Advanced Studies in Pure Mathematics 19, 1989 Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 675-682

Errata to

Vertex Operators in Conformal Field Theory on P¹ and Monodromy Representations of Braid Group in Advanced Studies in Pure Mathematics 16,1988

A. Tsuchiya and Y. Kanie

Abstract.

We give corrections or comments to the five points in our paper [1].

First fix the notations. Let \mathfrak{g} be the Lie algebra $\mathfrak{sl}(2;\mathbb{C})$. Fix a positive integer ℓ and let $\kappa = \ell + 2$ and $q = \exp\left(\frac{2\pi\sqrt{-1}}{\kappa}\right)$ and introduce the set P_{ℓ} consisting of all half-integers j with $0 \leq j \leq \ell/2$.

For any $j_k \in P_{\ell}$ $(1 \leq k \leq 3)$, denote by $\mathcal{W}\left(j_3^{j_2 j_1}\right)$ the space of initial terms of vertex operators of type $\mathbf{v} = (j_3^{j_2 j_1})$. Note that in this $A_1^{(1)}$ -case, the space $\mathcal{W}\left(j_3^{j_2 j_1}\right)$ is nothing but the space $\mathcal{V}\left(j_{j_3 j_1}^{j_2}\right) = \text{Hom}_{\mathfrak{g}}(V_{j_2} \otimes V_{j_1}, V_{j_3})$ in [1] for $j_1 + j_2 + j_3 \leq \ell$, and $\mathcal{W}\left(j_3^{j_2 j_1}\right) = 0$ for $j_1 + j_2 + j_3 > \ell$.

The space $\operatorname{Hom}_{\mathfrak{g}}(V_{j_2} \otimes V_{j_1}, V_{j_3})$ is at most 1-dimensional, and the condition for its nontriviality is the Clebsch-Gordan condition $|j_1 - j_2| \leq j_3 \leq j_1 + j_2$. In such case, we fix the nonzero vector $\phi_{\mathbf{v}}$ as in [1, Appendix 1].

1. Literally is not valid the braid relation in [1, Proposition 4.2], where the notations we used are not appropriate. Now we reformulate Proposition 4.2 ii).

Received July 12, 1989.

For any $N \ge 1$ and $s, t, j_k \in P_{\ell}(1 \le k \le N)$, introduce the spaces $\mathcal{W}(_t^{j_N \dots j_1 s})$ and $\mathcal{W}(N;_t^{s})$ defined by

$$\mathcal{W}\left(t^{j_{N}\dots j_{1}s}\right) = \sum_{p_{1},\dots,p_{N-1}\in P_{\ell}} \mathcal{W}\left(t^{j_{N}p_{N-1}}\right) \otimes \mathcal{W}\left(p_{N-1}^{j_{N-1}p_{N-2}}\right) \otimes \cdots \otimes \mathcal{W}\left(p_{1}^{j_{1}s}\right)$$

and

$$\mathcal{W}(N;_{t}^{s}) = \sum_{j_{1},\ldots,j_{N} \in P_{\ell}} \mathcal{W}\left(_{t}^{j_{N}\ldots j_{1}s}\right).$$

Note

$$\mathcal{W}(M+N;_{t}{}^{s})=\sum_{p\in P_{\ell}}\mathcal{W}(M;_{t}{}^{p})\otimes\mathcal{W}(N;_{p}{}^{s})$$

Recall that the operator $C(j_4, j_3, j_2, j_1)$ in [1, Section 4.1] acts as

$$C(j_4, j_3, j_2, j_1) : \mathcal{W}\left(j_4^{j_3 j_2 j_1}\right) \longrightarrow \mathcal{W}\left(j_4^{j_2 j_3 j_1}\right),$$

which is defined by the monodromy on the solution space of the fourpoint functions.

