Advanced Studies in Pure Mathematics 22, 1993 Progress in Differential Geometry pp. 299–308

The Length Function of Geodesic Parallel Circles

Katsuhiro Shiohama and Minoru Tanaka

Dedicated to Professor T. Otsuki on his 75th birthday

§0. Introduction

The isoperimetric inequalities for a simply closed curve C on a Riemannian plane Π (i.e., a complete Riemannian manifold homeomorphic to \mathbf{R}^2) was first investigated by Fiala in [1] and later by Hartman in [2]. These inequalities were generalized by the first named author in [3], [4]for a simply closed curve on a finitely connected complete open surface and by both authors in [5] for a simply closed curve on an infinitely connected complete open surface. Here a noncompact complete and open Riemannian 2-manifold M is called *finitely connected* if it is homeomorphic to a compact 2-manifold without boundary from which finitely many points are removed, and otherwise M is called *infinitely connected*. Fiala and Hartman investigated certain properties of geodesic parallel circles $S(t) := \{x \in \Pi ; d(x, C) = t\}, t \ge 0$ around C of a Riemannian plane Π in order to prove the isoperimetric inequalities, where d denotes the Riemannian distance function. Fiala proved in [1] that if a Riemannian plane Π and a simple closed curve C on Π are *analytic*, then S(t)is a finite union of piecewise smooth simple closed curves except for t in a discrete subset of $[0,\infty)$ and its length L(t) is continuous on $[0,\infty)$. If Π and C are not analytic but smooth, then L(t) is not always continuous as pointed out by Hartman in [2]. What is worse is that S(t) does not always admit its length. Under the assumption of low differentiability of Π and C, Hartman proved that S(t) is a finite union of piecewise smooth simple closed curves except for t in a closed subset of Lebesgue measure zero in $[0,\infty)$. This result was recently extended by the authors [5] to an arbitrary given simply closed curve C in an arbitrary given complete, connected, oriented and noncompact Riemannian 2-manifold M.

Received January 7, 1991.

Revised April 5, 1991.

The normal exponential map along C induces a local chart and a function L(t) for all $t \geq 0$ is well defined with the aid of this local chart. As mentioned above, L(t) for all $t \geq 0$ defines the length of S(t) whenever S(t) is a finite union of piecewise smooth simple closed curves. However we do not know the geometric meaning of L(t) for the other t-values. Hartman introduced a certain monotone function $J: [0, \infty) \to \mathbf{R}$ by using this local chart and proved in Theorem 6.2; [2] that the following function

$$(*) H(t) := J(t) + L(t)$$

is absolutely continuous on every compact interval of $[0,\infty)$.

The purpose of the present article is to extend the absolute continuity of H as defined in (*) for an arbitrary given simple closed curve C in an arbitrary given connected, complete, noncompact and oriented Riemannian 2-manifold M. The cut locus and focal locus to C are essential in our discussion. In §1 we introduce the notations concerning with the cut points and focal points to C as used in [2],[5]. Under our situation $M \setminus C$ has at most two components. The type of cut locus and focal locus changes as the number of components of $M \setminus C$. In §2 we deal with the simpler case where $M \setminus C$ has two components and prove the absolute continuity of (*) in this case (see Theorem 2.2). We also need to modify the definition of J(t) in the case where $M \setminus C$ is connected. In §3 we prove the absolute continuity of (*) in the case where $M \setminus C$ is connected (see Theorem 3.2).

§1. Preliminaries

From now on let M be a connected, oriented, complete and noncompact Riemannian 2-manifold and C a smooth simply closed curve on M. Since our discussion proceeds in the same manner as developed by Hartman, we shall employ the same terminologies as used in [2],[5]. Let L_0 be the length of C. A point on C is expressed as $z_0(s)$ with respect to the arclength parameter $s \in [0, L_0]$. $z_0(s)$ and other functions of s will be considered periodic of period of L_0 for convenience. Let g be the Riemannian metric on M and N a unit normal field along C with $N_0 = N_{L_0}$. A map $z : \mathbf{R} \times [0, L_0] \to M$ is defined by

