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Some Remarks on Fields of 2-Planes on 
Compact Smooth 4-Manifolds 

Yasuo Matsushita 

§1. Introduction 

Throughout this paper by a manifold we mean a compact oriented 
smooth manifold, and by a field of q-planes on a manifold a nonsingular 
field of oriented tangent q-planes on it. 

It is interesting to observe, as a specific feature in four dimension, 
that same are the conditions for a 4-manifold to admit the following 
three different structures: 
(A) a field of 2-planes 
(B) a pseudo-riemannian metric of signature (++--)with the structure 

group SO0 (2, 2) 
( C) a pair of an almost complex structure and an opposite almost com-

plex structure. 
On the basis of such an observation, the purpose of this paper is to 
discuss some particular aspects of geometry of 4-manifolds which admit 
fields of 2-planes. 

The paper contains two main results: Theorems 4-1 and 7-2, and 
is organized as follows. §2 is a quick survay on the problem of fields of 
2-planes on 4-manifolds. In §3, we consider the reduction of the struc
ture group of the tangent bundle of a 4-manifold which admits a field of 
2-planes in connection with twistor spaces. One part of a couple of the 
main results is given in §4, which is concerned with the existence of a 
riemannian metric invariant both by two kinds of almost complex struc
tures on a 4-manifold with a field of 2-planes. In §5, we review the irre
ducible decomposition of the curvature tensors on an almost Hermitian 
4-manifold. In §6, we give an analogue of the irreducible decomposition 
of the curvature tensors for an opposite almost Hermitian 4-manifold. 
In the last section (§7), the other part of our main results is stated, 
which is concerned with the irreducible decomposition of the curvature 
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tensors for an almost Hermitian 4-manifold with two kinds of almost 
complex structures. We shall see there that such a curvature tensor can 
be decomposed into eleven irreducible factors under the action of the 
structure group G = S0(2) x S0(2) ~ U(l) x U(l). 

§2. General aspects 

We shall give in this section a brief survay of the problem of fields of 
2-planes on 4-manifolds. The detailed arguments and results here should 
be referred to the author's papers [Ml], [M2]. 

It follows from Steenrod's theorem [S, 40.11] that an n-manifold ad
mits a pseudo-riemannian metric of signature (n-q, q) with the structure 
group S0 0 (n - q, q) if and only if the manifold carries a field of q-planes 
(i.e., the structure group G is reduced to SO(n - q) x SO(q)). The cor
respondence between (A) and (B) is therefore a special case in dimension 
n = 4 with q = 2, i.e., G is reduced to S0(2) x S0(2). However, the 
correspondence between (A) and (C) (or (B) and (C)) is a particular 
feature in four dimension. 

Let M be a 4-manifold, and µM be the intersection form on 
H 2 (M, Z)/ Tor. The condition for M to admit a field of 2-planes has 
been established by Hirzebruch and Hopf [HH, 4.5] as follows: M ad
mits a field of 2-planes if and only if the Hirzebruch index T[M] (or the 
signature) of M and the Euler characteristic x[M] of M satisfy a pair 
of conditions 

(2-1) 

(2-2) 

where 

3T[M] + 2x[M] E fl(M) 

3T[M] - 2x[M] E O(M), 

O(M) = {µM(w,w) E Zlw are arbitrary characteristic 

elements in H 2 ( M, Z) /Tor}. 

As Hirzebruch and Hopf also pointed out [HH, 4.6], the first condition 
(2-1) is equivalent to the condition (due to Wu [W, p.74]) for M to admit 
an almost complex structure. The second condition (2-2) has a similar 
meaning. 

Proposition 2-1. A 4-manifold M admits an almost complex 
structure whose preferred orientation is opposite to the orientation of 
M if and only if M satisfies the condition (2-2). 

Let -M be M with the orientation reversed. We know that T[-M] = 
-T[M], x[-M] = x[M], and n(-M) = -n(M) (since µ_M = -µM)-
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Thus the condition (2-2) is written in the form 

(2-3) 3T[-M] + 2x[-M] E O(-M), 

which is just the first condition (2-1) for -M. This implies that -M 
admits an almost complex structure if and only if (2-2) holds. 

Definition 2-2. We call an almost complex structure on - M an 
opposite almost complex structure on M. 

We thus have a theorem concerning the correspondence between (A) 
and ( C) as follows. 

