The Length Function of Geodesic Parallel Circles

Katsuhiro Shiohama and Minoru Tanaka
Dedicated to Professor T. Otsuki on his 75th birthday

§0. Introduction

The isoperimetric inequalities for a simply closed curve C on a Riemannian plane Π (i.e., a complete Riemannian manifold homeomorphic to \mathbf{R}^{2}) was first investigated by Fiala in [1] and later by Hartman in [2]. These inequalities were generalized by the first named author in [3],[4] for a simply closed curve on a finitely connected complete open surface and by both authors in [5] for a simply closed curve on an infinitely connected complete open surface. Here a noncompact complete and open Riemannian 2-manifold M is called finitely connected if it is homeomorphic to a compact 2-manifold without boundary from which finitely many points are removed, and otherwise M is called infinitely connected. Fiala and Hartman investigated certain properties of geodesic parallel circles $S(t):=\{x \in \Pi ; d(x, C)=t\}, t \geq 0$ around C of a Riemannian plane Π in order to prove the isoperimetric inequalities, where d denotes the Riemannian distance function. Fiala proved in [1] that if a Riemannian plane Π and a simple closed curve C on Π are analytic, then $S(t)$ is a finite union of piecewise smooth simple closed curves except for t in a discrete subset of $[0, \infty)$ and its length $L(t)$ is continuous on $[0, \infty)$. If Π and C are not analytic but smooth, then $L(t)$ is not always continuous as pointed out by Hartman in [2]. What is worse is that $S(t)$ does not always admit its length. Under the assumption of low differentiability of Π and C, Hartman proved that $S(t)$ is a finite union of piecewise smooth simple closed curves except for t in a closed subset of Lebesgue measure zero in $[0, \infty)$. This result was recently extended by the authors [5] to an arbitrary given simply closed curve C in an arbitrary given complete, connected, oriented and noncompact Riemannian 2-manifold M.

The normal exponential map along C induces a local chart and a function $L(t)$ for all $t \geq 0$ is well defined with the aid of this local chart. As mentioned above, $L(t)$ for all $t \geq 0$ defines the length of $S(t)$ whenever $S(t)$ is a finite union of piecewise smooth simple closed curves. However we do not know the geometric meaning of $L(t)$ for the other t-values. Hartman introduced a certain monotone function $J:[0, \infty) \rightarrow \mathbf{R}$ by using this local chart and proved in Theorem 6.2 ; [2] that the following function

$$
\begin{equation*}
H(t):=J(t)+L(t) \tag{*}
\end{equation*}
$$

is absolutely continuous on every compact interval of $[0, \infty)$.
The purpose of the present article is to extend the absolute continuity of H as defined in $(*)$ for an arbitrary given simple closed curve C in an arbitrary given connected, complete, noncompact and oriented Riemannian 2-manifold M. The cut locus and focal locus to C are essential in our discussion. In $\S 1$ we introduce the notations concerning with the cut points and focal points to C as used in [2],[5]. Under our situation $M \backslash C$ has at most two components. The type of cut locus and focal locus changes as the number of components of $M \backslash C$. In $\S 2$ we deal with the simpler case where $M \backslash C$ has two components and prove the absolute continuity of $(*)$ in this case (see Theorem 2.2). We also need to modify the definition of $J(t)$ in the case where $M \backslash C$ is connected. In $\S 3$ we prove the absolute continuity of $(*)$ in the case where $M \backslash C$ is connected (see Theorem 3.2).

§1. Preliminaries

From now on let M be a connected, oriented, complete and noncompact Riemannian 2-manifold and C a smooth simply closed curve on M. Since our discussion proceeds in the same manner as developed by Hartman, we shall employ the same terminologies as used in [2], [5]. Let L_{0} be the length of C. A point on C is expressed as $z_{0}(s)$ with respect to the arclength parameter $s \in\left[0, L_{0}\right] . z_{0}(s)$ and other functions of s will be considered periodic of period of L_{0} for convenience. Let g be the Riemannian metric on M and N a unit normal field along C with $N_{0}=N_{L_{0}}$. A map $z: \mathbf{R} \times\left[0, L_{0}\right] \rightarrow M$ is defined by