$$z(t,s) := \exp_{z_0(s)} t N_s$$

where \exp_p is the exponential map of M at p. If |t| is sufficiently small, then z gives a coordinate system (t, s) and $g\left(\frac{\partial z}{\partial t}, \frac{\partial z}{\partial t}\right) = 1$ holds around $\begin{array}{l} C \mbox{ and } g\left(\frac{\partial z}{\partial t}, \frac{\partial z}{\partial s}\right) = 0 \mbox{ from Gauss Lemma. For every } s \in [0, L_0] \\ \mbox{let } \gamma_s \colon R \to M \mbox{ be a geodesic with } \gamma_s(t) = z(t,s) \mbox{ and } e_s(t) \mbox{ a unit parallel} \\ \mbox{vector field along } \gamma_s \mbox{ with } e_s(0) = \frac{\partial z}{\partial s}(0,s). \mbox{ For each } s \mbox{ let } Y_s(t) \mbox{ denote} \\ \mbox{ the Jacobi field along } \gamma_s \mbox{ with } Y_s(0) = e_s(0), \ g(Y_s(t), \gamma_s'(t)) = 0. \mbox{ By} \\ \mbox{ setting } f(t,s) = g(Y_s(t), e_s(t)), \mbox{ we have } f(0,s) = 1, \ f_t(0,s) = \kappa(s) \\ \mbox{ and } g\left(\frac{\partial z}{\partial s}, \frac{\partial z}{\partial s}\right) = f^2(t,s), \mbox{ where } \kappa(s) \mbox{ is the geodesic curvature of } C \\ \mbox{ at } z_0(s) \mbox{ and } f_t = \frac{\partial f}{\partial t}. \mbox{ Since } Y_s \mbox{ is a Jacobi field we have } f_{tt}(t,s) + \\ G(z(t,s))f(t,s) = 0, \mbox{ where } f_{tt} = \frac{\partial^2 f}{\partial t^2}. \end{array}$

Let P(s) (respectively N(s)) denote the least positive (respectively the largest negative) t with f(s,t) = 0, or $P(s) = +\infty$ (respectively $N(s) = -\infty$) if there is no such zero. If $P(s_0) < +\infty$ (respectively $N(s_0) > -\infty$), then P (respectively N) is smooth around s_o and $z(P(s_0), s_0)$, (respectively $z(N(s_0), s_0)$ is called the first positive (respectively negative) focal point to C along γ_{s_0} .

A unit speed geodesic $\sigma: [0, \ell] \to M$ is called a *C*-segment iff $\sigma(0) \in C$ and $d(\sigma(t), C) = t$ holds for all $t \in [0, \ell]$. Every *C*-segment is a subarc of some γ_s . Let $\rho(s) := \sup\{t > 0 \ ; \ d(\gamma_s(t), C) = t\}$ and $\nu(s) := \inf\{t < 0 \ ; \ d(\gamma_s(t), C) = -t\}$. $\rho(s)$ (respectively $\nu(s)$) is the cut point distance to *C* along $\gamma_s | [0, \infty)$ (respectively $\gamma_s | (-\infty, 0])$. $z(\rho(s), s)$ is called a cut point to *C* along γ_s and $\gamma_s | [0, \rho(s)]$ is a maximal *C*-segment contained in $\gamma_s | [0, \infty)$. A cut point is a first focal point of a *C*-segment or the intersection of at least two distinct *C*-segments.

A cut point at C is called *normal* if it is the endpoint of exactly two distinct C-segments and is not a first focal point along either of them. A cut point to C which is not normal is called *anormal*. An anormal cut point $z(\rho(s), s)$ (or $z(\nu(s), s)$) is called *totally nondegenerate* iff $z(\rho(s), s)$ (or $z(\nu(s), s)$) is not a first focal point to C along any C-segment ending at $z(\rho(s), s)$ (or $z(\nu(s), s)$). An anormal cut point is called *degenerate* iff it is not totally nondegenerate. A number t > 0 is called *anormal* iff there exists a value $s \in \rho^{-1}(t)$ (or $s \in \nu^{-1}(-t)$) such that z(t, s) (or z(-t, s)) is anormal. It t > 0 is not anormal, then t is called *normal*. Also t > 0 is called *exceptional* iff it is either anormal or normal but there exists an s such that $\rho(s) = t$ (or $\nu(s) = -t$) and $\rho' = 0$ (or $\nu' = 0$) at s. A positive number t is by definition *non-exceptional* iff it is not exceptional.

