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Littlewood-Richardson Coefficients and 
Kazhdan-Lusztig Polynomials 

Bernard Leclerc and Jean-Yves Thibon 

Abstract. 

We show that the Littlewood-Richardson coefficients are values 
at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine sym­
metric groups. These q-analogues of Littlewood-Richardson multi­
plicities coincide with those previously introduced in [21] in terms of 
ribbon tableaux. 

§1. Introduction 

Let ,\ = (>.1 :::: ... :::: Ar :::: 0) and µ = (µ1 :::: ... :::: µr :::: 0) denote 
two partitions of length :S r, identified in the usual way with dominant 
integral weights of the complex Lie algebra g(r. It was shown by Lusztig 
[28] that the multiplicity K>.,µ, of the weight µ in the finite-dimensional 
irreducible representation W(>.) of g(r with highest weight,\ is the value 
at 1 of a certain Kazhdan-Lusztig polynomial Pn,,,,n>- for the affine sym-

metric group 6r. (For the definition of 6r and n>., see below Sec­
tion 2.1). Moreover, Lusztig proved [27] that the polynomial Pn,,,,n>.. (q) 
is equal to the Kostka-Foulkes polynomial K>.,µ,(q) defined as the coeffi­
cient of the Schur function S>. on the basis of Hall-Littlewood function 
Pµ,(q) [33]. A combinatorial expression of K>.,µ,(q) had previously been 
given by Lascoux and Schiitzenberger in terms of semi-standard Young 
tableaux [35, 33]. 

It is well known that K>.,µ, is also equal to the multiplicity of W(>.) 
as an irreducible component of the tensor product 

of symmetric powers of the vector representation of g(r. Let now v< 1), 

... , v<s) be arbitrary dominant weights and let c>.(i) <•l denote the 
V , ••. ,V 
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multiplicity of W ( .X) in 

A q-analogue c\1 ) <s) ( q) of this multiplicity has been introduced in 
V , ••• ,V 

[21] by means of certain generalizations of semi-standard Young tableaux 
called ribbon tableaux, and it has been proved that when the partitions 
,)i) have only one part µj 

The purpose of this paper is to establish that for all v(l), ... , v<s), X the 
c\1 ) <•) (q) are Kazhdan-Lusztig polynomials for the group Sr. 

V , ••• ,V 

Let us outline how this result is obtained. As mentioned by Lusztig 
in [28], the expression of the weight multiplicity K>,.,µ as a value at 1 of 
a Kazhdan-Lusztig polynomial might be deduced from the conjecture of 
[26] for the characters of irreducible representations of GLr over an alge­
braically closed field of characteristic n ~ r together with the Steinberg 
tensor product theorem. In [30, 31] a similar conjecture was formulated 
for the characters of irreducible representations of Uq(g(r) when q2 is a 
primitive nth root of l. A remarkable feature of the quantum conjecture 
is that the restriction n ~ r is no longer necessary. This conjecture is 
now proved due to work of Kazhdan-Lusztig and Kashiwara-Tanisaki. 
On the other hand Lusztig has derived in [30] an analogue of the Stein­
berg tensor product theorem for the quantum case. From these two 
facts, it is easy to deduce that the Littlewood-Richardson multiplicities 
are value at 1 of Kazhdan-Lusztig polynomials (see below, Section 3). 

However this would not provide the link with the q-analogues de­
fined by means of ribbon tableaux. We shall therefore follow a different 
approach and rely on the construction given in [22] of a canonical basis 
in the level 1 Fock space representation of the quantum affine algebra 
Uq(S(n)- This canonical basis satisfies a formal q-analogue of Steinberg's 
tensor product theorem which may be formulated in terms of the combi­
natorics of ribbon tableaux. On the other hand, Varagnolo and Vasserot 
[42] have recently verified a conjecture of [22]. They proved that the co­
efficients of the expansion of this canonical basis on the standard basis 
of q-wedge products coincide with the Kazhdan-Lusztig polynomials oc­
curing in Lusztig's conjecture. Using these two results, we are able to 
express the c-\ 1 ) {s) ( q) as Kazhdan-Lusztig polynomials. 

V , ••• ,V 

More precisely, they belong to a family of parabolic analogues of 
Kazhdan-Lusztig polynomials introduced by Deodhar [4, 5]. There are 
two types of such polynomials associated with the Hecke algebra modules 
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obtained by inducing respectively the characters Ti 1-, -q and Ti 1-, 

q- 1 of a parabolic subalgebra. The c~<'>, ... ,v<•> (q) turn out to belong 

to the family denoted by Pf,Y in [5] and by nx,y in [39], which is less 

well understood. In particular P;,y may be O even if x < y in the 

Bruhat ordering. Also, since the Pf,Y are equal to alternating sums of 
ordinary Kazhdan-Lusztig polynomials, it is not a priori clear whether 
these polynomials have non-negative coefficients. However, according to 
experts, it seems probable that they admit a geometrical interpretation 
in terms of Schubert varieties of finite codimension in an affine flag 
manifold 1 . This would settle the positivity conjecture VI.3 of [21]. 
Note that in the case of two factors the polynomials c~{ll,vC2l(q) are 
known to have non-negative coefficients because of their combinatorial 
interpretation in terms of Yamanouchi domino tableaux given in [2]. 

That the non-vanishing of the polynomials P;,y is a difficult problem 
should not be too surprising. Indeed, our result shows that this contains 
as a special case the non-vanishing of the Littlewood-Richardson coef­
ficients. There has been some important recent progress by Klyachko 
on this classical subject [19] using toric vector bundles on the projective 
plane (see the reviews of Zelevinsky [44] and Fulton [8]). Maybe some 
new understanding will arise from the connection with affine Schubert 
varieties. 

A few comments concerning the growing literature on q-analogues of 
Littlewood-Richardson coefficients are in order. In [36] Shimozono and 
Weyman have studied the Poincare polynomials of isotypic components 
of some virtual graded GLr-modules supported in the closure of a nilpo­
tent conjugacy class. These are q-analogues of Littlewood-Richardson 
multiplicities c~<'> , ... ,v<•> satisfying a q-Kostant formula and a Morris­

like recurrence. In the case where all partitions vU> are rectangular (i.e. 
the corresponding weights are multiples of a single fundamental weight) 
and are arranged in non-increasing order of width, these polynomials 
have non-negative coefficients. (This is not true in general, but see [36], 
Conjecture 4.) In this case, a combinatorial interpretation in terms of 
semi-standard Young tableaux was given by Shimozono [37, 38], which 
shows that they coincide with the generalized Kostka-Foulkes polyno­
mials studied by Schilling and Warnaar [34] in relation with exactly 
solvable lattice models and Rogers-Ramanujan type identities. A dif­
ferent combinatorial interpretation using rigged configurations has been 
conjectured by Kirillov and Shimozono [18] and recently verified [17]. 

1 Added 09/1999. This has eventually been proved by Kashiwara and 
Tanisaki (preprint math.RT/9908153). 
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It is believed that for rectangular shapes in non-increasing order these 
Poincare polynomials are equal to the corresponding c~<i>, ... ,v<•> (q) but 
the reason for that is still unclear. 

Let us describe more precisely the contents of this paper. The results 
rely mainly on four sources, namely the parabolic analogue of Kazhdan­
Lusztig polynomials developed by Deodhar in [4, 5], our joint paper 
with Lascaux on ribbon tableaux and generalizations of Kostka-Foulkes 
polynomials [21], our previous note [22], and the paper of Varagnolo 
and Vasserot [42]. Since [22] contains no proofs, and since only a small 
part of [21] and [42] is needed to obtain our results, we thought it would 
be appropriate to provide a self-contained exposition of this material. 
Thus the style of the paper is openly expository and we hope it can be 
read without a previous knowledge of these four sources. However for 
what concerns parabolic Kazhdan-Lusztig polynomials, we decided to 
omit the proofs because they can be found in the optimum exposition 
by Soergel of Kazhdan-Lusztig theory from scratch [39]. 

So in Section 2 we explain all the necessary background on ( ex­
tended) affine symmetric groups 6r and their Hecke algebras Hr. In par­
ticular we introduce the two presentations (Coxeter-type and Bernstein­
type) and give the relations between them. Following [42] we construct 
a representation of Hr on the weight lattice Pr of g[r and introduce its 
two Kazhdan-Lusztig bases. The coefficients of these bases on the basis 
of weights are the parabolic Kazhdan-Lusztig polynomials (for various 
parabolic subgroups). 

In Section 3, we recall the Lusztig conjecture for quantum g[r at an 
nth root of 1, the tensor product theorem, and using a formula of Little­
wood we deduce from this that the Littlewood-Richardson coefficients 
are value at 1 of parabolic Kazhdan-Lusztig polynomials (Theorem 3.3). 

In Section 4 we recall following [21] the definitions of ribbon tableaux 
and their spin, we introduce the q-analogues c\1> <•> (q), and we state 

V , •.. ,V 

our main result (Theorem 4.1). 
In Section 5 we explain the construction of [42] and consider a quo­

tient Fr of Pr whose bases are naturally labelled by dominant integral 
g[r-weights. This space can be identified in a natural way with the 
(finitized) q-deformed Fock space of Kashiwara, Miwa and Stern [15] 
considered in [22]. Projecting on Fr the Kazhdan-Lusztig involution of 
Pr one gets the involution defined in [22] in terms of q-wedge products. 
This implies that the canonical bases of [22] have coefficients given by 
some parabolic Kazhdan-Lusztig polynomials (Theorem 5.12). 

In Section 6 we study the action of the center Z(Hr) of Hr on Fr and 
show that it can be expressed via the combinatorics of ribbon tableaux. 
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We then prove that the vectors G>..+p of the canonical basis indexed by 
non-restricted weights ,\ are obtained from the restricted ones by acting 
with an element of Z(Hr)- This should be regarded as an analogue in 
this setting of the Steinberg-Lusztig tensor product theorem. Then we 
give the proof of Theorem 4.1. 

In Section 7 we review the construction of Kashiwara, Miwa and 
Stern of the Fack space F 00 obtained by taking the limit r ---+ oo in 
Fr. It affords a level 1 integrable representation of the quantum affine 
algebra Uq(irn)- We investigate the behaviour of the canonical bases of 
F 00 introduced in [22] with respect to the semi-linear involution induced 
by the conjugation of partitions, and derive from this a symmetry of the 
polynomials cA0 > (s)(q) (Theorem 7.13) and an inversion formula for 

V , ..• ,V 

parabolic Kazhdan-Lusztig polynomials (Corollary 7.15). This formula, 
together with a result of Du, Parshall and Scott [7], provides an alter­
native proof of Soergel's character formula for tilting modules in type A 
(Remark 7.16). 

Finally Section 8 provides some numerical tables of q-Littlewood­
Richardson multiplicities and Kazhdan-Lusztig polynomials, which may 
serve as examples of the results discussed in the text. 

§2. Affine symmetric groups and their Hecke algebras 

2.1. Affine symmetric groups 

Let Sr denote the Coxeter group of type Ar-1· For r = 2, this is 
the group generated by s0 , s1 subject to the relations s5 = sr = 1. For 
r > 2, Sr is generated by so, si, ... , Sr-1 subject to 

(1) 
(2) 

(3) 

SiSi+!Si = Si+!SiSi+l, 

SiSj = SjSi, 

s; = 1, 

(i-j=/:±1), 

where the subscripts are understood modulo r. The subgroup generat~d 
by s1, ... , Sr-1 is isomorphic to the symmetric group Sr. The group Sr 
has a concrete realization as an affine reflection group. Let (f1, ... , fr) 

denote the standard basis of Rr, and define a scalar product by putting 
(fi, fj) = 8ij· Set ai = fi - fi+l (1 ~ i ~ r -1) and ao = fr - fl- Let f:ir 

denote a Cartan subalgebra of g[r. We identify Rr with (the real part 
of) r:i; in the usual way, so that P = Pr := EB:=l Zt:i becomes the weight 
lattice, Q = Qr := EB~,:} Zai the root lattice, ai (1 ~ i ~ r - 1) the 
simple roots, -a0 the highest root, etc. For a E Rr and m E Z, denote 
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by Sa,m the affine reflection defined by 

Then for any m E Z*, the assignment 

so f--+ S00 ,m, Si f--+ Sa;,O (1 :::; i :::; r - 1) 

defines a faithful representation 1T'm of 6r as a discrete subgroup of the 
group of affine transformations of Rr. In coordinates, we have 

1T'm(si)(>.) = (>.1, ... , Ai+l, Ai, ... , Ar), 

7rm(so)(>.) = (>.r + m, >-2, ... , Ar-1, >-1 - m). 

Note that for s E 6r, 7rm(s) does not depend on m. We shall therefore 
simplify the notation and writes~ in place of 7rm(s)(>.). 

This realization shows that 6r contains a large commutative sub­
group, namely the image under 1r,:;;,1 of the group of translations by the 
vectors of the lattice mQ. Write Tr(>.) for the translation by>. E Rr, 
and let ti denote the element of Sr corresponding to Tr(mai) under 1T'm­

Then one can check that 

t1 = (sosr-1Sr-2 · · · s3s2)(s3s4 · · · Sr-1sos1), 

t2 = (s1sosr-l · · · s4s3)(s4s5 · · · sos1s2), 

tr-1 = (sr-2Sr-3Sr-4 · · · S1so)(s1s2 · · · Sr-3Sr-2Sr-1), 

to= (sr-1Sr-2Sr-3 · · · s2s1)(s1s2 · · · Sr-2Sr-1so). 

It will be convenient to enlarge Sr by adding the translations by 
vectors of the lattice mP. Abstractly, this extended affine symmetric 
group that we shall denote by 6r may be defined as the group generated 
by so, s1, ... , Sr-1, T subject to relations (1), (2), (3) together with 

(4) TSi = Si+l T, 

wher~ again subscripts are understood modulo r. It is clear that each 
w E 6r can be written in a unique way as 

(5) (k E Z, (l E Sr)-
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An alternative useful presentation is as follows. The group 6r is gen­
erated by the elements s1, ... , sr-1, Yi, ... , Yr subject to relations (1), 
(2), (3) with all indices between 1 and r - 1 together with 

(6) 

(7) 

(8) 

YiYi = YiYi, 

SiYj = Yi Si for j -=/= i, i + 1, 

s;y;s; = Yi+l· 

The homomorphism 7rm can then be extended to 6r by setting 

1fm(Yi) := Tr(mE;), 

or in coordinates 

1fm(Y;)(A) = (A1, ... , Ai+ m, ... , Ar), 

1fm(T)(A) =(Ar+ m, Al, ... , Ar-2, Ar_i). 

(1 ::; i ::; r), 

The following equations relate the two above presentations of 6r: 

(9) 

(10) 

(11) 

Yi = Si-lSi-2 · · · S1S0Sr-1Sr-2 · · · Si+l T, 

T = S1S2 · · · Sr-lYr, 
. -1 

So = Sr-lSr-2 · · · S2S1S2 · · · Sr-lY1 Yr· 

(1 ::; i $ r) 

(In (9) the sub~ripts are understood modulo r.) 
Note that 6r is not a Coxeter group. However, one can still define 

a Bruhat order and a length function. Let w = Tka, w' = Tma' with 
k,m E Z, a,a' E 6r. We say that w < w' if and only if k = m and 
a< a', and we put f(w) := f(a). Define 

A ·= I{>. E Rr Im> A1 2:: A2 2:: · · · 2:: Ar 2:: O} if m > 0, 
r,m · {>. E Rr I m < A1 ::; A2 ::; · · · ::; Ar ::; O} if m < 0, 

and Ar,m := Ar,m n P (see Figure 1). Then Ar,m is a fundamental 
domain for the action of 6r on Rr via 7rm, that is, each orbit intersects 
it in a unique point. Let A E P, and let v be the intersection of Ar,m with 

the orbit of A. Then there is a unique w(A, m) E 6r of minimal length 
such that 1fm(w(A,m))(v) = A. Let 6v,m be the parabolic subgroup 
consisting of the w such that 7rm(w)(v) = v. (Since lv1 - vrl < m, 
6v,m C 6r.) Then w(A, m) is the minimal length representative of the 
coset 

w(A, m)6v,m = {w E 6r I 1rm(w)(v) = A}. 
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-·-·:(· . - - ...... -~-: ... - . 

p+ 

Fig. 1. The action of 62 on P2 via 1T-n 

In this way, we can associate to the data ( A, m) a certain element w( A, m) 
of 6r. This will allow us to pass from the indexation by weights of tEe 
Littlewood-Richardson coefficients to the indexation by elements of 6r 
of the Kazhdan-Lusztig polynomials. 

