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Abstract. 

We give corrections or comments to the five points in our paper 
[1]. 

First fix the notations. Let g be the Lie algebra s[(2; q. Fix a 

positive integer land let K = l + 2 and q = exp ( 2,..p) and introduce 

the set Pt consisting of all half-integers j with O ~ j ~ l/2. 
For any jk E Pl (1 ~ k ~ 3), denote by W (13hi 1 } the space of 

initial terms of vertex operators of type v = (is hii}. Note that in 

this A?)-case, the space W (is i 2 ii} is nothing but the space V C;t) = 
Hom 8(Vi, ©Vii, v'j3 ) in [1] for ii + h + h ~ l, and W (is iaii) = 0 for 
ii +h +h > l. 

The space Hom 8(llj2 © v;,1 , V13) is at most I-dimensional, and the 
condition for its nontriviality is the Clebsch-Gordan condition Iii - h I ~ 
h ~ ii +iz. In such case, we fix the nonzero vector <Pv as in [1, Appendix 
1]. 

1. Literally is not valid the braid relation in [1, Proposition 4.2], 
where the notations we used are not appropriate. Now we reformulate 
Proposition 4.2 ii). 
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For any N ~ 1 and s, t,jk E Pt(l s k s N), introduce the spaces 
W (tiN---iis) and W(N;t 8 ) defined by 

W (tiN•••i1s) 

L W (tiNPN-1} @W {PN- 1iN-1PN-2) @· .. @W (p/is) 
P1,---,PN-1EPt 

and 

ji, ... ,jNEPt 

Note 
W(M + N;t 8 ) = L W(M;t P)@ W(N;p 8

) 

pEPt 

Recall that the operator C(j 4 ,ia,h,ii) in [1, Section 4.1] acts as 

which is defined by the monodromy on the solution space of the four
point functions. 

Now define the operators Ci(l Si s N -1) on W (N;t 8 ) as follows: 

and 

Ci(</>N@ · · ·@ </>i+i @</>i@ · · ·@ </>i) 

= </>N@· · ·@</>i+2 @C{Pi+1,h+1,j;,pi-i)(</>i+1 @</>i)@</>i-1 @· · ·@</>1 

for each </>NEW (tiNPN- 1), </>k E W (P•i•P•- 1) {2 s k SN - 1) and 
</>1 E W (p1 iis). 

Now Proposition 4.1 ii) should be read as 

Proposition 1. i) As operators on W (3;t 8 ), the relation 

holds. 
ii) As operators on W (N;t s), the relation 

(1sisN-1) 

holds. 
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2. There is an error in the definition of the mapping K from the 
Wenzl's representation {11)., vp,,.>) to our monodromy representation 
{ 11"N,t, W(N; t)) in (1, Proposition 5.3]. We give here the precise defi
nition of the intertwining operator K- 1 rather than K. 

In our notation in this errata the space W(N;t) is W (t½---½0 ) and 

has a basis {</>p; p = (PN,··-,P1) E -Pt(N;t)}, where 

-Pt(N;t) = {p = (PN,··-,P1,0);pi E P1.,PN = t,IPi -Pi-11 = ~} 

and 

V·-( ½P,-1) ' - Pi • 

The operators Ci on W (N;t 0) preserves the subspace W(N; t). By 
Proposition 1, the braid group BN generated by Ci (1 ::; i ::; N -1) acts 
on the space W(N;t). Denote this representation by 11"N,t· 

The basis vectors </)p (p E -P1.(N; t)) are eigenvectors w.r.t. the 

commutative subalgebra A = I:f:;~1 C( Ci ... C1 )i of the group algebra 
C[BN]-

Let >.. be the Young diagram >..(N;t) = [f + t, f - t] {Here we 
assume that f - t E Z?.o, otherwise the space W(N;t) vanishes). The 

corresponding Wenzl's space vp,,.) is generated by the basis { vi; ff = 
(>..N, ... >..1) E -Pt{>.)}, where -P1.(>..) is the image of the set -Pt(N; t) under 
the mapping K- 1, where K- 1 is defined as 

K- 1 (p) = (>..(N;t),>..(N- l,pN-1), ... ,>..(l,p1)) 

for p = (t,PN-i, ... ,Pi, 0) E -P1.(N;t). The basis vectors Vff (ff E -P1.(>..)) 
are also the eigenvectors w.r.t. the algebra A of the same eigenvalues as 
for K(ft). 