§2. The case where C bounds a domain

Throughout this section let $M \setminus C$ have two components and M_1 the component containing $\{z(\rho(s), s) ; \rho(s) < \infty\}$. Note that the sets $\{z(\rho(s), s) ; \rho(s) < \infty\}$ and $\{z(\nu(s), s) ; \nu(s) > -\infty\}$ have no common point. We only restrict to consider M_1 , since the same discussion holds for $M \setminus M_1$.

We begin with the discussion of degenerate cut points that was not discussed in [2]. It seems to the authors that the lack of degenerate cut points in [2] would cause unclearness in the proof of Theorem 6.2 in [2]. The following Lemma 2.1 is useful to prove our results.

Lemma 2.1. The set $F = \{s \in [0, L_0] ; \rho(s) < P(s), but z(\rho(s), s) \in M_1 \text{ is a degenerate cut point along some C-segment} \}$ is of Lebesgue measure zero.

It suffices for the proof to show that for any $s \in F$ there Proof. exists a positive δ such that $F \cap (s - \delta, s + \delta)$ is of Lebesgue measure zero. Let $s_0 \in F$ and set $p = z(\rho(s_0), s_0)$. Choose a small positive ϵ such that B_{ϵ} is an open normal convex ϵ -ball around p. For each $s \in [0, L_0]$ with $z(\rho(s), s) = p$ let s' denote the common point of ∂B_{ϵ} and $\gamma_s([0,\rho(s_0)])$. The circle ∂B_ϵ is naturally oriented. Define the oriented open subarc from s'_1 to s'_2 of ∂B_{ϵ} by (s'_1, s'_2) . For each $s \in [0, L_0] \setminus$ $\{s_0\}$ with $z(\rho(s), s) = p$ let $D(s'_0, s')$ (respectively $D(s', s'_0)$) be the disk domain bounded by three arcs $\gamma_{s_0} | [\rho(s_0) - \epsilon, \rho(s_0)], \gamma_s | [\rho(s_0) - \epsilon, \rho(s_0)]$ and (s'_0, s') (respectively $D(s', s'_0)$). Since $\rho(s_0) < P(s_0)$, there exist $s_{+}, s_{-} \in [0, L_{0}]$ such that $z(\rho(s_{+}), s_{+}) = z(\rho(s_{-}), s_{-}) = p$ and such that $D_+ := D(s'_0, s'_+)$ and $D_- := D(s'_-, s'_0)$ are disjoint and they do not contain any C-segment passing through p. Let (π, NC, M) be the normal bundle over C with projection π , total space NC and base space M. Since p is not a focal point to C along γ_{s_0} , there exist a neighborhood V of $\rho(s_0) \cdot \dot{\gamma}_{s_0}(0)$ in NC and a neighborhood U of p in M such that the restriction \exp_V of the normal exponential map to V is a diffeomorphism of V onto U. Since p is a degenerate cut point, there is a C-segment ending at p along which p is the first focal point to C. Suppose $P(s_+) =$ $\rho(s_{+})$. Choose a positive number ϵ_1 such that U contains $z(\rho(s), s)$ and z(P(s), s) for all $s \in [s_+ - \epsilon_1, s_+ + \epsilon_1]$. From construction of D_+ we can choose a positive number $\delta_1 < \epsilon_1$ such that if $z(\rho(s_1), s_1) = z(\rho(s), s)$ for $s_1 \in [0, L_0]$, $s \in (s_0, s_0 + \delta_1)$, then $s = s_1$ or $s_1 \in (s_+ - \epsilon_1, s_+)$. Let $v: (s_+ - \epsilon_1, s_+) \rightarrow (s_1, s_0 + \delta_1)$ be defined as

$$v(s) := z_0^{-1} \circ \pi \circ (\exp_V^{-1})(z(\rho(s), s))$$

If $s \in (s_+ - \epsilon, s_+)$ satisfies P'(s) = 0 and $P(s) = \rho(s)$, then v'(s) = 0,

and hence s is a critical point of v. Let $K \subset (s_+ - \epsilon_1, s_+)$ be the set of all critical points of v. If $s \in (s_0, s_0 + \delta_1)$ is an element of F, then there exists an $s_1 \in [0, L_0]$ such that $z(\rho(s), s) = z(\rho(s_1), s_1)$, $P(s_1) = \rho(s_1)$. It follows from the choice of δ_1 and Proposition 2.1 in [5] that $P'(s_1) = 0$ and $s_1 \in (s_+ - \epsilon_1, s_+)$. Therefore we find an $s_1 \in K$ such that $z(\rho(s), s) = z(\rho(s_1), s_1) = z(P(s_1), s_1)$. This fact means that $(s_0, s_0 + \delta_1) \cap F$ is contained entirely in v(K). The Sard Theorem implies that v(K) is of Lebesgue measure zero. If $\rho(s_+) < P(s_+)$, then there exists a positive number δ such that $(s_0, s_0 + \delta) \cap F = \emptyset$. Summing up these discussion we observe that there exists a positive number δ_1 such that $(s_0, s_0 + \delta_1) \cap F$ is of measure zero.