Example 2.1. Taker= 3 and A= (5, 3, 0). Then 

• 

For A= (A1, ... , Ar) E P set Ao := Ar+ m, Ar+i := A1 - m and 
define the descent function 

desc(A, i, m) := { ~ 
-1 

Note that 

if Ai> Ai+l, 
if Ai= Ai+l, 
if Ai < Ai+i, 

(0~i~r). 

desc(A, 0, m) = desc(A, r, m), desc(A, i, m) = desc(1rm(r)(A), i + 1, m). 



L-R Coefficients and K-L Polynomials 163 

Geometrically, desc(>., i, m) = 0 means that >. lies on the reflecting hy­
perplane 'Hm of 7rm(si), i.e. 7rm(si)(>.) = >., and desc(>., i, m) = sgn (m) 
means that ,\ belongs to the 1/2-space defined by Hm which contains 
the fundamental domain Ar,m, i.e. siw(>., m) > w(>., m). 

Lemma 2.1. Let,\ E P, i E {O, ... ,r -1} and m E Z*. Let 
v = w(>.,m)- 1 (>.) be the point of Ar,m congruent to,\ under 1fm- One 
has the three following alternatives: 

(i) desc(>., i, m) = sgn (m) <=> siw(>.,m) = w(si>.,m) > w(>.,m), 
(ii) desc(>., i, m) = 0 <=> siw(>., m) = w(>., m)sj 

for some Sj E 6v,m, 
(iii) desc(>., i, m) = -sgn (m) <=> siw(>.,m) = w(si>.,m) < w(>.,m). 

Proof - This is a reformulation of Lemma 2.1 (iii) of [4]. Indeed, 
desc(>.,i,m) = -sgn(m) if and only if Siw(>.,m) < w(>.,m) and in 
this case siw(>., m) = w(si>., m) by [4]. Also, desc(>., i, m) = 0 if and 
only if Siw(>.,m)v = w(>.,m)v which shows that Siw(>.,m) belongs to 
the same coset as w( >., m) and is not minimal in this coset. In this 
case, by [4], there exists Sj E 6v,m such that siw(>.,m) = w(>.,m)sj. 
Finally, desc(>.,i,m) = sgn(m) if and only if siw(>.,m) > w(>.,m) and 
siw(>.,m)v-/- w(>.,m)v. In that case, again by [4], siw(>.,m) is minimal 
in its coset and thus equal to w(si>., m). • 

If vis regular, that is, 6v,m = {1}, then case (ii) does not occur and we 
obtain the following criterion 

(12) SiW > w <=> desc(wv,i,m) = sgn(m), (w E 6r)-

In particular, taking m = r and v = p := (r - 1, r - 2, ... , 1, 0) we get 
that 

(13) siw > w <=> desc(wp, i, r) = 1, 

For ,\ E P, set y>.. := y~1 • • • y¢r. Every w E 6r has a unique 
decomposition of the form w = y>.. s, where ,\ E P and s E 6r. Therefore 
each coset w6r contains a unique element y>... It follows from (8) that 
for s E 6r, sy>.. = ys>.. s. This implies that each double coset 6rw6r in 
6r contains a unique element y>.. with ,\ E p+ := {µ E P I µ1 ?: µ2 ?: 
... ?: µr }, the set of dominant weights. For,\ E p+, we denote by n>.. 
the element of maximal length in 6ry>..6r. 

Lemma 2.2. Let,\ E p+, µ E p- := _p+ ands E 6r. We have 
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In particular nA = w0 yA, where w0 denotes the longest element of 6r. 

Proof - If>. E p+ then a := yAp satisfies 0:1 > 0:2 > · · · > O:r- Let 
s = Si1 • • • sik be a reduced decomposition of s. By repeated applications 
of (13) we see that £(syA) = £(yA) + k, which proves the first statement. 
The case ofµ is similar. Finally, w0 yA belongs to the double coset of yA 
and for s E 6r (s-/- 1), C(swoyA) = f(swo)+f(yA) < f(wo)+C(yA) so that 
sw0 yA is not maximal. The argument is similar for right multiplication 
by s, since woyA = ywoAwo, and wo>. E p-. • 

Example 2.2. 

n(2,1,o) 

n(l,1,1) 

Take r = 3. Then, 

2 3 = S2S1S2Y1Y2 = S2S1S2S0S2S1S2T , 

S2S1S2Y1Y2Y3 = S2S1S2T3 . 

• 

In fact, Lemma 2.2 easily follows from a general formula of lwahori 
and Matsumoto ([11], Prop. 1.23) which in our case reads 

i<j 
s(i)<s(j) 

i<j 
s(i)>s(j) 

where s E 6r and >. E P. In particular, if >. E p+ then £(yA) 
I:;=l (r + 1 - 2i)>.i, which shows that 

(15) (>.,µ E p+). 

Lemma 2.3. Let >. E p+ and set).* := w0 (->.). Then, for all 
n 2'. r one has 

w(n>-. + p, -n) = nA* T-r+l_ 

Proof - Since n 2'. r, the weight 

v := 7r-n(Tr-lwo)(p) = (1-n,2 - n, ... ,r -1 - n,O) 

belongs to Ar,-n and we have 

nA + P = '1r-n(Y-A)(p) = Ln(Y-AWoT-r+l)(v). 

The stabilizer of v in 7r -n (Sr) is trivial, that is, v is a regular weight. 
Therefore we get 

w(n). + p, -n) = y-AWQT-r+l = WoYwo(-A)T-r+l = nA* T-r+l. 

• 
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2.2. Affine Hecke algebras 

The Hecke algebra Hr:= H(f'r) is the algebra over Z[q,q-1] with 
basis Tw (w E Sr) and multiplication defined by 

(16) 

(17) 

TwTw' = Tww' if i(ww') = i(w) + l(w'), 

(Ts, - q- 1)(Ts, + q) = 0. 

There is a canonical involution x r--+ x of Hr defined as the unique ring 
homomorphism such that q = q-1 and Tw = (Tw-1)- 1. 

To simplify notation, we put Ti:= Ts, and we W_!ite T instead of T-r. 
Then we have the two following presentations of Hr corresponding to 
the two above presentations of Sr (see [27, 29]). First, Hr is the algebra 
generated by Ti (0 ~ i ~ r - 1) and an invertible element T subject to 
the relations 

(18) 

(19) 

(20) 

(21) 

TiTi+lTi = Ti+lTiTi+l, 

TiTi = TjTi, (i - j # ±1), 

(Ti - q-1 )(Ti + q) = 0, 

TTi = Ti+1T-

Alternatively, Hr is the algebra generated by Ti (1 ~ i ~ r - 1) and 
invertible elements Y; (1 ~ i ~ r) subject to the relations (18), (19), 
(20) with subscripts between 1 and r - 1 together with 

(22) 

(23) 
(24) 

Y;Yj = ljY;, 

TiYj = YJTi for j # i, i + 1, 

TiY;Ti = Y;+l• 

The following equations relate the two above presentations of Hr: 

(25) (1 ~ i ~ r) 

(26) T -lT.-1 T-1 Y, 
T = 1 2 · · · r-1 r, 

(27) ,-,, _ T-1 T-1 ... T.-lT-lT.-1 ... T-1 v-ly; 
.LO- r-lr-2 2 1 2 r-1.ll r· 

(In (18)(19)(21)(25) the subscripts are understood modulo r.) 
Note that for.XE P, we have two natural elements in Hr correspond­

ing to the translation by .X, namely, y>. := Y/1 • • • Y/r and T>. := Ty>-­
They do not coincide in general. (For example if r = 3, Ty2 = T1Tor 
and Y2 = T1T0- 1r.) In fact the T>. do not commute in general. However 
it follows from (15) that T>.Tµ = T>.+µ = TµT>. if .X, µ E p+. Let .X E P 
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be written as A = A1 - A11 with X, X' E p+. Bernstein has introduced 
an element 'I'>. E Hr by 

This element is well-defined, i.e. it does not depend on the choice of X 
and X', and T>,Tµ = 'I'>.+µ = TµT>-. for all A,µ E P. With this notation 
one can check that 

(28) 

In particular, if A E p- then 

(29) 

2.3. Action of Hr on the weight lattice 
Let P = Pr := Z[q, q- 1] 0z P. We shall use the descent function 

to q-deform the representation ?rm of 6r on Pinto a representation IIm 
of Hr on P. Indeed, it follows from Lemma 2.1 that Hr acts on P by 
IIm(r)(A) := 7rm(r)(A) and for 0::; i::; r - l, 

if desc(A, i, m) = sgn (m), 
if desc(A, i, m) = 0, {

7rm(si)(A) 
IIm(Ti)(A) := q- 1A 

7rm(si)(A) + (q- 1 - q)A if desc(A,i,m) = -sgn(m). 

Warning From now on in order to simplify the notation we shall of­
ten omit the dependence on m and write for example TiA in place of 
IIm(Ti)(A), or SiA in place of 7rm(si)(A). We hope that this will not 
create confusion. 

In terms of the Kazhdan-Lusztig elements q := Ti+q and Ci:= Ti-q- 1 

we have 

{''A +qA if desc(A, i, m) = sgn (m), 
c:A = (q + q- 1 )A if desc(A, i, m) = 0, (0::; i::; r -1), 

SiA+q- 1A if desc(A, i, m) = -sgn (m), 

{';A-q-'A if desc(A, i, m) = sgn (m), 
CiA = 0 if desc(A, i, m) = 0, (0::; i ::;r-1). 

SiA - QA if desc(A, i, m) = -sgn (m), 

These formulas show that the Hr-module P decomposes as 
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Moreover, each summand of the right-hand side is isomorphic to an 
induced module. Indeed, let fiv,m be the subalgebra of Hr generated 
by the Ti such that Sill = v, and let lq-1 denote the I-dimensional 

iL,m-module in which Ti acts by multiplication by q- 1 . Then 

the isomorphism being given by 

(30) 

In particular ,\ = Tw(>.,m)v. 

2.4. Kazhdan-Lusztig polynomials 

The module P,, := Hrv is a parabolic module of the type considered 
by Deodhar in [4, 5]. (Note that if v is a regular weight, then P,, is 
just the regular representation of Hr,) Therefore P,, has two Kazhdan­
Lusztig bases constructed as follows (see [39]). Define a semi-linear 
involution on P,, by 

xv:= xv (x E Hr), 

and two lattices 

Lt := EB Z[q]-X, 

>.E6rv 

L-;; := EB Z[q-1]-X. 

>.E6rv 

Then there are two bases ct, C;:_ (-\ E 6rv) characterized by 

and 

c+-c+ ).. - ).,, 

ct = ,\ mod qLt, 

c;: = c;:, 

When v is regular these bases coincide with the Kazhdan-Lusztig bases 
C~ and Cw respectively under the isomorphism (30). 

These bases can be computed recursively as follows (39]. First, by 
definition, c;; = c;; = v, and more generally c-:.,, = c;.,, = TkV (k E 

Z). Let ,\ E 6rv and suppose that ct ( resp. c;;) has already been 
calculated for all µ < -X, that is, such that w(µ, m) < w(-X, m). Then 
compute vt = q ct (resp. v;: = Ci c;;) whereµ and i satisfy si(µ) = ,\ 



168 B. Leclerc and J.-Y. Thibon 

and desc(µ,i,m) = sgn(m). Then vf (resp. vA) is invariant under the 
bar-involution and belongs to Lt (resp. L-;;). Write 

vf = A+ I:U0 a mod qLt, (resp. vA =A+ L b13/3 mod q- 1 L;;), 
/3 0: 

where a0 , b13 E Z. The weights a, f3 occuring in the right-hand side are 
certainly < A and we obtain 

ct = vt - L aac: 
0: 

(resp. c-;: = v,\ - Lb13Ci)­
{3 

Example 2.3. Let us taker= 3, m = -2 and compute C(O,B,l)' 

We have w((0, 6, 1), -2) = s2sos1s2soT- 4 and 

v := w((0, 6, 1), -2)- 1(0, 6, 1) = (-1, 0, 0). 

Clearly, 

c~,2,3) = c;_4c-i,o,o) = (2, 2, 3). 

Then we compute successively (t = q- 1) 

v(l,2,4) = c(l,2,4) = (1, 2, 4) - t(2, 2, 3), 

v0,4,2) = c 0,4,2) = (1, 4, 2) - t(l, 2, 4) - t(2, 3, 2) + t 2 (2, 2, 3), 

v(4,l,2) = c(4,l,2) = (4, 1, 2) - t(l, 4, 2) - t(2, 1, 4) + t 2(1, 2, 4) 

-t(3, 2, 2) + t 2 (2, 3, 2), 

v(O,l,6) = C(O,l,6) = (0, 1, 6) - t( 4, 1, 2) - t(0, 4, 3) + t 2(1, 4, 2) 

+t2 (2, 2, 3) - t(l, 2, 4) - t(0, 2, 5) 

+t2(3, 2, 2) + t 2 (0, 3, 4) - t3 (2, 3, 2), 

v(O,B,l) = (0, 6, 1) - t(0, 1, 6) - t(4, 2, 1) + t2 (4, 1, 2) - t(0, 3, 4) 

+(0, 4, 3) + 2t2 (1, 2, 4) - 2t(l, 4, 2) 

+2t2(2, 3, 2) - 2t3 (2, 2, 3) - t(0, 5, 2) 

+t2(0, 2, 5) + t 2 (0, 4, 3) - t 3 (0, 3, 4). 

We see that v(O,B,l) = (0, 6, 1) + (0, 4, 3) mod tL-;;. Thus subtracting the 
previously calculated element 

C(0, 4,3) = (0, 4, 3) - t(0, 3, 4) - t(l, 4, 2) + t 2 (1, 2, 4) + t 2 (2, 3, 2) - t 3 (2, 2, 3) 
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we get 

C(0,6 ,1) = (0, 6, 1) - t(O, 1, 6) - t(4, 2, 1) + t2 (4, 1, 2) + t2 (1, 2,4) 

-t(l, 4, 2) + t 2 (2, 3, 2) - t 3 (2, 2, 3) - t(O, 5, 2) 

+t2 (0, 2, 5) + t 2(o, 4, 3) - t3 (o, 3, 4). 

Put 

Then 

c~ = L Px,w(q) Tx, 

xE6r 

Cw= L Px,w(-q- 1 )Tx. 

xE6r 

• 

The Px,w are the Kazhdan-Lusztig polynomials (up to a factor q€(w)-€(x) 

and the change of variable qi----; q-2). Similarly for A E 6rv write 

ct= L P:,),,(q) µ, 

µE6rv 

c;: = L P;:,>. ( -q-1) µ. 

