Diameter and Area Estimates for S^{2} and P^{2} with Nonnegatively Curved Metrics

Takashi Shioya

§0. Introduction

We consider the quantity

$$
F(M):=\frac{\operatorname{Vol}(M)}{\operatorname{Diam}(M)^{n}}
$$

for any closed Riemannian n-manifold M, which is a homothety invariant, where Vol and Diam denote the volume and the diameter respectively. If the Ricci curvature of M is nonnegative everywhere, Bishop's volume comparison theorem implies that $F(M)<\pi$. A.D. Alexandrov conjectured in [A, p.417] (see also [BZ, p.42]) that for any nonnegatively curved metric g on the 2-sphere S^{2},

$$
F\left(S^{2}, g\right) \leq \frac{\pi}{2}
$$

and the equality holds only if g is homothetic to the metric of the double of the Euclidean unit disk $\bar{B}(1):=\left\{x \in \mathbf{R}^{2} \mid d(x, o) \leq 1\right\}$, which is a singular metric of nonnegative Toponogov curvature. Note that Alexandrov deals a class of surfaces containing such a singular space, namely surfaces of bounded curvature in the sense of [AZ]. The volume and the diameter of any such singular surface can be approximated by those of Riemannian 2-manifolds, and thus it suffices to consider only regular metrics.

Alexandrov's conjecture has not been proved as of now. Concerning this, there are two known results as follows.

Theorem (Sakai, [S]). For any nonnegatively curved Riemannian metric g on the 2 -sphere S^{2},

$$
F\left(S^{2}, g\right)<0.985 \pi
$$

Received January 28, 1991.
Revised April 28, 1991.

Theorem (Grove-Petersen, [GP1, Theorem B]). For any integer $n \geq 2$ there exists an $\epsilon(n)>0$ such that any compact Riemannian n manifold M with nonnegative sectional curvature satisfies

$$
F(M)<V(n)-\epsilon(n)
$$

where $V(n)$ is the volume of the n-dimensional Euclidean unit ball.
In the present paper, we try to extend the above estimates in the 2 -dimensional case, i.e. the estimates for the 2 -sphere S^{2} and the real projective 2-space P^{2} with nonnegatively curved metrics, and the 2 torus T^{2} and the Klein bottle K^{2} with flat metrics. We easily observe that, when $M=\left(T^{2}, g\right)$ or $\left(K^{2}, g\right)$ for a flat metric g, then $F(M) \leq 2$, where the equality holds only if g is the canonical flat metric. Sakai's proof cannot be extended to the case of P^{2}. On the other hand, although Grove-Petersen's theorem is more general, their proof gives no calculable constant. Accordingly, we develop a proving method independent of the topology and have the following finer estimates.

Main Theorem. (1) For any nonnegatively curved Riemannian metric g on the 2-sphere S^{2}, we have

$$
F\left(S^{2}, g\right) \leq\left(\frac{5}{2} \sqrt{10}-7\right) \pi<0.906 \pi
$$

(2) For any nonnegatively curved Riemannian metric g on the real projective 2-space P^{2}, we have

$$
F\left(P^{2}, g\right) \leq \frac{7 \sqrt{7}-10}{9} \pi<0.947 \pi
$$

Different from the case of S^{2}, the maximum of $F\left(P^{2}, g\right)$ for all nonnegatively curved metrics g on P^{2} seems to be $F\left(P^{2}, g_{c}\right)=8 / \pi>$ 0.810π, where g_{c} is the canonical metric on P^{2}, namely the metric of constant curvature 1 .

§1. Preliminaries

Let M be a (not necessarily closed) complete Riemannian 2-manifold without boundary and p a fixed point in M. Consider the metric balls $B(p, r):=\{x \in M \mid d(p, x)<r\}$ and the metric spheres $S(p, r):=$ $\{x \in M \mid d(p, x)=r\}$ centered at p for radii $r>0$, where d denotes the distance function of M induced from the metric. Following Hartman $[\mathrm{H}]$ we define the notion of an exceptional radius as follows (actually, he called it an exceptional t-value).

