Advanced Studies in Pure Mathematics 19, 1989
Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 675-682

Errata to
Vertex Operators in Conformal Field Theory on P^{1} and Monodromy Representations of Braid Group in Advanced Studies in Pure Mathematics 16,1988

A. Tsuchiya and Y. Kanie

Abstract

. We give corrections or comments to the five points in our paper [1].

First fix the notations. Let \mathfrak{g} be the Lie algebra $\mathfrak{s l}(2 ; \mathbb{C})$. Fix a positive integer ℓ and let $\kappa=\ell+2$ and $q=\exp \left(\frac{2 \pi \sqrt{-1}}{\kappa}\right)$ and introduce the set P_{ℓ} consisting of all half-integers j with $0 \leq j \leq \ell / 2$.

For any $j_{k} \in P_{\ell}(1 \leq k \leq 3)$, denote by $\mathcal{W}\left({ }_{j_{3}}{ }^{j_{2} j_{1}}\right)$ the space of initial terms of vertex operators of type $\mathbf{v}=\left({ }_{j_{3}}{ }^{j_{2} j_{1}}\right)$. Note that in this $\mathrm{A}_{1}^{(1)}$-case, the space $\mathcal{W}\left({ }_{j_{3}}{ }^{j_{2} j_{1}}\right)$ is nothing but the space $\mathcal{V}\binom{j_{2}}{j_{3} j_{1}}=$ $\operatorname{Hom}_{\mathfrak{g}}\left(V_{j_{2}} \otimes V_{j_{1}}, V_{j_{3}}\right)$ in [1] for $j_{1}+j_{2}+j_{3} \leq \ell$, and $\mathcal{W}\left({ }_{j_{3}}{ }^{j_{2} j_{1}}\right)=0$ for $j_{1}+j_{2}+j_{3}>\ell$.

The space $\operatorname{Hom}_{\mathfrak{g}}\left(V_{j_{2}} \otimes V_{j_{1}}, V_{j_{3}}\right)$ is at most 1-dimensional, and the condition for its nontriviality is the Clebsch-Gordan condition $\left|j_{1}-j_{2}\right| \leq$ $j_{3} \leq j_{1}+j_{2}$. In such case, we fix the nonzero vector ϕ_{v} as in [1, Appendix 1].

1. Literally is not valid the braid relation in [1, Proposition 4.2], where the notations we used are not appropriate. Now we reformulate Proposition 4.2 ii).

For any $N \geq 1$ and $s, t, j_{k} \in P_{\ell}(1 \leq k \leq N)$, introduce the spaces $\mathcal{W}\left(t^{j_{N} \ldots j_{1} s}\right)$ and $\mathcal{W}\left(N{ }_{; t}{ }^{s}\right)$ defined by

$$
\begin{aligned}
& \mathcal{W}\left({ }_{t}^{j_{N} \ldots j_{1} s}\right) \\
& =\sum_{p_{1}, \ldots, p_{N-1} \in P_{\ell}} \mathcal{W}\left({ }_{t}^{j_{N} p_{N-1}}\right) \otimes \mathcal{W}\left({ }_{p_{N-1}}^{j_{N-1} p_{N-2}}\right) \otimes \cdots \otimes \mathcal{W}\left({ }_{p_{1}}^{j_{1} s}\right)
\end{aligned}
$$

and

$$
\mathcal{W}\left(N ;_{t}^{s}\right)=\sum_{j_{1}, \ldots, j_{N} \in P_{\ell}} \mathcal{W}\left({ }_{t}^{j_{N} \ldots j_{1} s}\right)
$$

Note

$$
\mathcal{W}\left(M+N ;_{t}{ }^{s}\right)=\sum_{p \in P_{\ell}} \mathcal{W}\left(M ;{ }^{p}\right) \otimes \mathcal{W}\left(N ;_{p}{ }^{s}\right)
$$

Recall that the operator $C\left(j_{4}, j_{3}, j_{2}, j_{1}\right)$ in [1, Section 4.1] acts as

$$
C\left(j_{4}, j_{3}, j_{2}, j_{1}\right): \mathcal{W}\left({ }_{j_{4}}{ }^{j_{3} j_{2} j_{1}}\right) \longrightarrow \mathcal{W}\left({ }_{j_{4}}{ }^{j_{2} j_{3} j_{1}}\right)
$$

which is defined by the monodromy on the solution space of the fourpoint functions.