$$
z(t, s):=\exp _{z_{0}(s)} t N_{s}
$$

where $\exp _{p}$ is the exponential map of M at p. If $|t|$ is sufficiently small, then z gives a coordinate system (t, s) and $g\left(\frac{\partial z}{\partial t}, \frac{\partial z}{\partial t}\right)=1$ holds around
C and $g\left(\frac{\partial z}{\partial t}, \frac{\partial z}{\partial s}\right)=0$ follows from Gauss Lemma. For every $s \in\left[0, L_{0}\right]$ let $\gamma_{s}: R \rightarrow M$ be a geodesic with $\gamma_{s}(t)=z(t, s)$ and $e_{s}(t)$ a unit parallel vector field along γ_{s} with $e_{s}(0)=\frac{\partial z}{\partial s}(0, s)$. For each s let $Y_{s}(t)$ denote the Jacobi field along γ_{s} with $Y_{s}(0)=e_{s}(0), g\left(Y_{s}(t), \gamma_{s}^{\prime}(t)\right)=0$. By setting $f(t, s)=g\left(Y_{s}(t), e_{s}(t)\right)$, we have $f(0, s)=1, f_{t}(0, s)=\kappa(s)$ and $g\left(\frac{\partial z}{\partial s}, \frac{\partial z}{\partial s}\right)=f^{2}(t, s)$, where $\kappa(s)$ is the geodesic curvature of C at $z_{0}(s)$ and $f_{t}=\frac{\partial f}{\partial t}$. Since Y_{s} is a Jacobi field we have $f_{t t}(t, s)+$ $G(z(t, s)) f(t, s)=0$, where $f_{t t}=\frac{\partial^{2} f}{\partial t^{2}}$.

Let $P(s)$ (respectively $N(s)$) denote the least positive (respectively the largest negative) t with $f(s, t)=0$, or $P(s)=+\infty$ (respectively $N(s)=-\infty)$ if there is no such zero. If $P\left(s_{0}\right)<+\infty$ (respectively $\left.N\left(s_{0}\right)>-\infty\right)$, then P (respectively N) is smooth around s_{o} and $z\left(P\left(s_{0}\right), s_{0}\right)$, (respectively $z\left(N\left(s_{0}\right), s_{0}\right)$ is called the first positive (respectively negative) focal point to C along $\gamma_{s_{0}}$.

A unit speed geodesic $\sigma:[0, \ell] \rightarrow M$ is called a C-segment $\mathrm{iff} \sigma(0) \in C$ and $d(\sigma(t), \mathrm{C})=t$ holds for all $t \in[0, \ell]$. Every C-segment is a subarc of some γ_{s}. Let $\rho(s):=\sup \left\{t>0 ; d\left(\gamma_{s}(t), C\right)=t\right\}$ and $\nu(s):=\inf \{t<$ $\left.0 ; d\left(\gamma_{s}(t), C\right)=-t\right\} . \rho(s)$ (respectively $\left.\nu(s)\right)$ is the cut point distance to C along $\gamma_{s} \mid[0, \infty)$ (respectively $\left.\gamma_{s} \mid(-\infty, 0]\right) . z(\rho(s), s)$ is called a cut point to C along γ_{s} and $\gamma_{s} \mid[0, \rho(s)]$ is a maximal C-segment contained in $\gamma_{s} \mid[0, \infty)$. A cut point is a first focal point of a C-segment or the intersection of at least two distinct C-segments.

A cut point at C is called normal if it is the endpoint of exactly two distinct C-segments and is not a first focal point along either of them. A cut point to C which is not normal is called anormal. An anormal cut point $z(\rho(s), s)$ (or $z(\nu(s), s)$) is called totally nondegenerate iff $z(\rho(s), s)$ (or $z(\nu(s), s)$) is not a first focal point to C along any C-segment ending at $z(\rho(s), s)$ (or $z(\nu(s), s)$). An anormal cut point is called degenerate iff it is not totally nondegenerate. A number $t>0$ is called anormal iff there exists a value $s \in \rho^{-1}(t)$ (or $s \in \nu^{-1}(-t)$) such that $z(t, s)$ (or $z(-t, s))$ is anormal. It $t>0$ is not anormal, then t is called normal. Also $t>0$ is called exceptional iff it is either anormal or normal but there exists an s such that $\rho(s)=t$ (or $\nu(s)=-t$) and $\rho^{\prime}=0$ (or $\nu^{\prime}=0$) at s. A positive number t is by definition non-exceptional iff it is not exceptional.