Definition [H]. A radius $r>0$ is said to be exceptional if and only if there exists a cut point q in $S(p, r)$ from p satisfying one of the following three conditions.
(1) q is a first conjugate point of p along some minimal geodesic segment joining p and q.
(2) There exist more than two distinct minimal geodesic segments joining p and q.
(3) There exist exactly two geodesic segments joining p and q, and moreover the angle between these segments at q is equal to π.

A radius is said to be nonexceptional if and only if it is not exceptional.

Note that if M is compact, $S(p, r)$ for any sufficiently large radius $r>0$ is empty and hence any such r is nonexceptional. Hartman has proved in $[\mathrm{H}]$ that the set of all exceptional radii is a closed and measure zero subset of \mathbf{R} and that $S(p, r)$ for each nonexceptional $r>0$ consists of finitely many simple closed curves of class C^{∞} except the cut points in $S(p, r)$ from p, the number of which is finite. For any nonexceptional $r>0$ we denote by $q_{r, 1}, \ldots, q_{r, n(r)}(0 \leq n(r)<+\infty)$ the cut points in $S(p, r)$ from p. Then $S(p, r)-\left\{q_{r, 1}, \ldots, q_{r, n(r)}\right\}$ consists of $n(r)$ disjoint smooth open arcs $\alpha_{r, 1}, \ldots, \alpha_{r, n(r)}$. Define a continuous function ρ : $M \rightarrow$ $\mathbf{R} \cup\{+\infty\}$ by

$$
\rho(x):=\sup _{y \in M} d(x, y) \quad \text { for } x \in M
$$

Clearly, $\rho(x)=+\infty$ if and only if M is open. Denote by $F_{r, i}$ the set of interior points of the minimal segments joining p and all points in $\alpha_{r, i}$ for any nonexceptional $0<r<\rho(p)$ and any $1 \leq i \leq n(r)$. Then, $F_{r, i}$ is the open disk bounded by the triangle whose sides are $\alpha_{r, i}$ and two minimal segments joining p and the endpoints of $\alpha_{r, i}$ provided $n(r) \geq 1$. Denote by $\kappa_{r, i}(u)$ the integral of the geodesic curvature of the arc $S(p, u) \cap F_{r, i}$ with respect to $B(p, u)$ for any nonexceptional u and r with $0<u<r<\rho(p)$ and for any $i=1, \ldots, n(r)$. Now we will prove

$$
\begin{equation*}
\operatorname{Vol}\left(F_{r, i}\right)=\int_{0}^{r} \int_{0}^{t} \kappa_{r, i}(u) d u d t \tag{*}
\end{equation*}
$$

Indeed, considering the geodesic polar coordinates (θ, t) on $F_{r, i}(\theta$ is the angle at p and t is the distance from p), the volume of $F_{r, i}$ is expressed as

$$
\operatorname{Vol}\left(F_{r, i}\right)=\int_{0}^{r} \int_{0}^{\Theta_{r, i}}\left\|\frac{\partial}{\partial \theta}\right\| d \theta d t
$$

where $\Theta_{r, i}$ is the inner angle of $F_{r, i}$ at p. Moreover, since the geodesic curvature of $S(p, t) \cap F_{r, i}$ with respect to $B(p, t)$ is equal to

$$
\left\|\frac{\partial}{\partial \theta}\right\|^{-2}\left\langle\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta},-\frac{\partial}{\partial t}\right\rangle=\frac{\partial}{\partial t}\left\|\frac{\partial}{\partial \theta}\right\|
$$

we have

$$
\int_{0}^{\Theta_{r, i}}\left\|\frac{\partial}{\partial \theta}\right\| d \theta=\int_{0}^{t} \kappa_{r, i}(u) d u
$$

This proves $(*)$.
In particular, if $\bar{B}(p, r):=B(p, r) \cup S(p, r)$ contains no cut points from p, we have

$$
\operatorname{Vol}(B(p, r))=\int_{0}^{r} \int_{0}^{t} \kappa(B(p, u)) d u d t
$$

where $\kappa(D)$ denotes the sum of the integral of the geodesic curvature of the boundary ∂D of D with respect to D and of the exterior angles at all vertices of D (we remark that $B(p, r)$ has no vertices in this case). Fiala $[\mathrm{F}]$ and Hartman $[\mathrm{H}]$ have extended this to the case where $B(p, r)$ may contain cut points from p as follows.