Now define the operators $C_{i}(1 \leq i \leq N-1)$ on $\mathcal{W}\left(N ;{ }^{s}\right)$ as follows:

$$
C_{i} \mathcal{W}\left({ }_{t}^{j_{N} \ldots j_{1} s}\right) \subset \mathcal{W}\left({ }_{t}^{j_{N} \ldots j_{i} j_{i+1} \ldots j_{1}}\right)
$$

and

$$
\begin{aligned}
& C_{i}\left(\phi_{N} \otimes \cdots \otimes \phi_{i+1} \otimes \phi_{i} \otimes \cdots \otimes \phi_{1}\right) \\
= & \phi_{N} \otimes \cdots \otimes \phi_{i+2} \otimes C\left(p_{i+1}, j_{i+1}, j_{i}, p_{i-1}\right)\left(\phi_{i+1} \otimes \phi_{i}\right) \otimes \phi_{i-1} \otimes \cdots \otimes \phi_{1}
\end{aligned}
$$

for each $\phi_{N} \in \mathcal{W}\left({ }_{t}^{j_{N} p_{N-1}}\right), \phi_{k} \in \mathcal{W}\left({ }_{p_{k}}{ }^{j_{k} p_{k-1}}\right)(2 \leq k \leq N-1)$ and $\phi_{1} \in \mathcal{W}\left({ }_{p_{1}}{ }^{j_{1} s}\right)$.

Now Proposition 4.1 ii) should be read as
Proposition 1. i) As operators on $\mathcal{W}\left(3 ;{ }^{s}{ }^{s}\right)$, the relation

$$
C_{1} C_{2} C_{1}=C_{2} C_{1} C_{2}
$$

holds.
ii) As operators on $\mathcal{W}\left(N ;{ }^{s}\right)$, the relation

$$
C_{i} C_{i+1} C_{i}=C_{i+1} C_{i} C_{i+1} \quad(1 \leq i \leq N-1)
$$

holds.
2. There is an error in the definition of the mapping K from the Wenzl's representation $\left(\pi_{\lambda}, V_{\lambda}^{(2, \kappa)}\right)$ to our monodromy representation $\left(\pi_{N, t}, W(N ; t)\right)$ in [1, Proposition 5.3]. We give here the precise definition of the intertwining operator K^{-1} rather than K .

In our notation in this errata the space $W(N ; t)$ is $\mathcal{W}\left(t^{\frac{1}{2} \cdots \frac{1}{2} 0}\right)$ and has a basis $\left\{\phi_{\mathbf{p}} ; \mathbf{p}=\left(p_{N}, \ldots, p_{1}\right) \in \mathcal{P}_{\ell}(N ; t)\right\}$, where

$$
\mathcal{P}_{\ell}(N ; t)=\left\{\mathbf{p}=\left(p_{N}, \ldots, p_{1}, 0\right) ; p_{i} \in P_{\ell}, p_{N}=t,\left|p_{i}-p_{i-1}\right|=\frac{1}{2}\right\}
$$

and

$$
\begin{aligned}
\phi_{\mathbf{p}}=\phi_{\mathbf{v}_{N}} \otimes \cdots \otimes \phi_{\mathbf{v}_{1}} \in \mathcal{W}\left(t^{\frac{1}{2} p_{N-1}}\right) \otimes & \cdots \otimes \mathcal{W}\left(p_{1}^{\frac{1}{2} 0}\right), \\
\mathbf{v}_{i} & =\left(p_{i^{2}}^{\frac{1}{2} p_{i-1}}\right)
\end{aligned}
$$

The operators C_{i} on $\mathcal{W}\left(N ;{ }^{0}\right)$ preserves the subspace $W(N ; t)$. By Proposition 1, the braid group B_{N} generated by $C_{i}(1 \leq i \leq N-1)$ acts on the space $W(N ; t)$. Denote this representation by $\pi_{N, t}$.

