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Geometry of Laplace-Beltrami Operator
on a Complete Riemannian Manifold

Hajime Urakawa

§0. Introduction

This is a survey paper on recent developments of analytic and geo-
metric aspects of the Laplace-Beltrami operator on a complete Rieman-
nian manifold. Systematic treatments from a Riemannian geometric
viewpoint have been already appreared in Berger, Gauduchon & Mazet
[71], Kotake, Maeda, Ozawa & Urakawa ['81], Bérard & Berger ['83],
Bérard ['86], Chavel ['84], Gilkey ['84] and Sunada ['88]. But they are
mainly concerned with compact case, except Chavel [’84]. In this paper,
we shall focus on recent developments of spectral geometry of a noncom-
pact complete Riemannian manifold. It seems that the materials may
be divided into three parts:

(1) the distribution of the (essential) spectrum of the Laplacian,

(2) the heat kernel of a complete Riemannian manifold, and

(3) harmonic functions, and Green functions on such a manifold.

More precisely,

(1) in §3, we treat mainly results on estimates of the bottom of
the (essential) spectrum of the Laplacian of a noncompact complete
Riemannian manifold.

(2) In §4, following Ito ['88], Dodziuk ['83], we construct the (min-
imal) heat kernel of a noncompact complete Riemannian manifold, and
show results on uniqueness and estimates of such heat kernel, under
certain curvature conditions.

(3) In §5, we will treat positive harmonic functions, the Martin
boundary, and Liouville type theorems for harmonic functions on com-
plete manifolds.

We express our sincere gratitude to the editor, Professor K. Shio-
hama who gave us an opportunity of publishing this note, Professor
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M. Okada and the referee who read carefully a first draft and gave per-
tinent comments.
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1.1. The Laplace-Beltrami operator

In this section, we prepare some basic materials about spectral the-
ory of selfadjoint operators, and the Laplace-Beltrami operator on a
noncompact complete Riemannian manifold.

All Riemannian manifolds we consider in this paper will be C*° con-
nected noncompact complete Riemannian manifolds without boundary
(unless otherwise stated).

Let (M, g) be a complete Riemannian manifold without boundary.
Define the Laplace-Beltrami operator (we call it the Laplacian briefly
hereafter) A, acting on the space C°° (M) of all C* real valued functions
on M by

(1.1) Ay f=6df =—divgrad f

T Z g <8$’8w3 Z ]832’“)

i3=1

= —Z{el e fy— (Vee) f},

where /g = /det(gi;),(¢") = (gi;)~! (the inverse matrix), g;; =
0

0
9(‘@;@),

(z1,...,2"), and {ey, ..., e, } is a locally defined orthonormal frame field

and I‘fj is Christoffel’s symbol of g for a local coordinate
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on M. Moreover, we denote by X'(M) the space of all C* vector fields
on M, and define the divergence div(X) of X € X (M) by

av(x) = = 30 5 (VIX),
=1

.0
where X = ZX ZW' The gradient vector field X = grad f € X (M)
- o

is defined by g(YV, X) =df(Y) =Y f, Y € X(M), ie.,

grad(f) = Y e e = 3 g7 L 2
=1

Ozt Bxd’

4,j=1

We denote by L?(M) the space of all square integrable real valued
functions on M. We define the inner product (, ) on L2(M) by

(fi, f2) = /M fi(z) f2(z) vg, f1, f € L*(M),

and put || f ||= +/(f,f), f € L3(M). We also define the global inner
product (, ) for tensor fields a, B by

(@8)= [ (@5 v,

where (, ) denotes the pointwise inner product on T, M T M, x € M,
and put | @ ||= v/(e, a). Put
C5* (M) = {f € C=(M); supp(f), compact},
Ay (M) = {w € A'(M); supp(w), compact},
Xo(M) ={X € X(M); supp(X), compact}.
Here A'(M) is the space of all smooth 1 forms on M. Then the following

is well-known:

Proposition 1.2. For all f, f1,f, € C*(M),w € AL(M), and
X € X,(M), we get _

@) (f,div(X)) = —(grad f,X), (df,w)=(f,w),
(ii) (Ag f1, f2) = (grad f1,grad f2) = (f1,44 f2),
(iif) /M div(X)vy = 0,

(iv) (Ag f,f) 20,
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where vy 1s the canonical measure of (M, g) given locally by
vy = 4/det(g;;) dz! - - - dz™.

Corollary 1.3. The Laplacian A, : CP(M) — C(M) can
be extended to a symmetric, i.e., formally selfadjoint operator of L?(M)
into itself (see the definition below Theorem 1.5).

Definition 1.4. We define the following spaces which are called
domains of the differential operators div,d, §, and A by

D(div) = {measurable vector field X on M; | X| < oo, || div(X)|| < oo},
D(d) = {measurable function f on M ;| f|| < oo, ||df]] < oo},
D(§) = {measurable 1 form a on M;|la| < oo, ||§a| < oo},
D(A) = {measurable function f onM; f € D(d),df € D(6)}
= {measurable function f on M; || f|| < oo, ||df || < oo, ||6df || < oo}

Then we have:

Theorem 1.5 (Gaffney ['51] ~ ['55]). Let (M,g) be a complete
Riemannian manifold. Then: (i) o X € D(div), and |X| and div(X)
are integrable, then

/ div(X)vg = 0.
M
(i) If f € D(d), w € D(6), and X € D(div), then
(df,w) = (f, bw),

(f,div(X)) = —(grad f, X).

(iii) (symmetry) For f1, f2 € D(6),
(Afi,f2) = (f1,Af2).
(iv) (positivity) For f € D(A),
(Af,f) z 0.

(v) The closure to L2(M) of A : C(M) — C*(M) is selfadjoint.

In general, an operator A: D C H — H of a Hilbert space H
which is defined on a dense subset D is said to be symmetric (formally
selfadjoint)

(Au,v) = (u, Av), u,v € D.



Geometry of Laplacian v 351

A symmetric operator A; D C H — H is said to be selfadjoint if
(Au,v) = (u,v*) YueD = veD & v*=Av.
Then it is well-known that:

Theorem 1.6 (Spectral Resolution). Let A : D C H — H be
selfadjoint. Then:
(1) A has the following resolution:

Az/meQL

—00

where {E(X\); A € R} is a one parameter family of projections of H
satisfying the following conditions (i), (ii), (iii):

(i) A< p = EQ) < E(p),
(ii) E(oco) =1 (identity operator), E(—o0) = 0 (null operator),

(i) E(A+0) = E()).

(2) The spectrum of A is contained in the set of real numbers:
Spect(A) C R.

Here let us recall the notions of resolvent, (essential-)spectrum,
eigenvalues of a selfadjoint operator.

Definition 1.7. (i) The resolvent Resolv(A) of a selfadjoint oper-
ator A is the set of A € C satisfyng that Ker(4 — X I) = {0}, Range(A —
AI) C H is dense, and (A— X I)~! is a bounded operator. The spectrum
of A, Spect(A), is by definition C\ Resolv(A).

(ii) A € C Spect(A) (the continuous spectrum) if Range(A—\I) C H
is dense, but (A — AI)~! is not a bounded operator.

(iii) A real number A € R is an eigenvalue of A if there exists a
nonzero u € D(A) such that Au = Au. Ker(A — AI) is called the eigen-
space, and dim Ker(A — AI) is called the multiplicity. Let Spect,(A) be
the set of all the eigenvalues which are isolated in Spect(A) and have fi-
nite multiplicities, and call Ess Spect(A)=closure(Spect(A)\ Spect,(A))
the essential spectrum.
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It is known that:

) € Spect(A) <= 30 # f, € D(A);
|Afn = Afull — 0 as n — oo,
A € Ess Spect(4) <> I{fr}oe, C D(A) (noncompact set) ;

|Afn = Afr]l — 0 as n — oo,
and

A € Ess Spect(A) <> either A € C Spect(A) or the eigenvalue
with infinite multiplicity.

1.2. Discreteness of speétrum

We mainly deal with the following three types of the eigenvalue
problems:

(1) (Boundary Value Problem) Let (M, g) be a complete Rieman-
nian manifold without boundary, 2 C M a relatively compact domain
in M.

(1-1) (Dirichlet Figenvalue Problem):

Au=Alu in £,
u=0 on 0.

(1-ii) (Neumann Eigenvalue Problem):
Au=Adu in €,
% =0 ae Of.
(2) (Free Boundary Problem) For a smooth function V on M,
(A+V)u=Au on M.
Then it is well-known that:

Theorem 1.8. Let (M,g) be a complete Riemannian manifold,
QC M a relatively compact domain. Then:

(1) (1-i) The spectrum of the Dirichlet eigenvalue problem has a
discrete spectrum of eigenvalues with finite multiplicities.
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(1-ii) If Q satisfies, furthermore, the segment property (cf. Agmon
['65, p.13], Reed & Simon ['78, p.256)), i.e.,  is a finite union of coor-
dinate neighborhoods in M, (U;, &), ¢1( ) C R* n = dim(M), with the
property that there exists y; € U; such that ¢;(z )-I—t i(y:) € ¢:(U;) (0 <
Vi < 1,Vz € 8QNU;). Then the Neumann problem has a discrete spec-
trum of eigenvalues with finite multiplicities.

(2) Let V be a smooth function on M satisfying the following ez-
haustion condition:

{reM; V(z) < C} s compact, forall C>0.

Then the free boundary problem for A +V has a discrete spectrum of
etgenvalues with finite multiplicities.

Remark. (1) If M is compact, then A+ V has a discrete spectrum
for any smooth function V. (2) If © has a piecewise smooth boundary,
then it satisfies the segment property.

Outline of Proof. To prove (1), we set M(2) to be the set of all
real valued measurable functions on €2, and

L*(Q) = {u e M(Q); /Qlu(a:)|2 vg < 00}

The inner product (, ) on L?*(2) is given by (u,v) = [,u(z)v(z) vy,
u,v € L2(2). We also set the Sobolev space

HY(Q) ={ue L*Q); |dul € L*(Q)},

and define the inner product ( , )1, and the norm || |1 by
(u,v)lz/uvvg—i—/(du,dv)vg, u,v € HY(Q),
Q Q

llully = v/(u,v)1.

Let H(Q) be the closure of C*() in H(Q) , i.e.,

]

HY(Q) = {ue H(Q); Ju, € C(Q),||un —ull, — 0(n — o0)} .

Lemma 1.9 (Green). Foru,v € C®({Q),

/uA'uvg——/(du,dv)vg=/ uggda,
Q Q s OV
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ov . )
where — is the derivative of v with respect to the inward unit normal

v
at 9Q, and do is the area element of 2. In particular, we get

/Q{(Au)v——u(Av)} vg:/an {u%—%v}da.

(Dirichlet Problem). By Green’s theorem (cf. Lemma 1.9), the
operator A : C°(2) — C°(Q) is symmetric. If we define
D(Ap) = H' Q) N {ue L2(Q); Aue L2(Q)},
then A can be extended to a selfadjoint operator

AD . D(AD) i— LQ(Q),

and (Apwu,u) > 0, Vu € D(Ap). Each element in ];Tl(Q) can be
regarded as the one in H!(M) by defining to be zero outside Q.

Lemma 1.10 (Rellich). If S is a bounded subset of H (M), then
{u|q ; u € S} is relatively compact in L%(Q).
Lemma 1.11. If S is a bounded subset of L?(Q), then (Ap +
1)~YS) c HX(Q) is bounded.
In fact, if u = (Ap + I)7f, f € S, then u € D(Ap) and
lu 3= (Au,w) + (u,w) = (Fu) S| FITw <D0l
Weget | uli <[ I

Therefore (Ap + 1)~ : L?(Q) — D(Ap) C L?(Q) is a compact
operator. In fact, if § C L2() is bounded, then (Ap + I)71(S) C
H 1(92) is also bounded by Lemma 1.11. Then it is relatively compact
in L2(Q2) by Lemma 1.10.