§2. The case where C bounds a domain

Throughout this section let $M \backslash C$ have two components and M_{1} the component containing $\{z(\rho(s), s) ; \rho(s)<\infty\}$. Note that the sets $\{z(\rho(s), s) ; \rho(s)<\infty\}$ and $\{z(\nu(s), s) ; \nu(s)>-\infty\}$ have no common point. We only restrict to consider M_{1}, since the same discussion holds for $M \backslash M_{1}$.

We begin with the discussion of degenerate cut points that was not discussed in [2]. It seems to the authors that the lack of degenerate cut points in [2] would cause unclearness in the proof of Theorem 6.2 in [2]. The following Lemma 2.1 is useful to prove our results.

Lemma 2.1. The set $F=\left\{s \in\left[0, L_{0}\right] ; \rho(s)<P(s)\right.$, but $z(\rho(s), s)$ $\in M_{1}$ is a degenerate cut point along some C-segment $\}$ is of Lebesgue measure zero.

Proof. It suffices for the proof to show that for any $s \in F$ there exists a positive δ such that $F \cap(s-\delta, s+\delta)$ is of Lebesgue measure zero. Let $s_{0} \in F$ and set $p=z\left(\rho\left(s_{0}\right), s_{0}\right)$. Choose a small positive ϵ such that B_{ϵ} is an open normal convex ϵ-ball around p. For each $s \in\left[0, L_{0}\right]$ with $z(\rho(s), s)=p$ let s^{\prime} denote the common point of ∂B_{ϵ} and $\gamma_{s}\left(\left[0, \rho\left(s_{0}\right)\right]\right)$. The circle ∂B_{ϵ} is naturally oriented. Define the oriented open subarc from s_{1}^{\prime} to s_{2}^{\prime} of ∂B_{ϵ} by $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$. For each $s \in\left[0, L_{0}\right] \backslash$ $\left\{s_{0}\right\}$ with $z(\rho(s), s)=p$ let $D\left(s_{0}^{\prime}, s^{\prime}\right)$ (respectively $\left.D\left(s^{\prime}, s_{0}^{\prime}\right)\right)$ be the disk domain bounded by three $\operatorname{arcs} \gamma_{s_{0}}\left|\left[\rho\left(s_{0}\right)-\epsilon, \rho\left(s_{0}\right)\right], \gamma_{s}\right|\left[\rho\left(s_{0}\right)-\epsilon, \rho\left(s_{0}\right)\right]$ and ($s_{0}^{\prime}, s^{\prime}$) (respectively $D\left(s^{\prime}, s_{0}^{\prime}\right)$). Since $\rho\left(s_{0}\right)<P\left(s_{0}\right)$, there exist $s_{+}, s_{-} \in\left[0, L_{0}\right]$ such that $z\left(\rho\left(s_{+}\right), s_{+}\right)=z\left(\rho\left(s_{-}\right), s_{-}\right)=p$ and such that $D_{+}:=D\left(s_{0}^{\prime}, s_{+}^{\prime}\right)$ and $D_{-}:=D\left(s_{-}^{\prime}, s_{0}^{\prime}\right)$ are disjoint and they do not contain any C-segment passing through p. Let $(\pi, N C, M)$ be the normal bundle over C with projection π, total space $N C$ and base space M. Since p is not a focal point to C along $\gamma_{s_{0}}$, there exist a neighborhood V of $\rho\left(s_{0}\right) \cdot \dot{\gamma}_{s_{0}}(0)$ in $N C$ and a neighborhood U of p in M such that the restriction $\exp _{V}$ of the normal exponential map to V is a diffeomorphism of V onto U. Since p is a degenerate cut point, there is a C-segment ending at p along which p is the first focal point to C. Suppose $P\left(s_{+}\right)=$ $\rho\left(s_{+}\right)$. Choose a positive number ϵ_{1} such that U contains $z(\rho(s), s)$ and $z(P(s), s)$ for all $s \in\left[s_{+}-\epsilon_{1}, s_{+}+\epsilon_{1}\right]$. From construction of D_{+}we can choose a positive number $\delta_{1}<\epsilon_{1}$ such that if $z\left(\rho\left(s_{1}\right), s_{1}\right)=z(\rho(s), s)$ for $s_{1} \in\left[0, L_{0}\right], s \in\left(s_{0}, s_{0}+\delta_{1}\right)$, then $s=s_{1}$ or $s_{1} \in\left(s_{+}-\epsilon_{1}, s_{+}\right)$. Let $v:\left(s_{+}-\epsilon_{1}, s_{+}\right) \rightarrow\left(s_{1}, s_{0}+\delta_{1}\right)$ be defined as