Now define the operators $C_i(1 \le i \le N-1)$ on $\mathcal{W}(N; t^s)$ as follows:

$$C_{i}\mathcal{W}\left({}_{t}{}^{j_{N}...j_{1}s}
ight)\subset\mathcal{W}\left({}_{t}{}^{j_{N}...j_{i}j_{i+1}...j_{1}}
ight)$$

and

$$C_{i}(\phi_{N} \otimes \cdots \otimes \phi_{i+1} \otimes \phi_{i} \otimes \cdots \otimes \phi_{1})$$

= $\phi_{N} \otimes \cdots \otimes \phi_{i+2} \otimes C(p_{i+1}, j_{i+1}, j_{i}, p_{i-1})(\phi_{i+1} \otimes \phi_{i}) \otimes \phi_{i-1} \otimes \cdots \otimes \phi_{1}$

for each $\phi_N \in \mathcal{W}\left(t^{j_N p_{N-1}}\right), \phi_k \in \mathcal{W}\left(t^{j_k p_{k-1}}\right)$ $(2 \le k \le N-1)$ and $\phi_1 \in \mathcal{W}\left(t^{j_1 j_1 s}\right)$.

Now Proposition 4.1 ii) should be read as

Proposition 1. i) As operators on $\mathcal{W}(3; t^s)$, the relation

$$C_1 C_2 C_1 = C_2 C_1 C_2$$

holds.

ii) As operators on $\mathcal{W}(N;_t^s)$, the relation

$$C_i C_{i+1} C_i = C_{i+1} C_i C_{i+1}$$
 $(1 \le i \le N - 1)$

holds.

2. There is an error in the definition of the mapping K from the Wenzl's representation $(\pi_{\lambda}, V_{\lambda}^{(2,\kappa)})$ to our monodromy representation $(\pi_{N,t}, W(N;t))$ in [1, Proposition 5.3]. We give here the precise definition of the intertwining operator K^{-1} rather than K.

In our notation in this errata the space W(N;t) is $\mathcal{W}\left(t^{\frac{1}{2}\cdots\frac{1}{2}0}\right)$ and has a basis $\{\phi_{\mathbf{p}}; \mathbf{p} = (p_N, \ldots, p_1) \in \mathcal{P}_{\ell}(N;t)\}$, where

$$\mathcal{P}_{\ell}(N;t) = \left\{ \mathbf{p} = (p_N, \dots, p_1, 0); p_i \in P_{\ell}, p_N = t, |p_i - p_{i-1}| = \frac{1}{2} \right\}$$

and

$$\phi_{\mathbf{p}} = \phi_{\mathbf{v}_N} \otimes \cdots \otimes \phi_{\mathbf{v}_1} \in \mathcal{W}\left(t^{\frac{1}{2}p_{N-1}}\right) \otimes \cdots \otimes \mathcal{W}\left(t^{\frac{1}{2}0}\right),$$
 $\mathbf{v}_i = \left(t^{\frac{1}{2}p_{i-1}}\right).$

The operators C_i on $\mathcal{W}(N;t^0)$ preserves the subspace W(N;t). By Proposition 1, the braid group B_N generated by C_i $(1 \le i \le N-1)$ acts on the space W(N;t). Denote this representation by $\pi_{N,t}$.

The basis vectors $\phi_{\mathbf{p}}$ ($\mathbf{p} \in \mathcal{P}_{\ell}(N;t)$) are eigenvectors w.r.t. the commutative subalgebra $\mathcal{A} = \sum_{i=1}^{N-1} \mathbb{C}(C_i \dots C_1)^i$ of the group algebra $\mathbb{C}[B_N]$.