Hence Spect(Ap) is a discerete set of eigenvalues with finite multi-
plicities.

~ o

(Neumann Problem). For u,v € C*(Q), satisfyingglf =0, %

v v
= 0 on 09, we get by Green’s theorem (cf. Lemma 1.9),

(Au,v) = (u, Av), (Au,u) =/ | grad u || v, > 0.
Q
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We now set
D(Ayn)={u e L*(Q); Auc L*(Q) and u satisfies (N},
where u € H'(£2) is said to satisfy the condition (V) if
(Au,v) ~ (grad u,grad v) =0 VYo € H(Q).
Note that, due to Green’s theorem, the left hand side coincides with

/ sz v do for smooth functions u, v.
o ov
Then A can be extended to a selfadjoint operator
Ay : D(AN) — L3(9Q)

which satisfies (Ay u,u) > 0, Vu € D(Ap), and D(Ap) is dense in
H(Q). Moreover, if ) satisfies the segment property, then S is relatively
compact in L2(f2) for all bounded S C H(Q). Also, if S C L*(Q) is
bounded, then (Ax +I)~* C H'() is bounded. Therefore the operator

(AN +D)71 . L*Q) — D(An) C L?(Q)

is a compact operator. Hence Spect(Ay) is a discrete set of eigenvalues
with finite multiplicities.

(Free Boundary Problem). We assume that V is a function on M
with the property that every {x € M ; V(z) < C} is compact. Then

=min V :
v =1min V(z) < oo

Soweput H,=A+V : C(M) — C(M), which satisfies
(Hou,u) > v (u,u), (Hou,v) = (u, Hyv), wu,v e CP(M).
Therefore H, can be uniquely extended to a selfadjoint operator
H: D(H) — I¥M)
where
D(H)=H'(M)n {u €L?*(M) ; Auc LZ(M)}, and
HY(M)={ue L*(M) ; |du| € L*(M)}.

Lemma 1.12. Foru,v € D(H),

VV +y|u € L2(M),

((H + |7|)u,v) = (grad u,grad v) + (\/V + vl u, /V + 1] v).
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In particular,

((H + ) u,u) =l grad w || + | /V +]v[u 2.

Proof. If u € D(H), there exists u, € C3°(M) such that u, — u
and (A+V)u, — Hu as n — oo. Since u, € C*(M),

((A+V + yl) tn un) =l grad e |2 + || /7T Pl |7,

where the left hand side converges to ((H +|7|) u, u). Therefore {u,}3>;
is a Cauchy sequence in H'(M), and u, — u in H*(M). This u
satisfies

VV¥v€L*M), and
((H + vl u),u) =l grad w | + || \/V + 7w |?.
The rest of the statement can be proved in a similar way. O

Lemma 1.13. Assume that S is a subset of L>( M) which satisfies
| fII<C forall fe€S. Then, for all u € (H + ||+ 1)71(9),

[uli<C  and  ||/V+hul<C

Proof. Since |y| + 1 € Resolv(H), Range(H + |y| + 1) = L?(M),
and hence u = (H + |y| +1)7! f € D(H). Then u € H*(M) and

((H + [y u, ) =[ grad u |2 + || /V +[y[u |
Then we get

lullf=lgrad w|? + || w |?
=(H+ ) uwu)= I VVHERIP+ [ w]?
< (H A ) wyu)+ [ |
=(fiw) <l FI s,

we get || u [1<|| £ ||< C. We get also the second inequality in a similar
way. J

Lemma 1.14. (1) We putu, = (H+|y|+1)~! £, for any sequence
{fa}32, in S. Then there exists a subsequence {ux} such that for every
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relatively compact domain Q C M, {uk|q} is convergent in L%(Q).
(2) The sequence {uy} is convergent strongly in L%(M).

Proof. (1) Take a sequence 0 < Ry < Ry < -+ < ij — 00,
and a point z, € M. Put

Kj={zxeM; d(z,z,) > R,;}.

By Rellich’s theorem (cf. Lemma 1.10), there exist a subsequence {u; x }
of {u,} which is convergent strongly in L2?(K;), and a subsequence
{ug} of {u1} which is convergent strongly in L?(K3),..., and in-
ductively subsequences {u;} which is strongly convergent in L?(K;)
for each j. Then, putting uy = ugx, we get the desired subsequence
{ux}. (2) In the case M is compact, taking 2 = M, (1) implies (2).
When M is noncompact, due to the assumption of V, for all N > 0,
there exists R(N) > 0 such that

d(z,z,) > R(N) = V(z) > N.

Then we get

I urlo = | WTF Rl (V4 ) v,
d(z,z0,)>R(N) d(z,z0)>R(N)
< (N+h)™ / V] e,

d(z,z,)>R(N)
<N,

by Lemma 1.13. Then, for every € > 0, there exist N > 0 and R(N) > 0
such that for all k,

/ luk|? vy < €/3.
d(z,z0)>R(N)

By (1) in Lemma 1.14, there exists k, = ko(€) > 0 such that

Hue —uk“2BH(N) < 6/3, Vk‘,f > ko(e),
where Bp(yy = {z € M ; d(z,z,) < R(N)}. Therefore for all k,¢ >
ko(€),

e = wel? = e = e, + [ e — w2 v,
d(z,2,)>R(N)

§6/3—|—/ |ue|2vg+/ |uk | vg
d(z,z0)>R(N) d(z,z0)>R(N)

<e€/3+¢€¢/3+e€/3=F¢,
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whence {uy} is a Cauchy sequence. d

Therefore the operator (H + |y|+1)7!: L2(M) — L*(M) is
compact. Thus the spectrum of H is discrete, i.e., Spect(A+V) consists
of only eigenvalues with finite multiplicities.

Example 1.15. (Harmonic Oscillator) (1) On the standard line
(R, go), the eigenvalue problem
d2 2 2 [eS]
—@u—i—x u=Au, ué€L*R)NC>®R),

has the following spectrum, for m =0,1,2,-- -,

eigenvalue : M, = 2m + 1, (multiplicity 1),
2
eigenfunction : ¢m(z) = Cp Hp(x) exp(—%),

where H,,(z) is the Hermite polynomial and C,, = /7 2™ ml.
(2) On the standard Euclidean space (R", g,), the eigenvalue prob-

lem:
(A4 |z/H)u=Au, ueL*R") N CR"),
has also the following spectrum: for m = (my,---,my) € Z4 X --- X Zy.,
where Z, = {0,1,2,---},
eigenvalue : Ap =2(mi+---4+m,)+n,
|z

eigenfunction : m(z) = Cm Hm,{z1) -+ - Hm,, (z1) exp(—T),

for z = (1, -, zn) € R", where Cpn = Cpp; -+ Cr.,.

n

§2. Asymptotic distribution of discrete spectrum

2.1. Mini-Max Principle

In this section, we consider the following three eigenvalue problems:
the Dirichlet problem, the Neumann problem, and the free boundary
problem, which have the discrete spectra of the eigenvalues with finite
multiplicities as in section 1.2.

Definition 2.1. In each eigenvalue problem, we count the eigen-
values with their multiplicities:

M <A< <A 8- — 00
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Remark 2.2. In case of a compact manifold M, the eigenvalue \; =
0 corresponds to the constant functions.

We will characterize the k-th eigenvalue Ag of each problem by Mini-
Max Principle:

Let A be a selfadjoint operator defined on a dense subspace D(A)
of the Hilbert space L?(A), namely, in each eigenvalue problem, we take
A, D(A), L?(A) as follows:

Case (1-1) (Dirichlet Eigenvalue Problem)
A=Ap, |
D(A) = D(Ap) = H @) n {u e L2(Q); Au e [2(Q)},
and
L2(4) = L2 (Q).
Case (1-i1) (Neumann Figenvlaue Problem)

A= AN’
D(A)=D(An)={uc L*(Q); Au € L*(Q2) and u staitfies (N)},

and
L*(A) = L?(Q).
Case (2) (Free Boundary Problem)

A = H, the selfadjoint extension of H, = A + V,
D(A)=D(H)=H'(M)n{ue L*(M);Au e L*(M)},

and

L*(A) = L*(M).

We define the Rayleigh-Ritz quotient as follows: for 0 # f € D(A),

R = 1o/ [ o or [ 1dPus [ Fu,
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where / f? vg # 0 for Dirichlet and Neumann boundary problems or
Q

/ f? vg # 0 for free boundary problem, respectively. Then the k-th
M
eigenvalue )y is obtained by the following Mini-Max Principle:

Theorem 2.2. The k-th eigenvalue of each eigenvalue problems
is given by
Ak =sup A(Lg_1),
where Ly_y1 runs through all (k—1)-dimensional subspaces of D(A), and
A(Ly_1) is defined by

A(Lg) =inf {R(f); D(A) > f # 0, f orthogonal to Ly_1}.

Here the orthogonality means that with respect to the inner product
(hfo) = [ 1@fa(e)e, o [ L@,
Q M

Theorem 2.3. The k-th eigenvalue of each eigenvalue problem is
given also by

M = inf A(Lg),

where Ly, runs through all k-dimensional subspaces of D(A), and A(Ly)
18

A(Lx) = sup { R(f); D(4) > f # 0}.

For proofs and applications, see Bérard ['86] or Bando & Urakawa
[83).

2.2. Asymptotic distributions (I)
See also Protter [’87] for a survey of this topic.

Theorem 2.4 (Minakshisundaram-Pleijel’s expansion). Let 2 be
a relatively compact domain in a complete Riemannian manifold (M, g).
We assume the segment property of 2 for the Neumann problem. Then

the zeta function
oo

ZH) =) e, t>0

=1
has the following asymptotic expansion:
(1) (Boundary value problems)

2() ~ @rt)y H {ag+aythrart+ -} ast —o,
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where the coefficients a; are given by:

ap = Vol(2),a; = T4~ V47 Vol,,_1(89),

a1=6_1{/{ng+6V}vg - 2/ Jda},etc---.
Q a0

Here kg is the scalar curvature of (M, g), J the mean curvature of 8Q
in (M, g), do the (n—1)-dimensional area element of OQ and the sign —
(resp. +) above corresponds to the Dirichlet (resp. Neumann) problem.
(2) (Free boundary problem) If Mis compact, then, for A+ V,

Z(t) ~ (4nt)"% {ag + a1t +---} as t — 0,

where the coefficients a; are given as:

ap = Vol(M, g), a1 = 3”1/ {kg +3V}ug, etc.---.
M

For proofs, see McKean & Singer ['67], Branson & Gilkey ['90] for the
boundary value problems of a relatively compact domain of a complete
Riemannian manifold (M, g), and see also Minakshisundaram & Pleijel
[49], Berger ['68], Sakai ['71], Gilkey ['75-1], ['75-2] for the free boundary
problem of A + V on a compact Riemannian manifold (M, g).

Corollary 2.5 (Weyl’s formula). Let Q be a relatively compact
domain in a complete Riemannian manifold (M,g). We assume the
segment property of 2 for the Neumann problem. Let

N(A) =t{k; A < A}

be the (counting) number of the eigenvalues less than or equal to a pos-
itive real number A. For the boundary problems or the free boundary
problem of a compact Riemannian manifold (M, g), the asymptotic be-
havior of N()\) is given by:

N ~ C,, Vol(Q) A%, (boundary value problems),
Cn Vol(M,g) A%, (free boundary probelm), as A — oo,

where
Ca = (2vA) " T(3 + 1)1 = (2m)" Vol(By),

Bj being the unit ball in R™.