$$
v(s):=z_{0}^{-1} \circ \pi \circ\left(\exp _{V}^{-1}\right)(z(\rho(s), s))
$$

If $s \in\left(s_{+}-\epsilon, s_{+}\right)$satisfies $P^{\prime}(s)=0$ and $P(s)=\rho(s)$, then $v^{\prime}(s)=0$,
and hence s is a critical point of v. Let $K \subset\left(s_{+}-\epsilon_{1}, s_{+}\right)$be the set of all critical points of v. If $s \in\left(s_{0}, s_{0}+\delta_{1}\right)$ is an element of F, then there exists an $s_{1} \in\left[0, L_{0}\right]$ such that $z(\rho(s), s)=z\left(\rho\left(s_{1}\right), s_{1}\right)$, $P\left(s_{1}\right)=\rho\left(s_{1}\right)$. It follows from the choice of δ_{1} and Proposition 2.1 in [5] that $P^{\prime}\left(s_{1}\right)=0$ and $s_{1} \in\left(s_{+}-\epsilon_{1}, s_{+}\right)$. Therefore we find an $s_{1} \in K$ such that $z(\rho(s), s)=z\left(\rho\left(s_{1}\right), s_{1}\right)=z\left(P\left(s_{1}\right), s_{1}\right)$. This fact means that $\left(s_{0}, s_{0}+\delta_{1}\right) \cap F$ is contained entirely in $v(K)$. The Sard Theorem implies that $v(K)$ is of Lebesgue measure zero. If $\rho\left(s_{+}\right)<P\left(s_{+}\right)$, then there exists a positive number δ such that $\left(s_{0}, s_{0}+\delta\right) \cap F=\emptyset$. Summing up these discussion we observe that there exists a positive number δ_{1} such that $\left(s_{0}, s_{0}+\delta_{1}\right) \cap F$ is of measure zero.

An analogous discussion applies to D_{-}to prove that $\left(s_{0}-\delta_{1}^{\prime}, s_{0}\right) \cap F$ is of measure zero for some positive number δ_{1}^{\prime}. This completes the proof of Lemma 2.1.

Let $D:=\left\{(t, s) ; 0 \leq t<\rho(s), 0 \leq s \leq L_{0}\right\}$ and $\chi(t, s)$ the characteristic function of D such that $\chi(s, t)=1$ or 0 according as $(t, s) \in D$ or not. For any $t \geq 0$ set

$$
L(t):=\int_{0}^{L_{0}} \chi(t, s) f(t, s) d s
$$

This $L(t)$ is the length of $S(t)=\left\{x \in M_{1} \mid d(x, C)=t\right\}$ if t is a nonexceptional value. We define for $t \geq 0$ the set $Q(t)$ as follows.

$$
Q(t):=\left\{s \in \rho^{-1}(t) ; z(s, t) \text { is normal and } \rho^{\prime}(s)=0\right\} .
$$

$Q(t)$ has the property that elements in it are pairwise disjoint, and hence it is of Lebesgue measure zero except for an at most countable set of $[0, \infty)$. We define for $t \geq 0$ the function

$$
J(t):=\sum_{0 \leq u \leq t} \int_{Q(u)} f(u, s) d s
$$

Note that L and also J is discontinuous at $t=t_{0}$ iff the Lebesgue measure of $Q\left(t_{0}\right)$ is positive.

In order to prove Theorem 2.2 we shall need some basic tools from measure theory which is referred to [6]. Let h be a continuous function of bounded variation defined on a closed interval $[a, b]$. Then the function h defines a Lebesgue-Stieltjes measure Λ_{h} such that $\Lambda_{h}((x, y])$ for each subinterval $(x, y]$ of $[a, b]$ equals the total variation of h on $[x, y]$. It is known that any Borel set B in $[a, b]$ is Λ_{h}-measurable. For each Lebesgue measurable set $S \subset \mathbf{R},|S|$ denotes its Lebesgue measure.