Let λ be the Young diagram $\lambda(N;t) = \left[\frac{N}{2} + t, \frac{N}{2} - t\right]$ (Here we assume that $\frac{N}{2} - t \in \mathbb{Z}_{\geq 0}$, otherwise the space W(N;t) vanishes). The corresponding Wenzl's space $V_{\lambda}^{(2,\kappa)}$ is generated by the basis $\{\vec{v}_{\vec{p}}; \vec{p} = (\lambda_N, \ldots, \lambda_1) \in \mathcal{P}_{\ell}(\lambda)\}$, where $\mathcal{P}_{\ell}(\lambda)$ is the image of the set $\mathcal{P}_{\ell}(N;t)$ under the mapping K^{-1} , where K^{-1} is defined as

$$K^{-1}(\mathbf{p}) = (\lambda(N;t),\lambda(N-1,p_{N-1}),\ldots,\lambda(1,p_1))$$

for $\mathbf{p} = (t, p_{N-1}, \ldots, p_1, 0) \in \mathcal{P}_{\ell}(N; t)$. The basis vectors $\vec{v}_{\vec{p}}$ $(\vec{p} \in \mathcal{P}_{\ell}(\lambda))$ are also the eigenvectors w.r.t. the algebra \mathcal{A} of the same eigenvalues as for $K(\vec{p})$.

Thus the mapping $K^{-1}: W(N;t) \to V_{\lambda}^{(2,\kappa)}$ must have the form

$$K^{-1}(\phi_{\mathbf{p}}) = \gamma_{\mathbf{p}} \vec{v}_{K^{-1}(\mathbf{p})},$$

where $\gamma_{\mathbf{p}}$ is a constant which was given uncorrectly in [1].

Before we give the correct definition of the constants $\gamma_{\mathbf{p}}$, we need some preliminaries. Introduce an order < in the set $\mathcal{P}_{\ell}(N;t)$ lexicographically, *i.e.* we call $\mathbf{p} < \mathbf{q}$ for $\mathbf{p} = (t, p_{N-1}, \dots, p_1, 0), \mathbf{q} =$ $(t, q_{N-1}, \ldots, q_1, 0) \in \mathcal{P}_{\ell}(N; t)$ if $p_j \leq q_j$ for any j. Then it is easily seen that there is the maximal \mathbf{p}_0 in $\mathcal{P}_{\ell}(N; t)$ w.r.t. this order.

We call **p** and **q** are *adjoining* and denote $\mathbf{p} \sim \mathbf{q}$, if there is an number $k(1 \leq k \leq N-1)$ such that $p_j = q_j$ $(j \neq k)$ and $|p_k - q_k| = 1$. Any **p** and **q** in $\mathcal{P}_{\ell}(N;t)$ are connected by a sequence $(\mathbf{p}_1, \ldots, \mathbf{p}_n)$ in $\mathcal{P}_{\ell}(N;t)$ such that $\mathbf{p}_1 = \mathbf{p}$, $\mathbf{p}_n = \mathbf{q}$ and $\mathbf{p}_i \sim \mathbf{p}_{i+1}(1 \leq i \leq n-1)$.

By Proposition 4.8 in [1] and the definition of the Wenzl's representation [3], there hold only the following relations (C) among the constants $\gamma_{\mathbf{p}}$ ($\mathbf{p} \in \mathcal{P}_{\ell}(N;t)$): let $\mathbf{p} = (t, p_{N-1}, \ldots, p_1, 0)$ and \mathbf{q} be adjoining and $\mathbf{p} < \mathbf{q}$ ($q_k = p_k + 1$). Denote $\mathbf{p}_+ = \mathbf{q}$, $\mathbf{p}_- = \mathbf{p}$ and $p = p_{k-1} = q_{k-1}$. Then there must hold the relation

(C)
$$\gamma_+(p)\gamma_{\mathbf{p}_+} = \gamma_-(p)\gamma_{\mathbf{p}_-},$$

where

$$\gamma_{\pm}(p) = rac{\Gamma\left(rac{2p+1}{\pm\kappa}
ight)}{\Gamma\left(rac{2p+2}{\pm\kappa}
ight)^{1/2}\Gamma\left(rac{2p}{\pm\kappa}
ight)^{1/2}}.$$