Lemma $[\mathrm{F}],[\mathrm{H}]$. For any $0<r \leq \rho(p)$ we have

$$
\begin{equation*}
\operatorname{Vol}(B(p, r))=\int_{0}^{r} \int_{0}^{t}\left[\kappa(B(p, u))-h_{p}(u)\right] d u d t \tag{**}
\end{equation*}
$$

where h_{p} is the nonnegative function defined by

$$
h_{p}(u):=\sum_{i=1}^{n(u)}\left(2 \tan \frac{\varphi_{u, i}}{2}-\varphi_{u, i}\right)
$$

and where $\varphi_{u, i}$ for each nonexceptional $0<u<\rho(p)$ denotes the angle at $q_{u, i}$ between the two minimal segments joining p and $q_{u, i}$.

Note that Fiala and Hartman deal only with the case where $M=$ $\left(\mathbf{R}^{2}, g\right)$ (Fiala [F] proved ($* *$) for manifolds with real analytic metrics and Hartman $[\mathrm{H}]$ later extended this to the case of manifolds with C^{2} metrics). However, we observe that their discussions are independent of the topology of M (see [ST]).

§2. Some partial estimates

Assume that M is a nonnegatively curved Riemannian 2-manifold diffeomorphic to either S^{2} or P^{2} the diameter of which is normalized as $\operatorname{Diam}(M)=1$. Every curve in M is assumed to have arclength parameter and is often identified with its image. For a while, let p be any fixed point in M.

First we state a basic topological lemma.
Lemma 1. Let $0<r<\rho(p)$ be any nonexceptional radius. Then the Euler characteristic $\chi(B(p, r))$ of $B(p, r)$ satisfies

$$
\chi(B(p, r)) \leq 1,
$$

and the equality holds if and only if $B(p, r)$ is a disk.
Note that $B(p, r)$ for a nonexceptional $r>0$ is a disk if and only if it is contractible.

Proof. Since $B(p, r)$ is not closed, the 2-dimensional homology $H_{2}(B(p, r), \mathbf{Z})$ vanishes, and the first Betti number $b_{1}(B(p, r))$ is equal to zero if and only if $B(p, r)$ is contractible, namely a disk. Moreover we have

$$
\chi(B(p, r))=1-b_{1}(B(p, r)) .
$$

This completes the proof.
Q.E.D.

Remark. It follows from Lemma 1 and the Gauss-Bonnet theorem that

$$
\kappa(B(p, r))=2 \pi \chi(B(p, r))-c(B(p, r)) \leq 2 \pi
$$

for any nonexceptional $0 \leq r<\rho(p)$, where $c(D)$ denotes the total curvature of D, namely the integral $\int_{D} K d v$ of Gaussian curvature K over D with respect to the volume element $d v$ of M.

Applying $(* *)$ to $B(q, \inf \rho)$ for a point q in M with $\rho(q)=\inf \rho$ and using the above remark, the following consequence is directly proved.

Proposition 2. We have

$$
\operatorname{Vol}(M) \leq \pi \cdot(\inf \rho)^{2}
$$

Note that this is also obtained from Bishop's volume comparison theorem.

The following two lemmas are needed to prove Propositions 5 and 6.

Lemma 3. Let $0<R<\rho(p)$ and $a \geq 0$ be any given constants. If $\kappa(B(p, r)) \leq a$ for every nonexceptional r with $R<r<\rho(p)$, then

$$
\operatorname{Vol}(M) \leq \frac{a}{2}+(2 \pi-a)\left(R-\frac{R^{2}}{2}\right)
$$

Proof. By $(* *)$ and $\rho(p) \leq 1$ we have

$$
\begin{aligned}
\operatorname{Vol}(M) & \leq \int_{0}^{\rho(p)} \int_{0}^{t} \kappa(B(p, u)) d u d t \\
& \leq \int_{0}^{R} \int_{0}^{t} 2 \pi d u d t+\int_{R}^{\rho(p)}\left(\int_{0}^{R} 2 \pi d u+\int_{R}^{t} a d u\right) d t \\
& \leq \frac{a}{2}+(2 \pi-a)\left(R-\frac{R^{2}}{2}\right)
\end{aligned}
$$

Q.E.D.