Remark 2.6. Moreover, the following best possible estimates of the
remainder term of N(A) hold for the Dirichlet problem (1-i) of any
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smooth bounded domain €2 in the standard Euclidean space (R™,go),
and for the free boundary problem (2) of A + V of a compact Rieman-
nian manifold (M, g):

1

(1-1) N(A) = (2r)~™ Vol(B;) Vol(Q) A% + O(A" ),

(2) N(A) = (21)~™ Vol(By) Vol(M) A% + O(A"7).

For proofs, see Seeley ['78], Pham The Lai ['81] for (1-i), and Avaku-
movic [’56], Hormander [’68] for (2).

For more precise asymptotic behavior of N(A) of the boundary prob-
lems, we have:

Theorem 2.7 (Weyl’s conjectrure). Let (M, g) be a complete Rie-
mannian manifold, and Q a relatively compact domain in M with smooth
boundary Q2. We assume the following geodesic concave condition for
the boundary 05): the set of periodic points of the geodesic billiard, i.e.,
the union of the geodesic segments of (M, g) lying on the inside of Q and
reflecting ‘normally’ at the boundary 852, has measure zero. Then the
asymptotic behaviors of N(\) are given by:

N()) = C, Vol(Q) A% F ic”—l Vol,_1(8Q) AT + o(A"7),
as A — 00,

where the sign — (resp.+) of the right hand side corresponds to the
Dirichlet (resp. Neumann) problem, and the constants Cyp, Cn_1 are
those giwen in Corollary 2.5.

For proofs, see Ivrii ['80], Melrose ['80].

Remark 2.8. Bérard ['83] gave examples of domains  in S?, for
which N(X) has no asymptotic behavior such as

N()\) =C Vol(2) A\F F C' Vol(8Q) A"T + o(A"T), as A — oo,
for some constants C, C'.

(Polya’s conjecture). Due to Corollary 2.5, the asymptotic behav-
ior of k-th eigenvalues of the eigenvalue problems for a domain € satisfies

-2
n

2
k~ as k — oo.

Ak ~ ((2m)™" Vol(By) Vol(2))
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Furthemore, Polya ['61] and Kellner ['66] conjectured the following
inequalities: Let AP, (resp. A)) be the k-th eigenvalue of the Dirichlet,
(resp. Neumann) boundary problems for a bounded domain € in R”.
Then

_z2
AN < ((2m)™" Vol(By) Vol(Q)) ™ k+ < AP, forallk=1,2,---.
They showed these inequalities for a tiling bounded domain (, i.e., an
infinite number of non-overlapping domains which are congruent to €,
cover R™ except a measure zero set.

Li & Yau ['83] showed:

3

kn < AP forallk=1,2,---,

—— ((2m)~™ Vol(By) Vol(2)) ™

and Urakawa, ['84] showed:

3

§()% ((2m)™" Vol(B1) Vol(2)) ™ k= < AP, forallk=1,2,---.

Here the constant §(2) is the packing density of 2, and §(2) =1 if Q is

a tiling domain.

2.3. Asymptotic distribution (II)

In this section, we are concerned with the free boundary problem of
A+V on anoncompact complete Riemannian manifold with V satisfying
the exhausion condition in Theorem 1.8.

We conjecture that, if a noncompact complete Riemannian manifold
(M, g) has non-negative Ricci curvature Ricyy, and a function V on M
satisfies the exhausion condition:

{zr e M;V(z) < C} iscompact in M, for all C > 0,

then the counting number N () = # {\,; A\, < A} would be asymptoti-
cally

NQ) ~ Cn /M A=V(@); Fv, as A — o,
where
Cp = (2\/7?)_"1“(3 +1)71 = (21)" Vol(By),
f(z)+ = max (f(z),0).

In fact, it is believed to hold that:
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“Theorem” 2.9. Let V be a continuous function on R™ which
satisfies the above ezhausion condition and V(z) > 1, Ve € M. Let
N(X) be the counting function of the free boundary problem for A +V
on L?>(R™). Then

N\ ~ C’n/ A=V(2), ? dz
Rn
= (2m)7" Vol ({(z,€) e R* x R™; [{[* + V() < A}).

We follow the argument in Rosenbljum ['74] and show the precise
statement of his theorem. See also Fefferman [’83], Tachizawa ['90] for
these topics.

Let Q = Qg be a cube of edge d in R™. For each positive number a,
let us consider the Dirichlet, Neumann eigenvalue problems for A+ a on
@, and let us denote the counting numbers of the eigenvalue problems by
Np(M a,Q), Nn(A, a, @), respectively. Then due to Mini-Max Principle
(cf. Theorems 2.2, 2.3), we get:

Lemma 2.10. For all 0 < € < 1, there exist positive constants
Ci(e) and Cy(e€) such that

w3

(211) Np(Aa,Q) = (1-9F C, Vol(@Q) (A —a) — Ci(9)d2), F,

N3

(212) Nn(Xa,Q) < (1+€)% Cp Vol(Q) (A —a) + Co(e)d™?) %,
for all X > 0.

Let = be an arbitrary lattice of R™ defined by cubes of edge 1, and
assume that V satisfies the following conditions:
(I) There exist a decreasing function v on the interval [1, 00) satis-

1
fying v(t) — Oast — o0,and 0 < a < 3 such that
V(z) - V@) < |lz—y** V(@) vV (z)), forall z,ye@\oQ,
for any cube @' of the lattice Z.
(II) Letting o(A,V) = Vol({z € R*;V(z) < A}), there exists a
constant C3 > 0 such that

o2\, V) < C30(\, V), forlarge A> 1.

We say V € W, (E) if V satisfies the conditions (I), (II).
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Theorem 2.13. Assume that V € Wy(E) for some E and 0 <
a < 1. Then we get:

N(A) ~@(A, V),
d(\,V)=C, / A-V(2)), % dz.

Proof. For arbitrarily fixed €,e; > 0, we choose €3 > 0 in such a
way that

Ci(e1) ez <€, Cale1)e2 < € and Aex > 1.
We also choose a positive integer k such that
e2) < 4k < de .

We divide all unit cubes of the lattice = into cubes Q of edge d = %
Then by Mini-Max Principle (Theorems 2.2, 2.3), we get:

ZND()HVJ,Q) < N()‘) < ZNN()"VQ-’Q)a
Q Q

where @ in the sums run through all the above unit cubes of =, and

Vi =esssupV V5, =ess infV(z).
Q = ess sup (@), Vg =ess infV(z)

By Lemma 2.10, the right hand side of the above inequality is smaller
than or equal to

(1+e)iC, ZVol (/\—V_+Cz(el)d'2)+%

n
2

1+e1%c ZVol ( 1+e)—V5)+ ,

since Ca(€1)d™? = Ca(e1)k? < Ca(e1)e2 X < €, by the choice of d,
and €. Here the cubes @ in the above sums run through, indeed, a
finite number of the ones satisfying A(1 +€) > V,, divided from the

unit cubes of the lattice Z. For ¢ > 0, we denote by Z, the sum
i
running over the @Q’s satisfying Vg <t and by Z , the sum running
11
over the @’s satisfying t < V5 < A(1 +¢).



366 H. Urakawa

Then we get

SoVol@ (At+9-Vg) T < M+ ot V),
3 Vel(Q) (/\(1 te)— VQ—)+ %

< Z/Q (A(l +e)—V(z)+|V(z)— VQ_I)+ L

< ;/Q (/\(1 +e) = V(z)+d** (vg)'te V(t))+ % iz,

since V' > V(z) — [V(z) — V| in the second inequality, and v is
decreasingin t < V5 in the last inequality.
Here we take a large ¢ in such a way

222 e, (1+ €)™ u(t) < e
Then
& (Vg u(t) < & (M1 +€¢) v(t)
— k-—2a )\l—l—a (1 + 6)1-{—04 V(t)
< (e AT AT 14 o) u(t) < e

Therefore the right hand side of the last inequality is smaller than or
equal to

AIY_I:/Q (1+20-V@), T do < [ A1+20-V(@), o
Hence we have
N < (1 +ea)?
x Cn {/ (M1+20) - V(@), T de + AT (1497 o(t, V)}.

Thus we obtain

L T (V)

1+ [ M1 +29-V(@), Tdo
<
< fm sup 300, V) ’

n
2
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since ®(\,V) = o()\%) by definition of ®(\, V). Thus, letting e — 0
and then ¢; — 0, we obtain

. NV
1 _ M)
iR ev) =

In a similar manner, we also have

.. N
lim inf ——2 > 1.
it =g v) =

In consequence, we obtain Theorem 2.13. a

§3. The bottom of the (essential-)spectrum

3.1. Definitions of analytic and geometric quantities

In this section, we discuss the bottom of the spectrum of the Lapla-
cian A of a noncompact complete Riemannian manifold (M, g). Namely,
the following problems are considered:

(1) When are the Ess Spect(A), and the point-spectrum nonempty ?
(2) How to estimate the infima A\,(A), A%*(A) of Spect(A), and

Ess Spect(A) ?
(3) Compare such quantities to the other geometric ones.

Definition 3.1. For a noncompact complete Riemannian mani-
fold (M, g), we define the following quantities:

(1) The bottom of the spectrum of the Laplacian A is
A1 = Ai(M,g) = inf (Spect(A))

[l .
= ui{ {02 s corung.

(2) The bottom of the essential spectrum of the Laplacian A is

AP = AP®(M, g) = inf (Ess Spect(A))
= sup {\(M\K); K C M, compact},

where A1 (M \ K) is the bottom of the spectrum for M \ K in (1).

(3) The exponential growth of volume of (M, g) is

1
p = u(M,g) = lim sup log V(r),

T—00
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where V(r) = Vol(B(r)) is the volume of the geodesic ball of radius r
of some point p € M. Note that the definition of ;1 does not depend on
the choice of the point p.

(4) The Cheeger’s constant of (M, g) is

Vol,,_1(8D)

h = h(M,g) = inf{ el(D)

; D C M, compact subdomain } .
(5) The isoperimetric growth of (M, g) is

h = h(M,g) = hxrn_igp V(( ;
r)

where V(r) = Vol(B(r)), S(r) = Vol,-1(0B(r)).

3.2. (Essential-)spectrum

In this section, we show results on the existence of the essential
spectrum of the Laplacian A. In the next section, we will show results
which compare the above quantities.

Theorem 3.2 (Donnelly['81-1]). Let (M,g) be an n-dimensional
noncompact complete Riemannian manifold with the Ricci curvature
Ricpyr > —(n—1)e, ¢ > 0. Then the essential spectrum appears i.e.,

Ess Spect(A) N [O, (—71;4% c} # (.

