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Behavior of Knots under Twisting 

Masaharu Kouno, Kimihiko Motegi and Tetsuo Shibuya 

§1. Introduction 

This paper is a continuation of [6] in the study of the twist move 
of knots. First we recall some notations. Let K be an unoriented 
smooth knot in the oriented 3-sphere S 3 , and V a solid torus endowed 
with a preferred framing which contains K in its interior and satis­
fies wv(K) 2 2. (wv(K) denotes the geometric intersection number 
of K and a meridian disk of V.) Let f n be an orientation preserv­
ing homeomorphism of V satisfying fn(meridian) = (meridian) and 
fn(longitude) = (longitude)+ n(meridian) in H 1 (8V). (We shall not 
distinguish notationally between a homeomorphism and an isomorphism 
on a homology group induced by it.) We denote the knot fn(K) in S 3 

by K v,n· If there exsists an orientation preserving homeomorphism of 
S3 carrying K 1 to K 2, then we write K 1 ~ K 2. Note that K1 ~ K2 is 
the same as saying that K 1 and K 2 are ambient isotopic in S3 • We note 
that for a given knot K, a solid torus. V and an integer n determine a 
unique knot type. For a given knot K, we have an abundant solid tori 
which contain K to carry out a twist move. Sect.2 is directed towards 
the following question : for a given knot K, is it possible to obtain the 
same knot by twistings along distinct solid tori from K? Concerning the 
case when an original knot is trivial, we give Example 2.1 and Theorem 
2.2. In the case when both solid tori are knotted, we shall give Theorem 
2.6 and Examples (see Figures 4, 5). In Sect.3, the behavior of Gromov 
invariants under twistings will be studied. In Sect.4, we study the effects 
of twistings on primeness of knots. Throughout this paper N(X), 8X 
and int X denote the tubular neighborhood of X, the boundary of X 
and the interior of X respectively. 

§2. On twistings along distinct solid tori 

Let Vi and V2 be solid tori containing a knot K. We write Vi ~ Vi 
provided that there exists an orientation preserving homeomorphism f 
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of S3 such that f(V1) = V2, f(K) = K. Note that Kv 1 ,n ~ Kv 2 ,n holds 
for any integer n when V1 ~ ½. To begin with, we give an example as 
follows. 

Example 2.1. In Figure 1, Vi~½ because the winding number 
of O in Vi equals 2 and that of O in½ equals 3. But Ov1 ,-1 ~ Ov2 ,-1-

(-1) -twist 

\i ,/ 

(Q) 
Fig. 1. 

For twistings of the unknot, we prove the following theorem. 

Theorem 2.2. Let O be the unknot and¼ (i = 1, 2) a solid torus 
containing O with WV;(O) 2".: 1. If Ov,,n; ~ Ov 2 ,n; holds for infinitely 
many integers ni, then Vi ~ ½. 

To prove this, we prepare some lemmas. Let V be a solid torus 
containing a knot K in its interior with wv ( K) 2".: 1. Then V - int N ( K) 
is a boundary irreducible Haken manifold. Consider the torus decom­
position of V - int N(K) in the sense of Jaco-Shalen [3] and Johannson 
[4]. Combining Thurston's uniformization theorem [7], they assert that 
V - int N ( K) is uniquely decomposed by a family of tori into pieces each 
of which is Seifert fibred or admits a complete hyperbolic structure of 
finite volume in its interior. Moreover each Seifert piece is one of torus 
knot spaces, cable spaces and composing spaces (see [3]). We denote the 
piece which contains 8V by P0 , and the piece containing 8N(K) by P. 
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If V is an unknotted solid torus in S3 which contains K, then S3 - int V 
is also a solid torus, and we denote it by VJ. When we perform ( -1 / n )­
Dehn surgery on the unknot J ( the core of VJ), then the result is also 
S3 and the image of K becomes a new knot K~. The next lemma is an 
interpretation of a twisting. 

Lemma 2.3. K v,n ~ K~. 

It follows that S3 -int N(K v,n) is homeomorphic to VJ UmJ=Rm-n (V 
- intN(K)). 

Lemma 2.4 ([6]). If Po is a cable space in which a regular fibre 
is presented by fPmq {p 2 2}, then VJ UmpRm-n Po is a Seifert fibred 
manifold with two exceptional fibres of indices p, lpn +qi. The dual k;not 
of J, J~ in VJ UmpRm-n Po is a fibre of index lpn + qi. 