Since any **p** and **q** are connected by an adjoining sequence in $\mathcal{P}_{\ell}(N;t)$, the constants $\{\gamma_{\mathbf{p}}; \mathbf{p} \in \mathcal{P}_{\ell}(N;t)\}$ are uniquely determined up to a constant multiple. Normalise them as $\gamma_{\mathbf{p}_0} = 1$ for the maximal \mathbf{p}_0 . Then $\gamma_{\mathbf{q}}(\mathbf{q} \in \mathcal{P}_{\ell}(N;t))$ are given as follows: Write $\mathbf{p}_0 = (t, p_{N-1}, \ldots, p_1, 0)$ and $\mathbf{q} = (t, q_{N-1}, \ldots, q_1, 0)$, then $p_j - q_j \in \mathbb{Z}_{\geq 0}(1 \leq j \leq N-1)$. Then

$$\gamma_{\mathbf{q}} = \prod_{j=1}^{N-1} \gamma(p_j, q_j),$$

where for $p \ge q$

$$\gamma(p,q) = \left\{egin{array}{ll} 1, & (p=q) \ rac{\gamma_+(p-rac{1}{2})...\gamma_+(q+rac{1}{2})}{\gamma_-(p-rac{1}{2})...\gamma_-(q+rac{1}{2})}, & (p>q). \end{array}
ight.$$

Then Proposition 5.3 in [1] remains valid.

Proposition 2. Let $N \in \mathbb{Z}_{>0}$ and $t \in P_{\ell}$ satisfy $\frac{N}{2} - t \in \mathbb{Z}_{\geq 0}$. Then

$$K\pi_{\lambda(N,t)}=q^{\frac{3}{4}}\pi_{N,t}K.$$

678

3. The proof of Proposition 5.4 (The Fusion Rule) in [1] is insufficiently presented. We will develop the theory of the fusions more in detail in our forthcoming paper [2]. In this errata, we only give the meaning of the integral used there to multivalued functions and justify the proof.

Recall that a vertex operator $\Phi(z)$ of type $\mathbf{v} = {k^{ji}}$ can be considered as a $\operatorname{Hom}(\mathcal{H}_k^{\dagger} \otimes V_j \otimes \mathcal{H}_i, \mathbb{C})$ -valued holomorphic function:

$$egin{aligned} \Phi(z)(w\otimes v\otimes u)&=\langle w|\Phi(v;z)(|u
angle)
angle\ (w\in \mathcal{H}_{k}^{\dagger},v\in V_{i},u\in \mathcal{H}_{i}), \end{aligned}$$

and Φ is uniquely determined by its initial term $\phi \in \mathcal{W}(k^{ji}) \subset \operatorname{Hom}_{\mathfrak{g}}(V_j \otimes V_i, V_k) \cong \operatorname{Hom}_{\mathfrak{g}}(V_k^{\dagger} \otimes V_j \otimes V_i, \mathbb{C})$. The holomorphicity of $\Phi(z)$ is weakly taken, *i.e.* $\Phi(z)$ is holomorphic, if the \mathbb{C} -valued function $\langle w | \Phi(v; z)(|u\rangle) \rangle$ is holomorphic in z for any fixed vector $w \otimes v \otimes u$ in $\mathcal{H}_k^{\dagger} \otimes V_j \otimes \mathcal{H}_i$.

By [1, Theorem 3.4] vertex operators $\Phi_{\mathbf{v}_1}(z)$ of type $\mathbf{v}_1 = \binom{j^{j_2 j_1}}{p^{j_2 j_1}}$ and $\Phi_{\mathbf{v}_2}(w)$ of type $\mathbf{v}_2 = \binom{j_4 j_3 p}{j_4}$ are composable, and the composed operator $\Phi_{\mathbf{v}_2}(w)\Phi_{\mathbf{v}_1}(z)$ is a $\operatorname{Hom}(\mathcal{H}_{j_4}^{\dagger} \otimes V_{j_3} \otimes V_{j_2} \otimes \mathcal{H}_{j_1}, \mathbb{C})$ -valued multivalued holomorphic function on $M_2 = \{(w, z) \in \mathbb{C}^{*2}; w \neq z\}$ regularized at z=0 and is uniquely determined by the $\operatorname{Hom}_{\mathfrak{g}}(V_{j_4}^{\dagger} \otimes V_{j_3} \otimes V_{j_2} \otimes V_{j_1}, \mathbb{C})$ -valued function