Moreover, we know:

Theorem 3.3 (Donnelly['81-1)). Let (M,g) be an n-dimensional
simply connected complete Riemannian manifold with nonpositive sec-
tional curvature. Let

¢(r) = sup {|K(z,II) +c|; d(zx,p) > r, ] C T, M, plane, z € M},

where p € M is an arbitrarily fized point and ¢ > 0 is a constant, and
K(x,II) is the sectional curvature of a plane II. Assume that

lim ¢(r) =
Then we get
_1)2
Ess Spect(A) = [(—71—49— ¢, 00).
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Let (M, g) be a simply connected n-dimensional complete Rieman-
nian manifold with nonpositive curvature. Fix p € M. Let vy(w,r) be
a geodesic emanating from p, parametrized with distance r from p, and
with unit direction w at p, and let K(w,r,8) be the curvature of the
plane obtained by parallel translation along v(w,r) of (w,#) plane at p.
We denote by ||F||, the supremum of F(w,r,6) where (w, ) run through
S§n=1 x §n~1 and by D the covariant derivative of the standard unit
sphere (S"~!, can). Then we have:

Theorem 3.4 (Donnely ['81-2], see also Pinsky ['78], ['81]). Let
(M, g) be as above. Suppose that the sectional curvature of (M, g) satis-
fies the following decay condition along geodesics emanating from a fized
point p:

—

) / rIK + 1] dr < dy,
0

1

—

ii) / | D K| 2T dr < do,
0

o0
iii) / |D.2 K| e* dr < d3, and
0
iv) lim r||K+1] =0,
for some positive constants dy,ds,ds. Then:

_ 12
(1) A has no eigenvalue in (&4—1)—@0)

(2) Moreover, if the sectional curvature of (M,g) is bounded above
by —1, then

(n — 1)?

Spect(A) = C Spect(A) = | 2

,00).

Examples 3.5. As particular cases, we consider homogeneous
spaces. Let G be a semi-simple Lie group, K be a maximal compact
subgroup, and g, % their Lie algebras. Let B be the Killing form of g,
and define the positive definite inner product (, ) on g defined by

<X5Y> = _B(XaY)a X7Y€E ; <XaY) = B(XaY)a X)Y6p7

where p is the orthogonal complement of € in g with respect to B. Let
go be a G-invariant Riemannian metric on the symmetric space G/K
corresponding to the inner product (, ) on p, and g be the left invariant
Riemannian metric on G corresponding to the inner product to (, ) on
g. Then:
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(1) the spectrum of the Laplacian of the Euclidean space (R", can)
is
Spect(Acan) = C Spect(Acan) = [0,00).
(2) The spectrum Spect(Ag, ) of the Laplacian of (G/K, g,) satisfies
that
Spect(A,,) = C Spect(Ay,) = [|p[*, 00),
where |p|> = (p,p) and p is half of the sum of all positive restricted
root system of (g,¥€) (cf. Donnely ['79], Urakawa ['80]). And there is an
interesting example, i.e.,
(3) if G = SL(2,R), then the spectrum and the set of all eigenvalues

of the Laplacian of (G, g) are given as follows (cf. Kobayashi, Ono &
Sunada ['89)):

-1
Spect(Ag) = [g

1
the set of all eigenvalues of A, = {=(n? +4nm +2m? +1);
g 8

,00), and

'I’L:1,2,3,"' 7m:173’5?"'}
:{1,1_5_,3,4,...},
8

On the other hand, in the following cases the essential spectrum
does not appear:

Theorem 3.6 (cf. Donnelly & Li ['79]). Let (M,g) be a noncom-
pact complete Riemannian manifold. We denote by K(x,II), the sec-
tional curvature of a plane Il in the tangent space Tp,(M),z € M, and
fixp € M, define

K(r) = sup {K(z,II); d(z,p) > r,11 C To.(M), plane, x € M} .

Assume that ~
K(r) — —o0, asr — oo.
(1) If (M,g) is simply connected and has negative curvature, then
Spect(A) = Spect,(A), i.e., Ess Spect(A) = 0.

(2) If dim(M) = 2 and the fundamental group m (M) is finitely
generated, then we have the same conclusion as (1).

3.3. Estimates of the bottom of the spectrum

In this section, we show results comparing several quantities defined
in section 3.1.
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Theorem 3.7 (McKean ['70]). Let (M,g) be a complete simply
connected Riemannian manifold whose sectional curvature K satisfies
K < —k? < 0. Then the bottom of the spectrum, )1, satisfies:

k.2

Remark 3.8. The sectional curvature condition of Theorem 3.7 can
be relaxed to some Ricci curvature one by Setti ['91].

Theorem 3.9 (Pinsky ['81]). Let (M,g) be a simply connected
complete Riemannian manifold with nonpositive sectional curvature K.
Fizpe M. Let y(r) denote

sup{|K (v(r),II) + ¢| ; v(r) a geodesic emanating p
with tangent w € Tp(M), |w|| = 1,11 C Ty (M)},

where ¢ > 0 is a constant. Then we have:

(i) If either /001/)(7“) dr < oo,or K = —c¢ < 0outside a compact
1
subset, then 0 < A\(M,g) < (i—_il)zc.
(i) If /001[)(7’) dr < oo, and K < —c < 0 everywhere M, then
1
M(M,g) = (_n_—él_lﬁ c

Moreover we get:

Theorem 3.10 (Osserman ['79]). (i) Let (M, g) be a complete n-
dimensional Riemannian manifold with a pole p, i.e., the exponential
mapping exp : Tp(M) — M is an onto diffeomorphism. Assume that
there exist constants C and r, > 0 such that

S < eV, ¥r >,

1
Then we get: A\o(M,g) < 102.

(ii) Assume that dim(M) = 2 and (M, g) has nonpositive curva-
ture K. If —c < K < —d < 0 for some positive constants c,d, then

lc

M (M < --.

1( 7g) = 4d
Theorem 3.11 (Brooks ['81]). Let (M,g) be a noncompact com-
plete Riemannian manifold. Assume that Vol(M,g) = oco. Then we
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have: ) )
Zh2 < )\(e)ss < _#2_

e

Theorem 3.12 (Urakawa ['89]). (i) Let (M,g) be a simply con-
nected complete Riemannian manifold without focal point (not necessar-
ily, nonpositive curvature). Then we have:

1, 1 1 1

Sm?P < SRP <A < ot
R
where m is the infimum of the mean curvature of 8B(r),0 < r < oo,
and B(r) is the geodesic ball of radius r of some fized point.

(ii) In particular, let (M, g) be a simply connected Riemannian sym-
metric space G/K of noncompact type whose metric comes from the
Killing form of the Lie algebra g of G. Then we have:

1 1-

Moo= gut =R =pl*;s m =inf {20(H); H € o™, | H|| = 1},
where at is a positive restricted Weyl chamber. Moreover, if M is rank
one, ie., dim(a) = 1, then

1

1
2 2
Zm?2 =2ph2 =) =
4 4 !

B2

2

p? = S B =l

N
=

There is the following striking result about the bottom of the spec-
trum for the Laplacian:

Theorem 3.13 (Brooks ['81-1]). Let (M, g) be a compact Rieman-

nian manifold and (M ,§) the universal covering Riemannian manifold.
Then:

A1 (M, §)=0<= the fundamental group (M) is an amenable group.

Furthermore, Sunada ['89] clarifies the above Brooks’ theorem as
follows: Let (X,§) — (M, g) be a normal Riemannian covering of a
compact Riemannian manifold with covering transformation group G.
For p;G — U(V), a unitary representation of G, let E, be a flat
vector bundle over M associated to p, and A, the Laplacian acting on
the vector bundle E,. Define

Ai(p) = inf(Spect(A,)); 6(p,1) = inf  sup|p(o)v — vl|,
veV,|jv[l=1 o€A
where A is a finite set of generators of G. Then Theorem 3.13 follows
from the following theorem:
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Theorem 3.14 (cf. Sunada ['89)). (i) There exist positive con-
stants Cy, Cy such that for all unitary representation p of G,

C18(p,1)? < Xi(p) < Cab(p,1)%

(ii) If p is the regular representation of G, then \1(p) = M (X, ),
and
6(p,1) = 0 <= G is amenable.

Ono ['88] showed:

Theorem 3.15. Let (M, g) be a compact Riemannian spin mani-
fold, and (M, §) be its universal Riemannian covering. Assume that the
A-roof genus of M does not vanish. Then we get:

~ 1 i
N1 < § (- mipe@)
where k is the scalar curvature of (M, g).

84. Heat kernel of a complete Riemannian manifold

4.1. Construction of heat kernel

In this section, we construct the heat kernel of a Riemannian mani-
fold. This was done by Ito ['79], Dodziuk [’83], Strichartz [’83], and Yau
[78]. There are two ways to construct the heat kernel. The one is to
apply an abstract semigroup theory of e on L? space of a Riemannian
manifold (M,g) which are due to Yau ['78] and Strichartz ['83]. The
other is a more or less constructive way due to Ito ['79] and Dodziuk
[’83], which takes the following steps:

(1) taking an exhausion sequence of relatively compact domains
Di of M ’

(2) define

p(.’l?, Y, t) = lefgopz(wv Y t)7

where p;(z,y,t) is the Dirichlet heat kernels of D;.

(3) And show that p(z,y,t) is the heat kernel on (M, g).

In the following, we show the latter way more precisely, following
Dodziuk ['83].

Definition 4.1. Let (M, g) be an arbitrary Riemannian manifold,
T > 0, and u, a continuous function on M. Then a continuous function
u; M x (0,T) — R is said to be a solution of the Cauchy problem of
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the heat equation on M x [0,T) with the initial data u,, if u(z,t) is C2
in z and C?! in ¢, and satisfies

Amu—i—%zo on M x[0,T),

u(z,0) = uo(x), =€ M.

Definition 4.2. A continuous function p(z,y,t) on M x M X
(0,00) is a fundamental solution of the heat equation, i.e., heat kernel on
M if, for all bounded continuous function u, on M,

/ P(, 5, 1) uo(y) vy(y) , £ > 0,
M

Uo(z)v t =0,

u(z,t) =

is a solution of the Cauchy problem of the initial data u,.

In order to construct the heat kernel on M, we consider the heat
kernel p,(z,y,t) on a relatively compact domain D in M with C>
boundary with Dirichlet condition. Then it satisfies that:

Proposition 4.3.  The function p, is C*® on D x D x (0,00), and
oy (2,y,t) =0 if z ory € 8D. Moreover,

(1) pp(z,y,t) >0, py(z,y,t) =p,(y,z,t), z,y € D, t > 0.
(2) (Az + %)pD =0.

3) / Py (@ 2, )Py (2,4, 8)0g (2) = (@5, + 8, 5,¢ > 0,2,y € D.
D

(4) For all relatively compact smooth domain D C M, there exists
a C* function ® on D x D such that ®(z,z) =1,z € D, and

polant) = (art) * o (-22Y) 2z,

_n 2
:O<t 2+1exp(—%t’y)-)),m,y€D, as t — 0,

where the convergence in the right hand side is uniform on any compact
subset of D x D.

(5) For relatively compact domains Dy,Dy C M, let pi,py be the
corresponding heat kernels. Then for all x,y € Dy N D,, and for all
N > 0,

pl(wayv t) ——pg(.’l,',y,t) = O(tN) as t — 0,
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where the estimate is uniform if x,y run on a compact subset of D1 N Ds.
(6) For all z € D,t > 0,

/pp(x7y,t) 'Ug(y) < 1.
D
(7) For Dy C D3, we get
Pp, (z,9,1) < pp, (2,9,t), =,y € D1,t > 0.
We omit its proof, but only note here that we need the following
strong maximum principle to get (1), (6), and (7) in Proposition 4.3:

Lemma 4.4. (strong mazimum principle) Let D C M be a rel-
atively compact domain, v a bounded continuous function on D x [0, T
which is C% on D x (0,T) and satisfies

(A-{-%)ugo, on D x (0,T).

Suppose that there exists (xo,t,) € D x (0,T] such that

(z,t).

w(xo, o) = max U
(2o, t0) (2,t)€DX[0,T]

Then we get

u(z,t) = u(zo,to) forall zeD,t <t,.

For a proof, see Nirenberg ['53, p.171].

