theorem A). We show that the centralizer of $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$ in $\operatorname{End}(W)$ is generated by the action of the Lie superalgebra $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$ (Theorem 4.1). Moreover we show that \mathcal{B}_{k}^{\prime} and $\mathfrak{q}\left(n_{0}\right) \oplus$ $\mathfrak{q}\left(n_{1}\right)$ act on a subspace W^{ε} of W "as mutual centralizers of each other" (Theorem 4.2). Note that \mathcal{A}_{k} and $\mathfrak{q}(n)$ act on the same space W^{ε} "as mutual centralizers of each other" (cf. Theorem B).

In Appendix, we include short explanations of some known results, which we use in the previous sections.

In this paper, all vector spaces, and associative algebras, and representations are assumed to be finite dimensional over \mathbb{C} unless specified otherwise. The precise statements of the results sketched in the introduction use the formulation of \mathbb{Z}_{2}-graded representations of \mathbb{Z}_{2}-graded algebras (superalgebras) (cf. §1.1.3) as was used in [1] and [2].

1.1. Preliminaries

1.1.1. A twisted group algebra \mathcal{B}_{k}^{\prime}. For any $k \geq 1$, let \mathcal{B}_{k}^{\prime} denote the associative algebra generated by τ^{\prime} and the elements $\gamma_{i}, 1 \leq i \leq k-1$, with relations
${\tau^{\prime}}^{2}=1, \gamma_{i}^{2}=-1 \quad(-1 \leq i \leq k-1), \quad\left(\gamma_{i} \gamma_{i+1}\right)^{3}=-1 \quad(1 \leq i \leq k-2)$, $\left(\gamma_{i} \gamma_{j}\right)^{2}=-1 \quad(|i-j| \geq 2), \quad\left(\tau^{\prime} \gamma_{i}\right)^{2}=1 \quad(2 \leq i \leq k-1)$, $\left(\tau^{\prime} \gamma_{1}\right)^{4}=1$.

If $k \geq 4$, then \mathcal{B}_{k}^{\prime} is isomorphic to a twisted group algebra of the hyperoctahedral group H_{k} with a non-trivial 2-cocycle (cf. [10, Prop. 1.1]). We regard \mathcal{B}_{k}^{\prime} as a \mathbb{Z}_{2}-graded algebra by giving the generator τ^{\prime} (resp. the generator $\gamma_{i}, 1 \leq i \leq k-1$) degree 0 (resp. degree 1). Note that this grading of \mathcal{B}_{k}^{\prime} is different from that of \mathcal{B}_{k} in (3.1) or in [11].

Let \mathcal{A}_{k} denote the \mathbb{Z}_{2}-graded subalgebra of \mathcal{B}_{k}^{\prime} generated by γ_{i}, $1 \leq i \leq k-1$. If $k \geq 4$, then \mathcal{A}_{k} is isomorphic to a twisted group algebra of the symmetric group \mathfrak{S}_{k} with a non-trivial 2-cocycle, with the \mathbb{Z}_{2}-grading as in [2] and [11].
1.1.2. Partitions and symmetric functions. Let P_{k} denote the set of all partitions of k, and put $P=\coprod_{k \geq 0} P_{k}$. For $\lambda \in P$, we write $l(\lambda)$ for the length of λ, namely the number of non-zero parts of λ.

Also we write $|\lambda|=k$ if $\lambda \in P_{k}$. Let $D P_{k}$ and $O P_{k}$ denote the distinct partitions (or strict partitions, namely partitions whose parts are distinct) and the odd partitions (namely partitions whose parts are all odd) of k respectively. Let $D P_{k}^{+}$and $D P_{k}^{-}$be the sets of all $\lambda \in D P_{k}$ such that $(-1)^{k-l(\lambda)}=+1$ and -1 respectively. Note that $(-1)^{k-l(\lambda)}$ equals the signature of permutations with cycle type λ. We also put $D P=\coprod_{k \geq 0} D P_{k}$ and $O P=\coprod_{k \geq 0} O P_{k}$. Let $\left(D P^{2}\right)_{k}\left(\right.$ resp. $\left.\left(O P^{2}\right)_{k}\right)$ denote the set of all $(\lambda, \mu) \in D P^{2}$ (resp. $O P^{2}$) such that $|\lambda|+|\mu|=k$. Let $\left(D P^{2}\right)_{k}^{+}$and $\left(D P^{2}\right)_{k}^{-}$be the sets of all $(\lambda, \mu) \in\left(D P^{2}\right)_{k}$ such that $(-1)^{k-l(\lambda)-l(\mu)}=+1$ and -1 respectively.

Let Λ_{x} denote the ring of the symmetric functions in the variables $x=\left\{x_{1}, x_{2}, \ldots\right\}$ with coefficients in \mathbb{C}; namely our Λ_{x} is the scalar extension of the Λ_{x} in [6], which is \mathbb{Z}-algebra, to \mathbb{C}.

Let Ω_{x} denote the subring of Λ_{x} generated by the power sums of odd degrees, namely the $p_{r}(x), r=1,3,5, \ldots$. Then $\left\{p_{\mu}(x) \mid \mu \in O P\right\}$ is a basis of Ω_{x}, where $p_{\mu}=\prod_{i \geq 1} p_{\mu_{i}}$. For $\lambda \in D P$, let $Q_{\lambda}(x) \in \Lambda_{x}$ denote Schur's Q-function indexed by λ (cf. [7], $[9, \S 6])$. Then $\left\{Q_{\lambda}(x) \mid \lambda \in D P\right\}$ is also a basis of Ω_{x}.
1.1.3. Semisimple superalgebras. This theory of semisimple superalgebras was developed by T. Józefiak in [1], which we mostly follow. A \mathbb{Z}_{2}-graded algebra A, which is called a superalgebra in this paper, is called simple if it does not have non-trivial \mathbb{Z}_{2}-graded two-sided ideals. If A is a simple superalgebra, then it is either isomorphic to $M(m, n)$ (denoted by $M(m \mid n)$ in [2]) for some m and n, or isomorphic to $Q(n)$ for some n (see [2], [11, §1] for the definitions of simple superalgebras $M(m, n), Q(n))$.

Let V be an A-module, namely a \mathbb{Z}_{2}-graded vector space $V=V_{0} \oplus$ V_{1} together with a representation $\rho: A \rightarrow \operatorname{End}(V)$ satisfying $\rho\left(A_{\alpha}\right) V_{\beta} \subset$ $V_{\alpha+\beta}\left(\alpha, \beta \in \mathbb{Z}_{2}\right)$. We simply write $\rho(a) v=a v$ for $a \in A$ and $v \in V$. By an A-submodule of V we mean a \mathbb{Z}_{2}-graded $\rho(A)$-stable subspace of V. We say that V is simple if it does not have non-trivial A-submodules.

Let V and W be two A-modules. Let $\operatorname{Hom}_{A}^{\alpha}(V, W)\left(\alpha \in \mathbb{Z}_{2}\right)$ denote the subspace of $\operatorname{Hom}^{\alpha}(V, W)=\left\{f \in \operatorname{Hom}(V, W) ; f\left(V_{\beta}\right) \subset W_{\alpha+\beta}\right\}$ consisting of all elements $f \in \operatorname{Hom}^{\alpha}(V, W)$ such that $f(a v)=(-1)^{\alpha \cdot \beta} a f(v)$ for $a \in A_{\beta}\left(\beta \in \mathbb{Z}_{2}\right), v \in V$. Put $\operatorname{Hom}_{A}(V, W)=\operatorname{Hom}_{A}^{0}(V, W) \oplus$ $\operatorname{Hom}_{A}^{1}(V, W)$ and put $\operatorname{End}_{A}(V)=\operatorname{Hom}_{A}(V, V)$. We call End ${ }_{A}(V)$ the supercentralizer of A in $\operatorname{End}(V)$. Two A-modules V and W are called isomorphic if there exists an invertible linear map $f \in \operatorname{Hom}_{A}(V, W)$. If this is the case, we write $V \cong_{A} W$ (or simply write $V \cong W$). If V and W are simple A-modules, then $V \cong W$ if and only if there exists an
invertible element in $\operatorname{Hom}_{A}^{0}(V, W)$ or $\operatorname{Hom}_{A}^{1}(V, W)$. Note that, in [11] we distinguished between V and the shift of V which is defined to be the same vector space as V with the switched grading. In this paper, however, we identify V and the shift of V.

If V is a simple A-module, then $\operatorname{End}_{A}(V)$ is isomorphic to either $M(1,0) \cong \mathbb{C}$ or $Q(1) \cong \mathcal{C}_{1}$ (cf. [1, Prop. 2.17], [2, Prop. 2.5, Cor. 2.6]). In the former (resp. latter) case, we say that V is of type M (resp. of type Q). This gives the following theorem (see $[1],[2],[11, \S 1]$ for the definition of the "supertensor product" of the superalgebras or modules).

Theorem 1.1. Let $C=A \dot{\otimes} B$ be the supertensor product of superalgebras A and B and let $V=U \otimes W$ be the supertensor product of a simple A-module U and a simple B-module W.
(a) If U, W are of type M, then V is a simple C-module of type M.
(b) If one of U and W is of type M and the other is of type Q, then V is a simple C-module of type Q.
(c) If U and W are of type Q, then V is a sum of two copies of a simple C-module X of type $M: V=X \oplus X$.
Moreover, the above construction gives all simple $A \dot{\otimes} B$-modules.
Using the above U, W, V and X, define an $A \dot{\otimes} B$-module $U \dot{\circ} W$ by

$$
U \circ W= \begin{cases}V & \text { if } U \text { or } W \text { is of type } M \tag{1.2}\\ X & \text { if } U \text { and } W \text { are of type } Q\end{cases}
$$

Let $\operatorname{Irr} A$ denote the set of all isomorphism classes of simple A modules for any superalgebra A.