$$egin{aligned} \Psi_p(w,z)(u_4\otimes u_3\otimes u_2\otimes u_1)&=\langle u_4|\Phi_{\mathbf{v}_2}(u_3;w)\Phi_{\mathbf{v}_1}(u_2;z)(|u_1
angle)
angle\ &(u_4\in V_{j_k}^\dagger,u_k\in V_{j_k}(1\leq k\leq 3)), \end{aligned}$$

which satisfies the reduced system of differential equations for 4-point functions(the joint system E'(J) and B'(J), $J = (j_4, j_3, j_2, j_1)$ in [1, Proposition 4.1]) and they form a basis of its solution space. The holomorphic function $\Psi_p(w, z)$ is known to have the singularity at w = z as

$$\Psi(w,z) = \sum_{r \in P_\ell} (w-z)^{\gamma_r^{(1)}} (\sqrt{2j_4 + 1}F^r U_r^{(1)} + O(w-z))$$

where $U_r^{(1)}$ is the basis vector of $\operatorname{Hom}_{\mathfrak{g}}(V_{j_4}^{\dagger} \otimes V_{j_3} \otimes V_{j_2} \otimes V_{j_1}, \mathbb{C})$ fixed in $[1, Appendix1], F_p^r$ is a constant, O(w-z) is a holomorphic function in (w-z, z) near w = z vanishing at w = z and the exponent $\gamma_r^{(1)}$ is given as

$$\gamma_r^{(1)} = \Delta_{j_2} + \Delta_{j_3} - \Delta_r \qquad \left(\Delta_j = \frac{j^2 + j}{\kappa}\right).$$

We can show similarly as Theorems 2.3 and 3.4 in [1] that the function $\Phi_2(w)\Phi_1(z)$ has an expansion as

$$egin{aligned} \langle u_4 | \Phi_2(u_3;w) \Phi_1(u_2;z)(|u_1
angle)
angle &= \sum_{r \in P_\ell} (w\!-\!z)^{\gamma_r^{+1}} \Psi_p^r(w,z)(u_4 \otimes u_3 \otimes u_2 \otimes u_1) \ & (u_4 \otimes u_3 \otimes u_2 \otimes u_1 \in \mathcal{H}_{i_\ell}^\dagger \otimes V_{i_3} \otimes V_{i_2} \otimes \mathcal{H}_{i_1}) \end{aligned}$$

where $\Psi_p^r(w,z)$ is a Laurent series in w-z with coefficients in $\mathbb{C}(z)$.

Assume that a C-valued function F(w, z) is a holomorphic function on some region of M_2 has an expansion as

$$F(w,z)=\sum_{j=0}^M (w-z)^{\gamma_j}F_j(w,z),$$

where $\gamma_j \in \mathbb{Q}$, $\gamma_0 = 0$, $\gamma_j \notin \mathbb{Z}(j \geq 1)$ and $F_j(w, z)$ is a Laurent series in w - z. Let C_z is a positively oriented contour around z such that the origin is outside C_z . Then we used the convention that the integral of F(w, z) over C_z means the integral of $F_0(w, z)$ over C_z . Hence the operator

$$\Xi^{r}(u_{3},u_{2})=\frac{1}{2\pi\sqrt{-1}}\int_{C_{z}}(w-z)^{-\gamma_{r}^{(1)}-1}\Phi_{\mathbf{v}_{2}}(u_{3};w)\Phi_{\mathbf{v}_{1}}(u_{2};z)dw$$

in [1] is nothing but the residue of the above $\Psi_r(w, z)$ at w = z.