An analogous discussion applies to D_{-} to prove that $(s_0 - \delta'_1, s_0) \cap F$ is of measure zero for some positive number δ'_1 . This completes the proof of Lemma 2.1.

Let $D := \{(t,s) ; 0 \le t < \rho(s), 0 \le s \le L_0\}$ and $\chi(t,s)$ the characteristic function of D such that $\chi(s,t) = 1$ or 0 according as $(t,s) \in D$ or not. For any $t \ge 0$ set

$$L(t):=\int_0^{L_0}\chi(t,s)f(t,s)\,ds$$

This L(t) is the length of $S(t) = \{x \in M_1 | d(x, C) = t\}$ if t is a non-exceptional value. We define for $t \ge 0$ the set Q(t) as follows.

$$Q(t) := \{s \in \rho^{-1}(t) ; z(s,t) \text{ is normal and } \rho'(s) = 0\}.$$

Q(t) has the property that elements in it are pairwise disjoint, and hence it is of Lebesgue measure zero except for an at most countable set of $[0,\infty)$. We define for $t \ge 0$ the function

$$J(t) := \sum_{0 \le u \le t} \int_{Q(u)} f(u,s) \, ds.$$

Note that L and also J is discontinuous at $t = t_0$ iff the Lebesgue measure of $Q(t_0)$ is positive.

In order to prove Theorem 2.2 we shall need some basic tools from measure theory which is referred to [6]. Let h be a continuous function of bounded variation defined on a closed interval [a, b]. Then the function h defines a Lebesgue-Stieltjes measure Λ_h such that $\Lambda_h((x, y])$ for each subinterval (x, y] of [a, b] equals the total variation of h on [x, y]. It is known that any Borel set B in [a, b] is Λ_h -measurable. For each Lebesgue measurable set $S \subset \mathbf{R}$, |S| denotes its Lebesgue measure. **Theorem 2.2.** The function H(t) = L(t) + J(t) is absolutely continuous on any compact subinterval of $[0, \infty)$.

Proof. Let [a, b] be a compact subinterval of $[0, \infty)$. In order to prove the theorem we shall show that for any positive ϵ there exists a positive $\eta = \eta(\epsilon, a, b)$ such that if $\delta_1, \delta_2, \ldots, \delta_k$ are non-overlapping subintervals of [a, b], then

(2.1)
$$\sum_{i=1}^{k} |\delta_i H| < (L_0 + 2)\epsilon \text{ whenever } \sum_{i=1}^{k} |\delta_i| < \eta$$

where $\delta_i H = H(\tau) - H(\sigma)$, $|\delta_i| = \tau - \sigma$ if $\delta_i = (\sigma, \tau]$. Let $\epsilon > 0$ be fixed. It follows from Proposition 3.1 in [5] that the set $T_b := \{s \in [0, L_0]; \rho(s) \leq b, z(\rho(s), s) \text{ is a totally nondegenerate anormal point}\}$ is finite. Let c = c(b) be a constant satisfying

$$|f(t,s)| \le c, |f_t(t,s)| \le c, (t,s) \in [0,b] \times [0,L_0]$$

By Lemma 2.1 the set F^{ϵ} defined by

$$F^{\epsilon} = \{ s \in [0, L_0] ; \ \rho(s) \le b, \, s \in F, \ f(\rho(s), s) \ge \epsilon/2 \}$$

is compact and of Lebesgue measure zero. Here there exists a set V^{ϵ} with $|V^{\epsilon}| < \epsilon/c$ consisting of a finite number of open subintervals of $[0, L_0]$ such that $V^{\epsilon} \supset T_b \cap F^{\epsilon}$. Let Q^{ϵ} be the set

$$Q^{\epsilon} := \{ s \in [0, L_0] ; \ \rho(s) \le b, f(\rho(s), s) \le \epsilon/2 \}.$$