Theorem 2.2. The function $H(t)=L(t)+J(t)$ is absolutely continuous on any compact subinterval of $[0, \infty)$.

Proof. Let $[a, b]$ be a compact subinterval of $[0, \infty)$. In order to prove the theorem we shall show that for any positive ϵ there exists a positive $\eta=\eta(\epsilon, a, b)$ such that if $\delta_{1}, \delta_{2}, \ldots, \delta_{k}$ are non-overlapping subintervals of $[a, b]$, then

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\delta_{i} H\right|<\left(L_{0}+2\right) \epsilon \text { whenever } \sum_{i=1}^{k}\left|\delta_{i}\right|<\eta \tag{2.1}
\end{equation*}
$$

where $\delta_{i} H=H(\tau)-H(\sigma),\left|\delta_{i}\right|=\tau-\sigma$ if $\delta_{i}=(\sigma, \tau]$. Let $\epsilon>0$ be fixed. It follows from Proposition 3.1 in [5] that the set $T_{b}:=\{s \in$ $\left[0, L_{0}\right] ; \rho(s) \leq b, z(\rho(s), s)$ is a totally nondegenerate anormal point $\}$ is finite. Let $c=c(b)$ be a constant satisfying

$$
|f(t, s)| \leq c,\left|f_{t}(t, s)\right| \leq c,(t, s) \in[0, b] \times\left[0, L_{0}\right]
$$

By Lemma 2.1 the set F^{ϵ} defined by

$$
F^{\epsilon}=\left\{s \in\left[0, L_{0}\right] ; \rho(s) \leq b, s \in F, f(\rho(s), s) \geq \epsilon / 2\right\}
$$

is compact and of Lebesgue measure zero. Here there exists a set V^{ϵ} with $\left|V^{\epsilon}\right|<\epsilon / c$ consisting of a finite number of open subintervals of $\left[0, L_{0}\right]$ such that $V^{\epsilon} \supset T_{b} \cap F^{\epsilon}$. Let Q^{ϵ} be the set

$$
Q^{\epsilon}:=\left\{s \in\left[0, L_{0}\right] ; \rho(s) \leq b, f(\rho(s), s) \leq \epsilon / 2\right\}
$$

Since Q^{ϵ} is compact, Q^{ϵ} can be covered by a set S^{ϵ} consisting of a finite number of open subintervals of $\left[0, L_{0}\right]$ on which $f(\rho(s), s)<3 \epsilon / 4$. Then the set $R^{\epsilon}=\left[0, L_{0}\right]-\left(S^{\epsilon} \cup V^{\epsilon}\right)$ consists of a finite number of closed subintervals I_{1}, \ldots, I_{p} of $\left[0, L_{0}\right]$. It follows from construction of R^{ϵ} and from Proposition 2.2 in [5] that ρ is smooth at each point $s \in R^{\epsilon}$ if $\rho(s) \leq b$. Hence the function $\rho_{b}:=\operatorname{Max}\{\rho, b\}$ is Lipschitz continuous on each closed intervals $I_{j}, j=1, \ldots, p$. In particular the restriction ρ_{j} of ρ_{b} to I_{j} is of bounded variation. If Λ_{j} denotes the Lebesgue-Stieltjes measure defined by ρ_{j}, then we observe from Corollary 3.1 in [2] that

$$
\begin{equation*}
\sum_{j=1}^{k} \Lambda_{j}\left(\rho_{j}^{-1}\left(\delta_{i}\right)\right)=\int_{\sigma}^{\tau} n(r) d r \tag{2.2}
\end{equation*}
$$

where $n(r)$ is the Lebesgue summable function defined by the number of the elements of the set $\left\{s \in R^{\epsilon} ; \rho(s)=r\right\}$. Let $O(i)$ be an open set
containing $R(i)=\cup_{\sigma<t \leq \tau} Q(t)$ such that $|O(i)-R(i)|<\left|\delta_{i}\right|$. Setting $S(i)=\rho^{-1}\left(\delta_{i}\right)$, we define

$$
\begin{aligned}
S_{1} & =(S(i)-R(i)) \cap O(i) \\
S_{2} & =(S(i)-R(i)) \cap\left[\{s ; f(\rho(s), s)<\epsilon\} \cup V^{\epsilon}\right] \\
S_{3} & =(S(i)-R(i))-\left(S_{1} \cup S_{2}\right)
\end{aligned}
$$