The basis vectors $\phi_{\mathbf{p}}\left(\mathbf{p} \in \mathcal{P}_{\ell}(N ; t)\right)$ are eigenvectors w.r.t. the commutative subalgebra $\mathcal{A}=\sum_{i=1}^{N-1} \mathbb{C}\left(C_{i} \ldots C_{1}\right)^{i}$ of the group algebra $\mathbb{C}\left[B_{N}\right]$.

Let λ be the Young diagram $\lambda(N ; t)=\left[\frac{N}{2}+t, \frac{N}{2}-t\right]$ (Here we assume that $\frac{N}{2}-t \in \mathbb{Z}_{\geq 0}$, otherwise the space $W(N ; t)$ vanishes). The corresponding Wenzl's space $V_{\lambda}^{(2, \kappa)}$ is generated by the basis $\left\{\vec{v}_{\vec{p}} ; \vec{p}=\right.$ $\left.\left(\lambda_{N}, \ldots \lambda_{1}\right) \in \mathcal{P}_{\ell}(\lambda)\right\}$, where $\mathcal{P}_{\ell}(\lambda)$ is the image of the set $\mathcal{P}_{\ell}(N ; t)$ under the mapping K^{-1}, where K^{-1} is defined as

$$
K^{-1}(\mathbf{p})=\left(\lambda(N ; t), \lambda\left(N-1, p_{N-1}\right), \ldots, \lambda\left(1, p_{1}\right)\right)
$$

for $\mathbf{p}=\left(t, p_{N-1}, \ldots, p_{1}, 0\right) \in \mathcal{P}_{\ell}(N ; t)$. The basis vectors $\vec{v}_{\vec{p}}\left(\vec{p} \in \mathcal{P}_{\ell}(\lambda)\right)$ are also the eigenvectors w.r.t. the algebra \mathcal{A} of the same eigenvalues as for $K(\vec{p})$.

Thus the mapping $K^{-1}: W(N ; t) \rightarrow V_{\lambda}^{(2, \kappa)}$ must have the form

$$
K^{-1}\left(\phi_{\mathbf{p}}\right)=\gamma_{\mathbf{p}} \vec{v}_{K^{-1}(\mathbf{p})}
$$

where $\gamma_{\mathbf{p}}$ is a constant which was given uncorrectly in [1].
Before we give the correct definition of the constants $\gamma_{\mathbf{p}}$, we need some preliminaries. Introduce an order $<$ in the set $\mathcal{P}_{\ell}(N ; t)$ lexicographically, i.e. we call $\mathbf{p}<\mathbf{q}$ for $\mathbf{p}=\left(t, p_{N-1}, \ldots, p_{1}, 0\right), \mathbf{q}=$
$\left(t, q_{N-1}, \ldots, q_{1}, 0\right) \in \mathcal{P}_{\ell}(N ; t)$ if $p_{j} \leq q_{j}$ for any j . Then it is easily seen that there is the maximal \mathbf{p}_{0} in $\mathcal{P}_{\ell}(N ; t)$ w.r.t. this order.

We call \mathbf{p} and \mathbf{q} are adjoining and denote $\mathbf{p} \sim \mathbf{q}$, if there is an number $k(1 \leq k \leq N-1)$ such that $p_{j}=q_{j} \quad(j \neq k)$ and $\left|p_{k}-q_{k}\right|=1$. Any \mathbf{p} and \mathbf{q} in $\mathcal{P}_{\ell}(N ; t)$ are connected by a sequence $\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$ in $\mathcal{P}_{\ell}(N ; t)$ such that $\mathbf{p}_{1}=\mathbf{p}, \mathbf{p}_{n}=\mathbf{q}$ and $\mathbf{p}_{i} \sim \mathbf{p}_{i+1}(1 \leq i \leq n-1)$.