µE6rv 

Then P:,>. and P;:,>. are respectively equal to Deodhar's polynomials 

P~(µ,m),w(>.,m) and P~(µ,m),w(>.,m) (again up to a factor q€(w)-€(x) and 
the change of variable q i----; q-2), where J is the set of indices i of the 
Coxeter generators Si E 6v,m· Their expression in terms of ordinary 
Kazhdan-Lusztig polynomials is given by 

Theorem 2.4 (Deodhar [4, 5]). Let Wo,v be the longest element of 
6v,m· Then 

P:.),, = Pw(µ,m)wo,v, w(>..,m)wo,v, P;:,).. = L (-ql(z) Pw(µ,m)z, w(>..,m)· 

zE6v,m 

We shall also need the following simple observation (see [39], Remark 
3.2.4). Suppose that desc(A,i,m) = desc(µ,i,m) = -sgn(m). Then 

(31) 

This follows from the fact that if desc(A, i, m) = -sgn (m) then 



170 B. Leclerc and J.-Y. Thibon 

§3. Littlewood-Richardson coefficients and Kazhdan-Lusztig 
polynomials 

3.1. The Lusztig conjecture 
Let Uq(g(r) be the quantum enveloping algebra of g(r. This is a 

Q (q)-algebra with generators Ei, Fi, q±e; (1 ::; i ::; r - l, 1 ::; j ::; r). 
The relations are standard (14] and will be omitted. To avoid confusion 
when q is specialized to a complex number, we shall write K; in place 
of q±e;. Let Uq,z(glr) denote the Z[q, q-1 ]-subalgebra generated by the 
elements 

(k) ·- Ef 
Ei .- [k]!' 

(k) ·- Ff ± 
Fi .- [k]!' Ki' (k EN), 

where [k]! := [kl[k-1] · · · [2](1] and [k] := (qk-q-k)/(q-q- 1). Let (EC 
be such that ( 2 is a primitive nth root of 1. One defines Uc;(91r) := 

Uq,z(g(r) ®z[q,q-1] C where Z[q, q- 1] acts on C by q f-) ( [30, 31]. 
Let A E P/. There is a unique finite-dimensional Uq(g(r)-module 

(of type 1) Wq(A) with highest weight A. Its character is the same as in 
the classical case and is given by Weyl's character formula 

(32) 

where s;. denotes the Schur function (see (33]). Fix a highest weight 
vector u;. E Wq(A) and denote by Wq,Z(A) the Uq,z(g(r)-submodule of 
Wq(A) generated by acting on u;.. Finally, put 

Wc:(A) := Wq,z(A) 0z[q,q-1J C. 

This is a Uc:(g(r)-module called a Weyl module [30]. By definition 
ch Wc;(A) = ch Wq(A). 

There is a unique simple quotient of Wc;(A) denoted by L(A). Its 
character is given in terms of the characters of the Weyl modules by the 
Lusztig conjecture. Put m = -n (this assumption will be in force for 
the whole Section 3) and consider the action of 6r on P via 'lrm- For 
A E p+ write v := w(A + p, m)- 1 (A + p). Then 

Theorem 3.1 (Kazhdan-Lusztig, Kashiwara-Tanisaki). 

chL(A) = :L)-1l(w(>.+p,m))-£(w) Pw,w(>.+p,m)(l) ch Wc:(w(v) - p), 
w 

where the sum runs over the w E 6r such that w < w(A + p, m) and 
w(v) - p E p+_ 
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Note that if >. is a singular weight the coefficient of a given Weyl 
module Wi,;(µ) in the right-hand side of Theorem 3.1 is an alternating 
sum of Pw,w(>.,m)(l) over the stabilizer 6v,m• In fact, using the notation 
of Section 2.4 one can rewrite Theorem 3.1 as 

(33) chL(>.) = LP;+p,>.+/-1) ch W<,;(µ), 
µ 

where the sum is over theµ E p+ such thatµ+ p E 6rv. 
Example 3.1. Taker= 3, n = 2 and>.= (4, 0, 0). Then>.+ p = 

(6, 1, 0) and for m = -n = -2, one has 

c(6,i,o) = (6, 1, o) - q- 1(6, o, 1) - q-1(1, 6, o) + q-2 (0, 6, 1) 

+q-2(1, 0, 6) - q-3 (0, 1, 6) - q- 1(5, 2, 0) + q-2 (5, o, 2) 

+q-2 (2, 5, 0) - q-3 (0, 5, 2) - q-3 (2, o, 5) + q-4 (0, 2, 5) 

+q-2 ( 4, 3, 0) - q-3 (4, 0, 3) - q-3 (3, 4, 0) + q-4 (0, 4, 3) 

+q-4 (3, 0, 4) - q-5 (0, 3, 4). 

It follows that the character of L( 4, 0, 0) for ( 2 = -1 is given by 

chL(4, 0, 0) = ch Wi;-(4, 0, 0) - ch W<,;(3, 1, 0) + ch W<,;(2, 2, 0). 

• 

3.2. The tensor product theorem 
Let Fr denote the Frobenius map from Ui,;(g[r) to the (classical) 

enveloping algebra U(g[r) [30, 3]. This is the algebra homomorphism 
defined by Fr(Kj) = 1 and 

Fr(E(k)) = i 1 n lVl es , {E (k/n) "f d" "d k 
• 0 otherwise, 

Fr(F.(k)) = i l n lVl es ' {F (k/n) "f d" "d k 
• 0 otherwise. 

(Here we slightly abuse notation and denote by the same symbols the 
Chevalley generators of Ui,;(g[r) and those of U(g[r)-) Given a U(g[r)~ 
module M, one can thus define a U<,;(g[r)-module MFr by composing 
the action of U(g[r) with Fr. If Mis a finite-dimensional module with 
character the symmetric Laurent polynomial ch M = cp( e'1 , ••. , e'r), 
then 

hMFr _ ( )( fl fr)·- ( n<i n<r) c - Pn <p e , ... , e .- <p e , ... , e , 

the so-called plethysm of <p with the power sum Pn (see [33]). In partic­
ular, the character of the pullback W(>.t' of the classical Weyl module 
W(>.) is the plethysm Pn(s;.). 
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Theorem 3.2 (Lusztig [30]). Let>. E p+_ Write>.= >..<0)+n>..<1), 

where >.. (o) is n-restricted, that is, 

0 < >..(o} - >..(o) < n (1 <_ i <_ r - 1). 
- i i+l 

The simple Uc:;(g[r)-module L(>..) is isomorphic to the tensor product 

Consider now the particular case when >.. is a partition whose parts 
are all divisible by n. Then, writing n>.. in place of >.., we deduce from 
Theorem 3.2 and Eq. (33) that Pn(s,x) = chL(n>..) is given by 

(34) Pn(s,x) = LP;+p,n.\+p(-l)chW<;-(µ) = LP;+p,n.\+p(-l)sµ, 
µ µ 

where the sum is over theµ E p+ such thatµ+ p E 6r(n>.. + p) = 6rP· 

3.3. Expression of the Littlewood-Richardson coefficients 

Let>.. E IP';: = {>.. E P l>-1 2:-: >..2 2:-: ... 2:-: Ar 2:-: 0}, the set of partitions 
of length l(>..) ::; r. It is a well-known result of Littlewood [25] that the 
coefficients in the expansion of Pn(s,x) on the basis of Schur functions 
are Littlewood-Richardson multiplicities. More precisely, if µ E IP';: is 
such thatµ+ p E 6rP then there is a unique expression 

µ+p=,+na, 

such that i < j and 'Yi = 'Yi (n) implies 'Yi > 'Yi· Then for k E 
{0, 1, ... , 'n - 1} the subsequence of a consisting of the ai such that 
'Yi = k - r is a partition µ(k) (possibly empty), and one has [25) 

(35) (Pn(s,x); sµ) = (-1/'(s}(s,x; Sµ(o) • • ·Sµ(n-1)) 

where (·; ·) denotes the standard scalar product of the algebra of sym­
metric functions for which the s,x form an orthonormal basis. The n­
tuple of partitions (µ< 0), ..• , µ<n-l}) is called the n-quotient ofµ and 
(-l)"(s) the n-sign ofµ, denoted en(µ). Conversely, provided that r is 
large enough, given an arbitrary n-tuple of partitions (µ<0), ..• , µ<n-l)) 
there exists a uniqueµ E IP';!" such that µ+p E 6rP andµ has (µ< 0), ... , µ<n-l)) 
as n-quotient (see [33, 13]). 

Example 3.2. Let r = 8, n = 3, and µ = (6, 6, 4, 4, 4, 3, 2, 1). 
Then 

µ + p = (13, 12, 9,8, 7,5,3, 1) = (7,6,3,5,4, 2,0, 1) + 3 (2,2,2, 1, 1, 1, 1,0). 
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Thus the 3-quotient of µ is 

(µ(O), µ(1), µ( 2)) = ((1, 1), (2, 2, 1), (2, 1)). 

• 

Let us define the Littlewood-Richardson coefficient 

C~(o), ... ,µ(n-1) .- (Sµ(O) • · · Sµ(n-1) j S>,.) 

= [W(µ< 0)) 0 · · · 0 W(µ(n-l)) W(,\)]. 

Combining (34) and (35), we have obtained 

Theorem 3.3. Let,\, µ<0 ), ... , µ<n-l) be partitions and denote by 
µ the partition with n-quotient (µ< 0 ), ... , µ<n- 1)). Take r ;::,: l(µ), the 
number of parts ofµ. Then, 

where th';._ right-hand side is a Kazhdan-Lusztig polynomial of parabolic 
type for 6r with m = -n. In other words, setting 

v = w(n,\ + p, -n)-1 (n,\ + p), 

one has in terms of the (ordinary) Kazhdan-Lusztig polynomials for 6r 

C~(o), ... ,µ(n-1) = ~ (-1)€(z) Pw(µ+p,-n)z ,w(n>.+p,-n)(l). 

zE6v,-n. 

If l(,\) > r the polynomial P;+p,n;..+p is not defined, but in this case 

l(,\) > l(µ) and it is easy to see that c~<o>, ... ,µ<n-i) = 0. 

Note that if w = Tka, w' = Tma' with k, m E Z, a, a' E 6r, 
then Pw,w' is nonzero only if k = m and then Pw,w' = Pa,u'• T1:_us the 
Kazhdan-Lusztig polynomials above are in fact polynomials for 6r. 

Example 3.3. Take r = 3 and n = -m = 2. The dominant 
weights occuring in the expansion of C(6,J,o) are 

(6,3,0), (6,2,1), (5,4,0), (4,3,2), 

with respective coefficients 
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This gives the following expressions for some Littlewood-Richardson co­
efficients (which are all equal to 1): 

(2,1) p- (1) 
c(l),(2) = (6,3,0),(6,3,0) ' 

c(2,1) - p- (1) 
0,(2,1) - (6,2,1),(6,3,0) ' 

c(2,1) - p- (1) 
(2),(1) - (5,4,0),(6,3,0) ' 

(2,1) p- (1) 
C(l),(1,1) = (4,3,2),(6,3,0) ' 

In terms of ordinary Kazhdan-Lusztig polynomials for 63 we can write 
for example 

• 

E I 3 4 L t th ffi . t (3,2,1) 2 , 
xamp e • • e us express e coe c1en c(2,l),(2,1) = m 

terms of Kazhdan-Lusztig polynomials. We take r = 4, A = (3, 2, 1) 
andµ (4,4,2,2) so thatµ has 2-quotient ((2,1);(2,1)). It follows 
that 

c(3,2,1) _ p- (l) 
(2,1),(2,1) - (7,6,3,2),(9,6,3,0) . 

Th~ Kazhdan-Lusztig polynomial corresponds to the following elements 
of 64: 

w( (9, 6, 3, 0), -2) = S1S2S1S3S2S1S0S1S3S2S1S3S0S1S3S2S0T-l0, 

w((7, 6, 3, 2), -2) = s1s2s1S3S2S1S0S1S3S2S0T-l0. 

• 

Observe that if n ?". r, then the n-quotient of the partition nµ = 
(nµ1, ... ,nµr) is just ((µ1), ... ,(µr),0, ... ,0) up to reordering, and 
therefore Theorem 3.3 gives 

p- (1)-c,\ -K, 
nµ+p,n,\+p - (µ1), ... ,(µr) - ,..,µ, 

the Kostka number. On the other hand, taking into account Lemma 2.3 
and the fact that the weight nA + p is regular, one also has 

Hence 
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since the weight multiplicities of the contragredient representation W ( >. *) 
are equal to those of W(>.), and we recover the expression of [28] for the 
weight multiplicities. 

Thus we see that the modular Lusztig conjecture with its restric­
tion n 2:: r is enough to express the weight multiplicities in terms of 
Kazhdan-Lusztig polynomials, but for what concerns the general tensor 
product multiplicities we need the case n < r and the quantum Lusztig 
conjecture. 

§4. Littlewood-Richardson coefficients and ribbon tableaux 

4.1. Ribbon tableaux 
Let us start from the well-known formula 

(36) hµ = LITab(>.,µ)ls>., 
>. 

where hµ := hµ 1 ••• hµr is a product of complete homogeneous sym­
metric functions and Tab(>.,µ) denotes the set of semi-standard Young 
tableaux of shape>. and weightµ [33]. Let n EN*. Semi-standard n­
ribbon tableaux are combinatorial objects which replace ordinary Young 
tableaux when one substitutes the plethysm Pn(hµ) in place of hµ in (36). 
More precisely, denoting by Tabn(>.,µ) the set of n-ribbon tableaux of 
shape >. and weight µ ( to be defined below), one has 

(37) Pn(hµ) = Len(>.) ITabn(>.,µ)I S>., 
>. 

where en(>.) is the n-sign of>.. 
A ribbon tableau of weightµ= (1, 1, ... , 1) is called standard. Stan­

dard ribbon tableaux were introduced by Stanton and White [41] in rela­
tion with generalizations of the Robinson-Schensted correspondence for 
the complex reflection groups G(n, 1, r) = (Z/nZ) l 6r. In particular, 
the case n = 2 (domino tableaux) is related to Weyl groups of type B, C, 
D, and therefore to the geometry of flag manifolds for classical groups 
[23] and to the classification of the primitive ideals of classical enveloping 
algebras [1, 9]. Semi-standard domino tableaux were introduced in [2] 
for calculating the multiplicities of the symmetric and alternating square 
of an irreducible representation of g[r (see also [16, 24]). In an attempt 
to extend the results of [2] to higher degree plethysms, semi-standard 
n-ribbon tableaux were defined in [21] and several conjectures were for­
mulated. We shall give a brief review of [21] refering to the paper for 
more detail. 
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h(R) 

Fig. 2. An 11-ribbon of height h(R) = 6 

Fig. 3. A skew diagram 0 with its subdiagram 01 shaded 

A ribbon is a connected skew Young diagram of width 1, i.e. which 
does not contain any 2 x 2 square (see Figure 2). The rightmost and 
bottommost cell is called the origin of the ribbon. An n-ribbon is a 
ribbon made of n square cells. Let 0 be a skew Young diagram, and let 
01 be the horizontal strip made of the bottom cells of the columns of 0 
(see Figure 3). We say that 0 is a horizontal n-ribbon strip of weight 
m if it can be tiled by m n-ribbons the origins of which lie in 01. One 
can check that if such a tiling exists, it is unique (see below Lemma 6.3 
and Figure 7). Now, an n-ribbon tableau T of shape >..jv and weight 
µ = (µ1, ... , µr) is defined as a chain of partitions 

V = a° C a 1 C · · · C ar = .A 

such that ai/ai-l is a horizontal n-ribbon strip of weight µi. Graphi­
cally, T may be described by numbering each n-ribbon of ai / ai- l with 
the number i (see Figure 4). We denote by Tabn(>..fv, µ) the set of n­
ribbon tableaux of shape >..Jv and weightµ. Define the spin of a ribbon 
Ras spin(R) := h(R) - 1 where h(R) is the height of R, and the spin 
of a ribbon tableau T as the sum of the spins of its ribbons. Then the 
sign (-1)8Pin(T} depends only on the shape >..Jv of T and is equal to the 
n-sign En(>..) when vis empty. We denote it in general by En(>../v). 
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2 

4 

Fig. 4. A 4-ribbon tableau of shape (8, 7, 6, 6, 1), weight 
(3, 2, 1, 1) and spin 9 

177 

4.2. A q-analogue of the Littlewood-Richardson coefficients 
Using a classical formula for multiplying a monomial symmetric 

function by a Schur function one can easily derive Eq. (37). Note that 
since hsµ = hµ (s E 6r), (37) implies that 

(38) jTabn(>-,sµ)I = jTabn(>-,µ)j, (s E 6r)-

Let 'Pn denote the adjoint of the endomorphism f i--; Pn (f) of the space 
of symmetric functions with respect to ( • ; •). Recall from Section 3.3 the 
definition of then-quotient (>.<0), • • • , ,>,(n-l}) of a partition A of length 

r such that A+ p E 6rP (for the action of Sr on weights via ?rn)- Then 
(35) is equivalent to 

(39) 'Pn(S>..) = en(A) 8>,_(0) • • • S>,_(n-1), 

where we put en(>-) = 0 if A+ p fl 6rP· By (37) we have 

Recalling that the basis dual to {hµ} is the basis {mµ} of monomial 
symmetric functions, we thus have 

(40) S>,_(0) ·" "S>,_(n-1) = L ITabn(A, µ)Imµ. 
µEP+ 

Hence, putting xT := xf' · · · x~r for a ribbon tableau T of weight o: = 
(0:1, ... ,o:r), we get using (38) 

( 41) 

'""°. •s,r.-q ~ µ~+ C:t.µ C,-n.t(,.a/T)) TETf (A,.,'T 
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Fig. 5. The 3-ribbon tableaux of shape (3, 3, 3, 2, 1) and 
dominant weight 

where we denote by Tabn(,\ ·) the set of n-ribbon tableaux of shape>. 
(and arbitrary weight). 