The candidate of a heat kernel on M can be constructed as follows:
We take an exhausion

D, C Dy C --- ; D; are relatively compact domains with smooth 9D;.
Le.,
0
Di C Di+1, UDz = M.
i=1
Definition 4.5. We define

p(z,y,t) = igrgopi(x,y,t),
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where p; is the heat kernel of D; with the Dirichlet condition. Note that
the limit allows infinity, but exists because of (7) in Proposition 4.3.
Moreover we obtain:

Theorem 4.6. The function p(z,y,t) is C™ and a fundamental
solution in the sense of Definition 4.2. Moreover,

(1) p(z,y,t) > 0, p(z,y,t) = p(y,z,t), t>0,z,y€M.

0 _
(3) / p(z, z,t) p(2,y, ) vg(2) = plz,y,t+5s), t,s > 0, z,y € M.
M

(4) p(z,y,t) does not depend on the choice of an ezhausion in its
definition, and satisfies that

p(z,y,t) = sup p,(z,y,t), t>0,z,y€M,
DcM

where D C M run over all relatively compact domains in M.

(5) p(z,y,t) is the smallest positive fundamental solution, i.e., for
any q(z,y,t) positive fundamental solution,

p(z,y,t) < q(z,y,1).

Outline of Proof. We only show the covergence of p; to p. Fix
y € M. Let us consider u;(z,t) = p;(z,y,t), and show that {u;}2,
converges uniformly to a C* solution of the heat equation on D X [t1, t2]
for a relatively compact domain D C M, and 0 < t; < t,. For this, we
need: -

Lemma 4.7. Let (N,h) be a Riemannian manifold, a,b € R with
0<a<b<oo. Let {u;}2, be a nondecreasing sequence of solutions of
the heat equations on N x (a,b). Assume that

[ st o) < ¢,
N

where C is a constant independent on i,t € (a,b). Then v = lim u;
1—00

15 a smooth solution of the heat equation, and the convergence of u; to

u s uniform with respect to the C>® topology on a relatively compact

domains, and the derivatives of all orders converge.

In fact, let D C N be a relatively compact smooth domain, a <
t1 < ta < b. Choose a function h € C3°(D), with h = 1 on an open
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subset V C D. If v(z,t) is a solution of the heat equation, then, for
xz € V,t € (t1,t2), by Green’s formula and Duhamel’s principle, we get

v(z,t) = /Dv(y,tl)h(y)pp(w,y,t—tl)vh(y)
+/t ds /Dv(y,t)Ah(y)pD(m,y,t—s)vh(y)
+2 [ s [ u(a5) (V). Ty (2,9, 5)) 0n(o).

Since Ah = 0,Vh = 0 in a neighborhood of z, arbitrary large order
derivatives of v(z,t) with respect to z are estimated by the terms of

the L'-norm of v, and the same is true for all derivatives by means of

o
5% = Awu. Applying this to {u;}, {u;}, {Vu;} are locally bounded, by

the assumption, and then © = lim w; is finite and continuous. By Dini’s
71— 00

theorem the convergence is uniform on a compact subset. Repeating this
to the differentials of {u;}, u is C*° and satisfies the heat equation. [J

(Proof of Theorem continued) For fixed y € M, dut to Proposition
4.3 (6), the function

ui(‘r?t) = pi(z,y,t),x EMa t>0

satisfies the conditions of Lemma 4.7, and then the limit p(z, y, t) satis-
fies the heat equation in the variable (z,t). Moreover, p(z,y,t) is a C*®
function on M x M x (0,00): In fact, we consider the heat equation on

(M x M) x (0, 00): '

(*) (Az + A, + 2%) v(z,y,t) = 0.

Fix a relatively compact domain D C M. Then, for large i > 1,

pi(z,y,t) satisfies the equation (x) on D x D x (0,00), and by (6) of
Proposition 4.3,

/ pi(x,y,t) vg(x) vg(y) < Vol(D).
DxD

Thus by Lemma 4.7, p(z,y,t) = llim pi(z,y,t) satisfies a C* solution
—o0
of (%).
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Now we show the function p(z,y,¢) is a fundamental solution of
the heat equation in the sense of Definition 4.2: (1) For a bounded
continuous function u, on M,

/ p(z,y,t) uo(y) vg(y), t > 0,
M

uo(), t =0,

u(z,t) =

is bounded and continuous.
In fact, we first show, for any open subset U C M and z € U,

(a) ltlfg Up(mayvt)vg(y) = ]'

Because note that, by (4) of Proposition 4.3,

(b) lim [ p,(z,y,t)vg(y) =1, z€D.
t1o Jp

Then by (b), (6) of Proposition 4.3, and positivity of p, we get

1 > lim inf/ p(z,y,t) vg(y) > lim inf/ Pp (T, y,t) vg(y)
t]0 M t]0 U

> lim [ py(z,y,t)vge(y) =1, z€D,
t10 Jp

for a relatively compact smooth domain D C U. We get (a). Moreover,
by (6) of Proposition 4.3, we get :

© [ pentnG <1 aen

By (a), (c¢) and positivity of p, we obtain (1).
(2) The function u(z,t) is a solution of the heat equation. In fact,
we may assume u, > 0. Then the function

u(z,t) = lim [ pi(z,y,1) uo(y) ve(y)
1—00 M

is a limit of nondecreasing sequence of solutions of the heat equation, and
the L'-norm of each function is bounded above by a constant indepen-
dent on ¢. Therefore by Lemma 4.7, u(z,t) satisfies the heat equation.
Thus p(z, y,t) is the heat kernel. The properties (4), (5) of Theorem 4.6
follow from the maximum principle. |
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4.2. Uniqueness of solution of heat equation

In this section, we show uniqueness results on the heat equation.
Namely, let (M, g) be a complete Riemannian manifold. For a continuous
function f(z) on M, let us consider the Cauchy problem:

ot
u(m,O) = f(.’E), z €M,

(4.8) (Az—F—a—)u:O, on M x (0,00),

where u(z,t) is a continuous function on M x [0,00), and C? in z, and
C! in t. Then we get:

Theorem 4.9 (cf. Dodziuk ['83]). Let (M,g) be a complete Rie-
mannian manifold with the Ricci curvature satisfying Ricy, > —C,
C > 0. Then a bounded solution of (4.8) is determined uniquely by
the initial data f.

For a proof, see Dodziuk ['83] or Chavel [84].

Theorem 4.10 (cf. Donnelly ['83]). Under the same assumption
of Theorem 4.9, a non-negative solution of (4.8) is uniquely determined
by the initial data.

Theorem 4.11 (cf. Li ['84]). Let (M, g) be a noncompact complete
Riemannian manifold whose Ricci curvature satisfies

Ricy(z) > —C (1 +r(z)?), VzeM,

for some positive constant C, where r(z) = d(z,p), x € M, for some
fixed point p. Then

(1) any L'-solution of (4.8) is uniquely determined by the initial
data in LY(M).

(2) 1 < p < oo. Then any LP-solution of (4.8) is uniquely deter-
mined by the initial data in LP(M).

(3) (cf. Li & Yau ['86]) any solution of (4.8) which is bounded below,
is uniquely determined by the initial data.

Theorem 4.12 (cf. Li & Karp [91]). Let (M,g) be a complete
Riemannian manifold satisfying that there exist a point p € M and a
constant C such that, either

1) Vol(B:(p)) < exp(Cr?), Vr,
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where B,.(p) is the geodesic ball centered p with radius r, or
(2) Ricy(z) > —C (1+7r%(z)), VzeM,

where r(z) = d(z,p), z € M. Then any bounded solution of (4.8) is
determined by the initial data.

Theorem 4.13 (cf. Nagasawa ['91]). Let (M,g) be a complete
Riemannian manifold, and u(z,t) a continuous solution of (4.8), and
assume that there exist p € M and C > 0 such that

/ lu(z,t)|?vg(z) < exp(C(1+7r?%)), Vr > 0.
Br11(p)\Br(p)

Then uw(z,t) =0, Vt > 0, if u(z,0) = f(z) = 0. In particular, let
Kp(r)= inf Ricy(z), and K (r) =max{ Kp(r),0}
z€B,(p)
peM,r > 0.

Assume that there exist p € M and C > 0 such that
+ 2
K, < C(1+7%),vr.

Then any nonnegative continuous solution of (4.8) is uniquely deter-
mined by the initial data.

4.3.. Estimates of the heat kernel

In this section, we show results on the asymptotic behaviorv, and
upper and lower estimates of the heat kernel of a complete Riemannian
manifold.

We first show the following asymptotic behavior of the heat kernel
p(z,y,t) of a complete Riemannian manifold (M, g), as t tends to zero.

Theorem 4.14 (cf. Cheng, Li, & Yau ['81, p.1040]).  Let (M, g) be
an arbitrary complete Riemannian manifold, p(z,y,t) be the heat kernel.
Then we get:

ltiﬁ)l —4t log p(z,y,t) = d*(z,y), Vz,y € M.

Remark 4.15. The above theorem was obtained by Varadhan ['67]
when (R"™,g), where g satisfies the uniform Hélder condition and the
uniform ellipticity condition. One can also see a proof of the above
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theorem in Chavel 84, p.201], when (M, g) is a complete Riemannian
manifold with Ricci curvature bounded from below.

On the other hand, the asymptotic behaviors of the heat kernel
p(z,y,t), as t tends to 400, are given as follows:

Theorem 4.16 (cf. Li ['86]). Let (M, g) be an n-dimensional com-
plete Riemannian manifold, p(z,y,t) be the heat kernel of (M,g). Then

1 ¢
(1) lim % = -M(M,g), Va,ye M.

t—o0

(2) Assume that (M, g) has nonnegative Ricci curvature Ricys > 0,
and there exist a point p and a positive constant 6 such that

limint YAEE) _

r—00 r

Then we have:

Jim Vol(B 5(p)) p(z, 4. ) = Voln(B1)(4m) *,

N3

where By is the unit ball in R™.

The lower and upper bounds of the heat kernel p(z,y,t) are given
as follows:

(Lower bounds) We first prepare some terminologies: For any
Riemannian manifold (M, g), and a fixed point p, let m(r,8) be the
mean curvature function at point (r,8), of dB,(p) with dB,.(p) N C
deleted. Here 8B,.(p) is the distance sphere centered with p, radius r,
and C is the cut locus of p. Moreover, we call a Riemannian manifold
M to be an open model if the following conditions hold:

(1) For some point z € M and 0 < R < co, M = Bg(z) and the
exponential map exp, ; Bg(0) — Bg(z) is a diffeomorphism.

(2) Forallr < R, the mean curvature of the distance sphere 8B,.(z)
is constant on 8B,.(z), denoted by m(r).

Then we get by definition:

Proposition 4.17. Let M be an open model. Then its heat kernel
p(Z,9,t) = p(d(Z,9),t),Z,§ € M, depends only on r = d(Z,7), and t.

Then the heat kernel p(x,y,t) can be estimated as follows:
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Theorem 4.18 (cf. Cheeger & Yau ['81]). Let (M, g) be a complete
Riemannian manifold, M an open model. Assume that

m(r,0) < m(r), V0 <r < R.
Then we have:
p(d(z,y),t) < p(z,y,t), VYz,ye M,t >0,

and the equality holds if and only if (M,g) is isometric to M and
m(r,8) = m(r), Vr.