By Proposition 4.8 in [1] and the definition of the Wenzl's representation [3], there hold only the following relations (C) among the constants $\gamma_{\mathbf{p}}\left(\mathbf{p} \in \mathcal{P}_{\ell}(N ; t)\right)$: let $\mathbf{p}=\left(t, p_{N-1}, \ldots, p_{1}, 0\right)$ and \mathbf{q} be adjoining and $\mathbf{p}<\mathbf{q}\left(q_{k}=p_{k}+1\right)$. Denote $\mathbf{p}_{+}=\mathbf{q}, \mathbf{p}_{-}=\mathbf{p}$ and $p=p_{k-1}=q_{k-1}$. Then there must hold the relation

$$
\begin{equation*}
\gamma_{+}(p) \gamma_{\mathbf{p}_{+}}=\gamma_{-}(p) \gamma_{\mathbf{p}_{-}} \tag{C}
\end{equation*}
$$

where

$$
\gamma_{ \pm}(p)=\frac{\Gamma\left(\frac{2 p+1}{ \pm \kappa}\right)}{\Gamma\left(\frac{2 p+2}{ \pm \kappa}\right)^{1 / 2} \Gamma\left(\frac{2 p}{ \pm \kappa}\right)^{1 / 2}}
$$

Since any \mathbf{p} and \mathbf{q} are connected by an adjoining sequence in $\mathcal{P}_{\ell}(N ; t)$, the constants $\left\{\gamma_{\mathbf{p}} ; \mathbf{p} \in \mathcal{P}_{\ell}(N ; t)\right\}$ are uniquely determined up to a constant multiple. Normalise them as $\gamma_{\mathbf{p}_{0}}=1$ for the maximal \mathbf{p}_{0}. Then $\gamma_{\mathbf{q}}\left(\mathbf{q} \in \mathcal{P}_{\ell}(N ; t)\right)$ are given as follows: Write $\mathbf{p}_{0}=$ $\left(t, p_{N-1}, \ldots, p_{1}, 0\right)$ and $\mathbf{q}=\left(t, q_{N-1}, \ldots, q_{1}, 0\right)$, then $p_{j}-q_{j} \in \mathbb{Z}_{\geq 0}(1 \leq$ $j \leq N-1)$. Then

$$
\gamma_{\mathbf{q}}=\prod_{j=1}^{N-1} \gamma\left(p_{j}, q_{j}\right)
$$

where for $p \geq q$

$$
\gamma(p, q)= \begin{cases}1, & (p=q) \\ \frac{\gamma_{+}\left(p-\frac{1}{2}\right) \ldots \gamma_{+}\left(q+\frac{1}{2}\right)}{\gamma_{-}\left(p-\frac{1}{2}\right) \ldots \gamma-\left(q+\frac{1}{2}\right)}, & (p>q)\end{cases}
$$

Then Proposition 5.3 in [1] remains valid.
Proposition 2. Let $N \in \mathbb{Z}_{>0}$ and $t \in P_{l}$ satisfy $\frac{N}{2}-t \in \mathbb{Z}_{\geq 0}$. Then

$$
K \pi_{\lambda(N, t)}=q^{\frac{3}{4}} \pi_{N, t} K
$$

3. The proof of Proposition 5.4 (The Fusion Rule) in [1] is insufficiently presented. We will develop the theory of the fusions more in detail in our forthcoming paper [2]. In this errata, we only give the meaning of the integral used there to multivalued functions and justify the proof.