Lemma 4. If $\bar{B}(p, r)$ for a number $0<r<\rho(p)$ is not contractible, then there exists a geodesic loop with base point p which is entirely contained in $\bar{B}(p, r)$.

Proof. Take a continuous loop $\gamma:[0, l] \rightarrow \bar{B}(p, r)$ with base point p such that

$$
\begin{aligned}
L(\gamma)=\inf \{L(c) \mid & c \text { is a loop with base point } p \text { which is } \\
& \text { not homotopic to the point } p \text { in } \bar{B}(p, r)\} .
\end{aligned}
$$

If γ does not intersect $S(p, r)$, it is a geodesic loop. Thus we consider the case where γ intersect $S(p, r)$. Then $l=L(\gamma) \geq 2 r$. Let us first prove the following

Claim. $\quad \gamma$ forms a geodesic biangle consisting of two geodesics with length r.

It suffices to show that $2 r=l$. Now suppose that $2 r<l$. For a minimal segment σ of M joining p and a point $\gamma(t)$ with $r<t<l-r$, one of the two closed curves $\gamma([0, t]) \cup \sigma$ and $\gamma([t, l]) \cup \sigma$ is not homotopic to the point p in $\bar{B}(p, r)$. Denoting this by γ_{1} we have

$$
L\left(\gamma_{1}\right)<L(\gamma)
$$

because of $L(\sigma) \leq r$. This contradicts the definition of γ and completes the proof of the claim.

We will prove that γ does not break at $\gamma(r)$. Suppose the contrary. For each $0 \leq t \leq r$ we take a minimal segment σ_{t} joining $\gamma(r-t)$ and $\gamma(r+t)$ and set $\gamma_{t}:=\gamma([0, r-t]) \cup \sigma_{t} \cup \gamma([r+t, 2 r])$. Since γ breaks we have

$$
L\left(\gamma_{t}\right)<L(\gamma)=2 r \quad \text { and hence } \quad \gamma_{t} \subset B(p, r)
$$

for any $0<t \leq r$. Moreover, there is a small $\epsilon>0$ such that $[0, \epsilon] \times$ $[0,1] \ni(t, s) \longmapsto \gamma_{t}\left(s L\left(\gamma_{t}\right)\right)$ is a smooth variation entirely contained in $\bar{B}(p, r)$, which is a homotopy with $\gamma_{0}=\gamma$ in particular. This contradicts the definition of γ.
Q.E.D.

Proposition 5. Let $0<R<\rho(p)$. If there exists a number $0<r_{0} \leq R$ such that $\bar{B}\left(p, r_{0}\right)$ is not contractible, then

$$
\operatorname{Vol}(M) \leq \frac{\pi}{2}\left(1+2 R-R^{2}\right)
$$

Proof. Take any fixed nonexceptional r with $R<r<\rho(p)$. If $B(p, r)$ is not a disk, Lemma 1 implies $\chi(B(p, r)) \leq 0$ and hence

$$
\kappa(B(p, r)) \leq 0
$$

by the Gauss-Bonnet theorem. In the case where $B(p, r)$ is a disk, Lemma 4 implies that $\bar{B}\left(p, r_{0}\right)$ contains a geodesic loop, which bounds a disk in $B(p, r)$ whose total curvature greater than π, because of the Gauss-Bonnet theorem. Therefore we have $c(B(p, r))>\pi$ and hence by Lemma 1

$$
\kappa(B(p, r))=2 \pi \chi(B(p, r))-c(B(p, r))<\pi
$$

As a result, in either case we have $\kappa(B(p, r))<\pi$ for any nonexceptional r with $R<r<\rho(p)$. Applying Lemma 3 under $a:=\pi$, the proof is completed.
Q.E.D.