Moreover, it is known that:
Theorem 4.19 (cf. Li & Yau ['86]). Let (M,g) be a complete

Riemannian manifold with nonnegative Ricci curvature Ricyy > 0. Then
for all e > 0, there exists a constant C(e) such that

_d(w7 y)2
(4+e)t } ’

e it

(4+e)t

p(z,y,t) > C(e)™* Vol (Bﬁ(x))—l exp{

-1
2

=

p(z,y,t) > C(e)~! Vol (B\/;(x)) Vol (B\/Z(y))*

where the constant C(€) tends to +00 as € — 0.

(Upper bounds) In general, we obtain the following estimates:

Theorem 4.20 (cf. Cheng, Li & Yau ['81, p.1037]). Let (M, g) be
a complete Riemannian manifold. Then, for oll 3 > 1, T > 0, and
x € M, there exists a constant C = C(f3,T,x) such that

—R2
{55}

vVt e[0,T],VR > 0,

[T

/ p(z,y,t)%vy(y) < Ct
M\Br(z)

where the constant C tends to +00 as 8 — 0.
In particular, we obtain:

Theorem 4.21 (cf. Cheng, Li & Yau ['81, p.1046]). Let (M,g)
be a complete Riemannian manifold with bounded curvature, i.e., whose
sectional curvature is bounded. Then for alla > 4, T > 0 and x € M,
there exists a constant C' = C'(a, T, x) such that

ot

_n 2
p(z,y,t) < C't * exp{-M}, Yt e[0,T], Vy € M.
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Theorem 4.22 (cf. Varopoulos [84]). Assume that (M,g) sat-
isfies the same conditions of Theorem 4.21 and the injectivity radius is
bounded below by a positive constant. Then the heat kernel satisfies that,
for all 0 < € < 0.1, there exist Cy, Co > 0 such that

_1.. 1 .
sup p(z,y,t) < min {Clt " , Cot ? (logt)1+ }, Vi > 1.
z,yeM

Theorem 4.23 (cf. Li & Yau ['86 p.175]). Let (M, g) be a complete
Riemannian manifold with nonnegative Ricci curvature : Ricyy > 0.
Then, for VO < € < 1, there exists a constant C(€) such that

e < wis o o453

Vz,ye M,Vt > 0,

where the constant C(e) tends to +0o as e — 0.

Theorem 4.24 (cf. Davies ['87]). Let (M,g) be a Riemannian
manifold whose heat kernel p(z,y,t) satisfies

-
2

p(z,y,t) <at >, Yz,ycM,t >0,

for some positive constant a. Then, for all6 > 0, there exists a constant
C(6) such that

w3

B 2
p(z,y,t) < C(6)t exp{—d—(w’—y)——}, Vz,ye M,Vt > 0.

A1+ 0)t

Remark 4.25. The assumption of the heat kernel p(z,y,t) in The-
orem 4.24 is equivalent to the following:

£ 2 < a(Af,), VO < feCE(M),

which is satisfied, if the Ricci curvature of (M, g) is bounded below:
Ricpys > —c, ¢ > 0, and the injectivity radius is bounded below by a
positive constant.

Remark 4.26. Recently the following Lichnerowicz conjecture is
solved negatively by E. Damek and F. Ricci ['91]: A noncompact com-
plete Riemannian manifold whose heat kernel p(x,y,t) depends only on
the distance r(z,y) and t, is the Euclidean space or a symmetric space
of rank one.
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§5. Harmonic functions

5.1. Green functions

In this section, we are concerned with Green function on a relatively
compact domain 2 C M of a complete Riemannian manifold (M, g).

Definition 5.1. Let Qp = {(z,z) € @ x Q;z € Q}. Then a
function Gq;Q x Q\Qp — R is said to be a Green function of Q if

(1) it is C? function on 2 x Q\ Qp,

(2) AyGa =0, Vz,yeQ, z#y,

(3) Gﬂ(x,y) =0, zeQyel = oQ,

(4) Gq can be written in a neighborhood of Qp by Ga(z,y) =
¥(z,y) + h(z,y), where h € C°(Q2 x Q) N C3(Q x Q), and

1 d(z,y)?>™
Cn—l n—2

, > 2,
Y(z,y) = .
o (—log d(z,y)), n=2,

d(z,y), , y € M being the geodesic distance in (M,g), and C,_; =
27rn/2

NCYD /2’ the (n — 1)-volume of the unit sphere in R™.

For the existence of such a function Gq, see John ['82], for example.

Definition 5.2 (cf. Aomoto ['66]). Let Mp = {(z,z) € M x
M;z € M} for a Riemannian manifold (M, g). A C? function G; M X
M\Mp — Ris called a Green function of (M, g) if the following hold:

(1)AyG =0, Ve,ye M,z #y,

(2) G can be written in a neighborhood of Mp by G(z,y) = ¥(z)+
h(z,y), where h € C?(M x M), and v(z, y) satisfies the same properties
as (4) in Definition 5.1.

(3) For ally € M, there exists § > 0 such that G(z,y) is a bounded
function in z on Ms = {r € M; d(z,y) > 6}.

Definition 5.3. A function f on (M, g) is said to be superhar-
momnic if the following hold:

(1) —oco < f(z) < oo, and f does not vanish identically on M.
(2) f is lower semi continuous on M.
(3) Let 2 C M be arelatively compact smooth domain. If a function
w which is continuous on €, and harmonic on §, satisfies that w(z) <

f(z), Vze€dQ,then w(z) < f(z), Vzef.
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Note that a C? function f on (M, g) is superharmonic if and only if
A f > 0 everywhere on M. Here notice that our Laplacian is A = §d.
Then it is known that:

Theorem 5.4 (cf. Ito [64-1], '64-2]). Let (M, g) be a Riemannian
manifold, p(z,y,t) be the heat kernel defined in §4. Define

G(z,y) = / p(z,y,t)dt, x,y € M.
0

Then G(z,y) gives a Green function of (M, g) if and only if there exists
a nonconstant positive superharmonic function on (M, g).

Definition 5.5. A Riemannian manifold (M,g) is said to be
hyperbolic if it has a nonconstant positive superharmonic function,
parabolic otherwise. For these examples, see section 5.3.

5.2. The Martin boundary

In this section, we introduce the notion of the Martin boundary. To
do this, we first prepare the Harnack inequality, the Harnack principle,
and the maximum principle:

Theorem 5.6 (Harnack inequality) (cf. Moser ['61]). Let Q C

M be a relatively compact domain in a complete Riemannian manifold
(M,g). Let ' € Q be a domain whose closure is contained in . Let u
be a positive harmonic function on Q. Then we get:

sup u(z) < C inf u(z),

zeQ’ zeq
where C' is a positive constant which depends only on Q,Q, and the
curvature of (M, g). '

Theorem 5.7 (Harnack principle). Let Q be a relatively com-
pact domain in a complete Riemannian manifold (M,g). Let {u,}32,
be a sequence of harmonic functions on Q). Assume that there exists a
positive constant K such that |u,| < K,n =1,2,---. Then {u,}>2,
is a normal family, i.e., there exists a subsequence which is convergent
to a harmonic function on Q and the convergence is uniform on each
compact subset of Q2.

For a proof, see Tsuji ['59], Kishi ['74], Doob ['83].

Theorem 5.8 (Maximum principle). LetQ C M be a relatively
compact domain in a complete Riemannian manifold (M,g). Assume
that

Au =0 on, and u < 0 on O0.



386 H. Urakawa

Then we get u < 0 on €.
For a proof, see Protter & Weinberger ['84].

Assume that (M, g) is hyperbolic, i.e., it has a nonconstant positive
superharmonic function. Let o € M be a fixed point. For z, y € M, let

G(y,z)/G(y,0), y # o,
Ky(l') = K(y,(l)) = 07 y=0,72% 75 o,

=y =0

8

then the function K satisfies the following:

(1) For each fixed y € M, K, is a nonnegative harmonic function in
T,z # y,

(2) Ky(0o) = 1, and

(3) for each fixed z € M, K(y, z) is a continuous function in y,y #

Assume that {y, }52 is a sequence in M which has no accumulation
point in M. By the Harnack principle (cf. Theorem 5.7), a sequence
- {Ky. o}, has a subsequence which converges to a harmonic function
on §, for every relatively compact domain 2 C M. Take an exhausion
Q C Qy C -+ C M,U;Q; = M, and use the diagonal method as
in the proof of Lemma 1.14 to get a subsequence Ky, of Ky, which
converges to a harmonic function on M, say K.

Definition 5.9. A sequence {y,} in M is said to be fundamental
if K,,, converges to a harmonic function K on M.

By the above argument, we get:

Lemma 5.10. Assume that a complete Riemannian manifold
(M, g) is hyperbolic. Then any sequence in M which has no accumu-
lation point, has a fundamental subsequence.

Definition 5.11. Let (M, g) be a hyperbolic Riemannian mani-
fold. Then two fundamental sequences in (M, g) are equivalent if the
corresponding limit harmonic functions in Lemma 5.10 coincides each
other. The Martin boundary or ideal boundary M of (M, g) is the equiv-
alence classes of all fundamental sequences of (M, g).

Note that, for [Y] € M,

(5.12) Ky(z) = lim K,
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where {y;} is a fundamental sequence associated to [Y] € M, and Ky
is a positive harmonic function satisfying Ky (0) = 1. Therefore each
[Y] € M corresponds to a unique positive harmonic function Ky on M
with Ky (o) = 1.

Definition 5.13. Put M = M U M, and define the following
metric p on M:

n |KY(5L')_KY’($)| ’ Y
oY, Y = /Bl(o) T+ Ky (2) — Ky (@] vg(z), Y, Y' € M,

mEBl(O)

( or sup |Ky(z)— KY'(CU)') )

where Bj (o) is the geodesic ball centered at o with radius 1 in (M, g).

Proposition 5.14 (cf. Martin ['41]).  This p is actually a complete
metric on M, and (M,p) is compact, M is open in M, and M is the
boundary of M. The relative topology of M with respect to p coincides
with the original topology of M. Moreover, for each x € M, the mapping
Y — Ky(z) is continuous on M \ {z} with respect to p.

Then Martin showed

Theorem 5.15 (Representation theorem) (cf. Martin [41]).
For each nonnegative harmonic function uw on (M, g), there ezists a Borel
measure y on M such that

(5.16) u(z) = /M Ky (z)du(Y), z € M.

Conversely, for any Borel measure u on M, (5.16) gives a nonnegative
harmonic function on (M, g), and p(M) = u(o).

Definition 5.17. A positive harmonic function v on (M, g) is min-
imal if any positive harmonic function v with v(z) < u(z), Vz € M is
a constant multiple of u.

Note that, if u is a positive minimal harmonic function, then there
exists a positive constant C such that u = C Ky for some ¥ € M.
Then we define:

Definition 5.18. Put M; = {Y € M; Ky minimal }, and M,
= M\ M. A Borel measure p on M is canonical if u(M,) = 0.
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Theorem 5.19 (Canonical representation theorem) (cf. Mar-
tin [’41]). For any nonnegative harmonic function u on (M,g), there
exrsists a unique canonical Borel measure p on M such that

u(z) = /M Ky (2) du(Y), © € M.

Moreover, Brelot [’56] showed:

Theorem 5.20 (Solvability of Dirichlet problem). Let v be
a canonical Borel measure on M and f a continuous function on M.
Define a function Py on M by

Pi(z) = /M F¥) Ky (@) dv(Y), « € M.

Then Py is a harmonic function on (M, g), and satisfies that

lin}}/ Ps(z) = f(Y), Y e M.

The function P; is called a Poisson integral on the Martin boundary.
For a proof, see Brelot ['56], Doob ['83, p.207, p.101], and Ito ['88].