Since Q^{ϵ} is compact, Q^{ϵ} can be covered by a set S^{ϵ} consisting of a finite number of open subintervals of $[0, L_0]$ on which $f(\rho(s), s) < 3\epsilon/4$. Then the set $R^{\epsilon} = [0, L_0] - (S^{\epsilon} \cup V^{\epsilon})$ consists of a finite number of closed subintervals I_1, \ldots, I_p of $[0, L_0]$. It follows from construction of R^{ϵ} and from Proposition 2.2 in [5] that ρ is smooth at each point $s \in R^{\epsilon}$ if $\rho(s) \leq b$. Hence the function $\rho_b :=$ **Max** $\{\rho, b\}$ is Lipschitz continuous on each closed intervals $I_j, j = 1, \ldots, p$. In particular the restriction ρ_j of ρ_b to I_j is of bounded variation. If Λ_j denotes the Lebesgue-Stieltjes measure defined by ρ_j , then we observe from Corollary 3.1 in [2] that

(2.2)
$$\sum_{j=1}^{k} \Lambda_j(\rho_j^{-1}(\delta_i)) = \int_{\sigma}^{\tau} n(r) \, dr$$

where n(r) is the Lebesgue summable function defined by the number of the elements of the set $\{s \in R^{\epsilon}; \rho(s) = r\}$. Let O(i) be an open set containing $R(i) = \bigcup_{\sigma < t \le \tau} Q(t)$ such that $|O(i) - R(i)| < |\delta_i|$. Setting $S(i) = \rho^{-1}(\delta_i)$, we define

$$\begin{split} S_1 &= (S(i) - R(i)) \cap O(i) \\ S_2 &= (S(i) - R(i)) \cap [\{s \; ; \; f(\rho(s), s) < \epsilon\} \cup V^{\epsilon}] \\ S_3 &= (S(i) - R(i)) - (S_1 \cup S_2). \end{split}$$

Making use of the inequality (6.20) in [2], we obtain

(2.3)
$$\begin{aligned} |\delta_i H| &\leq \sum_{j=1}^3 \int_{S_j} f(\rho(s), s) \, ds + 2cL_0 |\delta_i| \\ &\leq c|\delta_i| + \epsilon |S(i)| + c|V^{\epsilon} \cap S(i)| + c|S_3| + 2cL_0 |\delta_i| \end{aligned}$$

Since $S_3 \subset R^{\epsilon}$ and $S_3 \cap O(i) = \emptyset$, ρ is smooth at each point of S_3 and $|\rho'| \geq c_1$ on S_3 holds for some positive constant $c_1 = c_1(\epsilon, a, b)$. From the property of the Lebesgue-Stieltjes measure Λ_j we obtain

$$\sum_{j=1}^{p} \Lambda_{j}(I_{j} \cap S_{3}) \ge c_{1} \sum_{j=1}^{p} |I_{j} \cap S_{3}| = c_{1}|R^{\epsilon} \cap S_{3}| = c_{1}|S_{3}|.$$

From (2.2) and the above inequality, we get

(2.4)

$$|S_3| \le c_1^{-1} \sum_{j=1}^p \Lambda_j(I_j \cap S_3) \le c_1^{-1} \sum_{j=1}^p \Lambda_j(I_j \cap \rho^{-1}(\delta_i)) = c_1^{-1} \int_{\sigma}^{\tau} n(r) \, dr.$$

From inequalities (2.3) and (2.4) we have

(2.5)
$$\sum_{i=1}^{k} |\delta_i H| \le c(1+2L_0) \sum_{i=1}^{k} |\delta_i| + (L_0+1)\epsilon + cc_1^{-1} \sum_{i=1}^{k} \int_{\delta_i} n(r) \, dr.$$

The inequality (2.5) implies that we can find a positive $\eta = \eta(\epsilon, a, b)$ satisfying (2.1). Note that the function n(r) is Lebesgue summable.