Recall that a vertex operator $\Phi(z)$ of type $\mathbf{v}=\left({ }_{k}{ }^{j i}\right)$ can be considered as a $\operatorname{Hom}\left(\mathcal{H}_{k}^{\dagger} \otimes V_{j} \otimes \mathcal{H}_{i}, \mathbb{C}\right)$-valued holomorphic function:

$$
\begin{aligned}
\Phi(z)(w \otimes v \otimes u)= & \langle w| \Phi(v ; z)(|u\rangle)\rangle \\
& \left(w \in \mathcal{H}_{k}^{\dagger}, v \in V_{j}, u \in \mathcal{H}_{i}\right)
\end{aligned}
$$

and Φ is uniquely determined by its initial term $\phi \in \mathcal{W}\left({ }_{k}{ }^{j i}\right) \subset$ $\operatorname{Hom}_{\mathfrak{g}}\left(V_{j} \otimes V_{i}, V_{k}\right) \cong \operatorname{Hom}_{\mathfrak{g}}\left(V_{k}^{\dagger} \otimes V_{j} \otimes V_{i}, \mathbb{C}\right)$. The holomorphicity of $\Phi(z)$ is weakly taken, i.e. $\Phi(z)$ is holomorphic, if the \mathbb{C}-valued function $\langle w| \Phi(v ; z)(|u\rangle)\rangle$ is holomorphic in z for any fixed vector $w \otimes v \otimes u$ in $\mathcal{H}_{k}^{\dagger} \otimes V_{j} \otimes \mathcal{H}_{i}$.

By [1, Theorem 3.4] vertex operators $\Phi_{\mathbf{v}_{1}}(z)$ of type $\mathbf{v}_{1}=\left(p^{j_{2} j_{1}}\right)$ and $\Phi_{\mathbf{v}_{2}}(w)$ of type $\mathbf{v}_{2}=\left({ }_{j_{4}}{ }^{j_{3} p}\right)$ are composable, and the composed operator $\Phi_{\mathbf{v}_{2}}(w) \Phi_{\mathbf{v}_{1}}(z)$ is a $\operatorname{Hom}\left(\mathcal{H}_{j_{4}}^{\dagger} \otimes V_{j_{3}} \otimes V_{j_{2}} \otimes \mathcal{H}_{j_{1}}, \mathbb{C}\right)$-valued multivalued holomorphic function on $M_{2}=\left\{(w, z) \in \mathbb{C}^{* 2} ; w \neq z\right\}$ regularized at $\mathrm{z}=0$ and is uniquely determined by the $\operatorname{Hom}_{\mathfrak{g}}\left(V_{j_{4}}^{\dagger} \otimes V_{j_{3}} \otimes V_{j_{2}} \otimes V_{j_{1}}, \mathbb{C}\right)$-valued function

$$
\begin{aligned}
\Psi_{p}(w, z)\left(u_{4} \otimes u_{3} \otimes u_{2} \otimes u_{1}\right) & \left.=\left\langle u_{4}\right| \Phi_{\mathbf{v}_{2}}\left(u_{3} ; w\right) \Phi_{\mathbf{v}_{1}}\left(u_{2} ; z\right)\left(\left|u_{1}\right\rangle\right)\right\rangle \\
& \left(u_{4} \in V_{j_{4}}^{\dagger}, u_{k} \in V_{j_{k}}(1 \leq k \leq 3)\right)
\end{aligned}
$$

which satisfies the reduced system of differential equations for 4-point functions(the joint system $E^{\prime}(J)$ and $B^{\prime}(J), ~ J=\left(j_{4}, j_{3}, j_{2}, j_{1}\right)$ in $[1$, Proposition 4.1]) and they form a basis of its solution space. The holomorphic function $\Psi_{p}(w, z)$ is known to have the singularity at $w=z$ as

$$
\Psi(w, z)=\sum_{r \in P_{\ell}}(w-z)^{\gamma_{r}^{(1)}}\left(\sqrt{2 j_{4}+1} F^{r} U_{r}^{(1)}+O(w-z)\right)
$$