5.3. Examples of hyperbolic Riemannian manifolds

In this section, we give examples of complete hyperbolic Riemannian
manifolds (M, g) and realize their Martin boundaries.

Let G be a real semisimple Lie group with finite center, K a maximal
compact subgroup, and M = G/K a symmetric space of noncompact
type as in Example 3.5. Let g, be the Riemannian metric on M induced
from the Killing form of the Lie algebra g of G, and g = £+ p, the
Cartan decomposition of g. Then:

Theorem 5.21 (cf. Furstenberg ['63]). Let (M, g,) be as above.
Then it is hyperbolic and its Martin boundary M coincides with the
homogeneous space K/Zk(A) = G/B. Here Zk(A) is the centralizer
of A in K, A is the analytic subgroup of G corresponding to a mazximal
abelian subalgebra a of g contained in p and B is a Borel subgroup of G.
Moreover, the Poison integral coincides with the integral

Py(z) = /K F(ek) dk,z € G,
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for a continuous function f on K which satisfies f(km) = f(k),k €
K, m e Zg(A), and dk is the Haar measure on K.

For more interesting results about the Poisson integrals on sym-
metric spaces, see Kordnyi ['69], Helgason ['70-'76], Kashiwara, Kowata,
Minemura, Okamoto, Oshima and Tanaka ['78].

In case of a general (not necessary homogeneous) Riemannian man-
ifold, we get:

Theorem 5.22 (Aomoto ['66]). Let (M,g) be an n-dimensional
simply connected complete Riemannian manifold. Assume that the sec-
tional curvature K of (M,g) is nonpositive in case of n > 3, and
K < —C,C > 0 in case of n = 2. Then (M,g) is hyperbolic, i.e.,
it has nonconstant positive superharmonic function.

Moreover, there are the following criteria telling which (M,g) is
hyperbolic or parabolic, due to Kasue ['82]:

Let (M, g) be a complete noncompact connected Riemannian man-
ifold. For x € M, let ¢ : [0,00) — M, a geodesic emanating = with
unit speed, and define functions R, and f, : [0,00) — R, such that

Ru(?) n—i—_l Rica (6(£)), V¢ € [0, 00),

where Ric)y is the Ricci curvature of (M, g), and
fz"+ Ry fo = 0,f:(0) = 0 and fm/(()) = 1.
Then we get:

Theorem 5.23 (Kasue ['82]). Assume that (M, g) has a positive
Green function G(z,y). Then the following holds:

G(z,y) > L /doo fo(t) ™ dt,

Wn-1 Jd(z,y)

where.wy,_1 1s the (n — 1)-dimensional volume of the unit sphere of R".
In particular, if [ f.(t)!~™dt = oo, then (M, g) has no positive Green
function, therefore parabolic, i.e., (M, g) does not have any nonconstant
positive superharmonic function.

On the contrary, let us define functions K, F ; [0,00) — R, by

Ki(t) > K(I), Vo (t) € I C Ty M, plane,
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where K (II) is the sectional curvature of the plane II, and

F,"+ K,F, = 0,F,(0) =0, and F,(0) = 1.
Then we get:

Theorem 5.24.

(1) (Kasue ['82]) Let i(x) be the injectivity radius of (M,g) at x €
M. Assume that i(z) = oo, and [~ F,(t)'™"dt < oo for allz € M.
Then (M, g) admit a positive Green function G which satisfies

1 o _
Gla,y) < / Fo(t)"dt, Vo £ y € M,
d

Wn—1 (z,y)

where wy,_1 15 as in Theorem 5.23.

(2) (cf. Li & Tam [87-1]) Let (M,g) be a Riemannian mani-
fold whose sectional curvature is nonnegative outside some compact sub-
set. Assume that (M, g) has at least one large end (see sectwn 5.5 for
definition). Then (M, g) is hyperbolic.

Example 5.25. Let M = R x; F be the warped product where
F is an n-dimensional compact Riemannian manifold and f is a positive
C*° function on R. Then:

) If / f{t)™™dt < oo, then M is hyperbolic and admit a non-
constant harmonic function with finite Dirichlet integral.
) If / f®)™™dt = oo and / f(t)™™dt = oco. Then M is
0 —00

parabolic.

Example 5.26. Let (M,g) be a complete Riemannian manifold
with nonnegative Ricci curvature. Then a theorem of Cheeger and Gro-
moll says that (M,g) = (N,h) x (R*, g,), the Riemannian product,
and g, is the standard metric on R™. Moreover, the following hold:

(1) If £ > 3, then (M, g) is hyperbolic.
(2) If k < 2 and N is compact, then (M, g) is parabolic.

For a proof of these examples, see also Kasue ['82].

On the other hand, Lyons & Sullivin ['84] studied a Riemannian
manifold (M, g) which admits a positive Green function. Note that a
Riemannian manifold (M, g) has the property (1) : (M,g) admits a
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positive Green function, is equivalent to (2) : (M, g) admits a noncon-
stant bounded subharmonic function, and also equivalent to (3) : the
Brownian motion on (M, g) is transient.

They constructed (M, g) which does not admit a nonconstant posi-
tive harmonic function, but have a positive Green function, as a Corol-
lary of the following theorems: Let I' C Isom(M) be a discrete subgroup
of the isometry group of (M,g), whose quotient space N = M/T is
smooth.

Definition 5.27. M is an Abelian (resp. nilpotent, solvable, w-
nilpotent) cover of N , if " is Abelian (resp. nilpotent, solvable, I' is a
infinite union of normal subgroups Z; of I' with Z;,; contained in the
center of T'/Z;).

Then they obtained:

Theorem 5.28.

(1) Let (N,h) be a compact Riemannian manifold. Then any Rie-
mannian nilpotent covering space of (N, h) admits no nonconstant pos-
itive harmonic function.

(2) Let (M, g) be a Riemannian w-nilpotent cover of (N, h). Assume
that (N, h) admits no positive Green function. Then a bounded harmonic
function on (M, g) is always constant.

(3) Let (M, g) be a Riemannian non-amenable cover of (N, h). Then
(M, g) admits a nonconstant bounded harmonic function.

(4) Let (M, g)be a Riemannian Abelian cover of (N, h). Then (M, g)
admits a positive Green function if and only if the rank of T' is bigger
than or equal to 3.

Corollary 5.29. The universal Riemannian cover of a compact
negatively curved manifold admits a nonconstant bounded harmonic
function.

They also extended a theorem of Kelvin, Nevanlinna, & Royden:

Theorem 5.30. Let (M,g) be a complete Riemannian manifold.
Then it admits a positive Green function if and only if there exists a
vector field V on M such that

/ |div V[2v, < oo,/ [V]?v, < 00, and / div Vvg #0.
M M M

Corollary 5.31. Let (X,g), (Y, h) be complete Riemannian man-
ifolds. Assume that they are quasi-isometric. Then the one admits a
positive Green function if and only if the other does so.
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(Open Problem). Under the assumption of Corollary 5.31, does the
property that the one admits a bounded harmonic function if and only
if the other does so, hold 7

5.4. The Martin boundary and the ideal boundary

We first, in this section, introduce the ideal boundary of a Rie-
mannian manifold of nonpotive curvature following Eberlein & O’Neill
[73], and show results of Anderson ['83], Sullivan ['83], and Anderson &
Schoen [’85]. In this section, we assume (M, g) is a complete Riemannian
manifold of nonpositive curvature.

Definition 5.32. A geodesic ray 7v; [0,00) — M is a geodesic
of (M, g) parametrized with arc length, and each of whose segment is
minimal between its endpoints. Two geodesic rays -1, 2 are said to be
asymptotic if sup d(v1(t),72(t)) < oo. Let S(oc0) be the set of all

0<t< o0

asymptotic classes of geodesic rays, which is called the ideal boundary
or geometric boundary. For a geodesic ray -, we denote by v(co) the
asymptotic classes containing ~.

Note that for each p € M and = € S(oo), there exists a unique
geodesic ray Yp, such that v,;(0) = p, and vypz(c0) = 2.

Let M = M U S(c0), and introduce the topology, called the cone
topology, which is compatible to that of M, and with respect to which
S(00) is homeomorphic to the (n — 1)-dimensional unit sphere S™~!:
Let pe M, a,bc M, p# a, b. The angle subtended by a, b at p € M,
denoted by <(,,(a, b), is the angle <((ypa'(0), Ypb’ (0)) between the geodesics
Ypa, Vpb at p. Then for 7 > € > 0, and v € S(p), the unit sphere in the
tangent space T, M, let us define the cone of vertex p, axis v and angle
€ by

C(v,e) = {b e M; <,(ys(00),b) < €}.

We can define the topology on M (called the cone topology) in such a
way that, for each point € S(00), a collection of the set

{C(b,e) sz €C(v,e),veSp),peM,n > e > 0}
is a neighborhood system of z in M.

Propsition 5.33 (Eberlein & O’Neill ['73, p.54]). Let B(p) =
{v € T,M; |lv|]| < 1}, and S(p) = {v € T,M; |v|| = 1} forp € M.
Let f : [0,1] — [0,00] be a homeomorphism. Then ¢; B(p) 2 v —
exp (f(||v]]) v) € M gives a homeomorphism of S(p) onto S(c0).
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Theorem 5.34 (cf. Anderson ['83], Sullivan [83]). Assume that
(M, g) be a complete simply connected Riemannian manifold whose sec-
tional curvature K satisfies —oo < —b? < K < —a? < 0, for some
positive constants a, b. Then, for every continuous function ¢ on S(o0),

there exists a unique function u € C°(M) N C°(M) such that
Au = 0,
Ul 5(00) = -

Furthermore, Anderson & Schoen ['85] showed that M = S(o0)
under the same assumption of Theorem 5.34. Namely,

Theorem 5.35. Under the same assumption of (M, g) in Theo-
rem 5.34 there exists a homeomorphism ® of M onto S(co0). Therefore,
if we put, for a fized point o € M,

= lim Gy o) 0), T
K(;[;’Q) —'yl—vQ G(y,O)’QES( )’ €M7

each positive harmonic function u on (M, g) can be uniquely expressed
by a finite positive Borel measure on S(00) such that

u(r) = K(z, Q) du(Q),

S(o0)

and has nontangential limit at a.e. Q@ € S(00), i.e., for every nontangen-
tial domian Q at Q, o limQu(x) exists, and the limit is the absolutely
Sr—

continuous part of the Borel measure u on S(00) corresponding to u.

Here, a domain Q@ C M is a nontangential domain at @ € S(oo) if
QN S(oo) = {Q}, and there exists a neighborhood V of @ which is
contained in a nontangential cone at ). The nontangential cone at @
is, by definition, T, = {z € M ; p{z,v) < c} for a positive constant
¢, where v : [0,00) — M is a geodesic ray in (M, g) with (0) =
0,7(00) = @, and p is the metric of Definition 5.13 on M under the
identification S(oo) and M.

Remark 5.36. (1) Sasaki ['84] showed that if (M,g) is a simply
connected complete Riemannian manifold whose curvature is negative
and asymptotically constant curvature —c?, ¢ > 0, then S(oco) is home-
omorphic to the Martin boundary M and M = M (cf. Definition
5.17).
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(2) Ancona ['87] extends Theorem 5.19 to a general elliptic operator
(see also Ito ['64-2]).

(3) Arai ['87], ['89] studied Fatou type theorems of the boundary
behavior of harmonic functions, and BMO on negatively curved mani-
folds.

5.5. Liouville type theorems for harmonic functions

One of the first remarkable results on existence of harmonic func-
tions on a complete Riemannian manifold is the following theorem:

Theorem 5.37 (cf. Yau ['75]). Let (M,g) be a complete Rieman-
nian manifold with nonnegative Ricci curvature: Ricyy > 0.