Theorem 2-3. A 4-manifold M admits a field of 2-planes if and 
only if it admits a pair of an almost complex structure and an opposite 
almost complex structure. 

It is known (Atiyah [A, Theorem 3.1]) that if a 4k-dimensional man
ifold admits a field of q-planes (q = 2 mod 4), then its Euler charac
teristic must be even and is congruent to the Hirzebruch index modulo 
4. Thus the problem of fields of 2-planes on 4-manifolds is the lowest 
dimensional examples of Atiyah's theorem. A 4-manifold M with a field 
of 2-planes must therefore satisfy 

(2-4) x[M] = 0 mod 2, x[M] =T[M] mod 4, 

which will be referred to as Atiyah's condition. In the author's earlier 
paper [Ml], it is shown on the basis of the work of Hirzebruch and Hopf 
that Aitiyah's condition is sufficient for a simply-connected 4-manifold 
to admit a field of 2-planes, and hence also the existence condition of 
(opposite) almost complex structures on such a 4-manifold is established. 
Recently, Saeki (see [M2, Theorem 2]) obtained a refined and full general 
version of the theorem of Hirzebruch and Hopf. In fact, he showed that if 
a 4-manifold has an indefinite intersection form, then Atiyah's condition 
is also sufficient for the 4-manifold to admit a field of 2-planes, and 
moreover that if a 4-manifold M has a definite intersection form, then 
it admits a field of 2-planes if and only if M satisfies Atiyah's condition 
and 

(2-5) x[M] + IT[M] I ~ o. 

It should be noted that he also established the condition for an arbi
trary 4-manifold to admit (opposite) almost complex structures [M2, 
Theorems 8 and 10]. 
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We now give a brief discussion on Chern classes. Suppose now that 
a 4-manifold M admits a field of 2-planes. Then M also admits a pair of 
an almost complex structure, denoted by J, and an opposite almost com
plex structure, denoted by J'. The first Chern class c1 ( J) E H 2 ( M, Z) 
determined by J satisfies two conditions ([W], [BPV, Proposition 7.3], 
[DK, 1.1.7]): 

(2-6a) 

(2-6b) 

c1 (J) = w2(M) mod 2 

ci(J)[M] = 3T[M] + 2x[M], 

which correspond to (2-1). Similarly, the opposite almost complex struc
ture J' defines a first Chern class c1 ( J') which satisfies the conditions 

(2-7a) 

(2-7b) 

c1(J') = w2(M) mod 2 

ci(J')[-M] = -3T[M] + 2x[M], 

which correspond to (2-2). 
The Chern numbers c2(J)[M] and c2(J')[-M] coincides with each 

other and also with the Euler characteristic of the manifold: 

(2-8) c2(J)[M] = c2(J')[-M] = x[M]. 

It is worthwhile to note some relations 

(2-9a) 

(2-9b) 

ci(J')[-M] = 4c2(J)[M] - ci(J)[M] 

ci(J')[-M] + c2(J')[-M] = 0 mod 12. 

The second formula is an analogue of a fundamental relation 
cr(J)[M] + c2(J)[M] = 0 mod 12. 

There are many examples of 4-manifolds which admit fields of 2-
planes. We now restrict, however, our attention to the underlying real 
4-manifolds of compact complex surfaces. For such a 4-manifold, it turns 
out from the above arguments that the pair of conditions (2-1) and (2-2) 
can be stated in terms of its Chern numbers. In fact, the underlying real 
4-manifold of a surface admits a field of 2-planes if and only if er ( J) [ M] 
- 5c2(J)[M] = 0 mod 12 ({cc} (2-7b) {cc} (2-9b)). 

Therefore, the underlying real 4-manifolds of the following (minimal) 
surfaces [BPV, VI Table 10] admit fields of 2-planes: minimal rational 
surfaces with (ci, c2) = (8, 4), Hopf surfaces and Inoue surfaces in the 
Class 2) of minimal surfaces of class VII, ruled surfaces of genus g ;::: 1, 
Enriques surfaces, hyperelliptic surfaces, Kodaira surfaces, K3 surfaces, 
tori, minimal properly elliptic surfaces, and the surfaces of general type 
which satisfy (2-7b). 
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§3. Grassmann bundles and twistor spaces 

Let M be a 4-manifold. We assume that the structure group G of 
the tangent bundle of M is already reduced to 80(4), or equivalently 
there exits a riemmanian metric on M. Let 83 (the 3-sphere) denote 
8U(2), the 2-dimensional special unitary group. Then we have an exact 
sequence 