Corollary 1.2. We have a bijection

$$
\dot{\circ}: \operatorname{Irr} A \times \operatorname{Irr} B \ni(U, W) \stackrel{\sim}{\mapsto} U \circ W \in \operatorname{Irr} A \dot{\otimes} B .
$$

§2. Simple modules for \mathcal{B}_{k}^{\prime}

The simple \mathcal{A}_{k}-modules are parametrized by $D P_{k}$ (cf. [2], [7], [9]). For $\lambda \in D P_{k}$, let V_{λ} denote a simple \mathcal{A}_{k}-module indexed by λ. Then V_{λ} is of type M (resp. of type Q) if $\lambda \in D P_{k}^{+}$(resp. $\lambda \in D P_{k}^{-}$). We construct a \mathcal{B}_{k}^{\prime}-module $V_{\lambda, \mu}$ for $(\lambda, \mu) \in\left(D P^{2}\right)_{k}$ as follows. Define a surjective homomorphism of superalgebras $\pi_{k}: \mathcal{B}_{k}^{\prime} \rightarrow \mathcal{A}_{k}$ (resp. $\pi_{k}^{\prime}: \mathcal{B}_{k}^{\prime} \rightarrow \mathcal{A}_{k}$) by $\pi_{k}\left(\tau^{\prime}\right)=1,\left.\pi_{k}\right|_{\mathcal{A}_{k}}=\operatorname{id}_{\mathcal{A}_{k}}\left(\operatorname{resp} . \pi_{k}^{\prime}\left(\tau^{\prime}\right)=-1,\left.\pi_{k}^{\prime}\right|_{\mathcal{A}_{k}}=\operatorname{id}_{\mathcal{A}_{k}}\right)$. The simple $\mathcal{A}_{k^{\prime}}$ (resp. $\mathcal{A}_{k-k^{\prime}}$)-module $V_{\lambda}\left(\right.$ resp. $\left.V_{\mu}\right)$ can be lifted to a $\mathcal{B}_{k^{\prime}}^{\prime}$ (resp.
$\left.\mathcal{B}_{k-k^{\prime}}^{\prime}\right)$-module via $\pi_{k^{\prime}}$ (resp. $\pi_{k-k^{\prime}}^{\prime}$), where $k^{\prime}=|\lambda|$. This (simple) $\mathcal{B}_{k^{\prime}}^{\prime}$ (resp. $\mathcal{B}_{k-k^{\prime}}^{\prime}$)-module is denoted by $V_{\lambda, \phi}\left(\right.$ resp. $V_{\phi, \mu}$). Let $V_{\lambda, \mu}$ denote the \mathcal{B}_{k}^{\prime}-module induced from the $\mathcal{B}_{k^{\prime}}^{\prime} \dot{\otimes} \mathcal{B}_{k-k^{\prime}}^{\prime}$-module $V_{\lambda, \phi} \dot{\circ} V_{\phi, \mu}$, namely

$$
V_{\lambda, \mu}=\mathcal{B}_{k}^{\prime} \otimes_{\mathcal{B}_{k^{\prime}}^{\prime} \dot{\otimes} \mathcal{B}_{k-k^{\prime}}^{\prime}}\left(V_{\lambda, \phi} \dot{\circ} V_{\phi, \mu}\right)
$$

(see the definition of $\dot{\circ}$ in (1.2)), where $\mathcal{B}_{k^{\prime}}^{\prime} \dot{\otimes} \mathcal{B}_{k-k^{\prime}}^{\prime}$ is embedded into \mathcal{B}_{k}^{\prime} via

$$
\begin{aligned}
& \tau^{\prime} \dot{\otimes} 1 \mapsto \tau^{\prime}, \quad \gamma_{i} \dot{\otimes} 1 \mapsto \gamma_{i} \quad\left(1 \leq i \leq k^{\prime}-1\right) \\
& 1 \dot{\otimes} \tau^{\prime} \mapsto \tau_{k^{\prime}+1}^{\prime}, \quad 1 \dot{\otimes} \gamma_{j} \mapsto \gamma_{k^{\prime}+j} \quad\left(1 \leq j \leq k-k^{\prime}-1\right)
\end{aligned}
$$

where $\tau_{i}^{\prime}=\gamma_{i-1} \gamma_{i-2} \cdots \gamma_{1} \tau^{\prime} \gamma_{1} \cdots \gamma_{i-2} \gamma_{i-1}, 1 \leq i \leq k$.
Theorem 2.1. (cf. [10, Th. 7.1]) $\left\{V_{\lambda, \mu} \mid(\lambda, \mu) \in\left(D P^{2}\right)_{k}\right\}$ is a complete set of the isomorphism classes of simple \mathcal{B}_{k}^{\prime}-modules. $V_{\lambda, \mu}$ is of type M (resp. of type Q) if $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}\left(\right.$resp. $\left.(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}\right)$

The proof is analogous to the little group method, and is omitted. It can also be shown that this parametrization coincides with that by Stembridge in [10, Th. 7.1] modulo the usual difference between $\mathbb{Z}_{2^{-}}$ graded and non-graded modules.

If $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}$, then fix a non-zero homogeneous element $x_{\lambda, \mu}$ of $\operatorname{End}_{\mathcal{B}_{k}^{\prime}}\left(V_{\lambda, \mu}\right) \cong Q(1)$ of degree 1 .

§3. The algebras \mathcal{B}_{k} and $\mathcal{C}_{k} \otimes \mathcal{B}_{k}^{\prime}$

For any $k \geq 1$, let \mathcal{B}_{k} denote the associative algebra generated by τ and the elements $\sigma_{i}, 1 \leq i \leq k-1$, with relations

$$
\begin{align*}
& \tau^{2}=\sigma_{i}^{2}=1 \quad(1 \leq i \leq k-1), \quad\left(\sigma_{i} \sigma_{i+1}\right)^{3}=1 \quad(1 \leq i \leq k-2) \tag{3.1}\\
& \left(\sigma_{i} \sigma_{j}\right)^{2}=1 \quad(|i-j| \geq 2), \quad\left(\tau \sigma_{i}\right)^{2}=1 \quad(2 \leq i \leq k-1) \\
& \left(\tau \sigma_{1}\right)^{4}=-1
\end{align*}
$$

We regard \mathcal{B}_{k} as a superalgebra by giving the generator τ^{\prime} (resp. the generator $\sigma_{i}, 1 \leq i \leq k-1$) degree 1 (resp. degree 0). The subgroup of $\left(\mathcal{B}_{k}\right)^{\times}$generated by $\sigma_{i}, 1 \leq i \leq k-1$, is isomorphic to the symmetric group of degree k and it is denoted by \mathfrak{S}_{k}.

Let \mathcal{C}_{k} denote the 2^{k}-dimensional Clifford algebra, namely \mathcal{C}_{k} is generated by ξ_{1}, \ldots, ξ_{k} with relations

$$
\begin{equation*}
\xi_{i}^{2}=1, \quad \xi_{i} \xi_{j}=-\xi_{j} \xi_{i} \quad(i \neq j) \tag{3.2}
\end{equation*}
$$

We regard \mathcal{C}_{k} as a superalgebra by giving the generator $\xi_{i}, 1 \leq i \leq k$, degree 1. \mathcal{C}_{k} is a simple superalgebra. Let X_{k} be a unique simple $\mathcal{C}_{k^{-}}$ module. If k is even (resp. odd), then X_{k} is of type M (resp. of type Q). If k is odd, then fix a non-zero element z_{k} of $\operatorname{End}_{\mathcal{C}_{k}}^{1}\left(X_{k}\right)$.

Define a linear map $\vartheta: \mathcal{B}_{k} \rightarrow \mathcal{C}_{k} \dot{\otimes} \mathcal{A}_{k}$ by

$$
\begin{align*}
& \vartheta\left(\tau_{i}\right) \mapsto \xi_{i} \otimes 1 \quad(1 \leq i \leq k) \tag{3.3}\\
& \vartheta\left(\sigma_{j}\right) \mapsto \frac{1}{\sqrt{2}}\left(\xi_{j}-\xi_{j+1}\right) \otimes \gamma_{j} \quad(1 \leq j \leq k-1)
\end{align*}
$$

where $\tau_{i}=\sigma_{i-1} \cdots \sigma_{1} \tau \sigma_{1} \ldots \sigma_{i-1}$. Then ϑ is an isomorphism of algebras (cf. [11, Th. 3.2]). For $\lambda \in D P_{k}$, define a \mathcal{B}_{k}-module W_{λ} by $W_{\lambda}=X_{k}$ 。 V_{λ}. By Corollary $1.2,\left\{W_{\lambda} \mid \lambda \in D P_{k}\right\}$ is a complete set of isomorphism classes of simple \mathcal{B}_{k}-modules.

Let $\hat{\mathcal{B}}_{k}$ denote the supertensor product (cf. [1], [2], [11, §1]) of the algebras \mathcal{C}_{k} and \mathcal{B}_{k}^{\prime}, namely $\hat{\mathcal{B}}_{k}=\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$. Since $\mathcal{B}_{k} \cong \mathcal{C}_{k} \dot{\otimes} \mathcal{A}_{k}, \mathcal{B}_{k}$ can be regarded as a subalgebra of $\hat{\mathcal{B}}_{k}$. For $(\lambda, \mu) \in\left(D P^{2}\right)_{k}$, put $W_{\lambda, \mu}=$ $X_{k} \circ V_{\lambda, \mu}$. By Theorem 1.1 and (1.2), $W_{\lambda, \mu}$ is of type M (resp. of type Q) if $l(\lambda)+l(\mu)$ is even (resp. odd). By Corollary 1.2, $\left\{W_{\lambda, \mu} \mid(\lambda, \mu) \in\right.$ $\left.\left(D P^{2}\right)_{k}\right\}$ is a complete set of isomorphism classes of simple $\hat{\mathcal{B}}_{k}$-modules.
§4. A duality of \mathcal{B}_{k}^{\prime} and $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$
Let $\mathfrak{q}(n)$ denote the Lie subsuperalgebra of $\mathfrak{g l}(n, n)$ (denoted by $l(n, n)$ in [5]) consisting of the matrices of the form $\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)$. The Jacobi product $[]:, \mathfrak{q}(n) \times \mathfrak{q}(n) \rightarrow \mathfrak{q}(n)$ is defined by $[X, Y]=X Y-$ $(-1)^{\bar{X} \cdot \bar{Y}} Y X$ for all homogeneous elements $X, Y \in \mathfrak{q}(n)$, where the symbol ${ }^{-}$expresses the degree of a homogeneous element. This Lie superalgebra is called the queer Lie superalgebra. Let $\mathcal{U}_{n}=\mathcal{U}(\mathfrak{q}(n))$ denote the universal enveloping algebra of $\mathfrak{q}(n)$, which can be regarded as a superalgebra. Let W denote the k-fold supertensor product of the $2 n$ dimensional natural representation $V=V_{0} \oplus V_{1}, \operatorname{dim} V=(n, n)$, namely $W=V^{\otimes k}$, where $\operatorname{dim} V$ denotes the pair $\left(\operatorname{dim} V_{0}, \operatorname{dim} V_{1}\right)$. We define a representation $\Theta: \mathcal{U}_{n} \rightarrow \operatorname{End}(W)$ by

$$
\Theta(X)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\sum_{j=1}^{k}(-1)^{\bar{X} \cdot\left(\overline{v_{1}}+\cdots+\overline{v_{j-1}}\right)} v_{1} \otimes \cdots \otimes \underbrace{j}_{X v_{j}} \otimes \cdots \otimes v_{k}
$$

for all homogeneous elements $X \in \mathfrak{q}(n)$ and $v_{i} \in V(1 \leq i \leq k)$. Note that \mathcal{U}_{n} is an infinite dimensional superalgebra. However, for a fixed
number k, \mathcal{U}_{n} acts on W through its finite dimensional image in $\operatorname{End}(W)$. Therefore we can use the results in $\S 1.1 .3$ on finite dimensional superalgebras and their finite dimensional modules.