Thus the mapping K~ 1 : W(N; t) - vl2·,.> must have the form 

K- 1(</)p) = '}'p'VK-l(p), 

where '}'p is a constant which was given uncorrectly in [1]. 
Before we give the correct definition of the constants '}'p, we need 

some preliminaries. Introduce an order < in the set -Pt(N; t) lexi
cographically, i.e. we call p < q for p = (t,PN-1, ... ,Pi, 0), q = 
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(t,qN-1, ... ,q1,0) E 'PL(N;t) if Pi :::; qi for any j. Then it is easily 
seen that there is the maximal p0 in 'Pt(N;t) w.r.t. this order. 

We call p and q are adjoining and denote p ,._, q, if there is an 
number k{l :::; k:::; N -1) such that Pi = qi (j =I-k) and !Pk - qkl = 1. 
Any p and q in 'Pt(N;t) are connected by a sequence {p1 , •• ·,Pn) in 
'Pt(N;t) such that Pl= p, Pn = q and Pi'"" Pi+1{l:::; i:::; n -1). 

By Proposition 4.8 in [1] and the definition of the Wenzl's representa
tion (3], there hold only the following relations (C) among the constants 
'Yp (p E 'Pt(N;t)): let p = (t,pN.,...1,···,P1,0) and q be adjoining and 
p < q (qk =Pk+ 1). Denote P+ = q, P- = p and p = Pk-1 = qk-1· 
Then there must hold the relation 

{C) 

where 

r (2i~1) 
'Y±(P)= ( )1/2 ( )1;2· r 2p+2 r 1£. 

±t< ±1< 

Since any p and q are connected by an adjoining sequence in 
'Pt(N; t), the constants {'Yp; p E 'Pt(N; t)} are uniquely determined 
up to a constant multiple. Normalise them as 'YPo = 1 for the max
imal Po- Then 'Yq{q E 'Pt(N;t)) are given as follows: Write Po = 
(t,PN-1, ... ,P1, 0) and q = (t, qN-1, ... , q1, 0), then Pi - qi E Z?:o{l :::; 
j:::; N -1). Then 

N-1 

'Yq = II 'Y(Pi, qi), 
i=l 

where for p ~ q 

Then Proposition 5.3 in [1] remains valid. 

(p = q) 

(p > q). 

Proposition 2. Let N E Z>o and t E P1. satisfy !{-- t E Z?:o. 
Then 

1 
K7r),(N,t) = q 4 1C'N,tK. 
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3. The proof of Proposition 5.4 (The Fusion Rule) in [l] is insuf
ficiently presented. We will develop the theory of the fusions more in 
detail in our forthcoming paper [2]. In this errata, we only give the 
meaning of the integral used there to multivalued functions and justify 
the proof. 

Recall that a vertex operator <l>(z) of type v = (kii) can be consid

ered as a Hom(Hl 0 ½ 0 Hi, C) -valued holomorphic function: 

<l>(z)(w0v0u) = (wl<l>(v;z}(lu))) 

(w E Ht,v E Yj,u E Hi}, 

and <l> is uniquely determined by its initial term ¢ E W (kii) c 
Hom 9 (Yj 0 ½, Vk)~ Hom 9 (VJ 0 ½ 0 ½, C). The holomorphicity of 
<l>(z) is weakly taken, i.e. <l>(z) is holomorphic, if the C-valued func
tion (wl<l>(v; z}(ju) )) is holomorphic in z for any fixed vector w 0 v 0 u 

in Ht 0 Vi 0 Hi. 
By [l, Theorem 3.4] vertex operators 4>v1 (z) of type v 1 = (/ 2 ii) and 

4>v2 ( w) of type v2 = (i4 iaP) are composable, and the composed operator 

<l>v2 (w}<l>v1 (z) is a Hom(Ht 0 ½a 0 Yj2 0 Hji,C} -valued multivalued 
holomorphic function on M 2 = { ( w, z) E C*2 ; w f=. z} regularized at z=O 

and is uniquely determined by the Hom 9 (~~ 0 Via 0 Yj2 0 Yj1 , C}-valued 
function 