(3-1) 1--+ Z2--+ 83 X 83 ~ 80(4)--+ 1, 

where a is a covering map. The product 8 3 x 8 3 is the spin group of 
80(4). If we denote by 8 1 a maximal torus of 8 3 , then a(81 x 83 ) is 
the 2-dimensional unitary group U(2). If we take a maximal torus 8 1 in 
the second component 83 of the spin group 83 X 8 3 , then the subgroup 
a(83 x 8 1 ) is also a 2-dimensional unitary group, and in this case, is 
denoted by U'(2). The quotient space 

(3-2) 80(4)/U(2) = a(83 x 83 )/a(81 x 83 ) ~ 82 

is the space of almost complex structures on T Mx at each point x E M, 
which are orthogonal with respect to the riemannian metric. Similarly 
the quotient space 

(3-3) 80(4)/U'(2) = a(83 x 83 )/a(83 x 81 ) ~ 82 

is the space of opposite almost complex structures on T Mx at each point 
x E M, which are orthogonal with respect to the riemannian metric. 

It is known that the space of oriented tangent 2-planes in T Mx at 
each point x E M is the Grassmann manifold 

(3-4) G2(~4 ) ~ 80(4)/80(2) X 80(2) ~ 8 2 X 8 2 • 

In [HH], Hirzebruch and Hopf obeserved that the first component 8 2 of 
the above product 8 2 x 8 2 can be identified with the quotient space 
80(4)/U(2), and similarly the second component 82 corresponds to the 
quotient space 8(4)/U'(2). Thus, 

(3-5) G2 (~4 ) ~ 80(4)/U(2) x 80(4)/U'(2). 

Therefore, at each point x EM the oriented tangent 2-planes are in one
to-one correspondence with the pairs (Jx,J~) of almost complex struc
tures and an opposite almost complex structures. 

The bundle over M with the space of such almost complex structures 
as fibre is the 80(4)/U(2)-bundle over M, and its total space is known 
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as the twistor space of M, denoted by z+ ( M) ( see Atiyah, Hitchin and 
Singer [AHS]). Similarly, the bundle over M with the space of opposite 
almost complex structures as fibre is the S0(4)/U'(2)-bundle over M, 
and its total space is denoted by z- ( M). Thus the Grassmann manifold 
bundle G 2 (M) over M with G2 (JR.4 ) as fibre can be written as follows: 

(3-6) 

With this identification, we see that the sections of G2 ( M) (fields of 
2-planes) are in one-to-one correspondence with the pairs of sections 
of z+(M) and z-(M). The conditions (2-1) and (2-2) thus can be 
interpreted as the conditions for the S0(4)/U(2)-bundle z+(M) and 
S0(4)/U'(2)-bundle z-(M) both to admit sections. 

If M admits a field of 2-planes, then the the structure group G is 
reduced from SO( 4) to 

(3-7) a(S1 x S 3 ) n a(S3 x S 1 ) = a(S1 x S 1 ) 

= S0(2) x S0(2) ~ U(l) x U(l), 

and moreover the tangent bundle of M admits also a reduction of G to 
S00 (2, 2) whose maximal compact subgroup is S0(2) x S0(2), or M 
carries a pseudo-riemannian metric of signature ( + + - - ) with the 
structure group S00 (2, 2). Thus we see again the coincidence (A) {:} 
(B) {:} (C) from a group theoretical point of view. 

§4. Two kinds of almost complex structures 

Let M be a 4-manifold which admits a field of 2-planes. As we have 
seen, M admits a pair (J,J') of an almost complex structure and an 
opposite almost complex structure. 

Consider M to be a riemannian 4-manifold (M,g 0 ), and choose a 
pair (J,J') of two kinds of almost complex structures on M, where g0 

and (J,J') are arbitrarily chosen. Then we have a riemannian 4-manifold 
(M,g0 ), together with a pair (J,J'), where J, J' have at this stage no 
relation to the metric g0 • It is well-known, however, that for any almost 
complex structure J on (M,g 0 ), we can construct a J-invariant metric 
91 on M as follows: 

(4-1) g1(X, Y) = 9o(X, Y) + 9o(JX, JY), for X, Y E X(M), 

where X(M) is the algebra of C00 vector fields on M. Similary, there is 
a J'-invariant metric g2 on M defined by 

(4-2) g2(X, Y) = 9o(X, Y) + 9o(J'X, J'Y), for X, Y E X(M). 
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Here by J-invariance (resp. J'-invariance), we mean that g1(JX, JY) = 
g1(X, Y) (resp. g2(J'X, J'Y) = g2(X, Y)). We thus obtain two kinds of 
almost Hermitian 4-manifolds ( M, g1, J) and ( M, g2, J'). Such a metric 
g1 (resp. g2 ) is not in general invariant by J' (resp. J). 