Let n_{0} and n_{1} be two positive integers such that $n_{0}+n_{1}=n$. The Lie superalgebra $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$ can be embedded into $\mathfrak{q}(n)$ via
$\mathfrak{q}\left(n_{0}\right) \oplus \mathbf{q}\left(n_{1}\right) \ni\left(\left(\begin{array}{cc}A & B \\ B & A\end{array}\right),\left(\begin{array}{cc}C & D \\ D & C\end{array}\right)\right) \mapsto\left(\begin{array}{cccc}A & 0 & B & 0 \\ 0 & C & 0 & D \\ B & 0 & A & 0 \\ 0 & D & 0 & C\end{array}\right) \in \mathfrak{q}(n)$.
The universal enveloping algebra of $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$ is isomorphic to $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$ which can be embedded into \mathcal{U}_{n} as a subalgebra generated by the elements of $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$.

Now we define a representation $\Psi: \hat{\mathcal{B}}_{k} \rightarrow \operatorname{End}(W)$, which depends on n_{0} and n_{1}, by

$$
\begin{align*}
& \Psi\left(\xi_{i} \otimes 1\right)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=(-1)^{\overline{v_{1}}+\cdots+\overline{v_{i-1}}} v_{1} \otimes \cdots \otimes P v_{i} \otimes \cdots \otimes v_{k} \tag{4.2}\\
& \quad(1 \leq i \leq k) \\
& \Psi\left(1 \otimes \tau^{\prime}\right)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\left(Q v_{1}\right) \otimes v_{2} \otimes \cdots \otimes v_{k}, \\
& \Psi\left(1 \otimes \gamma_{j}\right)\left(v_{1} \otimes \cdots \otimes v_{k}\right) \\
& =\frac{(-1)^{\overline{v_{1}}+\cdots+\overline{v_{j-1}}}}{\sqrt{2}} v_{1} \otimes \cdots \otimes\left(P v_{j}\right) \otimes v_{j+1} \otimes \cdots \otimes v_{k} \\
& -\frac{(-1)^{\overline{v_{1}}+\cdots+\overline{v_{j-1}}+\overline{v_{j}}}}{\sqrt{2}} v_{1} \otimes \cdots \otimes v_{j} \otimes\left(P v_{j+1}\right) \otimes \cdots \otimes v_{k} \\
& (1 \leq j \leq k-1)
\end{align*}
$$

for all homogeneous elements $v_{j} \in V, 1 \leq j \leq k$, where

$$
\begin{aligned}
P & =\left(\begin{array}{ccc}
0 & -\sqrt{-1} I_{n} \\
\sqrt{-1} I_{n} & 0
\end{array}\right) \in M(n, n)_{1}, \\
Q & =\left(\begin{array}{cccc}
I_{n_{0}} & 0 & 0 & 0 \\
0 & -I_{n_{1}} & 0 & 0 \\
0 & 0 & I_{n_{0}} & 0 \\
0 & 0 & 0 & -I_{n_{1}}
\end{array}\right) \in Q(n)_{0} .
\end{aligned}
$$

Note that, by the isomorphism $\vartheta: \mathcal{B}_{k} \cong \mathcal{C}_{k} \dot{\otimes} \mathcal{A}_{k} \subset \hat{\mathcal{B}}_{k}, W$ can be regarded as a \mathcal{B}_{k}-module and this \mathcal{B}_{k}-module was investigated by Sergeev in [8] (cf. Theorem A). Then, observing the actions of $\vartheta(\tau), \vartheta\left(\sigma_{i}\right) \in$
$\mathcal{C}_{k} \dot{\otimes} \mathcal{A}_{k}, 1 \leq i \leq k-1$, on W, we have
$\Psi(\vartheta(\tau))\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\left(P v_{1}\right) \otimes \cdots \otimes v_{k}$,
$\Psi\left(\vartheta\left(\sigma_{i}\right)\right)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=(-1)^{\overline{v_{i}} \cdot \bar{v}_{i+1}} v_{1} \otimes \cdots \otimes v_{i+1} \otimes v_{i} \otimes \cdots \otimes v_{k}$
for all homogeneous elements $v_{j} \in V, 1 \leq j \leq k-1$.
Let W^{\prime} be a $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-submodule of W. Since $\left(\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)\right)_{0} \cong$ $\mathfrak{g l}\left(n_{0}, \mathbb{C}\right) \oplus \mathfrak{g l}\left(n_{1}, \mathbb{C}\right)$ as a Lie algebra, and V is a sum of two copies $\left(V_{0}\right.$ and $\left.V_{1}\right)$ of the natural representation of $\mathfrak{g l}\left(n_{0}, \mathbb{C}\right) \oplus \mathfrak{g l}\left(n_{1}, \mathbb{C}\right),\left.W^{\prime}\right|_{\left(\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)\right)_{0}}$ is embedded into a sum of tensor powers of the natural representation, so that this representation of $\mathfrak{g l}\left(n_{0}, \mathbb{C}\right) \oplus \mathfrak{g l}\left(n_{1}, \mathbb{C}\right)$ can be integrated to a polynomial representation $\theta_{W^{\prime}}$ of $G L\left(n_{0}, \mathbb{C}\right) \times G L\left(n_{1}, \mathbb{C}\right)$. Let $\mathrm{Ch}\left[W^{\prime}\right]$ denote the character of $\theta_{W^{\prime}}$, namely

$$
\begin{aligned}
& \operatorname{Ch}\left[W^{\prime}\right]\left(x_{1}, x_{2}, \ldots, x_{n_{0}}, y_{1}, y_{2}, \cdots, y_{n_{1}}\right) \\
& =\operatorname{tr} \theta_{W^{\prime}}\left(\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right), \operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n_{1}}\right)\right)
\end{aligned}
$$

The following theorem determines the supercentralizer of $\Psi\left(\hat{\mathcal{B}}_{k}\right)$ in $\operatorname{End}(W)$ and describes the characters of simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-modules appearing in W.

Theorem 4.1. (1) The two superalgebras $\Psi\left(\hat{\mathcal{B}}_{k}\right)$ and $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$ act on W as the mutual supercentralizers of each other:

$$
\begin{equation*}
\operatorname{End}_{\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}^{-}(W)=\Psi\left(\hat{\mathcal{B}}_{k}\right), \quad \operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{-}(W)=\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right) \tag{4.4}
\end{equation*}
$$

(2) The simple $\hat{\mathcal{B}}_{k}$-module $W_{\lambda, \mu}\left((\lambda, \mu) \in\left(D P^{2}\right)_{k}\right)$ occurs in W if and only if $l(\lambda) \leq n_{0}$ and $l(\mu) \leq n_{1}$. Moreover we have

$$
\begin{equation*}
W \cong_{\hat{\mathcal{B}}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} \bigoplus_{\substack{(\lambda, \mu) \in\left(D P^{2}\right)_{k} \\ l(\lambda) \leq n_{0}, l(\mu) \leq n_{1}}} W_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu} \tag{4.5}
\end{equation*}
$$

where $U_{\lambda, \mu}$ denotes a simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-module.
(3) We have $U_{\lambda, \mu} \cong \mathcal{U}_{n_{0} \dot{\otimes} \dot{\mathcal{U}_{n_{1}}}} U_{\lambda} \dot{\circ} U_{\mu}$, where $U_{\lambda}\left(\right.$ resp. $\left.U_{\mu}\right)$ denotes the simple $\mathcal{U}_{n_{0}}\left(\right.$ resp. $\left.\mathcal{U}_{n_{1}}\right)$-module corresponding to the simple $\mathcal{B}_{|\lambda|}$ (resp. $\left.\mathcal{B}_{|\mu|}\right)$-module $W_{\lambda}\left(\right.$ resp. $\left.W_{\mu}\right)$ in Sergeev's duality ($c f$. Theorem A).
(4) The character values of $\operatorname{Ch}\left[U_{\lambda, \mu}\right]$ are given as follows:

$$
\begin{align*}
& \operatorname{Ch}\left[U_{\lambda, \mu}\right]\left(x_{1}, x_{2}, \ldots, x_{n_{0}}, y_{1}, y_{2}, \ldots, y_{n_{1}}\right) \tag{4.6}\\
& \quad=(\sqrt{2})^{d(\lambda, \mu)-l(\lambda)-l(\mu)} Q_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right) Q_{\mu}\left(y_{1}, y_{2}, \ldots, y_{n_{1}}\right)
\end{align*}
$$

where $d:\left(D P^{2}\right)_{k} \rightarrow \mathbb{Z}_{2}$ denotes a map defined by $d(\lambda, \mu)=0$ (resp. $d(\lambda, \mu)=1)$ if $l(\lambda)+l(\mu)$ is even (resp. $l(\lambda)+l(\mu)$ is odd $)$.

Proof. First we will show the second equality of (4.4). Then the first equality also follows from the double supercentralizer theorem (abbreviated as DSCT) for semisimple superalgebras (cf. [11, Th. 2.1]).

By Theorem A (1), we have End ${ }_{\Psi\left(\vartheta\left(\mathcal{B}_{k}\right)\right)}(W) \supset \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$, since $\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$ is a subsuperalgebra of $\Theta\left(\mathcal{U}_{n}\right)$. Hence $\Theta(X \otimes Y)$ commutes with $\Psi\left(\vartheta\left(\mathcal{B}_{k}\right)\right)$ for any $X \in \mathfrak{q}\left(n_{0}\right), Y \in \mathfrak{q}\left(n_{1}\right)$. By direct calculations, it can be shown that $\Theta(X \otimes Y)$ and $\Psi\left(1 \otimes \tau^{\prime}\right)$ also commute. Since $\hat{\mathcal{B}}_{k}$ is generated as an algebra by the elements $\vartheta\left(\tau_{i}\right), 1 \leq i \leq k$, the elements $\vartheta\left(\sigma_{j}\right), 1 \leq j \leq k-1$, and $1 \otimes \tau^{\prime}$, we have $\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}(W) \supset \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$. We need only to show that

$$
\begin{equation*}
\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{\cdot}(W) \subset \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right) \tag{4.7}
\end{equation*}
$$