(1) Then any positive harmonic function on (M, g) must be a con-
stant.

(2) Moreover assume that (M, g) has a point p € M whose cut locus
is empty. Then any harmonic function f on (M, g) satisfying

13{/1 (f(z) +v(x)®) > —o0, forsome0 < s <1,

must be a constant. Here y(z) = d(z,p),z € M.

Theorem 5.38 (cf. Yau ['76]). Let (M,g) be a complete Rieman-
nian manifold. Let f € C®°(M) satisfy f Af < 0, where A = 6d. If
fM fPug < oo, for somep > 1, then f is a constant.

He also showed in the paper that

(1) There is no nonconstant holomorphic IP functions on a complete
Kahler manifold for some p > 1.

(2) Any L? harmonic 1 form on a complete Riemannian manifold
with nonnegative Ricci curvature is parallel.

(3) As their applications, any noncompact complete Riemannian
manifold (M, g) with nonnegative Ricci curvature has infinite volume
Vol(M, g) = co.

In the case of L' harmonic functions, the following is known:

Theorem 5.39 (cf. Li '84]). Let (M, g) be a noncompact complete
Riemannian manifold whose Ricci curvature satisfies that

Ricy(z) > —C (1 +7(z)?),Vz € M,
where v(z) = d(z,p), z € M for some p € M. Then any L' subhar-

monic function must be a constant.

The condition of nonnegativity of Ricci curvature can be relaxed as
follows:
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Theorem 5.40 (Li ['85]). Let (M,g) be an n-dimensional com-
plete Riemannian manifold.

(1) Assume that there exist C > 0, a > 0 such that the Ricci curva-
ture satisfies

Ricy(z) > —C (1+v(2)?) {log (1 +~(z)?)} ™, Vz € M.

Then any L' nonnegative subharmonic function is constant.

(2) Assume that there exist positive constants C < §(n) depend-
ing only on n such that Ricp(z) > —C(x)72, z € M. Then any LP
nonnegative subharmonic function is constant for all0 < p < 1.

(3) Assume that either (M, g) is simply connected and has nonposi-
tive sectional curvature, or (M, g) satisfies Ricyy > —c, for somec > 0,
and Vol{(By(z)) > d > 0, for all x € M. Then each nonnegative LP
subharmonic function is constant for all0 < p < 1.

Kanai ['85] introduced the notions of rough isometry, rough isomet-
ric.

Definition 5.41. For two metric spaces (X, dx),(Y,dy), a map
(not necessarily continuous) ¢; X — Y is said to be rough isometric
if

(1) image of ¢ is full in Y, i.e., the e-ball of the image of ¢ coincides
with Y, and

(2) there exists constsnts @ > 1 and b > 0 such that

a tdx(z1,72) — b < dy(¢(z1), d(z2))
< adx(il'l,iliz) +b, Vi, 22 € X.

Then he showed the following:

Theorem 5.42 (Kanai ['85]). (1) Let (M, g) be an n-dimensional
complete Riemannian manifold whose Ricci curvature satisfies Ricps >
—c, for some constant ¢ > 0. Assume that (M, g) is rough isometric to
the standard Euclidean space (R™,g,) with m > n. Then any positive
harmonic function on (M, g) is constant.

(2) Let (M,g), (N,h) be complete Riemannian manifolds whose
Ricci curvatures are bounded below. Assume that these Riemannian
manifolds are rough isometric. Then (M,g) is parabolic if and only
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if (N, h) is parabolic. Here let us recall (M, g) is parabolic if all positive
superharmonic function on (M, g) is constant.

He also introduced (cf. Kanai ['85]) the notion of a parabolic net
of a Riemannian manifold and showed its relation to parabolicity of
Riemannian manifold:

Definition 5.43. A countable set P of points of a Riemannian
manifold (M, g) is called to be a net if there corresponds to {Np}pep
such that

(1) for all p € P, N, is a finite subset of P, and
(2) forallp,ge P,pe N, <> g€ N,.

A sequence P= {p,, ..., ps} of a net P is said to be a path if
pr € Np,_, for all k = 1,...,s. The net P is connected if each two
point can be joined by a path. We define the Laplacian Ap acting on
functions on P by

1

(B 1)) = - 3

> fl@) + flp)peP,

qEN,

for a function f on P. Then a function f on P is said to be super-
harmonic if Ap f > 0. A net P is said to be parabolic if each positive
superharmonic function on P is constant. A subset P of M is e-separated
if d(p,q) > ¢, for all p, g € P, p # q. If we take a maximal e-separated
subset P in M, it has a net structure, in fact, for each p € P, we may
set Np = {g€ P;0 < d(p,q) < 3e}. We call this P a e-net in (M, g).
Then

Theorem 5.44 (Kanai ['85]). ~Let (M,g) be a complete Rieman-
nian manifold whose Ricci curvature is bounded below. Then (M,g) is
parabolic if and only if for Ve > 0, any e-net P is parabolic.

Furthermore, Kanai ['85] defined the notion of Green function on a
net P:  Foreach k = 0,1,2, ..., define inductively 7 ; PX P — R
by

1, p=yg
mo(p,q) = 0 p4q

7Tk+1(p7 q) = Z 7Tk(pa T) 71'(’)", Q),
reP
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where

1
NTENZE] qgc Np7
n(p,q) = § #Vp

0, q ¢ Np.
Then the Green function Gp on a net P is defined by

GP(p7 Q) = Zﬂ-k(pa Q)a p,q€ P7
k=0

if the sum is convergent. Then

Theorem 5.45 (Kanai ['85]). A net P of a complete Riemannian
manifold (M, g) is hyperbolic if and only if

Gp(p,q) < 00,Vp # q€ P.

See Gaveau & Okada ['91] for de Rham-Hodge theory and the heat
kernels on graphs, and see also Dodziuk ['81], Bérard ['90] about the
vanishing theorems of L? harmonic sections of a vector bundle.

5.6. Miscellaneous topics of harmonic functions

In this section, we treat with the problem which a complete Rie-
mannian manifold admits a nonconstant bounded harmonic function.

We consider, in this section, a Riemannian manifold (M, g) whose
sectional curvature K satisfies K > 0 outside some compact subset,
following Li & Tam ['87-1], ['87-2], and Li [’90]. For such one (M, g), an
end FE is said to be large if, for a fixed point p € M, we put Vg(t) =

Vol(E N Bi(p)), it holds that / _t dt < oo, and we call it small
1 VE(t)

otherwise. Then:

Theorem 5.46 (Li & Tam ['87-2]). Let (M, g) be as above.

(1) Let E be a large end. Then there exists a unique positive har-

monic function f on (M, g) suchthat lim f(z)=1, and lim f(z)
Esx—o00 D>xz—o00
= 0 for other large end D (if exists).

(2) (M, g) admits at least one large end and one small end, say E.
Then there exists a unique (up to a positive constant multiple), positive
harmonic function g such that lim g(z) = oo, lim g(z) = 0, for

E>z—o00 D3z—oc0

any large end D, and g is bounded on the other small end if any.
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(3) If (M, g) has only small ends, then it is parabolic.

Theorem 5.47 (Li & Tam ['87-2]). Let (M,g) be as above. We
denote by Ho the space of all bounded harmonic functions on (M, g).
Then:

(1) if (M,g) has only small ends. Then dimH,, = 1, ie., any
bounded harmonic function is constant.

(2) If (M, g) has large ends, say {E;;i=1, ... ,k}. Then dimH
= k. Here we can take as a basis of Hoo, the unique positive harmonic
function as in (1) of Theorem 5.46, f;,i =1, ...,k on (M, g) satisfying
plm @) =1 and | lim fi(e) = 0(¥] # 9.

Theorem 5.48 (Li & Tam ['87-2]). Let (M,g) be as above. We
denote by H., the positive cone of positive harmonic functions. Then:

(1) if (M, g) has only small ends, then H = {constant functions}.

(2) If (M, g) has only k large ends, then Hy C Hoo, and any pos-
itive harmonic function is a nonnegative linear combination of {f;; i =
1,...,k} in (2) of Theorem 5.47.

(3) If (M, g) has k small ends and s large ends, then any positive har-
monic function 1s a nonnegative linear combination of {f;;i =1, ... ,k}
as in (2) of Theorem 547 and {g;;j = 1,...,s} positive harmonic
functions as in (2) of Theorem 5.46 corresponding to s small ends.

Next we consider a noncompact complete Kahler manifold (M, g)
whose sectional curvature is nonnegative outside some compact subset.
Then one gets:

Theorem 5.49 (Li [90]). Let (M,g) be as above. Assume that
(M, g) has k(> 2) large ends {E; ; i =1, ... ,k}. Then there exists a
unique bounded harmonic function h on (M,g) satisfying 5 %im h(z)

1 Ddz—00
=1, and lim h(z) = 0 fori # 1. At infinity of each small end,

E;5zx—00
h is asymptotically a constant in the interval (0,1), and has a finite
Dirichlet integral over M.

Corollary 5.50 (Li ['90]). Let (M,g) as above. Assume that
(M, g) has at least 2 ends. Then its all ends are small, and there ex-
ists a compact subset D C M such that M \ D is isometrically product
of a compact Kéhler manifold with nonnegative sectional curvature and
nonnegatively curved Riemann surface with boundary.

5.7. Open problems

Finally we gather open problems about the Laplacian on a complete
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Riemannian manifold:

(1) The first main problem is to determine the spectrum Spect{A +
V) of a complete Riemannian manifold (M, g), The bottom of the (es-
sential) spectrum for a noncompact Riemannian manifold is particularly
interesting.

(1-1) The index (i.e., the number of negative eigenvalues of the sec-
ond variation operator of the volume) of a complete minimal submanifold
has been studied by many people. Then the essential spectrum, and the
distribution of discrete spectrum of minimal submanifolds with infinite
index must be studied next.

(1-2) Show the counting number N(X) = #{A,; A\p <A} for A+V
of (M, g) behaves asymptotically

N ~ Cn/ (A=V(2)s3v,, as A— o0,
M
under certain Ricci curvature condition of (M, g) and the exhausion one

of N (cf. section 2.3).

(2) (due to T. Nagasawa) Extend to a complete Riemannian mani-
fold, the following T&cklind’s theorem on the Euclidean space for unique-
ness of solution of the heat equation: For a positive measurable function
on the interval (0, 00), the only solution of

5}
Au+8—:;:0 on R" x (0,00),

satisfying u({z,0) = 0, and

u(z,t)| < exp{|z|A(|z])},

|

See Nagasawa. ['91], for more detail.

is u = 0 if and only if

(3) Extend theories (existence and Liouville type theorems, etc.)
about harmonic functions on a complete Riemannian manifold to ones
about harmonic maps between complete Riemannian manifolds. See for
example Akutagawa ['89], [90], Li & Tam [’91-2].

(4) For two quasi- or rough isometric Riemannian manifolds, does
the property that the one admits a bounded harmonic function if and
only if the other does so, hold 7 See section 5.3.
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(5) Study the Martin boundary of a Riemannian manifold of non
positive curvature outside a compact set (cf. Sasaki ['84], Freire ['91]).
Recently a remarkable progress on a study of the Martin boundary of a
strictly pseudo-convex domain has been made by H. Arai ['91].

(6) Construct two isospectral bounded domains in the Euclidean
space with smooth boundaries which are not isometric each other. Ex-
amples of isospectral plane domains with piecewise smooth boundaries
like tangrams have been constructed by Gordon, Webb & Wolpert [91].
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