For such a 4-manifold with two kinds of almost complex structures, 
we are led to consider a question: Does M admit a riemannian metric 
which is invariant by both almost complex structures J and J'? We have 
one of the main results as follows. 

Theorem 4-1. Let M be a 4-manifold which admits a field of 2-
planes. Associated with each field r of 2-planes on M, there exits on M 
a pair of an almost complex structure J7 and an opposite almost complex 
structure J;, together with an invariant riemannian metric g such that 
(i) J7 and J; commute with each other, 

(ii) g is invariant by both- J7 and J;. 

We shall prove this theorem by constructing such two kinds of almost 
complex structures. 

Let r be a field of 2-planes on M, and g0 a riemannian metric on 
M, both of which are arbitrarily chosen. Associated with the field r of 
2-planes, we can choose a local orthonormal frame { e1, e2, e3 , e4} at 
each point x of M with respect to g0 such that 

(4-3) 

where v is the 2-dimensional subbundle of the tangent bundle consisting 
of normal vectors to r. Relative to such a frame, we can always construct 
locally a couple of rank 2 tensor fields J7 and J; of type (1,1) at each 
point x E M as follows: 

( 4-4a) 

(4-4b) 

(Jr)x = e1 ® e2 - e2 ® e1 + e3 ® e4 - e4 ® e3, 

(J~)x = e1 ® e2 - e2 ® e1 - e3 ® e4 + e4 ® e3, 

where { e1, e2 , e3 , e4 } is the local dual orthonormal basis of 1-forms such 
that ei ( ej) = t5ij. Note that 

( 4-5a) 
(Jr)x(e1) = e2, (Jr)x(e2) = -e1, (Jr)x(e3) = e4, (Jr)x(e4) = -e3, 

( 4-5b) 
(J~)x(e1) = e2, (J~)x(e2) = -e1, (J~)x(e3) = -e4, (J~)x(e4) = e3. 

Lemma 4-2. J7 and J; are globally defined nonsingular tensor 
fields of type (1, 1) on M. 
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Proof. If we choose another orthonormal frame { e1, e2, e3, e4} 
with the same property (4-3) (e1, e2 E Tx, e3, e4 E Vx), then it is locally 
related to the frame {e1, e2, e3, e4} by 

(4-6) [

~ 1 ] [c~s0 -sin0 
e2 sm 0 cos 0 
e3 = o o 
e4 o o 

for some 0, </> E JR, since the structure group G of the tangent bundle is 
reduced·to S0(2) x S0(2). 

Associated with the new frame {e1, e2, e3, e4}, we take the tensors 

(}r)x and (}~)x as defined by the similar forms to (Jr)x and (J~)x as 
follows 

(4-7a) 

(4-7b) 

(Jr )x = e1 Q9 e2 - e2 Q9 el+ e3 Q9 e4 - e4 Q9 e3, 

(J~)x = e1 Q9 e2 - e2 Q9 e1 - e3 Q9 e4 + e4 Q9 e3. 

Using the transformation law ( 4-6) of the frames, we can easily verify 
the following coincidences in the overlap region where both frames are 
defined: 

(4-8) 

This implies that J7 and J~ are both globally defined nonsingular tensor 
fields of type (1,1) due to the existence of the field T of 2-planes. 

Q.E.D. 

It is clear that as the endomorphisms of the tangent bundle, J7 and 
J~ have the property 

(4-9) 

Proof. 
5b). 

f;. = -1, J'; = -1. 

Such a commutativity is easily verified from (4-5a) and (4-
Q.E.D. 

Proof of Theorem 4-1. In the same spirit of constructing invariant 
metrics 91 and 92, we define a new metric 9 as follows: for X, YE X(M) 

9(X, Y) = 9o(X, Y)+9o(JrX, JrY) 

+go(J~X, J~Y) + g0 (JrJ~X, JTJ~Y). 
(4-10) 

It is easy to see that g is invariant by both J7 and J~, since J7 and J~ 
cummute with each other. Such a metric 9 is the desired one. Q.E.D. 
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We thus obtain a quadruple ( M, g, J,, J~), which will be the main 
concern of the remainder of the paper. 