We have $\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{-}(W) \subset \operatorname{End}_{\Psi\left(\vartheta\left(\mathcal{B}_{k}\right)\right)}(W)=\Theta\left(\mathcal{U}_{n}\right)$ by Theorem A (1). It can be easily checked that $\Theta\left(\mathcal{U}_{n}\right) \subset Q(n) \dot{\otimes} \cdots \dot{\otimes} Q(n)$, where $Q(n)$ denotes the underlying vector space of $\mathfrak{q}(n)$ (or the superalgebra it forms), so that we have $\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}(W) \subset Q(n) \dot{\otimes} \cdots \dot{\otimes} Q(n)$. We identify $\operatorname{End}(W)$ with $\operatorname{End}(V) \dot{\otimes} \cdots \dot{\otimes} \operatorname{End}(V)$ by defining the action of $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{k} \in \operatorname{End}(V)^{\otimes k}$ on W by

$$
\begin{aligned}
& \left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{k}\right)\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right) \\
& \quad=(-1)^{\overline{f_{2}} \cdot \overline{v_{1}}+\overline{f_{3}} \cdot\left(\overline{v_{1}}+\overline{v_{2}}\right)+\cdots+\overline{f_{k}} \cdot\left(\overline{v_{1}}+\cdots+\overline{v_{k-1}}\right)} f_{1} v_{1} \otimes f_{2} v_{2} \otimes \cdots \otimes f_{k} v_{k}
\end{aligned}
$$

for all homogeneous elements $f_{j} \in \operatorname{End}(V)$ and $v_{j} \in V, 1 \leq j \leq k$. Define a representation $\theta: \mathbb{C}\left[\mathfrak{S}_{k}\right] \rightarrow \operatorname{End}(\operatorname{End}(W))$ of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\begin{aligned}
& \theta\left(\sigma_{i}\right)\left(f_{1} \otimes \cdots \otimes f_{i} \otimes f_{i+1} \otimes \cdots \otimes f_{k}\right) \\
& \quad=(-1)^{\overline{f_{i}} \cdot \overline{f_{i+1}}}\left(f_{1} \otimes \cdots \otimes f_{i+1} \otimes f_{i} \otimes \cdots \otimes f_{k}\right)
\end{aligned}
$$

for all $1 \leq i \leq k-1$ and homogeneous elements $f_{j}, 1 \leq j \leq k$, of $\operatorname{End}(V)$. Moreover, define elements $T_{i}, 1 \leq i \leq k$, of $\operatorname{End}(\operatorname{End}(W))$ by

$$
T_{i}\left(f_{1} \otimes \cdots \otimes f_{k}\right)=f_{1} \otimes \cdots \otimes Q f_{i} Q \otimes \cdots \otimes f_{k}
$$

for all $f_{j} \in \operatorname{End}(V), 1 \leq j \leq k$. Furthermore put

$$
S=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{k}} \theta(w), \quad T=\prod_{i=1}^{k}\left(\frac{1}{2}\left(\operatorname{Id}_{\operatorname{End}(W)}+T_{i}\right)\right)
$$

Note that, since $T_{i} \in \operatorname{End}^{0}(\operatorname{End}(W))$ for all i, the factors in the definition of T commute. If $f \in \operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}(W)$, then it follows that $S(f)=f$ and $\frac{1}{2}\left(\operatorname{Id}_{\operatorname{End}(W)}+T_{i}\right)(f)=f, 1 \leq i \leq k$, since $\theta(\sigma)(f)=\Psi(\vartheta(\sigma)) \circ f \circ$ $\Psi(\vartheta(\sigma))^{-1}$ and $T_{i}(f)=\Psi\left(1 \otimes \tau_{i}^{\prime}\right) \circ f \circ \Psi\left(1 \otimes \tau_{i}^{\prime}\right)$. Therefore, any element f of $\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{-}(W)$ can be expressed as a linear combination of elements of the form

$$
S T\left(f_{1} \otimes \cdots \otimes f_{k}\right)
$$

with $f_{j} \in Q(n), 1 \leq j \leq k$. Since

$$
T\left(f_{1} \otimes \cdots \otimes f_{k}\right)=\left(\frac{1}{2}\right)^{k}\left(f_{1}+Q f_{1} Q\right) \otimes \cdots \otimes\left(f_{k}+Q f_{k} Q\right)
$$

and $f+Q f Q$ belongs to $Q\left(n_{0}\right) \oplus Q\left(n_{1}\right)$ for any $f \in Q(n)$, we have

$$
T(Q(n) \dot{\otimes} \cdots \dot{\otimes} Q(n)) \subset\left(Q\left(n_{0}\right) \oplus Q\left(n_{1}\right)\right) \dot{\otimes} \cdots \dot{\otimes}\left(Q\left(n_{0}\right) \oplus Q\left(n_{1}\right)\right)
$$

Hence it follows that

$$
\operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}(W) \subset S\left(\left(Q\left(n_{0}\right) \oplus Q\left(n_{1}\right)\right) \dot{\otimes} \cdots \dot{\otimes}\left(Q\left(n_{0}\right) \oplus Q\left(n_{1}\right)\right)\right)
$$

By induction on k, it can be shown that

is generated as an algebra by elements of the form $S(X \otimes 1 \otimes \cdots \otimes 1)=$ $\frac{1}{n} \Theta(X)$ with $X \in \mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$. Therefore (4.7) follows.

Next we will show (2) and (3) simultaneously. Since V is a sum of the natural representations X and Y of $\mathfrak{q}\left(n_{0}\right)$ and $\mathfrak{q}\left(n_{1}\right)$ respectively: $V=X \oplus Y$, where $\operatorname{dim} X=\left(n_{0}, n_{0}\right), \operatorname{dim} Y=\left(n_{1}, n_{1}\right), W$ can be decomposed into a sum of tensor powers of X and Y. Since a $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}-$ submodule of W of the form $\cdots \otimes X \otimes Y \otimes \cdots$ is isomorphic to that of the form $\cdots \otimes Y \otimes X \otimes \cdots$, we have

$$
W \cong \overbrace{\mathcal{U}_{0} \dot{\otimes} \mathcal{U}_{n_{1}}} \bigoplus_{k^{\prime}=0}^{k}(\overbrace{X \otimes \cdots \otimes X}^{k^{\prime}} \otimes \overbrace{Y \otimes \cdots \otimes Y}^{k-k^{\prime}})^{\oplus\binom{k}{k^{\prime}}} .
$$

From Theorem A (2), we have

$$
\begin{align*}
& X^{\otimes k^{\prime}} \cong{ }_{\mathcal{B}_{k^{\prime}} \dot{\otimes} \mathcal{U}_{n_{0}}} \bigoplus_{\substack{\lambda \in D P_{k^{\prime}} \\
l(\lambda) \leq n_{0}}} W_{\lambda} \circ U_{\lambda}, \tag{4.8}\\
& Y^{\otimes k-k^{\prime}} \cong \mathcal{B}_{k-k^{\prime}} \dot{\otimes} \mathcal{U}_{n_{1}} \bigoplus_{\substack{\mu \in D P_{k-k^{\prime}} \\
l(\mu) \leq n_{1}}} W_{\mu} \circ U_{\mu} .
\end{align*}
$$

Therefore, it follows that simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-modules which occur in W are of the form $U_{\lambda} \circ U_{\mu},(\lambda, \mu) \in\left(D P^{2}\right)_{k}$, and that $U_{\lambda} \circ U_{\mu}$ occurs in W if and only if $l(\lambda) \leq n_{0}$ and $l(\mu) \leq n_{1}$. By (4.7) and DSCT, W can be decomposed into a sum of non-isomorphic simple $\hat{\mathcal{B}}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$ modules. In order to determine the simple $\hat{\mathcal{B}}_{k}$-module which is paired with the simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-module $U_{\lambda} \dot{ } U_{\mu}$, we consider the $\mathcal{B}_{k^{\prime}} \dot{\otimes} \mathcal{B}_{k-k^{\prime}}$ submodule $\overbrace{X \otimes \cdots \otimes X}^{k^{\prime}} \otimes \overbrace{Y \otimes \cdots \otimes Y}^{k-k^{\prime}}$ of W. Since $\tau_{i}^{\prime} \in \hat{\mathcal{B}}_{k^{\prime}}, 1 \leq i \leq k^{\prime}$ (resp. $\tau_{j}^{\prime} \in \hat{\mathcal{B}}_{k-k^{\prime}}, 1 \leq j \leq k-k^{\prime}$), acts on $X^{\otimes k^{\prime}}$ (resp. $Y^{\otimes k-k^{\prime}}$) as $\mathrm{Id}_{X^{\otimes k^{\prime}}}\left(\right.$ resp. $\left.-\mathrm{Id}_{Y^{\otimes k-k^{\prime}}}\right)$, the $\mathcal{B}_{k^{\prime}}\left(\right.$ resp. $\left.\mathcal{B}_{k-k^{\prime}}\right)$-submodule W_{λ} (resp. W_{μ}) of $X^{\otimes k^{\prime}}$ (resp. $Y^{\otimes k-k^{\prime}}$) can be regarded as a $\hat{\mathcal{B}}_{k^{\prime}}$ (resp. $\hat{\mathcal{B}}_{k-k^{\prime}}$)module and is isomorphic to $W_{\lambda, \phi}$ (resp. $W_{\phi, \mu}$). From (4.8), a simple $\hat{\mathcal{B}}_{k}$-submodule of W which corresponds to $U_{\lambda} \circ U_{\mu}$ contains $W_{\lambda, \phi} \otimes W_{\phi, \mu}$ as a $\hat{\mathcal{B}}_{k^{\prime}} \dot{\otimes} \hat{\mathcal{B}}_{k-k^{\prime}}$-submodule. This condition forces this simple $\hat{\mathcal{B}}_{k}$-module to be isomorphic to $W_{\lambda, \mu}$. Consequently, the result (2) and (3) follow.

The result (4) immediately follows from Theorem A (3) and the fact that

$$
\begin{aligned}
& \operatorname{Ch}\left[U \circ U^{\prime}\right]\left(x_{1}, \ldots, x_{n_{0}}, y_{1}, \ldots, y_{n_{1}}\right) \\
& =\left\{\begin{array}{l}
\operatorname{Ch}[U]\left(x_{1}, \ldots, x_{n_{0}}\right) \operatorname{Ch}\left[U^{\prime}\right]\left(y_{1}, \ldots, y_{n_{1}}\right) \quad \text { if } U \text { or } U^{\prime} \text { is of type } M \\
\frac{1}{2} \operatorname{Ch}[U]\left(x_{1}, \ldots, x_{n_{0}}\right) \operatorname{Ch}\left[U^{\prime}\right]\left(y_{1}, \ldots, y_{n_{1}}\right) \text { if } U, U^{\prime} \text { are of type } Q .
\end{array}\right.
\end{aligned}
$$

By Theorem 1.1, (1.2), Theorem 4.1 (3) and Theorem A, the simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-module $U_{\lambda, \mu}$ is of type M (resp. of type Q) if $l(\lambda)+l(\mu)$ is even (resp. odd). If $l(\lambda)+l(\mu)$ is odd, then fix a non-zero element $u_{\lambda, \mu}$ of $\operatorname{End}_{\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}}^{1}\left(U_{\lambda, \mu}\right)$.