On the other hand, introduce the space

$$\mathcal{FW}\left(_{j_{4}}{}^{j_{3}j_{2}j_{1}}
ight)=\sum_{r\in P_{\ell}}\mathcal{W}\left(\mathbf{w}_{2}(r)
ight)\otimes\mathcal{W}\left(\mathbf{w}_{1}(r)
ight)$$

where

$$\mathbf{w}_2(r) = \begin{pmatrix} {}_{j_4}{}^{rj_1} \end{pmatrix} ext{ and } \mathbf{w}_1(r) = \begin{pmatrix} {}_{r}{}^{j_3j_2} \end{pmatrix}.$$

Its basis vector $\phi_{\mathbf{w}_2(r)} \otimes \phi_{\mathbf{w}_1(r)}$ determines the $\operatorname{Hom}(V_{j_4}^{\dagger} \otimes V_{j_3} \otimes V_{j_2} \otimes V_{j_1}, \mathbb{C})$ -valued function by

$$egin{aligned} &\langle u_4 | \Phi_{\mathbf{w}_2(r)}(\Phi_{\mathbf{w}_1(r)}(u_2;z);w-z)(u_1))
angle \ &= (w-z)^{\gamma_r^{(1)}} \left((\sqrt{2j_4+1}U_r^{(1)}(u_4,u_3,u_2,u_1)+O(w-z)
ight) \end{aligned}$$

(regularized at w=z) and these functions furnish also a basis of the solution space of the joint system E'(J) and B'(J) (see [2]).

680

Thus the analytic continuation gives the isomorphism

$$F: \mathcal{W}\left(j_{4}^{j_{3}j_{2}j_{1}}\right) \longrightarrow \mathcal{FW}\left(j_{4}^{j_{3}j_{2}j_{1}}\right)$$

(the mapping between initial terms).

4. In the proof of [1, Theorem 3.1], we did not take into account the possibility that there may be the solutions of the joint system of E(J) and B(J), $J = (j_N, \ldots, j_1)$ with logarithmic singularities. Any formal solution of the system $\tilde{E}(J)$ in the proof is of the form

$$\Psi(w) = \sum_{a=1}^{R} w^{s^a} \sum_{k \in \mathbb{Z}_{\geq 0}^N} \sum_{m \in \mathbb{Z}_{\geq 0}^N, |m| \leq M} \phi_{a,k,m} w^k (\log w)^m,$$

where M is some bound, $s^a = (s_1^a, \ldots, s_N^a)$'s are exponents and $\phi_{a,k,m} \in Hom_{\mathfrak{g}}\left(V_{j_N}^{\dagger} \otimes V_{j_{N-1}} \otimes \cdots \otimes V_{j_1}, \mathbb{C}\right)$. Apply the arguments in the proof of [1, Theorem3.1], then we get $\phi_{a,0,m} \in \mathcal{W}\left(j_N^{j_N-1}\cdots j_2 j_1\right)$. Hence we already know sufficiently many formal solutions in the form without logarithmic terms by means of the products of the vertex operators.

5. The line \uparrow 13 in the page 337 of [1] should be read as

$$\lim_{z \not \sim \infty} z^{2\Delta_{p_N}} \langle vac | (\hat{Y}_q(-m_q) \dots \hat{Y}_1(-m_1) \Phi_{\mathbf{v}_{N+1}}(v_0;z)) = (-1)^q \langle v |.$$

Acknowlegement. The authors express their thanks to Professors M. Jimbo, T. Miwa and A. Wasserman for their comments and advices.

A. Tsuchiya and Y. Kanie

References

- A.Tscuchiya and Y.Kanie, Vertex Operators in Conformal Field Theory on P¹ and Monodromy Representations of Braid Group, Adv.Studies in pure Math., 16 (1988), 297-372.
- [2] A.Tscuchiya and Y.Kanie, Vertex Operators in Conformal Field Theory on P¹ and Monodromy Representations of Braid Group II. (in preparation)
- [3] H.Wenzl, Hecke algebras of type A_n and subfactors, Invent.math., 92 (1988), 349-383.

A. Tsuchiya Department of Mathematics, Nagoya University Nagoya 464, JAPAN

Y. Kanie

Department of Mathematics Mie University Tsu 514, JAPAN