§5. Almost Hermitian 4-manifolds (M, g, Jr) 

The contents of this section are all known facts, but they are im
portant and are the prototypes of our results treated in the subsequent 
two sections. 

An almost Hermitian 4-manifold (M, g, Jr, J~) with two kinds of 
almost complex structures clearly carries two kinds of Kahler forms Fr 
and F;, defined as follows: for X, Y E X(M) 

(5-1) Fr(X, Y) = g(JrX, Y), 

As stated before, the tangent bundle of M admits a reduction of the 
structure group G to U(l) x U(l). 

If we forget two kinds of almost complex structures Jr, J~ from the 
quadruple ( M, g, Jr, J~), then the bundle of 2-forms over the riemannian 
4-manifold (M, g) with the structure group G = 80(4) splits into two 
sub bundles 

(5-2) 

where A± are ±1 eigenspaces of the Hodge star operator. 
Although M admits two kinds of almost complex structures Jr and 

J~, we forget J; for a moment and cosider the triple (M, g, Jr), an 
almost Hermitian 4-manifold. The structure group G is the unitary 
group U ( 2) ( = a( 8 1 x 8 3 )). It is well-known that under the action of 
U(2), the bundle A2 (M) of 2-forms over the triple (M, g, Jr) splits 
further as follows: 

(5-3) 

where lRFr is the 1-dimensional subbundle spanned by the Kahler form 
Fr, Lr the 2-dimensional subbundle of Jr-skew invariant 2-forms 

(5-4) Lr= {<I> E A2 (M)I Jr· <I>= -<I>}. 

Moreover, it should be noted that the sum lRFr EB A_ consists of Jr
invariant 2-forms, and that the sum lRFr EB Lr coincides with A+ . 

Associated with the splitting (5-3), the bundle R(M) of the curva
ture tensors over (M, g, Jr) splits into a direct sum of seven irreducible 
factors [TV, Theorem 14.3]: 

(5-5) 
R(M) = £(7ri) EB £(7r1 - 7r2(Jr )) EB W1(Jr) EB Wg(Jr) 
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where with the aid of notation: 1r2(J7 ) = -2* - 3J7 + 2, we have put 

.C(1r1 -1r2(J7 )) = span{2 * +3J7 -1} 

W1(Jr) ={RE R(M)I R* = R} n .CJ_(1r1 - 1r2(Jr)) 

Wg(J7 ) ={RE R(M)I R* = R, RJ7 = -JrR} 

Rw ={RE R(M)I R* = -R} 

W2(J7 ) ={RE R(M)J R* = - *R, RJ7 = R} 

Ws(J7 ) ={RE R(M)I R* = - * R, RJ7 = -J7 R}. 

Further, we have 

dim.C(1r1) = dim.C(1r1 - 1r2(Jr )) = 1, dim W1(Jr) = Wg(Jr) = 2, 

dimRw = 5, dimW2 (J7 ) = 3, dimWs(Jr) = 6. 

Moreover, the sum .C(1r1 - 1r2(J7 )) EB W1(J7 ) EB Wg(J7 ) coincides with 
the bundle Rt of self-dual Weyl curvature tensors, and the sum W2(J7 ) 

EB W8 ( J 7 ) is the bundle R 0 of traceless Ricci tensors. Thus, the existence 
of J7 induces the splitting Rt into three factors and R0 into two factors. 

§6. Opposite almost Hermitian 4-manifolds (M, g, J;) 

In this section, we consider the irreducible decomposition of the 
curvature tensors of an opposite almost Hermitian 4-manifold (M, g, 
J;), which is obtained by deleting J7 from the quadruple (M, g, Jn J;). 

The structure group G is now the unitary group U'(2) (= a(S3 x 
S 1 )). For the bundle of 2-forms over (M, g, J;), we have a decomposition 
similar to (5-3) for (M, g, J 7 ). 

Proposition 6-1. For an opposite almost Hermitian 4-manifold 
(M, g, J;), the bundle A2 (M) of2-forms over M splits into a direct sum 

(6-1) 

where JR.F; is the I-dimensional subbundle spanned by the Kahler form 
F;, L~ the 2-dimensional subbundle of J;-skew invariant 2-forms 

(6-2) 

Moreover, the sum JR.F; EB A+ consistes of J;-invariant 2-forms, and 
the sum JR.F; EB L~ coincides with A_. 