We can rewrite (4.5) using the isomorphism $W_{\lambda, \mu} \cong X_{k} \circ V_{\lambda, \mu}$ as
$\hat{\mathcal{B}}_{k}$-modules. We have

$$
W \cong \bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} X_{k} \dot{\circ} V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu} .
$$

Note that, if U, V and W are simple modules for superalgebras A, B and C respectively, then both $(U \circ V) \circ W$ and $U \circ(V \circ W)$ denote the unique (up to isomorphism) simple ($A \dot{\otimes} B \dot{\otimes} C$)-module occurring in $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$, so that, up to isomorphism, the operation $\dot{\circ}$ is associative. There are three cases where the $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$ module $X_{k} \circ V_{\lambda, \mu} \circ U_{\lambda, \mu}$ is different from the supertensor product $X_{k} \otimes$ $V_{\lambda, \mu} \otimes U_{\lambda, \mu}$.
(1) If k is even and $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}$, then $X_{k}, V_{\lambda, \mu}, U_{\lambda, \mu}$ are of type M, Q, Q respectively. We have

$$
X_{k} \circ V_{\lambda, \mu} \circ U_{\lambda, \mu}=X_{k} \otimes\left(V_{\lambda, \mu} \circ U_{\lambda, \mu}\right)
$$

where $V_{\lambda, \mu} \circ U_{\lambda, \mu}$ is one of the two eigenspaces of $x_{\lambda, \mu} \otimes u_{\lambda, \mu}$.
(2) If k is odd and $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}$, then $X_{k}, V_{\lambda, \mu}, U_{\lambda, \mu}$ are of type Q, M, Q respectively. We have

$$
X_{k} \circ V_{\lambda, \mu} \circ U_{\lambda, \mu}=\left(X_{k} \otimes V_{\lambda, \mu}\right) \dot{\circ} U_{\lambda, \mu}
$$

where $\left(X_{k} \otimes V_{\lambda, \mu}\right) \circ U_{\lambda, \mu}$ is one of the two eigenspaces of $\left(z_{k} \otimes 1\right) \otimes u_{\lambda, \mu}$.
(3) If k is odd and $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}$, then $X_{k}, V_{\lambda, \mu}, U_{\lambda, \mu}$ are of type Q, Q, M respectively. We have

$$
X_{k} \circ V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}=\left(X_{k} \dot{\circ} V_{\lambda, \mu}\right) \otimes U_{\lambda, \mu}
$$

where $X_{k} \circ V_{\lambda, \mu}$ is one of the two eigenspaces of $z_{k} \otimes x_{\lambda, \mu}$.
Put $r=\lfloor k / 2\rfloor$ and $\zeta_{i}=\sqrt{-1} \xi_{2 i-1} \xi_{2 i} \in \mathcal{C}_{k}$ for $1 \leq i \leq r$. Then the elements $\Psi\left(\zeta_{i} \otimes 1\right), 1 \leq i \leq r$, are commuting involutions of $\Psi\left(\left(\mathcal{C}_{k}\right)_{0} \dot{\otimes}\right.$ 1) $\subset \Psi\left(\left(\hat{\mathcal{B}}_{k}\right)_{0}\right)=\operatorname{End}_{\Theta\left(u_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{0}(W)$. For each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) \in \mathbb{Z}_{2}^{r}$, put $W^{\varepsilon}=\left\{w \in W \mid \Psi\left(\zeta_{i} \otimes 1\right)(w)=(-1)^{\varepsilon_{i}} w \quad(1 \leq i \leq r)\right\}$. Then we have $W=\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} W^{\varepsilon}$. Since $\zeta_{i} \otimes 1$ commutes with $1 \dot{\otimes} \mathcal{B}_{k}^{\prime}$ for each $1 \leq i \leq r, W^{\varepsilon}$ is a $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-module.

Theorem 4.2. For each $\varepsilon \in \mathbb{Z}_{2}^{r}$, the submodule W^{ε} is decomposed as a multiplicity-free sum of simple $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-modules as follows:

$$
\begin{equation*}
W^{\varepsilon} \cong \cong_{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(u_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} \bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu} . \tag{4.9}
\end{equation*}
$$

In the above decomposition, the simple \mathcal{B}_{k}^{\prime}-modules are paired with the simple $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}-$ modules in a bijective manner. More precisely, we have the following results.
(1) Assume that k is even. Then the simple $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-modules $V_{\lambda, \mu} \circ U_{\lambda, \mu}$ in W^{ε} are all of type M. Furthermore we have (4.10)
$\operatorname{End}_{\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}\left(W^{\varepsilon}\right)=\Psi\left(\mathcal{B}_{k}^{\prime}\right), \quad \operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)=\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$.
(2) Assume that k is odd. Then the simple $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-modules $V_{\lambda, \mu} \circ U_{\lambda, \mu}$ in W^{ε} are all of type Q. Furthermore we have
$\operatorname{End}_{\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}\left(W^{\varepsilon}\right) \cong \mathcal{C}_{1} \dot{\otimes} \Psi\left(\mathcal{B}_{k}^{\prime}\right), \quad \operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right) \cong \mathcal{C}_{1} \dot{\otimes} \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$.

Proof. For each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) \in \mathbb{Z}_{2}^{r}$, put $X_{k}^{\varepsilon}=\left\{\xi \in X_{k} \mid \zeta_{i} \xi=\right.$ $\left.(-1)^{\varepsilon_{i}} \xi \quad(1 \leq i \leq r)\right\}$. Then we have $X_{k}=\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} X_{k}^{\varepsilon}$.
(1) Assume that k is even. Note that X_{k}^{ε} is one-dimensional. Let ξ^{ε} be a base of X_{k}^{ε}, namely $X_{k}^{\varepsilon}=\mathbb{C} \xi^{\varepsilon}$. Since the elements ζ_{i} are of degree $0, \xi^{\varepsilon}$ is a homogeneous element of X_{k}. Hence we have $X_{k}^{\varepsilon} \otimes\left(V_{\lambda, \mu}\right.$ 。 $\left.U_{\lambda, \mu}\right) \cong_{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)} V_{\lambda, \mu} \circ U_{\lambda, \mu}$.

If $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}$, then we have

$$
\begin{aligned}
X_{k} \circ V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}=X_{k} \otimes V_{\lambda, \mu} \otimes U_{\lambda, \mu} & =\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} X_{k}^{\varepsilon} \otimes V_{\lambda, \mu} \otimes U_{\lambda, \mu} \\
& =\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} X_{k}^{\varepsilon} \otimes\left(V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}\right)
\end{aligned}
$$

If $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}$, then we have

$$
X_{k} \dot{\circ} V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}=\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} X_{k}^{\varepsilon} \otimes\left(V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}\right)
$$

since the elements $\zeta_{i}, 1 \leq i \leq r$, and $1 \otimes x_{\lambda, \mu} \otimes u_{\lambda, \mu}$ commute. Consequently we have

$$
\begin{aligned}
W^{\varepsilon} & \cong{ }_{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} X_{k}^{\varepsilon} \otimes\left(\bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \dot{U_{\lambda, \mu}}\right) \\
& \cong_{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} \bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \dot{ } \dot{U_{\lambda, \mu}}
\end{aligned}
$$

Therefore (4.9) follows. By Theorem 1.1 and (1.2), the simple modules $V_{\lambda, \mu} \circ U_{\lambda, \mu}$ appearing in the above decomposition are of type M.

First we will show the second equality in (4.10). Then the first equality follows from DSCT. Since W^{ε} is a $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-module, we have

$$
\left.\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)\right|_{W^{\varepsilon}} \subset \operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)
$$

By DSCT, (4.5) and (4.9) (already proved for this case), we have

$$
\operatorname{dim} \operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)=\operatorname{dim} \operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{\prime}(W)
$$

since both equal $\sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}}\left(\operatorname{dim} U_{\lambda, \mu}\right)^{2}+\sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}} \frac{1}{2}\left(\operatorname{dim} U_{\lambda, \mu}\right)^{2}$. By
Theorem 4.1 (1), we have $\operatorname{dim} \operatorname{End}_{\Psi\left(\hat{\mathcal{B}}_{k}\right)}^{-}(W)=\operatorname{dim} \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$. Define a linear map $\mathfrak{p}_{\varepsilon}:\left.\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right) \rightarrow \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)\right|_{W^{\varepsilon}}$ by $\mathfrak{p}_{\varepsilon}(f)=\left.f\right|_{W^{\varepsilon}}$ for $f \in \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$. It is clear that $\mathfrak{p}_{\varepsilon}$ is surjective. We claim that $\mathfrak{p}_{\varepsilon}$ is injective. Assume that $f \in \operatorname{ker} \mathfrak{p}_{\varepsilon}$, namely $\left.f\right|_{W^{\varepsilon}}=0 \in \operatorname{End}\left(W^{\varepsilon}\right)$. Since f and the elements $\xi_{2 j-1}$ commute, and a subgroup of $\left(\mathcal{C}_{k}\right)^{\times}$generated by the elements $\xi_{2 j-1}, 1 \leq j \leq r$, transitively act on $\left\{W^{\varepsilon^{\prime}} ; \varepsilon^{\prime} \in \mathbb{Z}_{2}^{r}\right\}$ as follows:

$$
\xi_{2 j-1} W^{\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)}=W^{\left(\varepsilon_{1}, \ldots, \varepsilon_{j}+1, \ldots, \varepsilon_{r}\right)} \quad\left(1 \leq^{\forall} j \leq r\right)
$$

it follows that $\left.f\right|_{W^{\varepsilon^{\prime}}}=0$ for all $\varepsilon^{\prime} \in \mathbb{Z}_{2}^{r}$. Therefore $f=0$ in $\operatorname{End}(W)$. Hence $\mathfrak{p}_{\varepsilon}$ is injective. Consequently we have $\left.\operatorname{dim} \Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)\right|_{W^{\varepsilon}}=$ $\operatorname{dim} \operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)$. It follows that $\left.\Theta\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)\right|_{W^{\varepsilon}}=\operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)$, as required.
(2) Assume that k is odd. Note that X_{k}^{ε} is 2 -dimensional. Then $X_{k}^{\varepsilon}=\mathbb{C} \xi^{\varepsilon} \oplus \mathbb{C} z_{k} \xi^{\varepsilon}$.