'1ip(w,z)(u4 0 U3 0 u2 0 u1) = (u4j<l>v2 (u3; w}<l>v1 (u2; z)(!u1) )) 

(u4 E Vj~,Uk E ljk(l :S: k :S: 3)}, 

which satisfies the reduced system of differential equations for 4-point 
functions(the joint system E 1(J) and B 1(J}, J = (j4,h,h,ii) in [l, 
Proposition 4.1]} and they form a basis of its solution space. The holo
morphic function \J!p(w,z) is known to have the singularity at w = z 
as 

\J!(w, z} = I: (w - z}'Y~1> ( V2j4 + 1FrU$ 1) + O(w - z}) 
rEPt 

where u$1l is the basis vector of Hom 9(Vj~ 0 Vj3 0 Yj2 0 Yj1 , C) fixed in 
[l,Appendixl], F; is a constant, O(w - z} is a holomorphic function in 

(w- z,z} near w = z vanishing at w = z and the exponent ,t1) is given 
as 

,y(l) _ A . + A . _ A 
1 r - Ll.32 Ll.33 Ll.r, ( . - j2 + j) 

LlJ - . 
K, 
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We can show similarly as Theorems 2.3 and 3.4 in [l] that the func
tion if>2 (w)if>1(z) has an expansion as 

(u4lif>2(u3;w)if>1(u2;z)(lu1))) = L (w-z)1'i 1 >w;(w,z)(u4@u3@u2@ui) 
rEP, 

( U4 @ U3 @ U2 @ U1 E 1-i}. @ Vj3 @ ½2 @ ?{j 1 ) 

where w; ( w, z) is a Laurent series in w - z with coefficients in C( z). 
Assume that a C-valued function F ( w, z) is a holomorphic function 

on some region of M 2 has an expansion as 

M 

F(w,z) = L(w - z)1'iF1(w,z), 
i=O 

where 'Yi E Q, ,o = 0, 11 ~ l(j ~ 1) and F1(w,z) is a Laurent series 
in w - z. Let Cz is a positively oriented contour around z such that 
the origin is outside Cz. Then we used the convention that the integral 
of F ( w, z) over C z means the integral of F0 ( w, z) over C z. Hence the 
operator 

-:::;'r( ) - 1 1 ( )-,i1) _1 .,.._ ( • ).,.._ ( . )d ~ U3,U2 - 11 W - Z "±'v 2 U3,W "±'v 1 U2,z W 
27l"y-l c, 

in [l] is nothing but the residue of the above '1>'r(w,z) at w = z. 
On the other hand, introduce the space 

FW(i/ 81211) = I: W(w 2(r))@W(w1(r)) 
rEP, 

where 

Its basis vector </>w2 (r) @ <Pwi(r) determines the Hom(l0~ @ Vis @ Vj2 @ 
Vj1 , C) -valued function by 

(u41if>w2 (r)(if>w1 (r)(u2; z); W - z)(u1))) 

= (w - z)1'i1> (<V2J4 + lU~1l(u4,u3,u2,u1) + O(w - z)) 
( regularized at w=z) and these functions furnish also a basis of the 
solution space of the joint system E'( J) and B'( J) (see [2]). 
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Thus the analytic continuation gives the isomorphism 

F · W ( . ishii) ----- FW (. isi2i1) . 14 J4 

{the mapping between initial terms). 
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4. In the proof of [1, Theorem 3.1], we did not take into account the 
possibility that there may be the solutions of the joint system of E( J) 
and B ( J), J = (j N, ... , ii) with logarithmic singularities. Any formal 
solution of the system E( J) in the proof is of the form 

where M is some bound, sa = (sf, ... , sN) 's are exponents and <Pa,k,m E 

H om 9 ( V;~ ® ½N-i ® · · · ® l-'j1 , C). Apply the arguments in the proof 

of [1, Theorem3.1], then we get <Pa,O,m E W (iNiN-i---iaii). Hence we 
already know sufficiently many formal solutions in the form without 
logarithmic terms by means of the products of the vertex operators. 

5. The line i 13 in the page 337 of [1] should be read as 

Acknowlegement. The authors express their thanks to Professors 
M. Jimbo, T. Miwa and A. Wasserman for their comments and advices. 
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