Associated with the above splitting of A2 (M), we have the following 
(cf. [TV, Theorem 14.3]). 
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Proposition 6-2. For an opposite almost Hermitian 4-manifold 
( M, g, J~), the bundle R( M) of the curvature tensors over M splits into 
a direct sum of seven irreducible factors under the action of the structure 
group U'(2): 

(6-3) 

where 

R(M) = £(n1) EB £(n1 - n2(J~)) EB W1(J~) EB Wg(J~) 

EB Rt,, EB W2(J~) EB Ws(J~), 

£(n1 -n2(J~)) = span{2 * +3J~ - 1}, 

W1(J~) ={RE R(M)I R* = -R} n £_1_(n1 - n2(J~)) 

Wg(J~) ={RE R(M)I R* = -R, RJ~ = -J~R} 

Rt,,= {RE R(M)I R* = R} 

W2(J~) ={RE R(M)I R* = - * R, RJ~ = R} 

Ws(J~) ={RE R(M)I R* = - * R, RJ~ = -J~R}. 

Further, we have 

dim£(ni) = dim£(n1 - n2(J~)) = 1, dim W1(J~) = W 9 (J~) = 2, 

dim Rw = 5, dim W2(J~) = 3, dim Ws(J~) = 6. 

Moreover, the sum £(n1 - n2(J~)) EB W1(J~) EB Wg(J~) coincides with 
the bundle Rw of anti-self-dual Weyl curvature tensors, and the sum 
W2 (J~) EB W8 (J~) is the bundle R 0 of traceless Ricci tensors. 

Thus, the existence of J~ induces the splitting Rw into three factors 
and R 0 into two factors. 

§7. Almost Hermitian 4-manifolds (M, g, Jn J~) with two 
kinds of almost complex structures 

In this section we shall state the second part of our main results 
concerning the irreducible decomposition of the curvature tensor on an 
almost Hermitian 4-manifold (M, g, Jn J~) with two kinds of almost 
complex structures. 

Now the structure group G is reduced to U(l) x U(l). Such a 
reduction induces a further splitting ofthe bundle A2(M). 

Proposition 7-1. The bundle A2 (M) of 2-forms over an almost 
Hermitian 4-manifold (M, g, Jn J~) with two kinds of almost complex 
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structures splits into a direct sum of four subbundles under the action 
of G = U(l) x U(l) as follows 

(7-1) 

where JRFT, JRF; are respectively the l-dimensional subbundles spanned 
by the Kahler forms FT, F;, and LT, L~ are the 2-dimensional subbun
dles of JT, J; skew invariant 2-forms: 

(7-2a) 

(7-2b) 

LT= {<I> E A2 (M)I JT · 4> = -<I>} 

L~ = {<I> E A2 (M)I J~ · 4> = -<I>}. 

Proof. Since U(l) x U(l) C a(S1 x S 3 ), the action of the structure 
group induces a splitting: A! = JRFT EB LT. Similarly, U(l) x U(l) C 

a(S3 x S 1 ), and hence we have A:_ = JRF; EB L~. Q.E.D. 

Note that JRFT EB JRF; = {<I> E A2(M)IJT ·<I>= <I>, J~ ·<I>= <I>}. 
At this stage, based on the splitting of A2(M) we can state the 

second part of our main results on the decomposition of R(M) into 
irreducible factors. 

Theorem 7-2. For an almost Hermitian 4-manifold (M, g, JT, 
J~) with two kinds of almost complex structures, the bundle R(M) of the 
curvature tensors over M splits into a direct sum of eleven irreducible 
factors under the action of G = U(l) x U(l): 

(7-3) 

where 

R(M) = .C( 1r1) EB .C(1r1 - 1r2(JT )) EB W1(JT) EB Wg(JT) 

EB.C(1r1 - 1r2(J~)) EB W1(J~) EB Wg(J~) 

EBWA EB WB EB We EB WD, 

WA= {RE R(M)I R* = - * R, RJT = R, RJ~ = R} 

WB ={RE R(M)I R* = - * R, RJT = R, RJ~ = -J~R} 

We= {RE R(M)I R* = - * R, RJT = -JTR, RJ~ = R} 

WD ={RE R(M)I R* = - * R, RJT = -JTR, RJ~ = -J~R}. 