If $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}$, then $V_{\lambda, \mu} \dot{\circ} X_{k}=V_{\lambda, \mu} \otimes X_{k}$ and we regard the $\mathcal{B}_{k}^{\prime} \dot{\otimes} \mathcal{C}_{k}$-module $V_{\lambda, \mu} \otimes X_{k}$ as a $\mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}$-module via $\omega_{\mathcal{C}_{k}, \mathcal{B}_{k}^{\prime}}$, where $\omega_{\mathcal{C}_{k}, \mathcal{B}_{k}^{\prime}}: \mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime} \rightarrow \mathcal{B}_{k}^{\prime} \dot{\otimes} \mathcal{C}_{k}$ denotes an isomorphism of superalgebras determined by $\omega_{\mathcal{C}_{k}, \mathcal{B}_{k}^{\prime}}(a \otimes b)=(-1)^{\bar{a} \cdot \bar{b}} b \otimes a$ for all homogeneous elements $a \in \mathcal{C}_{k}$ and $b \in \mathcal{B}_{k}^{\prime}$. An isomorphism $\theta: X_{k} \otimes V_{\lambda, \mu} \xrightarrow{\sim} V_{\lambda, \mu} \otimes X_{k}$ is defined by $\theta(\xi \otimes v)=(-1)^{\bar{\xi} \cdot \bar{v}} v \otimes \xi$ for all homogeneous elements $\xi \in X_{k}$ and $v \in V_{\lambda, \mu}$. Since $\theta \circ\left(z_{k} \otimes 1\right)=\left(1 \otimes z_{k}\right) \circ \theta$, we have

$$
\begin{aligned}
X_{k} \circ V_{\lambda, \mu} \circ U_{\lambda, \mu} & \cong_{\hat{\mathcal{B}}_{k} \dot{\otimes} \mathcal{U}_{n}}\left(V_{\lambda, \mu} \otimes X_{k}\right) \dot{ } U_{\lambda, \mu} \\
& \cong_{\hat{\mathcal{B}}_{k} \dot{\otimes} \mathcal{U}_{n}} V_{\lambda, \mu} \otimes\left(X_{k} \circ U_{\lambda, \mu}\right)
\end{aligned}
$$

where $X_{k} \dot{\circ} U_{\lambda, \mu}$ denotes one of the two eigenspaces of $z_{k} \otimes u_{\lambda, \mu}$. Since the elements ζ_{i} and $z_{k} \otimes u_{\lambda, \mu}$ commute, we have

$$
X_{k} \circ U_{\lambda, \mu}=\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}} X_{k}^{\varepsilon} \circ U_{\lambda, \mu}
$$

where $X_{k}^{\varepsilon} \dot{\circ} U_{\lambda, \mu}$ denotes one of the two eigenspaces of $\left.z_{k}\right|_{X_{k}^{\epsilon}} \otimes u_{\lambda, \mu}$. Since $X_{k}^{\varepsilon} \dot{\circ} U_{\lambda, \mu}$ is a $\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}$-submodule of $X_{k} \dot{\circ} U_{\lambda, \mu} \cong{ }_{\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}} U_{\lambda, \mu}^{\oplus 2^{r}}$ and $\operatorname{dim}\left(X_{k}^{\varepsilon} \dot{\circ} U_{\lambda, \mu}\right)=\operatorname{dim} U_{\lambda, \mu}$, it follows that $X_{k}^{\varepsilon} \circ U_{\lambda, \mu} \cong_{\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}} U_{\lambda, \mu}$. If $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}$, then we have

$$
X_{k} \circ V_{\lambda, \mu} \circ U_{\lambda, \mu}=\left(X_{k} \circ V_{\lambda, \mu}\right) \otimes U_{\lambda, \mu}=\bigoplus_{\varepsilon \in \mathbb{Z}_{2}^{r}}\left(X_{k}^{\varepsilon} \circ V_{\lambda, \mu}\right) \otimes U_{\lambda, \mu}
$$

since the elements $\zeta_{i}, 1 \leq i \leq r$, and $z_{k} \otimes x_{\lambda, \mu} \otimes 1$ commute, where $X_{k}^{\epsilon} \circ V_{\lambda, \mu}$ denotes one of the two eigenspaces of $\left.z_{k}\right|_{X_{k}^{\epsilon}} \otimes x_{\lambda, \mu}$. Since $X_{k}^{\varepsilon} \circ V_{\lambda, \mu}$ is a \mathcal{B}_{k}^{\prime}-submodule of $X_{k} \dot{\circ} V_{\lambda, \mu} \cong_{\mathcal{B}_{k}^{\prime}} V_{\lambda, \mu}^{\oplus 2^{r}}$ and $\operatorname{dim}\left(X_{k}^{\varepsilon} \dot{ } \dot{V_{\lambda, \mu}}\right)=$ $\operatorname{dim} V_{\lambda, \mu}$, it follows that $X_{k}^{\varepsilon} \circ V_{\lambda, \mu} \cong{ }_{\mathcal{B}_{k}^{\prime}} V_{\lambda, \mu}$.

Consequently we have

$$
W^{\varepsilon} \cong \bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \otimes U_{\lambda, \mu}
$$

By Theorem 1.1 and (1.2), the simple modules $V_{\lambda, \mu} \otimes U_{\lambda, \mu}$ appearing in the above decomposition are of type Q and we have $V_{\lambda, \mu} \otimes U_{\lambda, \mu}=$ $V_{\lambda, \mu} \circ U_{\lambda, \mu}$. Therefore, (4.9) and the former statement of (2) follow.

The supercentralizer $\operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)$ contains an invertible element $\Psi\left(\xi_{k}\right) \in \Psi\left(\mathcal{C}_{k}\right)$. The subsuperalgebra of $\operatorname{End}_{\Psi\left(\mathcal{B}_{k}^{\prime}\right)}\left(W^{\varepsilon}\right)$ generated by $\Psi\left(\xi_{k}\right)$ is isomorphic to \mathcal{C}_{1}. By the arguments similar to the proof of (4.10), the result (4.11) follows from DSCT (cf. [11, Cor. 2.2]). Q.E.D.

Let us mention a relation between the branching rule of the $\mathfrak{q}(n)$ modules to $\mathfrak{q}\left(n_{0}\right) \oplus \mathfrak{q}\left(n_{1}\right)$ and that of the $\hat{\mathcal{B}}_{k}$-modules to \mathcal{B}_{k} (or that of the \mathcal{B}_{k}^{\prime}-modules to \mathcal{A}_{k}).

Let A be a superalgebra and let B be a subsuperalgebra of A. If V is an A-module, then we can restrict it to a B-module, which we write as $V \downarrow_{B}^{A}$. Moreover, we write $[V: U]_{A}$ (or simply write $[V: U]$) for the multiplicity of a simple A-module U in an A-module V.

Corollary 4.3. Put

$$
\begin{align*}
& m_{\mu, \nu}^{\lambda}=\left[U_{\lambda} \downarrow_{\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}}^{\mathcal{U}_{n}}: U_{\mu, \nu}\right] \tag{4.12}\\
& m_{\mu, \nu}^{\prime \lambda}=\left[W_{\mu, \nu} \downarrow_{\mathcal{B}_{k}}^{\hat{\mathcal{B}}_{k}}: W_{\lambda}\right] \quad\left(\operatorname{resp} .\left[V_{\mu, \nu} \downarrow_{\mathcal{A}_{k}}^{\mathcal{B}_{k}^{\prime}}: V_{\lambda}\right]\right)
\end{align*}
$$

Then we have
$m_{\mu, \nu}^{\prime \lambda}=\left\{\begin{array}{cc}\frac{1}{2} m_{\mu, \nu}^{\lambda} & \text { if both } U_{\mu, \nu} \text { and } W_{\mu, \nu}\left(\text { resp. } V_{\mu, \nu}\right) \text { are of type } M \\ & \text { and both } U_{\lambda} \text { and } W_{\lambda}\left(\text { resp. } V_{\lambda}\right) \text { are of type } Q, \\ 2 m_{\mu, \nu}^{\lambda} & \text { if both } U_{\mu, \nu} \text { and } W_{\mu, \nu}\left(\text { resp. } V_{\mu, \nu}\right) \text { are of type } Q \\ m_{\mu, \nu}^{\lambda} & \text { otherwise. }\end{array}\right.$

Proof. Put

$$
W^{\prime}=W_{\lambda} \circ U_{\mu, \nu}, \quad W_{1}=W \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}^{\mathcal{B}_{k} \dot{\otimes} \mathcal{U}_{n}}, \quad W_{2}=W \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\hat{\mathcal{B}}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} .
$$

Since $W_{1} \cong W_{2}$, we have $\left[W_{1}: W^{\prime}\right]=\left[W_{2}: W^{\prime}\right]$. Moreover, put

$$
W_{1}^{\prime}=\left(W_{\lambda} \dot{\circ} U_{\lambda}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(u_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\mathcal{B}_{k} \dot{u_{n}}}, W_{2}^{\prime}=\left(W_{\mu, \nu} \dot{\circ} U_{\mu, \nu}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(u_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\hat{\mathcal{B}}_{k} \dot{\dot{\theta}}\left(\mathcal{U}_{n_{0}} \dot{\dot{\theta}} u_{n_{1}}\right)} .
$$

From (4.5) and (A.2), we have $\left[W_{1}: W^{\prime}\right]=\left[W_{1}^{\prime}: W^{\prime}\right]$ and $\left[W_{2}: W^{\prime}\right]=$ [$\left.W_{2}^{\prime}: W^{\prime}\right]$. Using (4.12) and (4.13), we have

$$
\begin{aligned}
& \left(W_{\lambda} \otimes U_{\lambda}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(u_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\mathcal{B}_{k} \dot{\otimes} u_{n}} \cong \bigoplus_{(\mu, \nu) \in\left(D P^{2}\right)_{k}}\left(W_{\lambda} \otimes U_{\mu, \nu}\right)^{\oplus m_{\mu, \nu}^{\lambda}}, \\
& \left(W_{\mu, \nu} \otimes U_{\mu, \nu}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\hat{\mathcal{B}}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)} \cong \bigoplus_{\lambda \in D P_{k}}\left(W_{\lambda} \otimes U_{\mu, \nu}\right)^{\oplus m^{\prime \lambda}{ }_{\mu, \nu}}
\end{aligned}
$$

By Theorem 1.1 and (1.2), the above modules $\left(W_{\lambda} \otimes U_{\lambda}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}^{\mathcal{B}_{k} \dot{\otimes} \mathcal{U}_{n}}$, $\left(W_{\mu, \nu} \otimes U_{\mu, \nu}\right) \downarrow_{\mathcal{B}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}^{\hat{\mathcal{B}}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} u_{n_{1}}\right)}, W_{\lambda} \otimes U_{\mu, \nu}$ are sums of two copies of W_{1}^{\prime}, $W_{2}^{\prime}, W^{\prime}$ if W_{λ} is of type $Q, W_{\mu, \nu}$ is of type Q, both W_{λ} and $U_{\mu, \nu}$ are of
type Q, respectively. Note that U_{λ} (resp. $U_{\mu, \nu}$) is of the same type as $W_{\lambda}\left(\right.$ resp. $\left.W_{\mu, \nu}\right)$. Therefore we have

$$
\begin{aligned}
& {\left[W_{1}^{\prime}: W^{\prime}\right]= \begin{cases}\frac{1}{2} m_{\mu, \nu}^{\lambda} & \text { if } W_{\lambda} \text { is of type } Q \text { and } W_{\mu, \nu} \text { is of type } M \\
m_{\mu, \nu}^{\lambda} & \text { otherwise },\end{cases} } \\
& {\left[W_{2}^{\prime}: W^{\prime}\right]= \begin{cases}\frac{1}{2} m_{\mu, \nu}^{\prime \lambda} & \text { if } W_{\lambda} \text { is of type } M \text { and } W_{\mu, \nu} \text { is of type } Q, \\
m_{\mu, \nu}^{\prime \lambda} & \text { otherwise. }\end{cases} }
\end{aligned}
$$

Comparing the above two equations, we obtain the result (4.14).
Next, using (4.9) and (B.1), we consider the multiplicities of the simple $\mathcal{A}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-module $V_{\lambda} \dot{\circ} U_{\lambda, \mu}$ in $W^{\varepsilon} \downarrow_{\mathcal{A}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}^{\mathcal{A}_{k} \dot{\dot{\theta}} \mathcal{U}_{n}}$ and $W^{\varepsilon} \downarrow_{\mathcal{A}_{k} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}^{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)}$ respectively. Then (4.14) similarly follows. \quad Q.E.D.