Proposition 6. Let $0<R<\rho(p)$. Then we have

$$
\operatorname{Vol}(M) \leq \pi-\frac{1}{2}(1-R)^{2} \min \{c(B(p, R)), 2 \pi\}
$$

Proof. It follows from the Gauss-Bonnet theorem and Lemma 1 that $\kappa(B(p, r)) \leq 2 \pi-c(B(p, r))$ for all nonexceptional r with $R<r<$ $\rho(p)$. Since the function $t \mapsto c(B(p, t))$ is monotone nondecreasing, we have

$$
\kappa(B(p, r)) \leq 2 \pi-c(B(p, R))
$$

for all nonexceptional r with $R<r<\rho(p)$. Setting

$$
a:=\max \{2 \pi-c(B(p, R)), 0\}
$$

Lemma 3 completes the proof.
Q.E.D.

§3. Proof of Main Theorem

Lemma 7. Let $0<R<\rho(p)$. If $B(p, r)$ for every $0<r \leq R$ is contractible, then

$$
\operatorname{Vol}(B(p, R)) \geq \frac{1}{2} R^{2}(2 \pi-c(B(p, R)))
$$

Proof. In the case where R is exceptional, the above inequality for every nonexceptional R^{\prime} with $0<R^{\prime}<R$ yields the conclusion since the set of nonexceptional radii is dense in $[0,+\infty)$. Thus we may consider only the case where R is nonexceptional. Under the notations as in section 1, it follows from the Gauss-Bonnet theorem that $\kappa_{R, i}(t)=$ $\Theta_{R, i}-c\left(F_{R, i} \cap B(p, t)\right) \geq \Theta_{R, i}-c\left(F_{R, i}\right)$ for all nonexceptional $0<t \leq R$. This and (*) imply

$$
\operatorname{Vol}\left(F_{R, i}\right) \geq \int_{0}^{R} \int_{0}^{r}\left(\Theta_{R, i}-c\left(F_{R, i}\right)\right) d t d r
$$

and hence, by setting $F_{R}:=\bigcup_{i=1}^{n(R)} F_{R, i}$ and $\Theta_{R}:=\sum_{i=1}^{n(R)} \Theta_{R, i}$,

$$
\operatorname{Vol}(B(p, R)) \geq \operatorname{Vol}\left(F_{R}\right) \geq \int_{0}^{R} \int_{0}^{r}\left(\Theta_{R}-c\left(F_{R}\right)\right) d t d r
$$

On the other hand, since $B(p, R)-F_{R}$ is the union of $n(R)$ disks bounded by geodesic biangles, the Gauss-Bonnet theorem shows that

$$
c\left(B(p, R)-F_{R}\right)>2 \pi-\Theta_{R}
$$

Thus we have

$$
\begin{aligned}
\operatorname{Vol}(B(p, R)) & \geq \int_{0}^{R} \int_{0}^{r}(2 \pi-c(B(p, R))) d t d r \\
& =\frac{1}{2} R^{2}(2 \pi-c(B(p, R)))
\end{aligned}
$$

Q.E.D.

Lemma 8. For a given constant $R>0$ we have

$$
\operatorname{Vol}(M) \geq \frac{c(M) \inf _{p \in M} \operatorname{Vol}(B(p, R))}{\sup _{p \in M} c(B(p, R))}
$$

Recall that

$$
c(M)= \begin{cases}4 \pi & \text { if } M \cong S^{2} \\ 2 \pi & \text { if } M \cong P^{2}\end{cases}
$$

Proof. It suffices to show that

$$
\int_{M} c(B(p, R)) d p=\int_{M} K(p) \operatorname{Vol}(B(p, R)) d p
$$

where $d p$ is the volume element with respect to a variable p of M. Define the function $\varphi: M \times M \rightarrow \mathbf{R}$ by

$$
\varphi(p, q):=\left\{\begin{array}{ll}
1 & \text { if } d(p, q)<R \\
0 & \text { if } d(p, q) \geq R
\end{array} \quad \text { for all } p, q \in M\right.
$$

By Fubini's theorem we have

$$
\begin{aligned}
\int_{M} c(B(p, R)) d p & =\int_{M} \int_{M} \varphi(p, q) K(q) d q d p \\
& =\int_{M} K(q) \int_{M} \varphi(p, q) d p d q \\
& =\int_{M} K(q) \operatorname{Vol}(B(q, R)) d q
\end{aligned}
$$

Q.E.D.