Now we can introduce a q-analogue of ( 41) via the spin of ribbon 
tableaux and set 

(42) G(>.(O), ... , >,(n-1); q, x) := L qspin(T)XT. 

TETabn(>.,-) 

It was proved in [21] that this function is symmetric with respect to the 
variables Xi. (This is not clear a priori, and the proof will be recalled be­
low (see Remark 6.5).) Thus, expanding on the basis of Schur functions 
we get 

(43) G(>.(0l, ... ,>.(n-l\q,x) = Lc~(oJ, ... ,>.<n-1J(q)s,,(x), 
l/ 

where the c~(oJ , ... ,>.<n-IJ ( q) E Z[q] are some q-analogues of the Littlewood­
Richardson coefficients. The symmetric function ( 43) is the function 

cin\x; q) of [21] up to the change of variable q 1--+ q-2 and rescaling by 
an appropriate power of q. 

Example 4.1. The partition having as 3-quotient = ((1), (1, 1), (1)) 
isµ= (3, 3, 3, 2, 1). Thus the symmetric function G((l), (1, 1), (1); q) is 
calculated by enumerating the 3-ribbon tableaux of shape µ and domi­
nant weight, and counting their spin (see Figure 5). One obtains 

G((l), (1, 1), (l);q) = q7m(3,l) + (q1 + q5 )mc2,2) 

+(2q7 + 2q5 + q3)mc2,1,1) 

+ (3q7 + 5q5 + 3q3 + q)mc1,1,1,1) 

= q7 S(3,l) + q5 sc2,2) + (q5 + l)sc2,1,1) 

+qs(l,1,1,1) · 
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• 

We can now state our main result, which is the q-analog of Theo­
rem 3.3. 

Theorem 4.1. With the notation of Theorem 3.3 

C~(D) , ... ,µ(n-1) (q) P;;+p,n>..+p( q) 

L (-q)"-(z) Pw(µ+p,-n)z, w(n>..+p,-n)(q). 

zE6v,-n 

The next two sections will be devoted to the proof of Theorem 4.1. 
This proof does not rely on the Lusztig conjecture and thus will give an 
independent proof of Theorem 3.3. 

§5. Canonical bases and Kazhdan-Lusztig polynomials 

5.1. Another basis of P 
The basis of P consisting of the weights A is adapted to the Coxeter­

type presentation of Hr in terms of the generators T0 , ... , Tr-I, T. There 
is another natural basis adapted to the Bernstein presentation in terms 
of T1 , ... , Tr-I, Yi, ... , Yr, which is defined as follows. Fix m E Z* and 
consider the action of Hr via Ilm. Every A E P has a unique expression 
as A= m/3 + "( (/3, "( E P, "( E 6rAr,m)- We define Vi := y.8"(. In other 
words, the basis {Vi} is characterized by 

(44) 

(45) 

V-y="f 

y/3V>.. = V>..+m,8 

('YE 6rAr,m), 
(A, (3 E P). 

Example 5.1. Taker= 2 and m = -2. Then 

Vc-1,-2) = ½(-1,0) = T1T(-l,0) = (-1, -2), 

Vc-2,-1) = Y1(0, -1) = T0- 1T(0, -1) = (-2, -1), 

Y(2,-1) = Y1- 1(0, -1) = T- 1To(O, -1) = (2, -1), 

Y(-1,2) = Y2- 1(-1, 0) = T-1T1- 1(-1, 0) = (-1, 2) + (q - q-l )(0, 1). 

Take r = 3 and m = -3. Then 

Y(-2,-1,3) y3- 1(-2, -1, o) = T-1T1- 1T2- 1(-2, -1, o) 

(-2, -1, 3) + (q - q- 1 )(0, -1, 1) + (q - q-1)(-2, 0, 2) 

+(q - q-1 ) 2 (-1, 0, 1). 

• 
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Remark 5.1. Let n = 1ml. The basis {Vi} can be naturally iden­
tified with the basis of monomial tensors of a certain Uq(Jn)-module (see 
Section 7.1). • 

As illustrated by Example 5.1, in some cases the vectors Vi and >. 
coincide. This is made more precise in the following 

Proposition 5.2. If >. = m/3 + 'Y as above with /3 E p- then 
V>. = >.. In particular, if m < 0 and >. E p+, or m > 0 and >. E p-, 
then V>. = >.. 

Proof - Puts= w('Y, m) and v = s-1"(. Then by (29) and Lemma 2.2 

For a=/- l in 6v,m C 6r one has £(sa) > £(s) (because sis minimal in 
its coset s6v,m) and sa E 6r, Hence by Lemma 2.2 

Therefore yf3s is also minimal in its coset, that is w(>.,m) = yf3s, and 

V>. = Tyf3s V = Tw(>.,m) V = >.. 

• 

The next proposition gives a key relation between the bar involution and 
the basis V>.. It will result from the following 

Lemma 5.3. Let /3 E P ands E 6r. Then 

(Yf3T) = r-lywof37: s w 0 wos· 

Proof - Recall that £(wos) + £(s) = f(wo), hence Tw0 sT8 -1 = Tw0 

and Ts = T,;;;01Tw08 • Write /3 = /31 - /3 11 with /3', /311 E p+_ By (28) 

we have Yf3 = Tf3,T';i}. Hence, (Yf3Ts) = Tf3,T;i}T,;;;0
1Twos· Now, using 

Lemma 2.2 we see that 

T T- 1r-1 T r-1T-1 r-1T T- 1 
{3' {3" wo = {3' wo wo{3" = wo wo{3' wo{3" 

because /3', /3" E p+_ Now, wo/3 = (-w0 f3") - (-wo/3'), with -w0 f3", 
-wo/3'EP+. Hence, using again (28), (Yf3T8 ) = T,;;;01ywo{3Twos· • 
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Proposition 5.4. Let >. E P and let v E Ar,m be the point con­
gruent to >.. Then 

V, = q-£(wo,v)r-1v, , 
A WQ WQA, 

where Wo,v is the longest element in the stabilizer 6v,m· 

Proof - By Lemma 5.3, V.x = (Yi3T8 ) ll = T;;;01ywo/3Tw08 v. The min­
imal length of an element <Y E 6r such that <Y v = (wos)v is R(wos) -
R(wo,,,). Hence Twos v = q-t'(wo,v)(wos)v, and this proves the proposi­
llia D 

Example 5.2. Take m = -2 and >. = (2, 0). Then, 

Vc2,o) 

T1- 1llco,2) 

Y1- 1(0, 0) = T-1T0- 1(0, 0) = (2, 0) + (q - q-1 )(0, 2), 

T1- 1y 2- 1(0, o) = T1- 1T-1T1- 1(0, o) = q(2, o) + (q2 - 1)(0, 2). 

5.2. Action of Hr on the basis Vi, 
The next lemma allows to compute the action of Hr on {Vi.}. 

Lemma 5.5. Let i E {1, ... ,r -1} and k E Z. There holds 

k k -1 Y;_k - Y;,t1 
TiY;, = Y;,+1Ti + (q - q )l"i+1 y; Y. . 

i - i+l 

In other words, 

k 

Y k ,.,, ( -1) "yk-jyj i+1 1 i+ q-q £...J i i+l' (k? 0), 
j=l 
-k 

Y k ,.,, ( -1 ) "y-JyHk i+1 1 i + q - q £...J i i+l , (k < 0). 
j=l 

• 

Proof - It follows from (24) (20) by a straightforward computation. D 

Let >. E P and 1 ~ i ~ r - l. Write >. = m/3 + 1 with /3, 1 E P and 
E ,.:::: A Th V (TI y/3;)(V""t,T )/3;+1y/3;-/3;+1u s· 1 ur r,m· en .x = j,ii,i+l j .fi.I i+l i v,,. 1nce 

Ti commutes with 1'j (j-# i,i + 1) and l"il"i+1, we have 

TiVi. = ( II Yfj) (l"il"i+i)/3;+1Tirt-/3;+1v,,. 
#i,i+l 
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Thus to compute Ti V,x we can use the commutation relation of Lemma 5.5 
with k = f3i - /3i+1 together with the fact that since V,,, = 1 , we have 

{ 
Vsn if desc(,, i, m) = sgn (m), 

TiV,,= q- 1vsn ifdesc(,,i,m)=0, 
Vsn + (q-1 - q)V,, if desc(,, i, m) = -sgn (m). 

5.3. Projection on the positive Weyl chamber 

From now on we fix n 2:: 2 and we assume that Hr acts on Pr via 
ILn, Introduce the Z[q, q- 1]-submodule 

r-1 
:Ir:= I)mcf C Pr, 

i=l 

and define Fr := Pr/:lr- The image of A E Pin Fr under the natural 
projection 

will be denoted by [A] = [A1, ... , Ar]- For v E Pr we have by definition 

pr (Cfv) = 0 = pr (Tiv) + qpr (v). 

Hence taking v = A E P, we obtain that if Ai < Ai+1 then [A] = 
-q-1[siA], and if Ai = Ai+l then [A]= 0. This implies that a spanning 
set of Fr is given by the [A] such that A1 > A2 > ... > Ar- We put 
p++ := {>. E P I A1 > A2 > .. • >Ar}. 

Lemma 5.6. {[A] I A E p++} is a basis of Fr. 

Proof - Suppose that LAEP++ a,x[A] = 0. Then LAEP++ a,xA E :Ir. 
Recall that 

Cwo = L (-q/-(s)-£(wo)rs = Cwo = L (-q)-£(s)+£(wo)rs-l 

sE6r sE6r 

satisfies Cw0 Cf = 0 ( 1 ::; i ::; r - 1). Hence :Ir C ker Cw0 • Thus 

a,x(-q)-£(s)+£(wo)SA = 0, 

which implies that a,x = 0 for all A E p++. • 

Note that for v E Pr, C:v = qv. Hence :Ir c :Ir and one can define a 
semi-linear involution on Fr by 

(46) pr (v) := pr (v) (v E Pr)-
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Let us define 

(47) I,\) := q-f(wo) pr (Vi,). 

Then, by Proposition 5.2, for,\ E p++ we have I,\) = q-R(wo) [,\], so that 
{I,\) I ,\ E p++} is also a basis of Fr, The next proposition shows that 
it is also useful to work with the vectors I,\) associated with arbitrary 
weights ,\ E P, which can be thought of as some q-wedge products (see 
below Section 7.2). 

Proposition 5.7. For,\ E P, we have 

Proof - By Proposition 5.4 we have Vi, = q-€(wo,v)T,;;-01Vwo.X• But for 
all v E Pr, 

Thus, 

pr(T,;;-olv) = (-q)-f(wo) pr(v). 

W = l(wo) pr (Vi.) (-1 l(wo) q-f(wo,v)pr (Vwo.X) 

(-ll(wo)l(wo)-f(wo,v) lwo,\). 

• 

Remark 5.8. It is easy to check that the exponent f(wo)-f(wo,v) 
of q is equal to the number of pairs ( i, j) with 1 ::; i < j ::; r such that 
Ai - Aj is not divisible by n. • 

The next proposition gives a set of straightening rules to express an 
element Iµ) withµ r/. p++ on the basis {I,\) I ,\ E p++}. 

Proposition 5.9. Let µ E P be such that µi < µi+l• Write 
µi+l = µi +kn+ j with k 2:: 0 and O::; j < n. Then 

(48) 

(49) 

(50) 

Iµ) = -lsiµ) if j = o, 
jµ) = -q-1jsiµ) if k = 0, 

I ) -1, ) I -k k ) -11 k -k ) µ = -q 8 iµ - Yi Yi+lµ - q Yi Yi+1 8 iµ otherwise. 

Proof - To simplify the notation, let us write l = µi and m = µi+ 1-
Since the relations only involve components i and i + 1 we shall also use 
the shorthand notations (k, l) and lk, l) in place ofl7<µ 1 , ... ,µi-i,k,l,µi+ 2 , ... ,µr)EPr 

and j(µ1, ... ,µi-1,k,l,µi+z, ... ,µr)) EFr. 



184 B. Leclerc and J.-Y. Thibon 

Suppose j = 0. It follows from Section 5.2 that Ti(l, l) = q- 1(l, l). 
Hence (l, l) E im c:. Since (~-k+~:;:_~)q = C{(~-k+~:;:_~) we also have 

(~-k + ~:;:.~)(l,l) = (m,l) + (l,m) E imC{, and thus ll,m) + lm,l) = 0. 
Suppose k = 0. Then Ti(l, m) = (m, l) by Section 5.2, and CH[, m) = 

(m,l) +q(l,m) E imC:, which gives ll,m) = -q- 1 lm,l). 
Finally suppose that j, k > 0. By the previous case (m, l +kn)+ 

q(l + kn,m) E imq. Applying ~k + ~t1 we get that (m,l) + (m -
kn, l +kn)+ q(l, m) + q(l + kn, m - kn) E imC{, which gives the third 
claim. D 

Example 5.3. Take r = 2 and n = 2. Then 

11, 4) = -q-1 14, 1) - 13, 2) - q- 1 12, 3), 

by Eq. (50), and 12, 3) = -q- 1 13, 2) by Eq. (49). Thus 

11, 4) = -q-1 14, 1) + (q- 2 - 1) 13, 2). 

Hence, by Proposition 5.7, 14, 1) = 14, 1) + (q - q- 1 ) 13, 2). • 

Forµ E p++ write Iµ)= I:>-.a++ a>-.µ(q) I>.). Using Proposition 5.7 
and Proposition 5.9, we easily see that the coefficients a>,µ(q) satisfy the 
following properties 

Corollary 5.10. (i) The coefficients a>,µ(q) are invariant under 
translation of>. andµ by E1 + • · · + Er- Hence it is enough to describe 
the a>,µ(q) for which>.- p andµ - p have non-negative components, i.e. 
>. - p and µ - p are partitions. 