Let H_{k}^{\prime} be the subgroup of $\left(\mathcal{B}_{k}^{\prime}\right)^{\times}$generated by $-1, \tau^{\prime}, \gamma_{1}, \ldots, \gamma_{k-1}$. Then H_{k}^{\prime} is a double cover (a central extension with a \mathbb{Z}_{2} kernel) of H_{k}. Let $w^{\kappa, \nu}$ denote the element of H_{k}^{\prime} defined by

$$
\begin{aligned}
& w^{\kappa, \nu}=w_{1} w_{2} \cdots w_{l} w_{1}^{\prime} w_{2}^{\prime} \cdots w_{l^{\prime}}^{\prime} \quad\left(l=l(\kappa), l^{\prime}=l(\nu)\right) \\
& w_{i}=\gamma_{a+1} \gamma_{a+2} \cdots \gamma_{a+\kappa_{i}-1} \quad\left(a=\kappa_{1}+\cdots+\kappa_{i-1}\right) \\
& w_{i}^{\prime}=\gamma_{b+1} \gamma_{b+2} \cdots \gamma_{b+\nu_{i}-1} \tau_{b+\nu_{i}}^{\prime} \quad\left(b=|\kappa|+\nu_{1}+\cdots+\nu_{i-1}\right)
\end{aligned}
$$

Note that the image of $w^{\kappa, \nu}$ in H_{k} is a representative of the conjugacy class of H_{k} indexed by (κ, ν).

Define a map $\varepsilon:\left(D P^{2}\right)_{k} \rightarrow \mathbb{Z}_{2}$ by $\varepsilon(\lambda, \mu)=0($ resp. $\varepsilon(\lambda, \mu)=1$) if $(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{+}\left(\right.$resp. $\left.(\lambda, \mu) \in\left(D P^{2}\right)_{k}^{-}\right)$.

We describe a formula for the character values of simple \mathcal{B}_{k}^{\prime}-modules.

Corollary 4.4. We have

$$
\begin{align*}
& 2^{\frac{l(\kappa)+l(\nu)}{2}} p_{\kappa}(x, y) p_{\nu}(x,-y) \tag{4.15}\\
& \quad=\sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} \operatorname{Ch}\left[V_{\lambda, \mu}\right]\left(w^{\kappa, \nu}\right) 2^{\frac{-l(\lambda)-l(\mu)-\varepsilon(\lambda, \mu)}{2}} Q_{\lambda}(x) Q_{\mu}(y)
\end{align*}
$$

for all $(\kappa, \nu) \in\left(O P^{2}\right)_{k}$, where $p_{\kappa}(x, y)=p_{\kappa}\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right)$ and $p_{\nu}(x,-y)=p_{\nu}\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right)$ and $\mathrm{Ch}\left[V_{\lambda, \mu}\right]$ denotes the character of $V_{\lambda, \mu}$, namely $\operatorname{Ch}\left[V_{\lambda, \mu}\right](w)=\operatorname{tr}\left(w_{V_{\lambda, \mu}}\right)$ for $w \in \mathcal{B}_{k}^{\prime}$ where $w_{V_{\lambda, \mu}}$ denotes the action of $w \in \mathcal{B}_{k}^{\prime}$ on $V_{\lambda, \mu}$.

Proof. As we have noted in the preceding paragraph to Theorem 4.1, any $\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)$-submodule W^{\prime} of W can be regarded as a \mathcal{B}_{k}^{\prime}-module with a commuting polynomial representation $\theta_{W^{\prime}}$ of $G L\left(n_{0}, \mathbb{C}\right) \times G L\left(n_{1}, \mathbb{C}\right)$. Here we extend our notation in Theorem 4.1 to let $\operatorname{Ch}\left[W^{\prime}\right](x \otimes g)$ denote the trace $\operatorname{tr}\left(x_{W^{\prime}} \circ \theta_{W^{\prime}}(g)\right)$ for $x \in \mathcal{B}_{k}^{\prime}$ and $g \in G L\left(n_{0}, \mathbb{C}\right) \times G L\left(n_{1}, \mathbb{C}\right)$, where $x_{W^{\prime}}$ denotes the action of $x \in \mathcal{B}_{k}^{\prime}$ on W^{\prime}.

For any $\varepsilon, \varepsilon^{\prime} \in \mathbb{Z}_{2}^{r}$, we have $W^{\varepsilon} \cong{ }_{\mathcal{B}_{k}^{\prime} \dot{\otimes}\left(\mathcal{U}_{n_{0}} \dot{\otimes} \mathcal{U}_{n_{1}}\right)} W^{\varepsilon^{\prime}}$. Hence, for $(\kappa, \nu) \in\left(O P^{2}\right)_{k}$ and $E=\operatorname{diag}\left(x_{1}, \ldots, x_{n_{0}}, y_{1}, \ldots, y_{n_{1}}\right) \in G L(n, \mathbb{C})$, we have

$$
\begin{equation*}
\operatorname{Ch}\left[W^{\varepsilon}\right]\left(w^{\kappa, \nu} \otimes E\right)=2^{-r} \operatorname{Ch}[W]\left(\left(1 \otimes w^{\kappa, \nu}\right) \otimes E\right) \tag{4.16}
\end{equation*}
$$

where $1 \otimes w^{\kappa, \nu} \in \mathcal{C}_{k} \dot{\otimes} \mathcal{B}_{k}^{\prime}=\hat{\mathcal{B}}_{k}$. We calculate the right hand side using the embedding $\vartheta: \mathcal{B}_{k} \hookrightarrow \hat{\mathcal{B}}_{k}$ (cf. (3.3)), namely $1 \otimes \gamma_{j}=\vartheta\left(\frac{1}{\sqrt{2}}\left(\tau_{j}-\tau_{j+1}\right) \sigma_{j}\right)$. Put $k^{\prime}=|\kappa|$ and $l=l(\kappa)$. Then $k-k^{\prime}=|\nu|$. Moreover put $W^{\prime}=V^{\otimes k^{\prime}}$ and $W^{\prime \prime}=V^{\otimes k-k^{\prime}}$. We have $w^{\kappa, \nu}=w^{\kappa, \phi} w^{\phi, \nu}$, where $w^{\kappa, \phi} \in \mathcal{B}_{k^{\prime}}^{\prime}, w^{\phi, \nu} \in$ $\mathcal{B}_{k-k^{\prime}}^{\prime}$. Define a representations of $\hat{\mathcal{B}}_{k^{\prime}}$ on W^{\prime} (resp. a representation of $\hat{\mathcal{B}}_{k-k^{\prime}}$ on $W^{\prime \prime}$) by the same manner as the representation Ψ of $\hat{\mathcal{B}}_{k}$ in W. Then the action of $1 \otimes w^{\kappa, \phi}$ (resp. the action of $1 \otimes w^{\phi, \nu}$) on W can be expressed as (the action of $1 \otimes w^{\kappa, \phi}$ on W^{\prime}) $\otimes \overbrace{\mathrm{id} \otimes \cdots \otimes \mathrm{id}}^{k-k^{\prime}}$ (resp. $\overbrace{\text { id } \otimes \cdots \otimes \mathrm{id}}^{k^{\prime}}\left(\right.$ the action of $1 \otimes w^{\phi, \nu}$ on $\left.W^{\prime \prime}\right)$). Hence we have

$$
\operatorname{Ch}[W]\left(\left(1 \otimes w^{\kappa, \nu}\right) \otimes E\right)
$$

$$
\begin{equation*}
=\operatorname{Ch}\left[W^{\prime}\right]\left(\left(1 \otimes w^{\kappa, \phi}\right) \otimes E\right) \operatorname{Ch}\left[W^{\prime \prime}\right]\left(\left(1 \otimes w^{\phi, \nu}\right) \otimes E\right) \tag{4.17}
\end{equation*}
$$

The element $1 \otimes w^{\kappa, \phi}$ of $\hat{\mathcal{B}}_{k^{\prime}}$ is a product of $k^{\prime}-l$ elements $1 \otimes \gamma_{j}=$ $\vartheta\left(\frac{1}{\sqrt{2}}\left(\tau_{j}-\tau_{j+1}\right) \sigma_{j}\right)$. This product can be rearranged into the following form:

$$
\begin{aligned}
&(\text { constant }) \times\left(\text { a product of the elements } \vartheta\left(\tau_{p}\right)-\vartheta\left(\tau_{q}\right)\right) \\
& \times\left(\text { a product of the elements } \vartheta\left(\sigma_{j}\right)\right)
\end{aligned}
$$

The product of the elements $\vartheta\left(\sigma_{j}\right)$ equals $\vartheta\left(\sigma^{\kappa, \phi}\right)$. Expanding the product of $\vartheta\left(\tau_{p}\right)-\vartheta\left(\tau_{q}\right)$ into a sum of $2^{k^{\prime}-l}$ elements, we have $1 \otimes w^{\kappa, \phi}=\left(\frac{1}{\sqrt{2}}\right)^{k^{\prime}-l} \times \sum\left(\right.$ a product of the elements $\left.\vartheta\left(\tau_{p}\right)\right) \times \vartheta\left(\sigma^{\kappa, \phi}\right)$
where $\sigma^{\kappa, \phi}=g_{1} g_{2} \cdots g_{l}, g_{i}=\sigma_{a+1} \sigma_{a+2} \cdots \sigma_{a+\nu_{i}-1}\left(a=\sum_{j=1}^{i-1} \kappa_{j}\right)$. Then all terms in the summation are conjugate to $\vartheta\left(\sigma^{\kappa, \phi}\right)$ in $\vartheta\left(\left(\mathcal{B}_{k}\right)^{\times}\right)$. Therefore we have

$$
\begin{aligned}
\operatorname{Ch}\left[W^{\prime}\right]\left(\left(1 \otimes w^{\kappa, \phi}\right) \otimes E\right) & =2^{k^{\prime}-l}(\sqrt{2})^{l-k^{\prime}} \operatorname{Ch}\left[W^{\prime}\right]\left(\vartheta\left(\sigma^{\kappa, \phi}\right) \otimes E\right) \\
& =(\sqrt{2})^{k^{\prime}+l} p_{\kappa}\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right) .
\end{aligned}
$$