§3. The case where C bounds no domain

We deal with the case where a closed curve C does not bound any domain of M. Our situation means that there exists a cut point $p \in M$

to C such that $p = z(\rho(s_1), s_1) = z(\nu(s_2), s_2)$ for some $s_1, s_2 \in [0, L_0]$. Three types of cut points to C appear. A cut point p to C is by definition of ρ -type (respectively ν -type) iff all C-segments ending at p are tangent to N (respectively to -N) at their starting points. A cut point p to C is of mixed type iff $p = z(\rho(s_1), s_1) = z(\nu(s_2), s_2)$ for some $s_1, s_2 \in [0, L_0]$. For a mixed type cut point to C the normality, anormality, degeneracy and all other properties are well defined by the same manner as before. These properties are defined for t-value where S(t) contains a mixed type cut point having the corresponding properties. Let F_+ , F_- be the sets

$$F_+ := \{s \in [0, L_0] \ ; \ \rho(s) < P(s),$$

but $z(\rho(s), s)$ is a degenerate cut point $\}$

$$F_{-} := \{s \in [0, L_0] \ ; \ \nu(s) > Q(s),$$
 but $z(\nu(s), s)$ is a degenerate cut point}.

Since the proof of Lemma 2.1 is done by a local discussion in a small convex ball around a cut point, we obtain the following lemma by a similar discussion.

Lemma 3.1. The set $F := F_+ \cup F_-$ is of Lebesgue measure zero.

Let $D_+ := \{(t,s) ; 0 \le t < \rho(s), s \in [0, L_0]\}$ and $D_- := \{(t,s) ; \nu(s) < t \le 0, s \in [0, L_0]\}$. We then define two functions L_+ and L_- on $[0, \infty)$ by

$$L_{+}(t) := \int_{0}^{L_{0}} \chi_{+}(t,s) f(t,s) \, ds$$
$$L_{-}(t) := \int_{0}^{L_{0}} \chi_{-}(t,s) f(-t,s) \, ds$$

where $\chi_+(t,s)$ and $\chi_-(t,s)$ are the characteristic functions of D_+ and D_- respectively. If t > 0 is non-exceptional, then the function

$$L(t) := L_{+}(t) + L_{-}(t)$$

is nothing but the length of $S(t) = \{x \in M ; d(x, C) = t\}.$

Note that if $t_0 > 0$ is a normal exceptional value, then $S(t_0)$ consists of a set of piecewise smooth curves. However the length of $S(t_0)$ is not necessarily equal to $L(t_0)$ but equal to

$$L(t_0) + rac{1}{2} \{ \int_{Q_+(t_0)} f(t_0, s) \, ds + \int_{Q_-(t_0)} f(-t_0, s) \, ds \}.$$

Here we set

$$\begin{aligned} Q_+(t) &:= \{s \in \rho^{-1}(t) \ ; \ z(t,s) \text{ is normal and } \rho'(s) = 0\}, \\ Q_-(t) &:= \{s \in \nu^{-1}(-t) \ ; \ z(-t,s) \text{ is normal and } \nu'(s) = 0\}. \end{aligned}$$

In order to define J(t) in this case we need to set

$$J_{+}(t) := \sum_{0 \le u \le t} \int_{Q_{+}(t)} f(u, s) \, ds,$$
$$J_{-}(t) := \sum_{0 \le u \le t} \int_{Q_{-}(t)} f(-u, s) \, ds.$$

We then define J(t) as follows.

$$J(t) := J_{+}(t) + J_{-}(t).$$

By a similar discussion as in the proof of Theorem 2.2 we obtain the following

Theorem 3.2. The function H(t) = L(t) + J(t) is absolutely continuous on any compact subinterval of $[0, \infty)$.

References

- [1] F. Fiala, Le probléme des isoperimetres sur les surfaces à courbure positive, Comment. Math. Helv., **13** (1941), 293–346.
- P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math., 86 (1964), 705 - 727.
- [3] K. Shiohama, Cut locus and parallel circles of closed curve on a Riemannian plane admitting total curvature, Comment. Math. Helv., 60 (1985), 125–138.
- [4] K. Shiohama, Total curvatures and minimal areas of complete open surfaces, Proc. Amer. Math. Soc., 94 (1985), 310-315.
- [5] K. Shiohama and M. Tanaka, An isoperimetric problem for infinitely connected complete open surfaces, "Geometry of Manifolds, Perspectives in Mathematics, vol 8", Academic Press, INC, Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto, 1989, pp. 317– 344.

[6] R.L. Wheeden and A. Zygmund, "Measure and Integral", Marcel Dekker, New York-Basel, 1977.

K Shiohama Department of Mathematics Faculty of Science, Kyushu University Fukuoka 812 Japan

M. Tanaka Department of Mathematics Faculty of Science Tokai University Hiratsuka 259-12 Japan

308