(ii) If a>-.µ(q) :/= 0 then>. E Srµ. In particular, if>. - p andµ - p are 
partitions, they are partitions of the same integer k. 

(iii) The matrix Ak with entries the a>-.µ(q) for which>. - p andµ - p 
are partitions of k is lower unitriangular if the columns and rows are 
indexed in decreasing lexicographic order. 

Example 5.4. For n = 2 and r = 3, the matrices Ak for k = 
2, 3, 4 are 

(4,1,0) (3,2,0) 
(5,1,0) (4,2,0) (3,2,1) 

1 0 
1 0 0 

q- q-1 1 
0 1 0 

q-q-1 0 1 
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(6,1,0) (5,2,0) (4,3,0) ( 4,2,1) 

1 0 0 0 
q-q-1 1 0 0 
q-2 -1 q- q-1 1 0 

0 q2 -1 q-q-1 1 

• 

5.4. Canonical bases of Fr 
Let .c+ (resp. .c-) be the Z[q] (resp. Z[q- 1))-lattice in Fr with 

basis {I,).) I >. E p++}. The fact that the matrix of the bar involution 
is unitriangular on the basis {!>-) I >. E p++} implies by a classical 
argument (see [32], 7.10 and [6)) that 

Theorem 5.11. There exist bases {Gt I >. E p++}, {G_;: I >. E 
p++} of Fr characterized by: 

(i) ct= ct, c-;. = c,;:, 
(ii) ct = )>.) mod q,C+, c,;: = I>-) mod q- 1 .c-. 

These bases were introduced in [22] (in the limit r-----, oo, cf. Section 7), 
using Proposition 5. 7 as the definition of the bar involution on F. Set 

ct = L c>-,µ (q) !>-), c,;: = Lh,µ(-q-1) )µ). 
,\ µ 

Let Ck and Lk denote respectively the matrices with entries the coef­
ficients C>.µ(q) and Z>.µ(q) for which >. - p and µ - p are partitions of 
k. 

Example 5.5. For r = 3 and n = 2 we have 

(6,1,0) (5,2,0) (4,3,0) (4,2,1) 

1 0 0 0 
C4= q 1 0 0 

0 q 1 0 
q q2 q 1 

(6,1,0) (5,2,0) ( 4,3,0) (4,2,1) 

1 q q2 0 
L4 = 0 1 q 0 

0 0 1 q 
0 0 0 1 

• 
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Clearly, if C>.,µ or l>.,µ -:/ 0, then >. and µ lie on the same orbit 
under Sr. Let v be the point of Ar,-n on this orbit. Write W>. := 

w(w0 >., -n)wo,v and similarly Wµ := w(woµ, -n)wo,v- The main result 
of this section is 

Theorem 5.12 (Varagnolo, Vasserot [42]). With the above nota­
tion, we have 

(51) 

a parabolic Kazhdan-Lusztig polynomial for the action of Sr on Pr via 
1f-n, and 

(52) C ' _ ~ (-q)C(s)p _ _ 
A,µ-L....t SW>..,Wµ,· 

sE6r 

Remark 5.13. (i) In view of Theorem 2.4, it follows from Eq. (52) 
that C>.,µ is also a parabolic Kazhdan-Lusztig polynomial of negative 
type with respect to the parabolic subgroup 6r of Sr, (but for the right 
Hr-module lq-1 ®Hr Hr)- This agrees with the expression obtained by 
Goodman and Wenzl when µ - p is a n-regular partition [10]. 
(ii) Let :Fr denote the specialization of :Fr at q = 1. Define a Z-linear 
map L from the Grothendieck group of finite-dimensional representations 
of U((JJ[r) to :Fr by 

l[W(>.)] = I>-+ p) (>. E P/). 

Then comparing Theorem 5.12 and the Lusztig conjecture (33) we see 
that L[L(>.)] = GA+p· 

Proof - Consider the element D>. := pr (C;:) E Fr- Then D;i. = D>. 
by (46). Since>. E p++, desc(>.,i,-n) = 1 for all i = 1, ... ,r -1. 
Therefore using (31) we see that 

D>. = [r]! L P;,>.(-q-1) Iµ). 
µEP++ 

Hence (1/[r]!)D;i. is bar invariant and congruent to I>-) modulo q-1,e-. 
Thus D;i. = [r]! c-; and (51) is proved. 

Next put Eµ := pr (C,;t"0 µ) E :Fr, Then Eµ = Eµ- We have 
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This shows that Eµ = (-ll(wo) /µ) mod q£+. Hence, Eµ = (-ll(wo) Gt. 
It follows that 

C)..,µ = L (-q/(wo)-l(s) Psj.,,woµ 

sE6r 

L (-q/(a) Pw(awo>-.,-n)wo,v, w(woµ,-n)wo,v 

aE6r 

by Theorem 2.4. Finally, since w0 ,\ E p- - we have w(aw0 ,\, -n) 
aw(wo,\, -n) for all a E 6r, and we get (52). • 

§6. A q-analogue of the tensor product theorem 

6.1. Action of Z(Hr) on Fr 

By a result of Bernstein (see (28], Th. 8.1), the center Z(Hr) of 
Hr is the algebra of symmetric Laurent polynomials in the elements }'i. 
Clearly, Z(Hr) leaves invariant the submodule Jr• It follows that Z(Hr) 
acts on Fr= Pr/Jr• This action can be computed via (45) and (47). 
In particular Bk = z:=;=l Y/ acts by 

(53) 
r 

Bk/,\) = L /,\ - nktj), 
j=l 

(k E Z*). 

Note that the right-hand side of (53) may involve terms/µ) withµ¢ p+ 
which have to be expressed on the basis {/,\) I ,\ E p++} by repeated 
applications of Proposition 5.9. 

Example 6.1. Take r = 4 and n = 2. We have 

B_213, 2, 1, 0) = 17, 2, 1, 0) + 13, 6, 1, 0) + /3, 2, 5, 0) + /3, 2, 1, 4). 

By Proposition 5.9, 

/3, 6, 1, 0) = -q- 1 /6, 3, 1, 0) + (q- 2 - 1) /5, 4, 1, 0), 

/3, 2, 5, 0) = -q- 1 13, 5, 2, 0) + (q- 2 - 1) /3, 4, 3, 0) = q- 1 /5, 3, 2, 0), 

/3, 2, 1, 4) = -q- 1 /3, 2, 4, 1) + (q- 2 - 1) /3, 2, 3, 2) = -q-2 /4, 3, 2, 1), 

which yields 

B-213, 2, 1, 0) 17, 2, 1, 0) - q- 1 /6, 3, 1, 0) 

+ (q- 2 - 1)/5, 4, 1, 0) + q-1 /5, 3, 2, 0) - q-2/4, 3, 2, 1). 

• 
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The compatibility of the bar involution with this action is given by 
the next 

Proposition 6.1. For u E Fr and z E Z(Hr) one has 

zu = zu. 

Proof - Since z is a symmetric Laurent polynomial in the Y;, we see 
using Lemma 5.3 that z = T;;;01zTw0 = z. • 

6.2. Action of Z(Hr) and ribbon tableaux 

We shall now show that the straightening relations can be avoided 
provided that one uses appropriate linear bases of Z ( ii r). For d E 

[1, r] := {1, 2, ... , r} and m EN* define 

(54) Ud:= L Yi, Yi2 • • . Yid l 

l'.":'.i1 <i2<- .. <id'.":'.r 

(55) Vd := L y-ly-1 ... y-1 
'tl 'l.2 'td ' 

l'.":'.i1 <i2< ... <id'.":'.r 

(56) u ·-m·- L Y;, Yi2 • ••Yi,,, l 

l'.":'.i1'.":'.i2'.":'.---'.":'.i,,,'.":'.r 

(57) Vm:= L y-ly-1 ... y-1. 
i1 i2 'l.,n 

l'.":'.i1'.":'.i2'.":'.---'.":'.i,,,'.":'.r 

For a E [1, r] 8 set Ua := iJ.01 • · -iJ.0 ., Vo. :=Vo.,··· Vo.., and for /3 E N* 8 

set U13 := U13, ···U13,, V13 := V13, ···V13 •. In other words, using the 
notation of [33] for symmetric functions, 

iJ.0 = e0 (Y1, ... , Yr), Vo.= eo.(Y1-1, ... , yr-1), 

U13 = h13(Y1, ... , Yr), V13 = h13(Y1-1, ... , yr-l ). 

The following formulas were obtained in [21]. They will allow us to relate 
ribbon tableaux to Kazhdan-Lusztig polynomials. Put 

(58) L(n) (q) ·= ~ qspin(T) 
>.jv,µ . ~ . 

TETab n(A/v, µ) 
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11 11 ~ IT] 

11 12 ~ CTI ~ hb ~ 
Fig. 6. The domino tableaux of weight (2) and (1, 1) 

Theorem 6.2. Let II E lP't and o: E [1, r] 8 • Set k = lo:I := 0:1 + 
· · · + O:s- We have 

(59) Ua Iv+ p) = (-q)-(n-l)k L L~~}µ', a(-q) Iµ+ p), 

(60) Valv+p)=(-q)-(n-l)k L L~~)v,,a(-q) I.X+p), 
>-EIP';!-

where for .X E lP't, N denotes the conjugate partition. 

Note that in ( 59) ( 60) N, µ', 111 may be partitions of length s > r. 

Example 6.2. Let us redo t~e calcul~ion of Example 6.1 using 
domino tableaux. Clearly, B_z = V{l,l) - 2V(z)• Now, applying Theo­
rem 6.2 we have 

V(2) IP) 

v{l,1) IP) 

q- 2 1(1, 1, 1, 1) + p) - q- 1 1(2, 1, 1) + p) + 1(2, 2) + p), 

q-2 1(1, 1, 1, 1) + p) - q- 1 1(2, 1, 1) + p) 

+(1 + q-2 ) 1(2, 2) + p) - q- 1 1(3, 1) + p) + 1(4) + p) 

as illustrated by Figure 6, and we recover the result of Example 6.1. • 

The proof of Theorem 6.2 is based on the following simple combi­
natorial lemma. 

Lemma 6.3. Let .X, 11 E lP't and k E [1, r]. Put /3 = E1 +···+Ek. 
The skew Young diagram N /v' is a horizontal n-ribbon strip of weight 
k if and only if there exists, a E 6r such that 11 + p + s(n/3) = a(.X + p). 
If this is the case, 

£(a) = (n - l)k - spin(.X' /11'). 

Proof - The proof is elementary and is left to the reader. D 
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Fig. 7. A horizontal 5-ribbon strip of weight 4 and spin 7 

Example 6.3. Take r = 11, >. = (4, 4, 4, 4, 3, 2, 2, 2, 1, 1, 1) and 
v = (2, 2, 1, 1, 1, 1). Then >.' /v' = (11, 8, 5, 4)/(6, 2) is a horizontal 5-
ribbon strip of weight 4. Indeed 

(12, 11, 14, 13, 7, 6, 9, 3, 2, 1, 5) = v + p + (0, 0, 5, 5, 0, 0, 5, 0, 0, 0, 5) 

is a permutation of>.+ p. This permutation has length 9, thus the spin 
of>.' /v' is equal to 4.4 - 9 = 7, as can be checked on Figure 7. • 

Proof of Theorem 6.2- Since Va := Va 1 ···Va., it is enough to prove 
the theorem in the case o: = (k). Let f3 = t 1 + • • • +tk- Observe that we 
can reformulate (55) as vk = I:<;E6r,e y-<:_ Hence we have 

vk Iv+ p) = L Iv+ p + "f). 
"/E6rn/3 

If~ := v + p + 'Y (/. p++ we have to use the straightening relations of 
Proposition 5.9 to express I~) on the basis {I>.) I >. E p++}. But if 
~i < ~i+l then clearly we must have ~i < ~i+l < ~i + n, and we need 
only the simple relation (49). It follows that I~) = (-q)-l(o-)1>. + p), 
where >. + p is the decreasing reordering of ~ and <Y is the permutation 
mapping~ into>.+ p. By Le!?ma 6.3, £(<Y) = (n - l)k - spin(>.' /v') and 
we are done. The proof for Uk is similar. • 

We now deduce from Theorem 6.2 similar formulas for the operators U,e 
and V,e. 

(61) 

(62) 

Theorem 6.4. Let v E IP';: and f3 E N* 8 • We have 

U,e Iv+ p) = L L0~,,e(-q-l) Iµ+ p), 
µEll';\-

V,elv+p) = L Li';~,,e(-q- 1 ) l>-+p). 
>.Ell';\-
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Fig. 8. Standardization T ----> T of a ribbon tableau 

Proof - Again, it is enough to prove this for /3 = (k). Recall that a 
composition of k E N is an ordered partition of k, that is, a sequence 
o: = ( 0:1, . . . , o:8 ) of positive integers such that Li O:i = k. We denote 
this by o: F k and we call s the length l(o:) of o:. There is a classical 
formula for expressing the symmetric function hk in terms of the e°', 
namely 

hk = I)-1t-l(o,) e°'. 
°'Fk 

Thus by Theorem 6.2, we have 

Recall that for a ribbon tableau T, (-1) spin(T) = En(>./v) depends only 
on the shape >.jv of T. It is clear that En(>.' /v') = (-l)(n-l)kcn(>./v), 
hence we are reduced to prove that 

q-(n-l)k ""(-l)k-l(o,)L(n) (q) = L(n) (q-1). 
~ >.'/v' ,°' >./v,k 
°'Fk 

To do this, we associate with each ribbon tableau T of weight a a 
standard ribbon tableau T of weight (1, ... , 1) as follows. Consider two 
ribbons R and R' of T, numbered i and i' respectively. We say that 
R < R' if i < i', or i = i' and R is to the left of R'. Clearly this is a 
total order. Now Tis the tableau with the same shape and inner ribbon 
structure as T, whose ribbons are numbered 1, 2, 3, ... in the previous 
total order (see Figure 8). 

Let us fix a skew shape >.' /v' and consider the set £ of all ribbon 
tableaux of this shape and of arbitrary weight a F k. For T E £ of 
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weight o:, write E(T) := (-1)k-l(a). We want to prove that 

(63) 

I: E(T) qspin(T) = { 
TE£ 0 

n-ribbon strip, 

otherwise. 

Let T E £ be a standard tableau, and let £7 C £ denote the subset 
consisting of those tableaux T whose standardization gives T. We say 
that Tis a column if for all i = 1, ... , k - 1 the ribbon Ri+l numbered 
i + 1 lies above the ribbon Ri numbered i, that is, if the origin of Ri+l 
lies in a row strictly above the origin of Ri. Eq. (63) will follow from 
the more precise statement 

(64) { 
spin(T) L E(T) qspin(T) = q 

TE£T Q 

if Tis a column, 

otherwise. 

Now this is very easy. First, by definition all T E £7 have the same 
inner ribbon structure, hence the same spin, and we can simplify the 
powers of q of both sides of (64). Then we only have to observe that a 
tableau T E £7 is specified by the numbering of its ribbons, i.e. by a 
map fr: [1, k]--, [1, k] satisfying 

(i) fr(i + 1) = fr(i) or fr(i + 1) = fr(i) + 1, 
(ii) if Ri+l lies above Ri in T then fr(i+l) = fr(i)+l. 

Let a(T) be the number of i's such that Ri+l is not above Ri. Then 
clearly !£Tl = 2a(T) and more precisely the number of T E Er such 
that fr(k) = j (i.e. E(T) = (-1)k-J) is equal to (a<Jl). Hence by the 
binomial theorem 

'°' { 1 if a(T) = 0, i.e. Tis a column, 
L. E(T) = 

TE£T O otherwise. 