Put $l^{\prime}=l(\nu)$. Similarly we have

$$
\operatorname{Ch}\left[W^{\prime \prime}\right]\left(\left(1 \otimes w^{\phi, \nu}\right) \otimes E\right)=2^{k-k^{\prime}-l^{\prime}}(\sqrt{2})^{l^{\prime}-k+k^{\prime}} \operatorname{Ch}\left[W^{\prime \prime}\right]\left(\vartheta\left(\sigma^{\prime \phi, \nu}\right) \otimes E\right)
$$

$$
=(\sqrt{2})^{k-k^{\prime}+l^{\prime}} p_{\nu}\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right)
$$

where $\sigma^{\prime \phi, \nu}=g_{1}^{\prime} g_{2}^{\prime} \cdots g_{l^{\prime}}^{\prime}, g_{i}^{\prime}=\sigma_{b+1} \sigma_{b+2} \ldots \sigma_{b+\nu_{i}-1} \tau_{b+\nu_{i}}^{\prime}\left(b=\sum_{j=1}^{i-1} \nu_{j}\right)$. By (4.16) and (4.17), we have

$$
\begin{aligned}
& \operatorname{Ch}\left[W^{\varepsilon}\right]\left(\left(1 \otimes w^{\kappa, \nu}\right) \otimes E\right) \\
& =\left\{\begin{array}{l}
(\sqrt{2})^{l+l^{\prime}} p_{\kappa}\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right) p_{\nu}\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right) \\
(\sqrt{2})^{l+l^{\prime}+1} p_{\kappa}\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right) p_{\nu}\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right) \\
\text { if } k \text { is odd. }
\end{array}\right.
\end{aligned}
$$

On the other hand, by (4.6) and (4.9), if k is even, then we have

$$
\begin{aligned}
& \operatorname{Ch}\left[\bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \dot{\circ} U_{\lambda, \mu}\right]\left(w^{\kappa, \nu} \otimes E\right) \\
& =\sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} \operatorname{Ch}\left[V_{\lambda, \mu}\right]\left(w^{\kappa, \nu}\right) \\
& \quad \times(\sqrt{2})^{-\varepsilon(\lambda, \mu)-l(\lambda)-l(\mu)} Q_{\lambda}\left(x_{1}, \ldots, x_{n_{0}}\right) Q_{\mu}\left(y_{1}, \ldots, y_{n_{1}}\right),
\end{aligned}
$$

and if k is odd, then we have

$$
\begin{aligned}
& \mathrm{Ch}\left[\bigoplus_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} V_{\lambda, \mu} \dot{\left.U_{\lambda, \mu}\right]\left(w^{\kappa, \nu} \otimes E\right)}\right. \\
& =\sqrt{2} \sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} \operatorname{Ch}\left[V_{\lambda, \mu}\right]\left(w^{\kappa, \nu}\right) \\
& \quad \quad \times(\sqrt{2})^{-\varepsilon(\lambda, \mu)-l(\lambda)-l(\mu)} Q_{\lambda}\left(x_{1}, \ldots, x_{n_{0}}\right) Q_{\mu}\left(y_{1}, \ldots, y_{n_{1}}\right) .
\end{aligned}
$$

Since these hold for all n_{0} and n_{1}, the result follows.
Q.E.D.

We review Stembridge's formula for the character values of simple \mathcal{B}_{k}^{\prime}-modules, in a form adapted to the simple modules in the \mathbb{Z}_{2}-graded sense.

Theorem 4.5. (cf. [10, Lem. 7.5]) We have

$$
\begin{aligned}
& 2^{\frac{3(l(\kappa)+l(\nu))}{2}} p_{\kappa}(x) p_{\nu}(y) \\
& \quad=\sum_{(\lambda, \mu) \in\left(D P^{2}\right)_{k}} \operatorname{Ch}\left[V_{\lambda, \mu}\right]\left(w^{\kappa, \nu}\right) 2^{\frac{-l(\lambda)-l(\mu)-\varepsilon(\lambda, \mu)}{2}} Q_{\lambda}(x, y) Q_{\mu}(x,-y)
\end{aligned}
$$

for all $(\kappa, \nu) \in\left(O P^{2}\right)_{k}$, where $Q_{\lambda}(x, y)=Q_{\lambda}\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right)$ and $Q_{\mu}(x,-y)=Q_{\mu}\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right)$.

The formula (4.15) is different from Stembridge's formula. Let us mention a relationship between the two formulas. Define an algebra endomorphism ι of $\Omega_{x} \otimes \Omega_{y}$ by $\iota(f \otimes 1)=f(x, y)=f\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right)$ and $\iota(1 \otimes g)=g(x,-y)=g\left(x_{1}, x_{2}, \ldots,-y_{1},-y_{2}, \ldots\right)$ (since the y-part belongs to Ω_{y}, this "naïve notation" actually coincides with $g(x-y)$ in the Λ-ring notation). Note that $\left\{Q_{\lambda}(x, y) Q_{\mu}(x,-y) \mid(\lambda, \mu) \in\left(D P^{2}\right)\right\}$ is a basis of $\Omega_{x} \otimes \Omega_{y}$ (cf. [10, Th. 7.1, Lem. 7.5]). Since $\iota\left(Q_{\lambda}(x) Q_{\mu}(y)\right)=$ $Q_{\lambda}(x, y) Q_{\mu}(x,-y)$, it follows that ι is an automorphism. Moreover, since $\iota\left(p_{r}(x, y)\right)=2 p_{r}(x)$ and $\iota\left(p_{r}(x,-y)\right)=2 p_{r}(y)$ for any odd r, it follows that the image of (4.15) under ι coincides with Stembridge's formula.

Appendix

A. Sergeev's duality. We review Sergeev's duality relation between \mathcal{B}_{k} and \mathcal{U}_{n} using DSCT. Define a map $d: D P_{k} \rightarrow \mathbb{Z}_{2}$ by $d(\lambda)=0$ (resp. $d(\lambda)=1$) if $l(\lambda)$ is even (resp. $l(\lambda)$ is odd).

Theorem A. [8] (1) The two superalgebras $\Psi\left(\mathcal{B}_{k}\right)$ and \mathcal{U}_{n} act on W as mutual supercentralizers of each other:

$$
\begin{equation*}
\operatorname{End}_{\Theta\left(\mathcal{U}_{n}\right)}(W)=\Psi\left(\mathcal{B}_{k}\right), \quad \operatorname{End}_{\Psi\left(\mathcal{B}_{k}\right)}(W)=\Theta\left(\mathcal{U}_{n}\right) \tag{A.1}
\end{equation*}
$$

(2) The simple \mathcal{B}_{k}-module $W_{\lambda}\left(\lambda \in D P_{k}\right)$ occurs in W if and only if $l(\lambda)) \leq n$. Then we have

$$
\begin{equation*}
W \cong_{\mathcal{B}_{k} \dot{\otimes} \mathcal{U}_{n}} \bigoplus_{\substack{\lambda \in D P_{k} \\ l(\lambda) \leq n}} W_{\lambda} \circ U_{\lambda} \tag{A.2}
\end{equation*}
$$

where U_{λ} denotes a simple \mathcal{U}_{n}-module corresponding to W_{λ} in W in the sense of DSCT.
(3) The character values of $\mathrm{Ch}\left[U_{\lambda}\right]$ are given as follows:

$$
\begin{equation*}
\operatorname{Ch}\left[U_{\lambda}\right]\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(\sqrt{2})^{d(\lambda)-l(\lambda)} Q_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{A.3}
\end{equation*}
$$

B. A duality of $\mathcal{A}_{\boldsymbol{k}}$ and $\mathfrak{q}(n)$. We established a duality relation between \mathcal{A}_{k} and \mathcal{U}_{n} on the same space W^{ε} as in Theorem 4.2.

Theorem B. [11, Th. 4.1] The submodule W^{ε} is decomposed as a multiplicity-free sum of simple $\mathcal{A}_{k} \dot{\otimes} \mathcal{U}_{n}$-modules as follows:

$$
\begin{equation*}
W^{\varepsilon} \cong \mathcal{A}_{k} \dot{\otimes} \mathcal{U}_{n} \bigoplus_{\substack{\lambda \in D P_{k} \\ l(\lambda) \leq n}} V_{\lambda} \circ U_{\lambda} . \tag{B.1}
\end{equation*}
$$

(1) Assume that k is even. Then the simple $\mathcal{A}_{k} \dot{\otimes} \mathcal{U}_{n}-$ modules $V_{\lambda} \dot{\circ} U_{\lambda}$ in W^{ε} are of type M. Furthermore we have

$$
\begin{equation*}
\operatorname{End}_{\Theta\left(\mathcal{U}_{n}\right)}\left(W^{\varepsilon}\right)=\Psi\left(\mathcal{A}_{k}\right), \quad \operatorname{End}_{\Psi\left(\mathcal{A}_{k}\right)}\left(W^{\varepsilon}\right)=\Theta\left(\mathcal{U}_{n}\right) \tag{B.2}
\end{equation*}
$$

(2) Assume that k is odd. Then the simple $\mathcal{A}_{k} \dot{\otimes} \mathcal{U}_{n}$-modules $V_{\lambda} \dot{\circ} U_{\lambda}$ in W^{ε} are of type Q. Furthermore we have
(B.3) $\quad \operatorname{End}_{\Theta\left(U_{n}\right)}\left(W^{\varepsilon}\right) \cong \mathcal{C}_{1} \dot{\otimes} \Psi\left(\mathcal{A}_{k}\right), \quad \operatorname{End}_{\Psi\left(\mathcal{A}_{k}\right)}\left(W^{\varepsilon}\right) \cong \mathcal{C}_{1} \dot{\otimes} \Theta\left(\mathcal{U}_{n}\right)$.

References

[1] T. Józefiak, Semisimple superalgebras, in "Some Current Trends in Algebra", Proceedings of the Varna Conference 1986, Lecture Notes in Math., No. 1352, 1988, pp. 96-113.
[2] T. Józefiak, Characters of projective representations of symmetric groups, Expo. Math., 7 (1989), 193-247.
[3] T. Józefiak, Schur Q-functions and applications, in "Proceedings of the Hyderabad Conference on Algebraic groups", Manoj Prakashan, 1989, pp. 205-224.
[4] T. Józefiak, A class of projective representations of hyperoctahedral groups and Schur Q-functions, in "Topics in Algebra", Banach Center Publications, Vol. 26, Part 2, PWN-Polish Scientific Publishers, Warsaw, 1990, pp. 317-326.
[5] V. G. Kac, Lie superalgebras, Adv. in Math., 26 (1977), 8-96.
[6] I. G. Macdonald, "Symmetric functions and Hall polynomials, 2nd ed.", Clarendon Press, Oxford, 1998.
[7] I. Schur, Über die Darrstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139 (1911), 155-250.
[8] A. N. Sergeev, Tensor algebra of the identity representation as a module over Lie superalgebras $G L(n, m)$ and $Q(n)$, Math. USSR Sbornik, 51 No. 2 (1985), 419-425.
[9] J. R. Stembridge, Shifted Tableaux and the Projective Representations of Symmetric groups, Adv. in Math., 74 (1989), 87-134.
[10] J. R. Stembridge, The Projective Representations of the Hyperoctahedral Group, J. of Algebra, 145 (1992), 396-453.
[11] M. Yamaguchi, A duality of the twisted group algebra of the symmetric group and a Lie superalgebra, J. of Algebra, 222 (1999), 301-327.

Department of Mathematics
Aoyama Gakuin University
Chitosedai 6-16-1, Setagaya-ku, Tokyo, 157-8572 Japan
e-mail: yamaguti@gem.aoyama.ac.jp