Proof of Main Theorem. Let us define a constant $0<R<1$ by

$$
R:=\frac{4-\sqrt{4+3 c(M) / 2 \pi}}{4-c(M) / 2 \pi}= \begin{cases}2-\sqrt{10} / 2 & \text { if } M \cong S^{2} \\ (4-\sqrt{7}) / 3 & \text { if } M \cong P^{2}\end{cases}
$$

In the case where $\inf \rho \leq R$, Proposition 2 implies

$$
\operatorname{Vol}(M) \leq \pi R^{2}< \begin{cases}0.176 \pi & \text { if } M \cong S^{2} \\ 0.204 \pi & \text { if } M \cong P^{2}\end{cases}
$$

which concludes Main Theorem in particular. Thus assume that inf $\rho>$ R. If there is a point p in M such that $c(B(p, R)) \geq 2 \pi$, then by

Proposition 6 we have

$$
\operatorname{Vol}(M) \leq \pi \cdot\left(2 R-R^{2}\right)< \begin{cases}0.663 \pi & \text { if } M \cong S^{2} \\ 0.700 \pi & \text { if } M \cong P^{2}\end{cases}
$$

If there are a point p in M and a radius $0<r_{0} \leq R$ such that $\bar{B}\left(p, r_{0}\right)$ is not contractible, then Proposition 5 implies

$$
\operatorname{Vol}(M) \leq \frac{\pi}{2}\left(1+2 R-R^{2}\right)< \begin{cases}0.832 \pi & \text { if } M \cong S^{2} \\ 0.850 \pi & \text { if } M \cong P^{2}\end{cases}
$$

Therefore, it suffices to consider the case where $c(B(p, R))<2 \pi$ and $\bar{B}(p, r)$ is contractible for all points p in M and all $0<r \leq R$. Now, setting

$$
c:=\sup _{p \in M} c(B(p, R))
$$

we have $0<c \leq 2 \pi$. Lemmas 7 and 8 show

$$
\operatorname{Vol}(M) \geq \frac{R^{2} c(M)(2 \pi-c)}{2 c}
$$

On the other hand, we have by Proposition 6

$$
\operatorname{Vol}(M) \leq \pi-\frac{1}{2}(1-R)^{2} c
$$

Combining these two formulas, we have the quadratic inequality:

$$
(1-R)^{2} c^{2}-\left(2 \pi+R^{2} c(M)\right) c+2 \pi R^{2} c(M) \leq 0
$$

which gives the estimate of c :

$$
c \geq \frac{2 \pi+R^{2} c(M)-\sqrt{b}}{2(1-R)^{2}}
$$

where b is the constant defined by

$$
b:=\left(2 \pi+R^{2} c(M)\right)^{2}-8 \pi R^{2}\left(1-R^{2}\right) c(M)
$$

By this and (\#) we obtain

$$
\operatorname{Vol}(M) \leq \frac{\pi}{2}-\frac{1}{4}\left(R^{2} c(M)-\sqrt{b}\right)
$$

This completes the proof of Main Theorem.
Q.E.D.

Note that R is determined as the last estimate is finest.

References

[A] A.D. Alexandrov, "Die innere Geometrie der konvexen Flächen", Akad. Verl., Berlin, 1955.
[AZ] A.D. Alexandrov and V.A. Zalgaller, "Intrinsic geometry of surfaces", Amer. Math. Soc., Providence, Rhode Island, 1967.
[BZ] Yu.D. Burago and V.A. Zalgaller, "Geometric inequalities", Springer, Berlin, 1988.
[F] F. Fiala, Le probléme isopèrimétres sur les surface onvretes à courbure positive, Comment. Math. Helv., 13 (1941), 293-346.
[GP1] K. Grove and P. Petersen V, Manifolds near the boundary of existence.
[GP2] \quad, Volume comparison à la Aleksandrov.
[H] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math., 86 (1964), 705-727.
[S] T. Sakai, On the isodiametric inequality for the 2-sphere, in "Geometry of Manifolds", Perspectives in Math. 8 (K. Shiohama, ed.), Academic Press, 1989, pp. 303-315.
[ST] K. Shiohama and M. Tanaka, An isoperimetric problem for infinitely connected complete open surfaces, in "Geometry of Manifolds", Perspectives in Math. 8 (K. Shiohama, ed.), Academic Press, 1989, pp. 317-343.

Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka 812
Japan