To finish the proof we need only note that >../v is a horizontal n-ribbon 
strip if and only if there exists a (necessarily unique) column tableau T 
of shape>..' /v', and in this case spin(T) = (n - l)k - spin(>..jv). • 

Remark 6.5. Since the Vm commute, V,e is invariant under per­

mutation of {3. Hence Theorem 6.4 implies that Li1~, ,e(q) is also in­
variant under permutation of {3. This proves that the polynomial ( 42) 
is indeed symmetric. • 
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Fig. 9. Correspondence between n-ribbon tableaux of 
spin O and n-restricted inner shape, and ordinary 
tableaux 

6.3. Action of Z(Hr) on the canonical basis {G~} 
For .X. E IP';: , define 

S>,. := S>,.(Yi- 1 , ... , yr- 1) E Z(Hr), 

193 

where S>,. is the Schur function. The following theorem is a formal ana­
logue of Theorem 3.2. 

Theorem 6.6. Let .X. E p+. Write .X. = .X. (O) + n.X. (l), where .X. (O) is 
n-restricted, that is, 

(1:S:i:S:r-1), 

and .X.~1) ?: 0. Then G~+P = Sw> G-;_<o>+p· 

Proof - By definition of the basis c-, we have to prove that F>,. 
s>,.(1) c-;.(o)+p satisfies 

and 

The first property is clear by Proposition 6.1. Indeed, S>,. is a Q-linear 
combination of products of elements B-i· To prove the second one we 
observe that by Theorem 6.4 for all v E IP'f and o: E N* 8 , Va Iv+ p) E 

c-. Since G-;_<o)+p = 1.x.<0) + p) mod q- 1e,-, and Sw> is a Z-linear 
combination of operators Va we thus have 

F>,. = Sw> 1.x.<0) + p) mod q- 1e,-. 

In fact Theorem 6.4 implies 

Va Iv+ p) = L lsh(T) + p) mod q- 1 e,-, 
T 
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where the sum is over the n-ribbon tableaux of weight a, spin O and 
inner shape v, and sh(T) stands for the outer shape of T. Therefore for 
all a 

Va j.X (o) + p) = L jsh(T') + p) mod q- 11:,-, 

T' 

where the sum is over the n-ribbon tableaux T' of weight a with inner 
shape _x(o) whose ribbons are all horizontal. Now _x(O) being n-restricted, 
there is an obvious bijection between the set of these tableaux T' and 
the set Tab(·, a) of ordinary Young tableaux of weight a (see Figure 9). 
Hence, for all a 

Va j_x(O) + p) = L jTab (,8, a)j j_x(O) + n,8 + p) mod q- 11:,-. 

/3 

Comparing with the well-known formula ha= L;3 jTab (,8, a)j s;3 which 
yields 

Va = L !Tab (,8, a)j S13, 
/3 

we deduce that for all ,8, 

S;3 I.X (O) + p) = I.X (O) + n,8 + p) mod q- 11:,-, 

and putting ,8 = _x(l) we are done. D 

6.4. Proof of Theorem 4.1 

Let us write in the ring of symmetric functions S>. = Lv 1,,>.,v hv. 

Then we also have mv = L>. 1,,>.,v S>.- Hence 

G( (0) (n-1). ) ._ '°' L(n) ( ) _ '°' ("' L(n) ( )) µ , ... ,µ ,q .-~ µ,v q mv - ~ ~t.>.,v µ,v q S>., 
V ).. V 

which gives 

V 

On the other hand, by Theorem 6.6 and Theorem 5.12 we have 

S>. jp) = a-;;,>.+p = L P;+p,n>.+p(-q-1) Iµ+ p). 
µ 
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Finally, using Theorem 6.4 we get 

S>. \p) = L ~>.,v Vv \p) = L (L ~>.,v Ltt(-q- 1 )) \µ + p) 
V µ V 

= LC~(O), ... ,µ(n-1)(-q-l)\µ+p), 
µ 

and by comparing the coefficients of\µ+ p) we have 

C~(O) , ... ,µ(n-l) (q) = P;;+p,n>.+p(q). 

§7. An inversion formula for Kazhdan-Lusztig polynomials 

In this section we extend the coefficients to Q (q) and work with 

Pr:= Q (q) 0z[q,q-I] Pr, Fr:= Q (q) 0z[q,q-I] :Fr, 

7.1. Action of Uq(.s[n) on the weight lattice of g[r 

• 

Let Uq(irn) be the quantum enveloping algebra of the affine Lie 
algebra irn. This is a Q (q)-algebra with generators ei, Ii, q±h; (0 :s; 
i :s; n - 1). The standard relations can be found for example in [20] 
and will be omitted. There is a canonical involution x ......, x of Uq(irn) 
defined as the unique ring homomorphism such that q = q- 1 , ei = ei, 

and Ji= k 
Using the basis {Vi} form= -none can define an action of Uq(irn) 

on Pr. First we start with the trivial case r = 1, where Pr reduces to 
P1 = ffitEZ Q (q)½. It is immediate to check that the formulas 

extend to an action of Uq(irn) on P 1 . Here, a = b means congruence 
modulo n and Oa=b is the Kronecker J equal to 1 if a = b and to 0 
otherwise. Then using the comultiplication 

(65) 
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and identifying Pr with Pfr by Vi t--t V>. 1 0 · · · 0 Vir, we obtain the 
following formulas 

r 

(66) Ji Y..\ := L qL{:;,~ (8>.kasi-0>.kasi+I) V>.+ej, 

j=l 
>.1=i 

r 

(67) ei V>. := L q- I::;;=Hl (8>.k=i-0>.kaai+I) VA-Ej. 

j=l 
>.1=i+l 

Proposition 7.1. This action of Uq(irn) on Pr commutes with 
the action of Hr via ILn. 

Proof - It is clear from (66) (67) that 

that is, the action of Uq(irn) commutes with the operators yµ_ Hence, 
recalling the discussion of Section 5.2, we see that it is enough to prove 
that fiTi V"I = Tifi V"I for I E 6r.Ar,-n and 1 ::'.'.: j ::'.'.: r - 1. Moreover, 
since Ti only acts on components j and j + 1 of,, we can assume that 
r = 2. Then the claim is verified by a direct computation. For example 
on the one hand 

foT1 \7<1-n,O) = Jo Y(o,l-n) = Y(l,l-n), 

and on the other hand 

Tifo \7<1-n,O) = q-1T1 \7<1-n,l) = q-1T1Y2-1\7<1-n,l-n) 

D 

Remark 7.2. This action of Uq(icn) does not commute with the 
positive level action Iln of Hr. For example if r = 2 and n = 3 

Il3(T1)(h\7<2,o)) = QY(o,3)· 

However, one can easily obtain an action commuting with Iln by simply 
replacing the comultiplication .6. of (65) by its opposite 

.6.0 P Ii= Ji 0 qhi + 1 0 /i, .6.0 Pei = ei 01 + q-hi 0 ei. 

• 
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The action of Uq(;tn) is compatible with the bar involution of Pr in 
the following sense. 

Proposition 7.3. For x E Uq(_;tn) and v E Pr one has (xv) = 
x v. In other words, 

fiv = fiv, eiV = eiV (0~i~n-1). 

Proof- We can assume that v = V_x. Then by (70) and Proposition 5.7 
we have 

Here, ( E Ar,-n is the point congruent to .X+tj, which does not depend 
on j because Aj is required to be = i. On the other hand, since Ji 
commutes with T;;;01 by Proposition 7.1, 

It remains to check that the coefficients ofT;;;01Vwo(.X+,;) in (68) and (69) 
are equal, which is equivalent to 

r 

:~)8.xk=i - 8.xk=i+l) -1 = f(wo,v) - f(wo,{)-
k=l 

This is elementary, using for instance Remark 5.8. The formula for ei is 
similar and its proof is omitted. D 
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7.2. Action of Uq(.S[n) on Fr 

Since the action of Uq(Jn) on Pr commutes with the action of Hr, 

the subspace Ir := Q (q) ®z[q,q-1] Jr is stable under Uq(Jn) and we 

obtain an induced action of Uq(Jn) on Fr· As explained in Section 7.1, 
the vector Vi. should be regarded as a monomial tensor V.x = V,x. 1 0 · · · ® 
V.xr. Hence its projection I>-) on Fr should be thought of as some q­
wedge product I>-) = V,x. 1 /\q • • • /\q Vi.r with the anticommutation relations 
replaced by the straightening rules of Proposition 5.9. The action on I>-) 
of the generators of Uq(Jn) is obtained by projecting (66), (67): 

r 

(70) Iii>-) := L qZ::t;;;,~(c5.>.k='-c5.>.k='+1) I>-+ Ej), (0:::; i:::; n -1), 
j=l 

;>..; =i 

r 

(71) eil.>.) := L q- Z:::~=;+i (c5.>.kaa,-c5.>.k='+1) I>- - Ej), (0:::; i:::; n - l). 
j=l 

>.;=i+l 

Note that if.>. E p++ then .>. ± Ej E p+. It follows that either I>-± Ej) 
belongs to the basis {I>-) I.>. E p++}, or i>-±Ej) = 0. Hence, Eq. (70) (71) 
require no straightening relation and are very simple to use in practice. 
The compatibility of the bar involution with this action is given by the 
next 

Proposition 7 .4. For u E Fr and O ::; i :::; n - l one has 

fiu=fi'u, eiU = e/ii,. 

Proof - This follows immediately from ( 46) and Proposition 7.3. D 

7.3. The Fock space F 00 

For s 2: r define a linear map 'Pr,s : Fr ----+ F 8 by 

'Pr,s(I>-)) := l>-1,--· ,Ar,-r,-r-l, ... ,-s+l) (.>. E P/). 

Then clearly 'Ps,t o 'Pr,s = 'Pr,t· Let F 00 := 1~ Fr be the direct limit 

of the vector spaces Fr with respect to the maps 'Pr,s · Each I>-) in Fr 
has an image 'Pr(I>-)) E F 00 , which should be thought of as some infinite 
q-wedge 
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Lemma 7.5. (i) If Ar '.S -r then 'Pr(/A)) = 0. 
(ii) If A E P/+ and Ar > -r then 'Pr(/A)) =/ 0. 

Proof - (i) Write Ar = k '.S -rand consider the element 

'Pr,-k+1(/A)) = /Al,··· ,Ar,-r,-r- l, ... ,k). 
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By applying Proposition 5.9 one checks easily that /k, -r, -r -1, ... , k) 
straightens to O in F-k-r+2· Therefore 'Pr,-k+l (IA)) = 0, hence 'Pr(IA)) = 
0. (ii) By Lemma 5.6 if A E P/+ and Ar > -r then 'Pr,s(IA)) =/ 0 for all 
s > r. Hence 'Pr(/A)) =/ 0. • 

Let JP>+ denote the set of all partitions, i.e. of all finite non-increasing 
sequences of positive integers. Put p; := (0, -1, ... , -r + 1), and for 
a = (a1, ... , a 8 ) E JP>+ define 

It readily follows from Lemma 5.6 and Lemma 7.5 that {la) I a E JP>+} 
is a basis of F 00 . We define a grading on F 00 by requiring that 

s 

deg la):= Lai. 
i=l 

Then for all A E Pr, 'Pr(/A)) is homogeneous of degree 

r 

degcpr(/A)) = L(Ai+i-1). 
i=l 

In particular, if I:;;=1 (Ai +i-1) < 0 then 'Pr(/>.))= 0. 

7.4. Action of Uq(.Sln) on F 00 

Let A E Pr, It follows easily from (70) that 

(72) Ji 'Pr,s(/A)) = 'Pr+l,s Ji 'Pr,r+l (/A)) 

for all s > r. Hence one can define an endomorphism Ji of F 00 by 

(73) Ji 'Pr(/>.)) = 'Pr+l Ji 'Pr,r+l (/,\)) 

and thus get an action of U,;-(;rn) on F 00 . 

On the basis {la) I a E JP>+} this action is expressed as follows. Let a 
and {3 be two Young diagrams such that {3 is obtained from a by adding 
a cell "I whose content is = i mod n. Such a cell is called a removable 
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i-cell of /3, or an indent i-cell of o:. Let I[( o:, /3) ( resp. Rr( o:, /3)) be the 
number of indent i-cells of o: ( resp. of removable i-cells of o:) situated 
to the right of 'Y ('Y not included). Set N[(o:,/3) = J[(o:,/3) - Rr(o:,/3). 
Then Eq. (70) gives 

(74) filo:) = LqN[(<>,/j)l/3), 
(J 

where the sum is over all partitions /3 such that /3 / o: is an i-cell. 
Defining an action of Ut(stn) is not as straightforward since there 

is no formula like (72) for ei. For example if n = 2, 

e112) = II), 
e112, -1) = q-1 JI, -1), 

e1 J2, -1, -2) = Jl, -1, -2) + J2, -1, -3),· 

e1 J2, -1, -2, -3) = q-1 JI, -1, -2, -3), 

and in general 

e1 'Pl,2r J2) = q-1cp1,2re1 J2), 
e1cp1,2r+1 J2) = 'P1,2r+1e1J2) + J2, -1, ... , -2r + 1, -2r - 1). 

However, one can check that putting ei'Pr(J.X)) := q-5i=r 'Pr(eiJ.X)) one 
gets a well-defined action of Ut(.stn) compatible with (73) (see [151). Its 
combinatorial description is given by 

(75) 
<> 

where the sum is over all partitions o: such that /3 / o: is an i-cell, and 
N}(o:, /3) is defined as N[(o:, /3) but replacing right by left. 

In contrast to Fr, the representation F 00 has primitive vectors, i.e. 
vectors annihilated by all ei. In particular the vector I0) labelled by the 
unique partition of 0 is primitive. In fact F 00 is a level 1 highest weight 
integrable representation of Uq(sln), while Fr is a level 0 representation 
( without highest weight). As shown by Kashiwara, Miwa and Stern 
[15], the decomposition of F 00 into simple Uq(stn)-modules is obtained 
by considering the limit r --+ oo of the action of Z (Hr) on Fr. 

(76) 

7.5. Action of H 00 on F 00 

Let .X E Pr. It follows from the easily checked relations 

{ J-s,-r,-r-1, ... ,-s)'.:0, (s2:'.:r2:'.:0) 
1- r, -r -1, ... , -s, -r) - 0, 
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that the vector 'Ps Bk 'Pr,s(IA)) is independent of s for s > r large enough. 
Hence one can define endomorphisms Bk of F 00 by 

(77) (kEZ*, s~l). 

By construction, these endomorphisms commute with the action of Uq(sln) 
on F 00 . However they no longer generate a commutative algebra but a 
Heisenberg algebra. Indeed, it was proved by Kashiwara, Miwa and 
Stern [15] that 

(78) if k = -l, 

otherwise. 

We shall denote this Heisenberg algebra by H 00 . The elements Uf3, V f3, 
u(3, v(3 of Z(HrJ al~o give rise to well-defined elements of Hoo that we 

still denote by Uf3, Vf3, Uf3, Vf3- By Theorem 6.2 and Theorem 6.4, their 
action on the basis {Iv), v E JP>+} of F 00 is given by 

(79) 

(80) 

(81) 

(82) 

u(3 Iv) = q-(n-l)k L L~~),,,, (3(-q) Iµ), 
µElf'+ 

V- I ) _ -(n-l}k ~ L(n) ( ) I') (3 V - Q ~ ).' /v', (3 -q A , 

.>..Elf'+ 

u(3 Iv)= L L~'i~,(3(-q- 1 ) Iµ), 

Vf3 Iv)= L Li;~,(3(-q- 1 ) IA), 
.>..Elf'+ 

where k = 1,61- It was shown in [15] that F 00 is irreducible under the 
commuting actions of Uq(sln) and H 00 . It follows that {V,e IO), {3 E JP>+} 
is a basis of the space of primitive vectors of F 00 for Uq(sln)-

7.6. The bar involution of F 00 

Before introducing the involution we need the following lemmas. 