Making use of the inequality (6.20) in [2], we obtain

$$
\begin{align*}
\left|\delta_{i} H\right| & \leq \sum_{j=1}^{3} \int_{S_{j}} f(\rho(s), s) d s+2 c L_{0}\left|\delta_{i}\right| \tag{2.3}\\
& \leq c\left|\delta_{i}\right|+\epsilon|S(i)|+c\left|V^{\epsilon} \cap S(i)\right|+c\left|S_{3}\right|+2 c L_{0}\left|\delta_{i}\right|
\end{align*}
$$

Since $S_{3} \subset R^{\epsilon}$ and $S_{3} \cap O(i)=\emptyset, \rho$ is smooth at each point of S_{3} and $\left|\rho^{\prime}\right| \geq c_{1}$ on S_{3} holds for some positive constant $c_{1}=c_{1}(\epsilon, a, b)$. From the property of the Lebesgue-Stieltjes measure Λ_{j} we obtain

$$
\sum_{j=1}^{p} \Lambda_{j}\left(I_{j} \cap S_{3}\right) \geq c_{1} \sum_{j=1}^{p}\left|I_{j} \cap S_{3}\right|=c_{1}\left|R^{\epsilon} \cap S_{3}\right|=c_{1}\left|S_{3}\right|
$$

From (2.2) and the above inequality, we get

$$
\begin{equation*}
\left|S_{3}\right| \leq c_{1}^{-1} \sum_{j=1}^{p} \Lambda_{j}\left(I_{j} \cap S_{3}\right) \leq c_{1}^{-1} \sum_{j=1}^{p} \Lambda_{j}\left(I_{j} \cap \rho^{-1}\left(\delta_{i}\right)\right)=c_{1}^{-1} \int_{\sigma}^{\tau} n(r) d r \tag{2.4}
\end{equation*}
$$

From inequalities (2.3) and (2.4) we have

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\delta_{i} H\right| \leq c\left(1+2 L_{0}\right) \sum_{i=1}^{k}\left|\delta_{i}\right|+\left(L_{0}+1\right) \epsilon+c c_{1}^{-1} \sum_{i=1}^{k} \int_{\delta_{i}} n(r) d r \tag{2.5}
\end{equation*}
$$

The inequality (2.5) implies that we can find a positive $\eta=\eta(\epsilon, a, b)$ satisfying (2.1). Note that the function $n(r)$ is Lebesgue summable.

§3. The case where C bounds no domain

We deal with the case where a closed curve C does not bound any domain of M. Our situation means that there exists a cut point $p \in M$
to C such that $p=z\left(\rho\left(s_{1}\right), s_{1}\right)=z\left(\nu\left(s_{2}\right), s_{2}\right)$ for some $s_{1}, s_{2} \in\left[0, L_{0}\right]$. Three types of cut points to C appear. A cut point p to C is by definition of ρ-type (respectively ν-type) iff all C-segments ending at p are tangent to N (respectively to $-N$) at their starting points. A cut point p to C is of mixed type iff $p=z\left(\rho\left(s_{1}\right), s_{1}\right)=z\left(\nu\left(s_{2}\right), s_{2}\right)$ for some $s_{1}, s_{2} \in\left[0, L_{0}\right]$. For a mixed type cut point to C the normality, anormality, degeneracy and all other properties are well defined by the same manner as before. These properties are defined for t-value where $S(t)$ contains a mixed type cut point having the corresponding properties. Let F_{+}, F_{-}be the sets

$$
\begin{aligned}
F_{+}:=\left\{s \in\left[0, L_{0}\right] ;\right. & \rho(s)<P(s), \\
& \text { but } z(\rho(s), s) \text { is a degenerate cut point }\} \\
F_{-}:=\left\{s \in\left[0, L_{0}\right] ;\right. & \nu(s)>Q(s), \\
& \text { but } z(\nu(s), s) \text { is a degenerate cut point }\} .
\end{aligned}
$$

Since the proof of Lemma 2.1 is done by a local discussion in a small convex ball around a cut point, we obtain the following lemma by a similar discussion.