where $U_{r}^{(1)}$ is the basis vector of $\operatorname{Hom}_{\mathfrak{g}}\left(V_{j_{4}}^{\dagger} \otimes V_{j_{3}} \otimes V_{j_{2}} \otimes V_{j_{1}}, \mathbb{C}\right)$ fixed in [1, Appendix 1$], F_{p}^{r}$ is a constant, $O(w-z)$ is a holomorphic function in $(w-z, z)$ near $w=z$ vanishing at $w=z$ and the exponent $\gamma_{r}^{(1)}$ is given as

$$
\gamma_{r}^{(1)}=\Delta_{j_{2}}+\Delta_{j_{3}}-\Delta_{r} \quad\left(\Delta_{j}=\frac{j^{2}+j}{\kappa}\right)
$$

We can show similarly as Theorems 2.3 and 3.4 in [1] that the function $\Phi_{2}(w) \Phi_{1}(z)$ has an expansion as

$$
\begin{array}{r}
\left.\left\langle u_{4}\right| \Phi_{2}\left(u_{3} ; w\right) \Phi_{1}\left(u_{2} ; z\right)\left(\left|u_{1}\right\rangle\right)\right\rangle=\sum_{r \in P_{\ell}}(w-z)^{\gamma_{r}^{(1)}} \Psi_{p}^{r}(w, z)\left(u_{4} \otimes u_{3} \otimes u_{2} \otimes u_{1}\right) \\
\left(u_{4} \otimes u_{3} \otimes u_{2} \otimes u_{1} \in \mathcal{H}_{j_{4}}^{\dagger} \otimes V_{j_{3}} \otimes V_{j_{2}} \otimes \mathcal{H}_{j_{1}}\right)
\end{array}
$$

where $\Psi_{p}^{r}(w, z)$ is a Laurent series in $w-z$ with coefficients in $\mathbb{C}(z)$.
Assume that a \mathbb{C}-valued function $F(w, z)$ is a holomorphic function on some region of M_{2} has an expansion as

$$
F(w, z)=\sum_{j=0}^{M}(w-z)^{\gamma_{j}} F_{j}(w, z)
$$

where $\gamma_{j} \in \mathbb{Q}, \gamma_{0}=0, \gamma_{j} \notin \mathbb{Z}(j \geq 1)$ and $F_{j}(w, z)$ is a Laurent series in $w-z$. Let C_{z} is a positively oriented contour around z such that the origin is outside C_{z}. Then we used the convention that the integral of $F(w, z)$ over C_{z} means the integral of $F_{0}(w, z)$ over C_{z}. Hence the operator

$$
\Xi^{r}\left(u_{3}, u_{2}\right)=\frac{1}{2 \pi \sqrt{-1}} \int_{C_{z}}(w-z)^{-\gamma_{r}^{(1)}-1} \Phi_{\mathbf{v}_{2}}\left(u_{3} ; w\right) \Phi_{\mathbf{v}_{1}}\left(u_{2} ; z\right) d w
$$

in [1] is nothing but the residue of the above $\Psi_{r}(w, z)$ at $w=z$.
On the other hand, introduce the space

$$
\mathcal{F} \mathcal{W}\left({ }_{j_{4}}{ }^{j_{3} j_{2} j_{1}}\right)=\sum_{r \in P_{\ell}} \mathcal{W}\left(\mathbf{w}_{2}(r)\right) \otimes \mathcal{W}\left(\mathbf{w}_{1}(r)\right)
$$

where

$$
\left.\mathbf{w}_{2}(r)={\left(j_{4}\right.}^{r j_{1}}\right) \text { and } \mathbf{w}_{1}(r)=\left(r^{j_{3} j_{2}}\right) .
$$