Further, we have 

dim.C(1r1) = dim.C(1r1 -1r2(JT)) = dim.C(1r1 -1r2(J~)) = dim WA= l, 

dim W1(JT) = dim W1(J~) = dim Wg(JT) = dim W 9 (J~) 

= dim WB = dim We = 2, dim WD = 4. 
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Proof. We may assume that the bundle R(M) has been decom
posed as (5-5) for the triple (M, g, 1T ). We shall show, due to the 
existence 1;, the following three: (i) the bundle Rw of anti-self-dual 
Weyl curvatures splits into a sum of three irreducible factors: 

Rw(M) = .C(1r1 - 1r2(1;)) EB W1(1;) EB Wg(J;), 

(ii) W2 (1T) into two irreducible factors: 

W2(1T) = WA EB WB, 

and (iii) W 8 (JT) into two irreducible factors: 

Ws(JT) =WeEBWv. 

(Note that W2(J;) = WA EB We, and Ws(J;) = WB EB Wv.) 
Concerning (i), we must recognize first that Rw(M) c End(A-). 

From Proposition 6-1, End(A_) splits as follows: 

End(A_) = End(IRF; EB L~) 

= End(IRF;) EB Hom(IRF;, L~) EB Hom(L~, IRF;) EB End(L~)-

Thus, it is easy to see that Rw(M) consists of three factors: 

.C( 1r1 - 1r2 (J;)) c End(IRF;) 

W1 ( 1;) c Hom(IRF;, L~) EB Hom ( L~, IRF;) 

W9 (J;) c End(L~)-

For (ii), we know that W2(1T) C Hom(IRFnA-) EB Hom(A_,IRFT)
Since A_ = IRF; EB L~, we see that W2 ( 1T) splits into two factors 

WA C Hom(IRFn !RF;) EB Hom(IRF;, IRFT) 

WB C Hom(IRFn L~) EB Hom(L~, IRFT ). 

For the last case (iii), we know that Ws(JT) C Hom(Lr,A-) EB 
Hom(A_, LT). Due to the splitting A_ = IRF; EB L~, we see that Ws(JT) 
splits into two factors: 

We C Hom(Ln !RF;) EB Hom(IRF;, LT) 

Wv c Hom(Ln L~) EB Hom(L~, LT)-

lt is elementary to know ( cf. [TV]) that the action of the structure group 
U(l) x U(l) is irreducible on each of these factors 

.C(1r1 - 1r2(1T)), W1(J;), Wg(J;), WA, WB, We, Wv. 

Q.E.D. 
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We end this paper with some remarks. 

Remarks. (A) Let M be a 4-manifold which carries a field T of 
2-planes and a riemannian metric g0 • Associated with T, choose a local 
orthonormal frame {e1, e2, e3, e4} at each point x of M with respect 
to g0 , which satisfies (4-3): e1, e2 E Tx, e3, e4 E Vx. In terms of the 
riemannian metric g0 and the globally defined field T, we can construct 
a pseudo-riemannian metric h of signature ( + + - - ) as follows: for X, 
YE X(M) 

h0 (X, Y) = g0 (X, Y) - 2ga(X, e3) · 9a(X, e3) 

- 2ga(X, e4) · 9a(X, e4). 

Such a metric h0 does not depent on a particular frame with property 
(4-3), but only on the field T of 2-planes, i.e., invariant by (4-6). In the 
above formula, if we take the (Jr,J~)-invariant metric g instead of g0 , 

then the following metric 

h(X, Y) = g(X, Y) - 2g(X, e3) · g(X, e3) 

- 2g(X, e4) · g(X, e4) 

is also (JT,J~)-invariant, and therefore we obtain a quadruple (M, h, 
Jr, J~), a pseudo-riemannian version of the quadruple (M, g, JT, J~)
For such a pseudo-riemannian 4-manifold (M, h, Jr, J~) with the struc
ture group G = U(l) x U(l), the bundle of pseudo-curvature tensors 
also splits into eleven irreducible factors in a similar way to that of the 
riemannian case in Theorem 7-2. 

(B) It is highly expected that there may exist some intimate relations 
among the integrability conditions of fields of 2-planes (giving rise to 2-
dimensional foliations), the integrability of two kinds of almost complex 
structures (giving rise to two kinds of complex structures with opposite 
orientations), and the parallelizability of the two kinds of almost complex 
structures on 4-manifolds with fields of 2-planes. We shall discuss this 
issue elsewhere. 
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