Lemma 3.1. The set $F:=F_{+} \cup F_{-}$is of Lebesgue measure zero.
Let $D_{+}:=\left\{(t, s) ; 0 \leq t<\rho(s), s \in\left[0, L_{0}\right]\right\}$ and $D_{-}:=\{(t, s) ;$ $\left.\nu(s)<t \leq 0, s \in\left[0, L_{0}\right]\right\}$. We then define two functions L_{+}and L_{-}on $[0, \infty)$ by

$$
\begin{aligned}
& L_{+}(t):=\int_{0}^{L_{0}} \chi_{+}(t, s) f(t, s) d s \\
& L_{-}(t):=\int_{0}^{L_{0}} \chi_{-}(t, s) f(-t, s) d s
\end{aligned}
$$

where $\chi_{+}(t, s)$ and $\chi_{-}(t, s)$ are the characteristic functions of D_{+}and $D_{\text {_ respectively. If } t>0 \text { is non-exceptional, then the function }}^{\text {ren }}$

$$
L(t):=L_{+}(t)+L_{-}(t)
$$

is nothing but the length of $S(t)=\{x \in M ; d(x, C)=t\}$.
Note that if $t_{0}>0$ is a normal exceptional value, then $S\left(t_{0}\right)$ consists of a set of piecewise smooth curves. However the length of $S\left(t_{0}\right)$ is not necessarily equal to $L\left(t_{0}\right)$ but equal to

$$
L\left(t_{0}\right)+\frac{1}{2}\left\{\int_{Q_{+}\left(t_{0}\right)} f\left(t_{0}, s\right) d s+\int_{Q_{-}\left(t_{0}\right)} f\left(-t_{0}, s\right) d s\right\}
$$

Here we set

$$
\begin{aligned}
& Q_{+}(t):=\left\{s \in \rho^{-1}(t) ; z(t, s) \text { is normal and } \rho^{\prime}(s)=0\right\} \\
& Q_{-}(t):=\left\{s \in \nu^{-1}(-t) ; z(-t, s) \text { is normal and } \nu^{\prime}(s)=0\right\}
\end{aligned}
$$

In order to define $J(t)$ in this case we need to set

$$
\begin{aligned}
J_{+}(t) & :=\sum_{0 \leq u \leq t} \int_{Q_{+}(t)} f(u, s) d s \\
J_{-}(t) & :=\sum_{0 \leq u \leq t} \int_{Q_{-}(t)} f(-u, s) d s
\end{aligned}
$$

We then define $J(t)$ as follows.

$$
J(t):=J_{+}(t)+J_{-}(t)
$$

By a similar discussion as in the proof of Theorem 2.2 we obtain the following

Theorem 3.2. The function $H(t)=L(t)+J(t)$ is absolutely continuous on any compact subinterval of $[0, \infty)$.

References

[1] F. Fiala, Le probléme des isoperimetres sur les surfaces à courbure positive, Comment. Math. Helv., 13 (1941), 293-346.
[2] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math., 86 (1964), $705-727$.
[3] K. Shiohama, Cut locus and parallel circles of closed curve on a Riemannian plane admitting total curvature, Comment. Math. Helv., 60 (1985), 125-138.
[4] K. Shiohama, Total curvatures and minimal areas of complete open surfaces, Proc. Amer. Math. Soc., 94 (1985), 310-315.
[5] K. Shiohama and M. Tanaka, An isoperimetric problem for infinitely connected complete open surfaces, "Geometry of Manifolds, Perspectives in Mathematics, vol 8", Academic Press, INC, Boston-San DiegoNew York-Berkeley-London-Sydney-Tokyo-Toronto, 1989, pp. 317344.
[6] R.L. Wheeden and A. Zygmund, "Measure and Integral", Marcel Dekker, New York-Basel, 1977.

K Shiohama
Department of Mathematics
Faculty of Science,
Kyushu University
Fukuoka 812
Japan
M. Tanaka
Department of Mathematics
Faculty of Science
Tokai University
Hiratsuka 259-12
Japan