Its basis vector $\phi_{\mathbf{w}_{2}(r)} \otimes \phi_{\mathbf{w}_{1}(r)}$ determines the $\operatorname{Hom}\left(V_{j_{4}}^{\dagger} \otimes V_{j_{3}} \otimes V_{j_{2}} \otimes\right.$ $V_{j_{1}}, \mathbb{C}$) -valued function by

$$
\begin{aligned}
\left\langle u_{4}\right| \Phi_{\mathbf{w}_{2}(r)} & \left.\left.\left(\Phi_{\mathbf{w}_{1}(r)}\left(u_{2} ; z\right) ; w-z\right)\left(u_{1}\right)\right)\right\rangle \\
= & (w-z)^{\gamma_{r}^{(1)}}\left(\left(\sqrt{2 j_{4}+1} U_{r}^{(1)}\left(u_{4}, u_{3}, u_{2}, u_{1}\right)+O(w-z)\right)\right.
\end{aligned}
$$

(regularized at $w=z$) and these functions furnish also a basis of the solution space of the joint system $E^{\prime}(J)$ and $B^{\prime}(\mathrm{J})$ (see [2]).

Thus the analytic continuation gives the isomorphism

$$
F: \mathcal{W}\left({ }_{j_{4}}^{j_{3} j_{2} j_{1}}\right) \longrightarrow \mathcal{F W}\left({ }_{j_{4}}^{j_{3} j_{2} j_{1}}\right)
$$

(the mapping between initial terms).
4. In the proof of [1, Theorem 3.1], we did not take into account the possibility that there may be the solutions of the joint system of $E(J)$ and $B(J), J=\left(j_{N}, \ldots, j_{1}\right)$ with logarithmic singularities. Any formal solution of the system $\tilde{E}(J)$ in the proof is of the form

$$
\Psi(w)=\sum_{a=1}^{R} w^{s^{a}} \sum_{k \in \mathbb{Z}_{\geq 0}^{N}} \sum_{m \in \mathbb{Z}_{\geq 0}^{N},|m| \leq M} \phi_{a, k, m} w^{k}(\log w)^{m}
$$

where M is some bound, $s^{a}=\left(s_{1}^{a}, \ldots, s_{N}^{a}\right)$'s are exponents and $\phi_{a, k, m} \in$ $H o m_{\mathfrak{g}}\left(V_{j_{N}}^{\dagger} \otimes V_{j_{N-1}} \otimes \cdots \otimes V_{j_{1}}, \mathbb{C}\right)$. Apply the arguments in the proof of $\left[1\right.$, Theorem3.1], then we get $\phi_{a, 0, m} \in \mathcal{W}\left({ }_{j_{N}} j_{N-1} \ldots j_{2} j_{1}\right)$. Hence we already know sufficiently many formal solutions in the form without logarithmic terms by means of the products of the vertex operators.
5. The line $\uparrow 13$ in the page 337 of [1] should be read as

$$
\lim _{z \nearrow \infty} z^{2 \Delta_{p_{N}}}\langle v a c|\left(\hat{Y}_{q}\left(-m_{q}\right) \ldots \hat{Y}_{1}\left(-m_{1}\right) \Phi_{\mathbf{v}_{N+1}}\left(v_{0} ; z\right)\right)=(-1)^{q}\langle v| .
$$

Acknowlegement. The authors express their thanks to Professors M. Jimbo, T. Miwa and A. Wasserman for their comments and advices.

References

[1] A.Tscuchiya and Y.Kanie, Vertex Operators in Conformal Field Theory on \mathbf{P}^{1} and Monodromy Representations of Braid Group, Adv.Studies in pure Math., 16 (1988), 297-372.
[2] A.Tscuchiya and Y.Kanie, Vertex Operators in Conformal Field Theory on \mathbf{P}^{1} and Monodromy Representations of Braid Group II. (in preparation)
[3] H.Wenzl, Hecke algebras of type A_{n} and subfactors, Invent.math., 92 (1988), 349-383.
A. Tsuchiya

Department of Mathematics,
Nagoya University
Nagoya 464, JAPAN
Y. Kanie

Department of Mathematics
Mie University
Tsu 514, JAPAN