Lemma 2.5 ([6]). If Po is hyperbolic, then there exists Nv,K such 
that VJ UmJ=Rm-n Po is also hyperbolic for lnl 2 Nv,K- Moreover for 
any c > 0, there exsits Nv,K(c) such that J~ is a closed geodesic of 
length< c in VJ UmJ=Rm-n Po for lnl 2 Nv,K(c). 

Proof of Theorem 2.2. If wv 1 (0) = 1 (resp. wv2 (0) = 1), then by 
the assumption and Theorem 4.2 in [6], wv 2 (0) = 1 (resp. wv 1 (0) = 1) 
must hold. In this case O is a core of both V1 and V2 , so we have 
Vi ~ V2 • Assume wv; (0) 2 2 and consider the torus decomposition of 
¼ - int N ( 0). Let Pi be the piece containing 8¼. Since O is trivial, 
Pi can ilot be a composing space. We remark that ¼ is necessarily 
unknotted by the assumption (see [9]), and S3 - int¼ is also a solid 
torus VJi· Then we can characterize the core of VJi in E(0v;,n) = 
VJi UmJ.=Rim:-n(¼ - intN(O)), which is denoted by Ji~n, as follows. 

' ' There exists a constant Nv;,o such that Ji~n is an exceptional fibre of 
unique maximal index or a unique shortest closed geodesic in E(0v;,n) 
by Lemmas 2.4 and 2.5 for lnl 2 Nv;,o- Now we taken as above. Let 
f be an orientation preserving homeomorphism of S3 sending 0v 1 ,n to 
0v 2 ,n- Then by an ambient isotopy, we may assume f maps N(0Vi,n) 
to N(0v 2 ,n) and maps Ji,n to J2,n (see also [8]). From this, we see that 
flv 1 is an orientation preserving homeomorphism from Vi to ½ with 
flVi (0) = 0. Moreover flVi maps R1m1n to R~m2rn (c = ±1). This 
implies that flv 1 maps £1 to £~. By extending flv 1 to S3 , we get a 
required homeomorphism. This completes the proof of Theorem 2.2. 

Q.E.D. 

If we require both V1 and ½ are knotted, the following result holds. 
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Theorem 2.6. Let K be a knot in S3 and¼ a knotted solid torus 
containing K. Suppose that Vi C V2 and the core C1 of Vi satisfies 
wv2 (C1) ~ 2 and wv 1 (K) > 2. Then Kv 1 ,m ~ Kv 2 ,n for any pair 
(m,n) =/= (0,0) (Figure 2). 

Fig. 2. 

Proof. Let fm : Vi ---+ Vi and gn : V2 ---+ V2 be twist homeo­
morphisms with m-twist and n-twist respectively. By Theorem 2.1 in 
[6], 9n(C1) ~ C1 for any integer n =/= 0. Meanwhile fm(C1) ~ C1 for 
any integer m. So the composition 9n o f;;,,1 : Vi ---+ 9n(Vi) sends C1 
to gn(Ci) ~ C 1 . We remark that C1 and 9n(C 1) are knotted in S3 , 

because they are geometrically essential in the knotted solid torus V2 . 

Also 9n o f,;;,,1 satisfies 9n o f;;;1(Kv 1 ,m) = Kv 2 ,n. Using Theorem [5], we 
can conclude KVi,m ~ Kv 2 ,n, if n =/= 0. In the case of n = 0, Kv 2 ,n ~ K 
but Kv 1 ,m ~ K holds only when m = 0 by Theorem 2.1 [6]. It follows 
that KVi,m ~ Kv 2 ,n for any pair (m, n) =/= (0, 0). Q.E.D. 

Remark. In the above theorem, the condition wv 2 ( C 1 ) ~ 2 excludes 
the following trivial example. 

Also in general, if both solid tori V1 and Vi are knotted then by 
Schubert's Satz 1 ([12]), we may assume one of the following occurs by 



Behavior of Knots under Twisting 117 

Fig. 3. 

an ambient isotopy of 53 which leaves K fixed. (1) V1 C V2 or Vi C V1, 
(2) Vi U Vi = 5 3 , and (3) there exists a solid torus W in int Vi n int V2 

such that wv, (Cw) = wv 2 (Cw) = 1 for the core of Cw of W. 
Theorem 2.6 corresponds to the case (1). As for cases (2) and (3), 

there exist inessential examples as in Figure 4 and Figure 5 respectively. 