Lemma 7.6. Letµ E Pm+l such that µi > -m (i = 1, ... , m+ 1) 
and L-i(µi + i - l)::::; m. Then Iµ) = 0. 

Proof - We have 

Iµ)= L X.>,. IA) 
AEP,;;t 1 
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for some coefficients X>,. Because of the hypothesis µi > -m and of 
the form of the straightening relations, the components of the weights 
>. occuring in this sum must all be > -m. On the other hand, setting 
ai = Ai +i-1 we see that a is a partition with Jal ::;: m, hence l(a) ::; m. 
Thus the last component of all the >. must be = -m, and the sum is 
empty. D 

Lemma 7.7. Let >. E Pr and let m 2:: r. Assume that Ai > 
-m (i = 1, ... , r) and Ei(>.i + i - 1) ::;: m. Then 

I - m, >.1, ... , Ar, -r, ... , -m + 1) 

= (-l)mq-a(>.) J>.1, ... , Ar, -r, ... , -m + 1, -m), 

where a(>.)= Hi::; r I Aj ¢. -m} + U{-r 2:: j 2:: -m + 1 I j ¢. -m}. 

Proof - Consider the straightening of 

v = I - m, >.1, ... , Ar, -r, ... , -m + 1) 

computed by means of Proposition 5.9. At each step, if the third rule 
(50) has to be used, then only the first term of the right-hand side 
may be non-zero. Indeed the two other terms involve weights µ which 
satisfy the hypothesis of Lemma 7.6. Therefore the straightening of v 
is simply obtained by reordering its components and multiplying by the 
appropriate sign and power of q. • 

If >. satisfies the hypothesis of Lemma 7. 7, then repeated applications of 
this lemma show that for p 2:: m, 

(-1/~)qb(>.,p) J-p, ... ,-r,>.r,··· ,>.1) 

= (-l)(';)l(>.,m) I - m, ... , -r, Ar, ... , >.1, -m - 1, ... , -p) 

Here b(>.,p) is the number of pairs (i,j) of components of the vector 
(>.1, ... , Ar, -r, ... , -p) with i ¢. j mod n. In other words, using Propo­
sition 5. 7 and Remark 5.8 

'Pr,p(J>.)) = 'Pm,p('Pr,m(J>.))). 

Thus we can define a semi-linear involution on F 00 by putting 

(83) 'Pr(J>.)) := 'Pm('Pr,m(J>.))) (>. E Pr, degcpr(J>.)) = m, Ai> -m). 

In particular, for a E JP>+ ands 2:: Jal, we have Ja) = 'Ps(la + p;)). 
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Proposition 7 .8. For a E JP>+, 0 :S: i :S: n - 1 and k E N* we have 

Proof - For Ii and B-k, the proofreadily follows from Proposition 7.4, 
Proposition 6.1 and (73) (77) (83). (Note that the condition ,\i > -m 
in (83) is preserved by the action of these lowering operators.) Let us 
prove the statement for Bk- We argue by induction on deg la). In degree 
0, the unique basis vector is I0) and we have Bkl0) = Bkl0) = 0, so the 
claim is trivially verified. Let us assume that the result is proved for all 
la) of degree :S: m. Since the action of the operators B-1 and Ji on I0) 
generates the whole Fock space, it is enough to prove that 

Bk liv = q2(n-l)k Bk liv, Bk B_1v = q 2(n-l)k Bk B_1v 

for all v of degree :S: m. Now Bk and Ii commute, so 

Bkfiv = liBkv = fiBkv = fi(q 2<n-l)k Bkv) = q2<n-l)k Bkfiv 

= q2(n-l)k Bkliv. 

If l ,f. k we know that Bk and B-1 commute and we can argue similarly. 
Finally if l = k, by (78), 

1 _ q2(n-l)k _ 

Bk B_kv = B_k Bkv + k 2k v 
1-q 

- 2(n-l)k B B - + k 1 - q2(n-l)k -
- q -k kV 1 - q2k V 

= q2(n-l)k (B B + k 1 - q-2(n-l)k) V = q2(n-l)k B. B V 
-k k l _ q-2k k -k 

= q2(n-l)k BkB-kv, 

The proof for ei is similar, using the commutation relation 

qh; _ q-h; 

[ei, lil = 8ij _ 1 q-q 

Proposition 7.8 implies that for I/JI = k, 

(84) 

(85) 

V19 la) = V19 la), 

U.19 la) = q2(n-l)k U.19 la), 

V19 la) = V19 la), 

U19 la) = q2(n-l)k U19 la). 

• 



204 B. Leclerc and J.-Y. Thibon 

7.7. The scalar product of F 00 

Define a scalar product on F 00 by (la), l,B)) = 8a/3· 

Proposition 7.9. For u, v E F 00 one has 

(Jiu, v) = (u, qh;-leiv), 

(Vau, v) = (u, Uav), 

(eiu, v) = (u, q-h;-l fiv), 

(Vau, v) = (u, Uav). 

Proof - This follows immediately from (74) (75) (79) (80) (81) (82). 

7 .8. Symmetry of the bar involution 

Define a semi-linear involution v 1---t v' on F 00 by la)' := la'), where 
a' is the partition conjugate to a E JP>+. 

Proposition 7.10. For u E F 00 and /3 E JP>+ with l/31 = k, there 
holds 

(eiu)' = qh-;-le_iu', 

(V13u)' = (-q)(n-l)kV13u', 

(Jiu)'= q-h-;-l f-iU 1, 

(U13u)' = (-q)(n-l)kU13u'. 

Proof - This also follows from (74) (75) (79) (80) (81) (82). D 

Let 813 = Ea KfJ,a Va be the element of H00 corresponding to the Schur 
function s13. The third equation above implies that 

Theorem 7.11. For u, v E F 00 we have 

(u, v) = (u', v') . 

Proof - The proof is by induction on the degree d of u and v. If 
d = 0 this is clear. So let us assume that the theorem is proved in 
degreed< m. The operators ei, Ii, Uk, vk, Uk, vk are homogeneous of 
respective degree -1, +1, -kn, +kn, -kn, +kn. Since F 00 is generated 
by the action of the operators Ji and Vk on the highest weight vector 
IO), it is enough to prove that 

(87) 

(88) 

((Jiu), v) = ((Jiu)', v'), 

((Vkw), v) = ((Vkw)', v'), 

for all u, v, w with degu = m -1, degv = m, degw = m - kn. 
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Let us prove (87). We have 

The first equality comes from Proposition 7.8, the second from Propo­
sition 7.9 and the third from the fact that deg u < m. Now, by Propo­
sition 7.8, 7.9 and 7.10 

(u', (qh,-leiv)') 

and (87) is proved. 

(u',e-iv') = (u',e-iv') 

(q-h_,-lf-iu',v') = ((fiu)',v'), 

The proof of (88) is similar. We have 

The first equality comes from (84), the second from Proposition 7.9 and 
the third from the fact that deg w < m. Then, using again Proposi­
tion 7.8, 7.9 and 7.10, 

(w', (Ukv)') = (w', (-q)(n-l)kUk(u')) = (w', (-q)(n-l)k £ik(u')) 

= ((-q)(n-l)ki:\w',v') = ((Vkv)',w'), 

and (88) is proved. 

7.9. Canonical bases of F 00 

• 

For /3 E JP>+ write //3) = ~oEIP+ ba,{3(q) lo:). Then, for \o:\ = l/31 ~ r 
it follows from (83) that we have 

where the coefficients a>-.,µ(q) (>., µ E P/+) have been defined in Sec­
tion 5.3. Hence by Corollary 5.10 the matrix 

(o:,j3f--k) 

is unitriangular, and one can define canonical bases {Qt I o: E JP>+}, 
{Q; I o: E JP>+} of F 00 characterized by: 

(i) 
(ii) 

g+ -g+ g- -g-a - a, o:-a, 

Qt= \a) mod q.Ct,, Q; = lo:) mod q- 1.c-;;,, . 
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where .Ct, (resp. £~) is the Z[q]-submodule (resp. Z[q- 1]-submodule) 
spanned by the vectors la). Set 

°' 

and 

Q;; = Lea,/3(-q- 1)1,8), 
/3 

(a,/31-k). 

Then, for r ~ k we have 

Hence by Theorem 5.12 we get 

(89) 

a parabolic Kazhdan-Lusztig polynomial for 6r associated with the par­
abolic subgroup 6v,-n which stabilizes the point v E Ar,-n congruent 
to a+ Pr and /3 + Pr· Also, putting Ua := w(wo(a + Pr), -n) wo,v and 
u13 := w(wo(/3 + Pr), -n) Wo,v, we have 

(90) d _ ~ (- )l(s)p _ _ <>,/3 - ~ q SUa ,u13• 

sE6r 

Note that by Theorem 2.4 this is also a parabolic Kazhdan-Lus~ig 
polynomial of negative type associated with the subgroup 6r C 6r. 
It is interesting to give another expression of da,/3 in terms of the ac­
tion 1fn (instead of 1f_n)- Let Pr = Pr/Z(l, ... , ll and A f---+ ~ be 
the natural projection Pr ---t Pr. The action 1fn of 6r on Pr induces 
an action Kn of Sr on Pr with fundamental alcove Arn := {~ E 

Pr I A1 ~ · · · ~ Ar, A1 - Ar :::'.: n}. Lett be the point ~f Arn con­
gruent to a + Pr and /3 + Pr under Kn, and let wo,{ denote the iongest 

element of its stabilizer. Consider the projection : : 6r ---t 6r de­
fined by O"Tk = a (k E Z, a E Sr), and the automorphism ~ of 6r 
defined bys! = s_i (i E Z/rZ). It is easy to check that, for A E P/, 
w(woA, -n) = (w(A,n))~. It follows that 

(91) d a _ ~ (-q)e(s) p _ _ 
a,,.., - ~ SVo: ,V[3_, 

sE6r 

where v°" v13 are given by v0 = w(a + Pr, n)wo,~, v13 = w(/3 + Pr, n)wo,~-
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Remark 7.12. Consider the Uq(Jn)-submodule M of F 00 gen­
erated by IO). This is an irreducible integrable representation with 
highest weight A0 . By Proposition 7.8, the bar involution of F 00 in­
duces the Kashiwara involution of M, and it follows that the sub­
set {9;!" I a is n-regular } is the global lower crystal basis of M (see 
[20]). The expression (90) and (91) of the coefficients of this basis 
as Kazhdan-Lusztig polynomials have been obtained independently by 
Vasserot, Varagnolo [42] and by Goodman, Wenzl [10] respectively. • 

It follows from Theorem 6.6 that the basis 9;; satisfies the following 
analogue of the Steinberg-Lusztig tensor product theorem. Let a E JP'+ 
of length r. Write a = aC0 ) + na(l), where aC0 ) is n-restricted, that is, 

(l~i~r-1). 

Then 9;; = S0 <1) 9;:<o). Taking aC0) = (0) and writing na in place of a 
we obtain that 

(92) 

We can now prove the following symmetry of the basis {9;;}. 

Theorem 7.13. Let>., µC 0), ••• , µCn-l) be partitions. Set k = l>-1. 
There holds 

(i) (Q_;;;._)' = ( -q)Cn-l)k 9_;;_x, , 

(ii) >. ( -1) -(n-l)k >.' ( ) 
Cµ(o), ... ,µ(n-1) q =q C(µ(n-1))', ... ,(µ(D))' q • 

Proof - By (92) and (86) we have 

(9,;;_x)' = (S_x IO))'= (-q)(n-l)k S_x, IO)= (-q)(n-l)k 9,;;_x,. 

The second equation follows now from the fact that if µ is the partition 
with n-quotient (µ<0 ), ... , µCn-l)) then the conjugate partition µ' has 
n-quotient ((µ<n-l))', ... , (µC 0l)'). D 

Let {9~} denote the basis of F 00 adjoint to { 9;!°} for the above scalar 
product. In other words, (9~, 9l) = 80 ,13. Write 

9: = L9a,{3(q) 1m, 
f3 

and Gk := [9a,f3(q)], 

Since {la)} is an orthonormal basis, we have Gk = D,; 1 . 

Theorem 7.14. For a E JP'+ one has (Q~)' = 9:_:,. 

(a,/31--k). 



208 B. Leclerc and J.-Y. Thibon 

Proof - We hav~ to prove that (9~)' satisfies the two defining properties 
of 9;;,, namely 

(Q:;,)' = (Q~)'. 

The first property is obvious. Indeed by definition 9t = la) mod q.Cj;,. 
Since Gk = 0;; 1 , we deduce that 9~ = la) mod q.Cj;,, which implies 
that (9~)' = a' mod q- 1.c~. The second property is equivalent to 

((9;;,)', (9j)') = 8a,{3, (a, {3 I- k), 

because {(9~)'} is the basis adjoint to {(9j)'}. Now, by Theorem 7.11, 

((9;;,)', (Qj)') = (9~, 9j) = (9~, 9j) = 8a,{3· 

• 

Corollary 7.15. LetJk = [ia,{J(q)]a,{31-k := [ea',{31 (-q)t,~1-k· Then 
Jk = Dk- In other words, we have 

Lea,,~,(-q)d'Y,fJ(q) = 8a,{3, 
"fl-k 

where ea','¥' and d'Y,/3 are the parabolic Kazhdan-Lusztig polynomials 
given by (89) (90). 

Remark 7.16. (i) Let a, {3 be two partitions of k and taker 2: k. 
By Lusztig's conjecture (33), it follows from Corollary 7.15 that 

da,[3(1) = Ja,{3(1) = [W(a') : L(/3')], 

the multiplicity of the simple U((glr)-module L(/3') in the Weyl module 
W(a'), as was conjectured in (22], Conjecture 5.2. 

(ii) For A E P/, let T(.X) denote the indecomposable tilting U((glr)­
module with highest weight .X. By Proposition 8.2 of [7] which states 
that 

[W(a') : L(/3')] = [T(/3) : W(a)], 

we see that [T(/3) : W(a)] = da,/3(1). Taking into account (91) we thus 
get another proof of the character formula of Soergel [40] in type A. 
Note that we do not need to deduce the formula for singular weights 
from that for regular weights (see (39], Remark 7.2). In particular, we 
see that the formula is also valid for n < r, when all integral weights are 
singular. 
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Fig. 10. The Yamanouchi domino tableaux of shape (422 ) 

§8. Tables 

209 

We illustrate our results by g1vmg some tables of q-Littlewood­
Richardson coefficients and of polynomials do.,/3 ( q). These tables are 
q-analogues of those calculated by James in [12], which were the starting 
point of our investigation. They have been computed using the package 
FOCK written by the authors and available as a part of the environment 
ACE [43]. 

8.1. Canonical highest ~eight vectors of the Fock space 
representation of Uq(.5(2) 

The following tables give the coefficients e20.,13(-q- 1) of the expansion 
of 920. on the standard basis {l,8)} for n = 2 up to partitions of 10. They 
should be read by columns, e.g. 

These vectors form a basis of the subspace of primitive vectors of F 00 • 

Their coefficients are the q-analogues c-\0 > (iJ (-q-1) of the Littlewood-µ. ,µ. 

Richardson multiplicities for all partitions µ< 0 ), µ< 1) with /µ< 0 ) I+ /µ{ll I ::::; 
5. They are easily computed using the combinatorial description of [2] 
in terms of Yamanouchi domino tableaux. For example the row labelled 
( 422 ) is given by the tableaux of Figure 10. 