Fig. 4. 
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v, 

Fig. 5. 

§3. Gromov invariants 

The notion of the Gromov invariant of closed manifolds was intro­
duced by Gromov [1]. In the 3-dimensional case, Thurston defined the 
Gromov invariant of compact 3-manifolds whose boundaries consists of 
tori [14]. In this section we shall study the Gromov invariant of the 
exterior of a knot K in S 3 which we simply call the Gromov invariant of 
Kand we denote it by IIKII- For the definition of the Gromov invariant, 
the reader is referred to [1], [14] and [13]. 

First we prove the following. 

Theorem 3.1. Let K be a knot in S3 and V a knotted solid torus 
containing K. Then IIKv,nll = IIKII holds for any integer n. 

Proof. If wv(K) :S 1, then Kv,n = K for any integer n. So we 
assume wv(K) 2: 2. The exterior of Kv,n (Kv,o ~ K) is described as 
(S 3 - int V) LJhJV - int N(K)) for some gluing homeomorphism hn. 
Since Vis knotted, 8(8 3 - int V) is an incompressible torus. Also 8V is 
an incompressible torus in V - int N(K) because wv(K) 2: 2. Hence we 
have the following equality independent of n by Soma's theorem [13]. 

IIKv,nll = IIE((Kv,n)II = ll(S3 - int V) II (V - int N(K)) 11-

It follows that IIK V,n II = IIKII- Q.E.D. 
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Hence, in Theorem 2.6, Kv 1 ,m and Kv 2 ,n have the same Gromov 
invariants for any pair ( m, n). 

The following is straightforward from Theorem 3.1. 

Corollary 3.2. Suppose that K1 and K2 are knots with IIK1 II =/­
IIK211-Then K2 can not be obtained by a sequence of twistings along 
knotted solid tori from K1. 

On the other hand, if V is unknotted we have: 

Proposition 3.3. Let O be the unknot in S3 • For any real num­
ber r, there exists an unknotted solid torus V containing O such that 
IIOv,111 > r. 

Proof. Consider a solid torus Vas in Figure 6. Then in the exterior 
of Ov,1 , there exist incompressible tori which decompose it into k figure 
eight knot spaces, 1 Whitehead link space and 1 composing space. Hence 
IIOv,ill = l/v3(kVol(figure eight knot complement)+ Vol(Whitehead 
link complement)), where v3 is the volume of the regular ideal simplex 
(see [14] [13]). Thus the result holds for some integer k > 0. Q.E.D. 

0 Ov,1 

Fig. 6. 

This also shows that for any knot K and any real number r, there 
exists an unknotted solid torus V such that K v, 1 > r. 

But the Gromov invariants behave as follows once V is fixed. 

Proposition 3.4. Let K be a k:not in S3 and V an unknotted solid 
torus containing K. Then IIKv,nll is less than a constant Cv,K for any 
integer n. 
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Proof. We may assume wv(K) 2 2. If Po is a cable space, IIKv,nll 
is constant for all but at most two integers n such that a regular fibre is 
presented by £Pm for some p. If Po is a composing space, then twisting 
along V is reduced to that along a knotted solid torus W bounded by the 
torus ( C 8P0 ) which separates Kand av (see Sublemma 3. 7 [6]). Hence 
Theorem 2.1 in [6] implies the result. Suppose that P0 is hyperbolic, by 
Lemma 2.3 VJ UmJ=bn-n Po is also hyperbolic for lnl 2 Nv,K- Then 
we have Vol(int(VJ UmJ=flm-n Po)) < Vol(int P0 ) by Thurston's theorem 
(6.5.6 Theorem [14]), and from this we have the following inequality for 
lnl 2 Nv,K, 

IIKv,nll = 1/v 3 ( 

P; :hyperbolic 
i,tO 

Vol(int Pi) + Vol(int(Vi LJ Po))) 
ffiJ=£m-n 

Vol(int Pi) + Vol(int Po)) 
P;:hyperbolic 

#0 

= IIKII JII-

Now we set C1 = max{IIKv,nll : lnl < Nv,K} and we take Cv,K = 
max{C1, IIK II JII}, then Cv,K is the required constant. Q.E.D. 

Example 3.5 (Thurston [14]). 

- - ~--· 

!IOII =O IIOv,,I[ = 2 

Fig. 7. 