(6) (42) (23) 

(6) 1 0 0 

(51) -q-1 0 0 
(4) (22) 

(42) q-2 1 0 
(4) 1 0 

(2) (412) 0 -q-1 0 
(31) -q-1 0 

(2) 1 (32) -q-3 -q-1 0 

(12) -q-1 (22) q-2 1 
(313) q-2 0 0 

(212) 0 -q-1 
(23) q-2 0 1 

(14) 0 q-2 
(2212) 0 -q-3 -q-1 

(214) 0 0 q-2 

(16) 0 0 -q-3 
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(8) (62) (42) (422) (24) 

(8) 1 0 0 0 0 

(71) -q-l 0 0 0 0 

(62) q-2 1 0 0 0 

(61 2) 0 -q-l 0 0 0 

(53) -q -3 -q -1 0 0 0 

(513) 0 q-2 0 0 0 

(42) q-4 q-2 1 0 0 

(431) 0 0 -q -1 0 0 

(422) 0 q-2 q-2 1 0 

( 421 2) 0 -q-3 0 -q-l 0 

(41 4) 0 0 0 q-2 0 

(322) 0 -q-3 0 -q-l 0 

(3212) 0 q-4 q-2 q-2 0 

(3221) 0 0 -q-3 0 0 

(31 5) 0 0 0 -q-3 0 

(24) 0 0 q-4 q-2 1 

(2312) 0 0 0 -q-3 -q-l 

(2214) 0 0 0 q-4 q-2 

(216 ) 0 0 0 0 -q-3 

(18) 0 0 0 0 q-4 
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(10) (82) (64) (622) (422) (423) (25) 

(10) 1 0 0 0 0 0 0 

(91) -q-1 0 0 0 0 0 0 

(82) q-2 1 0 0 0 0 0 

(812) 0 -q-1 0 0 0 0 0 

(73) -q-3 -q-1 0 0 0 0 0 
(713) 0 q-2 0 0 0 0 0 

(64) q-4 q-2 1 0 0 0 0 

(631) 0 0 -q -1 0 0 0 0 

(622) 0 q-2 q-2 1 0 0 0 

(621 2) 0 -q-3 0 -q-1 0 0 0 

(614) 0 0 0 q-2 0 0 0 
(52) -q-5 -q-3 -q-1 0 0 0 0 

(532) 0 -q-3 0 -q-1 0 0 0 

(531 2) 0 q-4 q-2 q-2 0 0 0 

(5221) 0 0 -q-3 0 0 0 0 

(515) 0 0 0 -q-3 0 0 0 

(422) 0 q-4 q-2 q-2 1 0 0 
(4212) 0 -q-5 -q-3 -q-3 -q-1 0 0 

(432) 0 0 -q-3 0 -q-1 0 0 

(431 3) 0 0 0 0 q-2 0 0 

(423) 0 0 q-4 q-2 q-2 1 0 

(42212) 0 0 0 -q-3 -q-3 -q-1 0 

(421 4) 0 0 0 q-4 0 q-2 0 

(416) 0 0 0 0 0 -q-3 0 

(331) 0 0 q-4 0 q-2 0 0 
(3222) 0 0 -q -5 -q-3 -q-3 -q -1 0 

(32212) 0 0 0 q-4 0 q-2 0 
(3214) 0 0 0 -q-5 -q-3 -q-3 0 

(32213) 0 0 0 0 q-4 0 0 

(31 7) 0 0 0 0 0 q-4 0 
(25) 0 0 0 0 q-4 q-2 1 

(2412) 0 0 0 0 -q-5 -q-3 -q-1 

(2314) 0 0 0 0 0 q-4 q-2 

(2216) 0 0 0 0 0 -q-5 -q -3 

(218 ) 0 0 0 0 0 0 q-4 

(110) 0 0 0 0 0 0 -q-5 
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8.2. Basis {9%} of the Fock space representation of Uq(,~il2 ) 

The following tables give the coefficients da,/3 ( q) of the expansion of 
9% on the standard basis {lo:)} for n = 2 up to partitions of 10. They 
should be read by columns, e.g. 

ot,1) = 13, 1) + q 12, 2) + l 12, 1, 1). 

Each square matrix corresponds to a weight space of F 00 • (The weight 
space containing 110) being too large, the corresponding matrix had to be 
displayed on two pages.) The I-dimensional weight spaces corresponding 
to the partitions (1), (2, 1), (3, 2, 1), (4, 3, 2, 1) have been omitted. 

(4) 1 0 0 0 0 

(31) q 1 0 0 0 
(2) 1 0 (3) 1 0 

(12) (13) 
(22) 0 q 1 0 0 

q 1 q 1 
(212) q2 q q 1 0 

(14) q2 0 0 q 1 

(5) 1 0 0 0 0 

(32) 0 1 0 0 0 
( 41) 1 0 

(312) q q 1 0 0 
(213) 

(221) q2 
q 1 

0 q 1 0 

(15) q2 0 q 0 1 
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(6) 1 0 0 0 0 0 0 0 0 0 

(51) q 1 0 0 0 0 0 0 0 0 

(42) 0 q 1 0 0 0 0 0 0 0 

(412) q q2 q 1 0 0 0 0 0 0 

(32) 0 0 q 0 1 0 0 0 0 0 

(313) q2 q q2 q q 1 0 0 0 0 

(23) 0 0 q2 q q 0 1 0 0 0 

(2212) 0 q2 q3 q2 q2 q q 1 0 0 

(214 ) q2 q3 0 q 0 q2 0 q 1 0 

(16) q3 0 0 q2 0 0 0 0 q 1 

(7) 1 0 0 0 0 0 0 0 0 0 

(52) 0 1 0 0 0 0 0 0 0 0 (61) 1 0 0 0 0 

(512) q q 1 0 0 0 0 0 0 0 (43) 0 1 0 0 0 

(421) 0 q2 q 1 0 0 0 0 0 0 (413) q q 1 0 0 

(321) 0 0 0 q 1 0 0 0 0 0 (231) 0 q2 q 1 0 

(322) 0 0 q q2 q 1 0 0 0 0 (215 ) q2 0 q 0 1 

(3212) 0 q q2 q3 q2 q 1 0 0 0 

(314 ) q2 q2 q 0 0 0 q 1 0 0 (521) 1 0 

(2213) 0 q3 q2 0 0 q q2 q 1 0 (3213) q 1 

(17) q3 0 q2 0 0 0 0 q 0 1 
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(8) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(71) q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(62) 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(612) q q2 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(53) 0 0 q 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(513) q2 q q2 q q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(42) 0 0 0 0 q 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

(431) 0 0 q 0 q2 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 

(422) 0 0 q2 q 0 0 0 q 1 0 0 0 0 0 0 0 0 0 0 0 

(4212) 0 q2 q+q3 q2 q2 q q q2 q 1 0 0 0 0 0 0 0 0 0 0 

(414) q2 q3 q2 q q3 q2 q2 0 0 q 1 0 0 0 0 0 0 0 0 0 

(322) 0 0 0 0 0 0 q q2 q 0 0 1 0 0 0 0 0 0 0 0 

(3212) 0 0 q2 0 0 0 q2 q3 q2 q 0 q 1 0 0 0 0 0 0 0 

(3221) 0 0 q3 q2 q2 q q+q3 q4 q+q3 q2 0 q2 q 1 0 0 0 0 0 0 

(315 ) q3 q2 q3 q2 0 q 0 0 0 q2 q 0 q 0 1 0 0 0 0 0 

(24) 0 0 0 0 q3 q2 q2 0 0 0 0 0 0 q 0 1 0 0 0 0 

(2312) 0 0 q3 q2 q4 q3 q3 0 q q2 q 0 q q2 0 q 1 0 0 0 

(2214) 0 q3 q4 q3 0 q2 0 0 q2 q3 q2 0 q2 0 q 0 q 1 0 0 

(216 ) q3 q4 0 q2 0 q3 0 0 0 0 q 0 0 0 q2 0 0 q 1 0 

(18) q4 0 0 q3 0 0 0 0 0 0 q2 0 0 0 0 0 0 0 q 1 
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(9) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(72) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(712) q q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(621) 0 q2 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(54) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(531) 0 0 0 q q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(522) 0 0 q q2 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

(5212) 0 q q2 q3 q q2 q 1 0 0 0 0 0 0 0 0 0 0 0 0 

(514) q2 q2 q 0 q2 0 0 q 1 - 0 0 0 0 0 0 0 0 0 0 0 

(421) 0 0 0 0 q2 q 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

(4213) 0 q3 q2 q q3 q2 q q2 q q 1 0 0 0 0 0 0 0 0 0 

(33) 0 0 0 0 0 q2 q 0 0 q 0 1 0 0 0 0 0 0 0 0 

(3213) 0 0 0 q2 0 q3 q2 0 0 q2 q q 1 0 0 0 0 0 0 0 

(323) 0 0 0 0 q2 q3 q2 q 0 q2 0 q 0 1 0 0 0 0 0 0 

(32212) 0 0 q2 q3 q3 q4 q+q3 q2 q q3 q2 q2 q q 1 0 0 0 0 0 

(3214 ) 0 q2 q3 q4 0 0 q2 q q2 0 q3 0 q2 0 q 1 0 0 0 0 

(316 ) q3 q3 q2 0 0 0 0 q2 q 0 0 0 0 0 0 q 1 0 0 0 

(241) 0 0 0 0 q4 0 0 q3 q2 0 0 0 0 q2 q 0 0 1 0 0 

(2215) 0 q4 q3 0 0 0 q2 q3 q2 0 0 0 0 0 q q2 q 0 1 0 

(19) q4 0 q3 0 0 0 0 0 q2 0 0 0 0 0 0 0 q O O 1 

(81) 1 0 0 0 0 0 0 0 0 0 

(63) 0 1 0 0 0 0 0 0 0 0 

(613) q q 1 0 0 0 0 0 0 0 
(721) 1 0 0 0 0 

(432) 0 0 0 1 0 0 0 0 0 0 
(541) 0 1 0 0 0 

(4312) 0 q 0 q 1 0 0 0 0 0 
(5213) 

q2 
q q 1 0 0 

(4221) 0 q q2 q 1 0 0 0 0 
q2 (3231) 0 q 1 0 

(415) q2 q2 q 0 q 0 1 0 0 0 
(3215) q2 0 q 0 1 

(3221) 0 0 0 q3 q2 q 0 1 0 0 

(2313) 0 q3 q2 0 q2 q q 0 1 0 

(217 ) q3 0 q2 0 0 0 q O O 1 
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(10) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(91) q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(82) 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(812) q q2 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(73) 0 0 q 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

(713) q2 q q2 q q 1 0 0 0 0 0 0 0 0 0 0 0 0 

(64) 0 0 0 0 q 0 1 0 0 0 0 0 0 0 0 0 0 0 

(631) 0 0 q 0 q2 0 q 1 0 0 0 0 0 0 0 0 0 0 

(622) 0 0 q2 q 0 0 0 q 1 0 0 0 0 0 0 0 0 0 

(6212) 0 q2 q+q3 q2 q2 q q q2 q 1 0 0 0 0 0 0 0 0 

(614) q2 q3 q2 q q3 q2 q2 0 0 q 1 0 0 0 0 0 0 0 

(52) 0 0 0 0 0 0 q 0 0 0 0 1 0 0 0 0 0 0 

(532) 0 0 0 0 0 0 q q2 q 0 0 0 1 0 0 0 0 0 

(5312) 0 0 q2 0 q 0 2 q2 q3 q2 q 0 q q 1 0 0 0 0 

(5221) 0 0 q3 q2 q2 q q3 q4 q+q3 q2 0 0 q2 q 1 0 0 0 

(515) q3 q2 q3 q2 q2 q q3 0 0 q2 q q2 0 q 0 1 0 0 

(422) 0 0 0 0 0 0 q2 0 0 0 0 q q 0 0 0 1 0 

(4212) 0 0 0 0 q2 0 q3 0 0 0 0 q2 q2 q 0 0 q 1 

(432) 0 0 0 0 0 0 0 0 q 0 0 0 q2 0 0 0 q 0 

(4313) 0 0 q2 0 q3 0 q2 q q2 q 0 q q3 q2 0 0 q2 q 

(423) 0 0 0 0 q3 q2 q2 0 q2 q 0 q q3 q2 q 0 q2 q 

(42212) 0 0 q3 q2 q4 q3 2 q3 q2 q+q3 2 q2 q 2q2 q4 q3 q2 0 q3 q2 

(4214) 0 q3 q4+q2 q3 q3 q2 q4 q3 q2 q+q3 q2 q3 0 q2 0 q 0 q 

(416) q3 q4 q3 q2 q4 q3 0 0 0 q2 q 0 0 q3 0 q2 0 q2 

(331) 0 0 0 0 0 0 0 0 q2 0 0 q q3 q2 q 0 q2 q 

(3222) 0 0 0 0 0 0 q3 0 q3 q2 0 2 q2 q4 q3 q2 0 q3 q2 

(32212) 0 0 0 0 0 0 q4 q3 q4+q2 q3 0 2q3 q5 q4 q3 0 q4 q+q3 

(3214) 0 0 q3 0 0 0 0 q4 q3 q2 0 0 0 0 0 0 0 q2 

(32213) 0 0 q4 q3 q3 q2 q4 q5 q4+q2 2q3 q2 q3 0 q2 q q 0 q+q3 

(317) q4 q3 q4 q3 0 q2 0 0 0 q3 q2 0 0 0 0 q 0 0 

(25) 0 0 0 0 0 0 q4 0 0 q3 q2 q3 0 0 0 0 0 0 
(2412) 0 0 0 0 q4 q3 q5 0 0 q4 q3 q4 0 q3 q2 q2 0 q2 

(2314) 0 0 q4 q3 q5 q4 0 0 q2 q3 q2 0 0 q4 q3 q3 0 q3 

(2216) 0 q4 q5 q4 0 q3 0 0 q3 q4 q3 0 0 0 0 q2 0 0 

(218) q4 q5 0 q3 0 q4 0 0 0 0 q2 0 0 0 0 q3 0 0 

(110) q5 0 0 q4 0 0 0 0 0 0 q3 0 0 0 0 0 0 0 
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(432) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

( 4312) q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(423) q 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(42212) q2 q q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
( 4214) 0 q2 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

(416 ) 0 0 0 0 q 1 0 0 0 0 0 0 0 0 0 0 0 0 

(331) q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
(3222) q2 0 q 0 0 0 q 1 0 0 0 0 0 0 0 0 0 0 

(32212) q+q3 q2 q2 q 0 0 q2 q 1 0 0 0 0 0 0 0 0 0 
(3214) q2 q3 0 q2 q 0 0 0 q 1 0 0 0 0 0 0 0 0 

(32213) q3 q4 q2 q+q3 q2 0 0 q q2 q 1 0 0 0 0 0 0 0 

(317 ) 0 0 0 0 q2 q 0 0 0 q 0 1 0 0 0 0 0 0 
(25) 0 0 q2 q 0 0 0 q 0 0 0 0 1 0 0 0 0 0 

(2412) 0 0 q3 q2 0 0 0 q2 0 0 q 0 q 1 0 0 0 0 
(2314) 0 0 0 q q2 q 0 0 0 q q2 0 0 q 1 0 0 0 
(2216) 0 0 0 q2 q3 q2 0 0 0 q2 0 q 0 0 q 1 0 0 

(218 ) 0 0 0 0 0 q 0 0 0 0 0 q2 0 0 0 q 1 0 
(110) 0 0 0 0 0 q2 0 0 0 0 0 0 0 0 0 0 q 1 
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