The Gromov invariants of these knots tend from below to a finite 
limit (= 3.6). 

§4. Primeness of knots under twistings 

In this section, we investigate the effects of twistings on primeness 
of knots. To begin with, we consider the case when a twisting solid torus 
is knotted. 
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Theorem 4.1. Let K be a knot in S 3 and V a knotted solid torus 
containing K. Then K is prime if and only if Kv,n is przme for any 
integer n. 

Proof. We may assume wv(K) 2: 2. Consider the torus decom­
position of V - int N(K) and denote the piece containing aN(K) by 
P. Suppose that K is a prime knot, then it turns out P is not a com­
posing space. Now we consider the torus decomposition of E(Kv,n) = 
(S3 - int V) LJhn (V - int N(K) ). In E(K v,n), P is also a decomposing 
piece. It follows that K v,n is also prime for any integer n. Q.E.D. 

If V is unknotted, then the following example exists. 

Example 4.2. In Figure 8, K is a prime knot, but K v,n 1s a 
composite knot for any nonzero integer n. 

K 

Fig. 8. 

In this example K has a locally knotted arc in V (i.e. there is a 
3-ball B C V such that (B, B n K) is a knotted ball pair). If K does 
not have a locally knotted arc in V, then we get the following. 

Theorem 4.3. Let V be an unknotted solid torus containing K 
without a locally knotted arc. Then K v,n is prime for all but at most 
finitely many integers n. 

Proof. Consider the torus decomposition of V - int N(K), and let 
P be a piece containing aN(K) and Po a piece containing av. 

Sublemma. Suppose that K C V does not have a local knot. Then 
P can not be a composing space. 

Proof of Sublemma. Suppose that P is a composing space. Let T be 
a component of ap which does not separate av and aN(K). Note that T 



122 M. Kouno, K. Motegi and T. Shibuya 

bounds a nontrivial knot exterior E, and a regular fibre of P coincides 
a boundary of a meridian disk of N(K). Hence we have a saturated 
annulus A' which joins T and 8N(K). Then D' = A' U D becomes a 
meridian disk of W = S 3 - int E. Since K n D' and K n D consist of 
one point, K has a locally knotted arc in V. This is a contradiction. 

Q.E.D. 

If Po is a cable space, VJ UmJ=£m-n Po is a (nontrivial) torus knot 
exterior except for at most only two integers n by Lemma 2.4. If P0 is 
a k-fold composing space, then VJ UmJ=£m-n Po is a (k - 1)-fold com­
posing space for any integer n. Finally we consider the case when P0 is 
hyperbolic. By Lemma 2.5, we see that VJ UmJ=.em-n Po is also hyper­
bolic except for at most finitely many integers n. It follows that in any 
case, VJ UmJ=£m-n Po is boundary irreducible Haken manifold. Now we 
divide into two cases depending upon whether P = Po or not. If P = Po, 
then VJ UmJ=£m-n P = VJ UmJ=£m-n Po can not be a composing space 
by Sublemma and the above, and it becomes a decomposing piece in 
E(K v,n)- Thus K v,n is prime except for at most finitely many integers 
n. If P =I= Po, then it turns out that P is still a decomposing piece in 
E(Kv,n)- Since Pis not a composing space, Kv,n is prime except for at 
most finitely many integers n. Q.E.D. 

Remark 4.4. Even if K does not have a locally knotted arc in V, 
there is an example such that K v,n is a composite knot for some integer 
n (see Figure 9). 

K 

Fig. 9. 

When an original knot is trivial, Scharlemann-Thompson [11], 
Eudave-Munoz and Gordon have shown the following result, which is 
a generalization of the theorem - "Unknotting number one knots are 
prime. [10]". 
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Theorem 4.5 ([11]). Let V be a solid torus containing the unk:not 
0 with wv(O):::; 2. Then Ov,n is prime for any integer n. 

Since the unknot can not have a locally knotted arc, as an applic~ 
tion of Theorem 4.3, we have the following. 

Corollary 4.6. Let V be a solid torus containing the unknot O. 
Then Ov,n is prime for all but at most finitely many integers n. 

We conclude this paper with the following question. 

Question. Is the result of twisting of the unknot always prime? 

Acknowledgement. Authors wish to thank K. Miyazaki for sug-
gesting that the local knottedness is essential in Theorem 4.3. They also 
wish to thank the referee for helpful comments. 
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